]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/rculist.h
net: rtnetlink: validate IFLA_MTU attribute in rtnl_create_link()
[mirror_ubuntu-bionic-kernel.git] / include / linux / rculist.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4
5 #ifdef __KERNEL__
6
7 /*
8 * RCU-protected list version
9 */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12
13 /*
14 * Why is there no list_empty_rcu()? Because list_empty() serves this
15 * purpose. The list_empty() function fetches the RCU-protected pointer
16 * and compares it to the address of the list head, but neither dereferences
17 * this pointer itself nor provides this pointer to the caller. Therefore,
18 * it is not necessary to use rcu_dereference(), so that list_empty() can
19 * be used anywhere you would want to use a list_empty_rcu().
20 */
21
22 /*
23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24 * @list: list to be initialized
25 *
26 * You should instead use INIT_LIST_HEAD() for normal initialization and
27 * cleanup tasks, when readers have no access to the list being initialized.
28 * However, if the list being initialized is visible to readers, you
29 * need to keep the compiler from being too mischievous.
30 */
31 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
32 {
33 WRITE_ONCE(list->next, list);
34 WRITE_ONCE(list->prev, list);
35 }
36
37 /*
38 * return the ->next pointer of a list_head in an rcu safe
39 * way, we must not access it directly
40 */
41 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
42
43 /*
44 * Insert a new entry between two known consecutive entries.
45 *
46 * This is only for internal list manipulation where we know
47 * the prev/next entries already!
48 */
49 static inline void __list_add_rcu(struct list_head *new,
50 struct list_head *prev, struct list_head *next)
51 {
52 if (!__list_add_valid(new, prev, next))
53 return;
54
55 new->next = next;
56 new->prev = prev;
57 rcu_assign_pointer(list_next_rcu(prev), new);
58 next->prev = new;
59 }
60
61 /**
62 * list_add_rcu - add a new entry to rcu-protected list
63 * @new: new entry to be added
64 * @head: list head to add it after
65 *
66 * Insert a new entry after the specified head.
67 * This is good for implementing stacks.
68 *
69 * The caller must take whatever precautions are necessary
70 * (such as holding appropriate locks) to avoid racing
71 * with another list-mutation primitive, such as list_add_rcu()
72 * or list_del_rcu(), running on this same list.
73 * However, it is perfectly legal to run concurrently with
74 * the _rcu list-traversal primitives, such as
75 * list_for_each_entry_rcu().
76 */
77 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
78 {
79 __list_add_rcu(new, head, head->next);
80 }
81
82 /**
83 * list_add_tail_rcu - add a new entry to rcu-protected list
84 * @new: new entry to be added
85 * @head: list head to add it before
86 *
87 * Insert a new entry before the specified head.
88 * This is useful for implementing queues.
89 *
90 * The caller must take whatever precautions are necessary
91 * (such as holding appropriate locks) to avoid racing
92 * with another list-mutation primitive, such as list_add_tail_rcu()
93 * or list_del_rcu(), running on this same list.
94 * However, it is perfectly legal to run concurrently with
95 * the _rcu list-traversal primitives, such as
96 * list_for_each_entry_rcu().
97 */
98 static inline void list_add_tail_rcu(struct list_head *new,
99 struct list_head *head)
100 {
101 __list_add_rcu(new, head->prev, head);
102 }
103
104 /**
105 * list_del_rcu - deletes entry from list without re-initialization
106 * @entry: the element to delete from the list.
107 *
108 * Note: list_empty() on entry does not return true after this,
109 * the entry is in an undefined state. It is useful for RCU based
110 * lockfree traversal.
111 *
112 * In particular, it means that we can not poison the forward
113 * pointers that may still be used for walking the list.
114 *
115 * The caller must take whatever precautions are necessary
116 * (such as holding appropriate locks) to avoid racing
117 * with another list-mutation primitive, such as list_del_rcu()
118 * or list_add_rcu(), running on this same list.
119 * However, it is perfectly legal to run concurrently with
120 * the _rcu list-traversal primitives, such as
121 * list_for_each_entry_rcu().
122 *
123 * Note that the caller is not permitted to immediately free
124 * the newly deleted entry. Instead, either synchronize_rcu()
125 * or call_rcu() must be used to defer freeing until an RCU
126 * grace period has elapsed.
127 */
128 static inline void list_del_rcu(struct list_head *entry)
129 {
130 __list_del_entry(entry);
131 entry->prev = LIST_POISON2;
132 }
133
134 /**
135 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
136 * @n: the element to delete from the hash list.
137 *
138 * Note: list_unhashed() on the node return true after this. It is
139 * useful for RCU based read lockfree traversal if the writer side
140 * must know if the list entry is still hashed or already unhashed.
141 *
142 * In particular, it means that we can not poison the forward pointers
143 * that may still be used for walking the hash list and we can only
144 * zero the pprev pointer so list_unhashed() will return true after
145 * this.
146 *
147 * The caller must take whatever precautions are necessary (such as
148 * holding appropriate locks) to avoid racing with another
149 * list-mutation primitive, such as hlist_add_head_rcu() or
150 * hlist_del_rcu(), running on this same list. However, it is
151 * perfectly legal to run concurrently with the _rcu list-traversal
152 * primitives, such as hlist_for_each_entry_rcu().
153 */
154 static inline void hlist_del_init_rcu(struct hlist_node *n)
155 {
156 if (!hlist_unhashed(n)) {
157 __hlist_del(n);
158 n->pprev = NULL;
159 }
160 }
161
162 /**
163 * list_replace_rcu - replace old entry by new one
164 * @old : the element to be replaced
165 * @new : the new element to insert
166 *
167 * The @old entry will be replaced with the @new entry atomically.
168 * Note: @old should not be empty.
169 */
170 static inline void list_replace_rcu(struct list_head *old,
171 struct list_head *new)
172 {
173 new->next = old->next;
174 new->prev = old->prev;
175 rcu_assign_pointer(list_next_rcu(new->prev), new);
176 new->next->prev = new;
177 old->prev = LIST_POISON2;
178 }
179
180 /**
181 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
182 * @list: the RCU-protected list to splice
183 * @prev: points to the last element of the existing list
184 * @next: points to the first element of the existing list
185 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
186 *
187 * The list pointed to by @prev and @next can be RCU-read traversed
188 * concurrently with this function.
189 *
190 * Note that this function blocks.
191 *
192 * Important note: the caller must take whatever action is necessary to prevent
193 * any other updates to the existing list. In principle, it is possible to
194 * modify the list as soon as sync() begins execution. If this sort of thing
195 * becomes necessary, an alternative version based on call_rcu() could be
196 * created. But only if -really- needed -- there is no shortage of RCU API
197 * members.
198 */
199 static inline void __list_splice_init_rcu(struct list_head *list,
200 struct list_head *prev,
201 struct list_head *next,
202 void (*sync)(void))
203 {
204 struct list_head *first = list->next;
205 struct list_head *last = list->prev;
206
207 /*
208 * "first" and "last" tracking list, so initialize it. RCU readers
209 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
210 * instead of INIT_LIST_HEAD().
211 */
212
213 INIT_LIST_HEAD_RCU(list);
214
215 /*
216 * At this point, the list body still points to the source list.
217 * Wait for any readers to finish using the list before splicing
218 * the list body into the new list. Any new readers will see
219 * an empty list.
220 */
221
222 sync();
223
224 /*
225 * Readers are finished with the source list, so perform splice.
226 * The order is important if the new list is global and accessible
227 * to concurrent RCU readers. Note that RCU readers are not
228 * permitted to traverse the prev pointers without excluding
229 * this function.
230 */
231
232 last->next = next;
233 rcu_assign_pointer(list_next_rcu(prev), first);
234 first->prev = prev;
235 next->prev = last;
236 }
237
238 /**
239 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
240 * designed for stacks.
241 * @list: the RCU-protected list to splice
242 * @head: the place in the existing list to splice the first list into
243 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
244 */
245 static inline void list_splice_init_rcu(struct list_head *list,
246 struct list_head *head,
247 void (*sync)(void))
248 {
249 if (!list_empty(list))
250 __list_splice_init_rcu(list, head, head->next, sync);
251 }
252
253 /**
254 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
255 * list, designed for queues.
256 * @list: the RCU-protected list to splice
257 * @head: the place in the existing list to splice the first list into
258 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
259 */
260 static inline void list_splice_tail_init_rcu(struct list_head *list,
261 struct list_head *head,
262 void (*sync)(void))
263 {
264 if (!list_empty(list))
265 __list_splice_init_rcu(list, head->prev, head, sync);
266 }
267
268 /**
269 * list_entry_rcu - get the struct for this entry
270 * @ptr: the &struct list_head pointer.
271 * @type: the type of the struct this is embedded in.
272 * @member: the name of the list_head within the struct.
273 *
274 * This primitive may safely run concurrently with the _rcu list-mutation
275 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
276 */
277 #define list_entry_rcu(ptr, type, member) \
278 container_of(READ_ONCE(ptr), type, member)
279
280 /*
281 * Where are list_empty_rcu() and list_first_entry_rcu()?
282 *
283 * Implementing those functions following their counterparts list_empty() and
284 * list_first_entry() is not advisable because they lead to subtle race
285 * conditions as the following snippet shows:
286 *
287 * if (!list_empty_rcu(mylist)) {
288 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
289 * do_something(bar);
290 * }
291 *
292 * The list may not be empty when list_empty_rcu checks it, but it may be when
293 * list_first_entry_rcu rereads the ->next pointer.
294 *
295 * Rereading the ->next pointer is not a problem for list_empty() and
296 * list_first_entry() because they would be protected by a lock that blocks
297 * writers.
298 *
299 * See list_first_or_null_rcu for an alternative.
300 */
301
302 /**
303 * list_first_or_null_rcu - get the first element from a list
304 * @ptr: the list head to take the element from.
305 * @type: the type of the struct this is embedded in.
306 * @member: the name of the list_head within the struct.
307 *
308 * Note that if the list is empty, it returns NULL.
309 *
310 * This primitive may safely run concurrently with the _rcu list-mutation
311 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
312 */
313 #define list_first_or_null_rcu(ptr, type, member) \
314 ({ \
315 struct list_head *__ptr = (ptr); \
316 struct list_head *__next = READ_ONCE(__ptr->next); \
317 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
318 })
319
320 /**
321 * list_next_or_null_rcu - get the first element from a list
322 * @head: the head for the list.
323 * @ptr: the list head to take the next element from.
324 * @type: the type of the struct this is embedded in.
325 * @member: the name of the list_head within the struct.
326 *
327 * Note that if the ptr is at the end of the list, NULL is returned.
328 *
329 * This primitive may safely run concurrently with the _rcu list-mutation
330 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
331 */
332 #define list_next_or_null_rcu(head, ptr, type, member) \
333 ({ \
334 struct list_head *__head = (head); \
335 struct list_head *__ptr = (ptr); \
336 struct list_head *__next = READ_ONCE(__ptr->next); \
337 likely(__next != __head) ? list_entry_rcu(__next, type, \
338 member) : NULL; \
339 })
340
341 /**
342 * list_for_each_entry_rcu - iterate over rcu list of given type
343 * @pos: the type * to use as a loop cursor.
344 * @head: the head for your list.
345 * @member: the name of the list_head within the struct.
346 *
347 * This list-traversal primitive may safely run concurrently with
348 * the _rcu list-mutation primitives such as list_add_rcu()
349 * as long as the traversal is guarded by rcu_read_lock().
350 */
351 #define list_for_each_entry_rcu(pos, head, member) \
352 for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
353 &pos->member != (head); \
354 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
355
356 /**
357 * list_entry_lockless - get the struct for this entry
358 * @ptr: the &struct list_head pointer.
359 * @type: the type of the struct this is embedded in.
360 * @member: the name of the list_head within the struct.
361 *
362 * This primitive may safely run concurrently with the _rcu list-mutation
363 * primitives such as list_add_rcu(), but requires some implicit RCU
364 * read-side guarding. One example is running within a special
365 * exception-time environment where preemption is disabled and where
366 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
367 * as in synchronize_sched(), call_rcu_sched(), and friends). Another
368 * example is when items are added to the list, but never deleted.
369 */
370 #define list_entry_lockless(ptr, type, member) \
371 container_of((typeof(ptr))READ_ONCE(ptr), type, member)
372
373 /**
374 * list_for_each_entry_lockless - iterate over rcu list of given type
375 * @pos: the type * to use as a loop cursor.
376 * @head: the head for your list.
377 * @member: the name of the list_struct within the struct.
378 *
379 * This primitive may safely run concurrently with the _rcu list-mutation
380 * primitives such as list_add_rcu(), but requires some implicit RCU
381 * read-side guarding. One example is running within a special
382 * exception-time environment where preemption is disabled and where
383 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
384 * as in synchronize_sched(), call_rcu_sched(), and friends). Another
385 * example is when items are added to the list, but never deleted.
386 */
387 #define list_for_each_entry_lockless(pos, head, member) \
388 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
389 &pos->member != (head); \
390 pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
391
392 /**
393 * list_for_each_entry_continue_rcu - continue iteration over list of given type
394 * @pos: the type * to use as a loop cursor.
395 * @head: the head for your list.
396 * @member: the name of the list_head within the struct.
397 *
398 * Continue to iterate over list of given type, continuing after
399 * the current position.
400 */
401 #define list_for_each_entry_continue_rcu(pos, head, member) \
402 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
403 &pos->member != (head); \
404 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
405
406 /**
407 * hlist_del_rcu - deletes entry from hash list without re-initialization
408 * @n: the element to delete from the hash list.
409 *
410 * Note: list_unhashed() on entry does not return true after this,
411 * the entry is in an undefined state. It is useful for RCU based
412 * lockfree traversal.
413 *
414 * In particular, it means that we can not poison the forward
415 * pointers that may still be used for walking the hash list.
416 *
417 * The caller must take whatever precautions are necessary
418 * (such as holding appropriate locks) to avoid racing
419 * with another list-mutation primitive, such as hlist_add_head_rcu()
420 * or hlist_del_rcu(), running on this same list.
421 * However, it is perfectly legal to run concurrently with
422 * the _rcu list-traversal primitives, such as
423 * hlist_for_each_entry().
424 */
425 static inline void hlist_del_rcu(struct hlist_node *n)
426 {
427 __hlist_del(n);
428 n->pprev = LIST_POISON2;
429 }
430
431 /**
432 * hlist_replace_rcu - replace old entry by new one
433 * @old : the element to be replaced
434 * @new : the new element to insert
435 *
436 * The @old entry will be replaced with the @new entry atomically.
437 */
438 static inline void hlist_replace_rcu(struct hlist_node *old,
439 struct hlist_node *new)
440 {
441 struct hlist_node *next = old->next;
442
443 new->next = next;
444 new->pprev = old->pprev;
445 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
446 if (next)
447 new->next->pprev = &new->next;
448 old->pprev = LIST_POISON2;
449 }
450
451 /*
452 * return the first or the next element in an RCU protected hlist
453 */
454 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
455 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
456 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
457
458 /**
459 * hlist_add_head_rcu
460 * @n: the element to add to the hash list.
461 * @h: the list to add to.
462 *
463 * Description:
464 * Adds the specified element to the specified hlist,
465 * while permitting racing traversals.
466 *
467 * The caller must take whatever precautions are necessary
468 * (such as holding appropriate locks) to avoid racing
469 * with another list-mutation primitive, such as hlist_add_head_rcu()
470 * or hlist_del_rcu(), running on this same list.
471 * However, it is perfectly legal to run concurrently with
472 * the _rcu list-traversal primitives, such as
473 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
474 * problems on Alpha CPUs. Regardless of the type of CPU, the
475 * list-traversal primitive must be guarded by rcu_read_lock().
476 */
477 static inline void hlist_add_head_rcu(struct hlist_node *n,
478 struct hlist_head *h)
479 {
480 struct hlist_node *first = h->first;
481
482 n->next = first;
483 n->pprev = &h->first;
484 rcu_assign_pointer(hlist_first_rcu(h), n);
485 if (first)
486 first->pprev = &n->next;
487 }
488
489 /**
490 * hlist_add_tail_rcu
491 * @n: the element to add to the hash list.
492 * @h: the list to add to.
493 *
494 * Description:
495 * Adds the specified element to the specified hlist,
496 * while permitting racing traversals.
497 *
498 * The caller must take whatever precautions are necessary
499 * (such as holding appropriate locks) to avoid racing
500 * with another list-mutation primitive, such as hlist_add_head_rcu()
501 * or hlist_del_rcu(), running on this same list.
502 * However, it is perfectly legal to run concurrently with
503 * the _rcu list-traversal primitives, such as
504 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
505 * problems on Alpha CPUs. Regardless of the type of CPU, the
506 * list-traversal primitive must be guarded by rcu_read_lock().
507 */
508 static inline void hlist_add_tail_rcu(struct hlist_node *n,
509 struct hlist_head *h)
510 {
511 struct hlist_node *i, *last = NULL;
512
513 /* Note: write side code, so rcu accessors are not needed. */
514 for (i = h->first; i; i = i->next)
515 last = i;
516
517 if (last) {
518 n->next = last->next;
519 n->pprev = &last->next;
520 rcu_assign_pointer(hlist_next_rcu(last), n);
521 } else {
522 hlist_add_head_rcu(n, h);
523 }
524 }
525
526 /**
527 * hlist_add_before_rcu
528 * @n: the new element to add to the hash list.
529 * @next: the existing element to add the new element before.
530 *
531 * Description:
532 * Adds the specified element to the specified hlist
533 * before the specified node while permitting racing traversals.
534 *
535 * The caller must take whatever precautions are necessary
536 * (such as holding appropriate locks) to avoid racing
537 * with another list-mutation primitive, such as hlist_add_head_rcu()
538 * or hlist_del_rcu(), running on this same list.
539 * However, it is perfectly legal to run concurrently with
540 * the _rcu list-traversal primitives, such as
541 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
542 * problems on Alpha CPUs.
543 */
544 static inline void hlist_add_before_rcu(struct hlist_node *n,
545 struct hlist_node *next)
546 {
547 n->pprev = next->pprev;
548 n->next = next;
549 rcu_assign_pointer(hlist_pprev_rcu(n), n);
550 next->pprev = &n->next;
551 }
552
553 /**
554 * hlist_add_behind_rcu
555 * @n: the new element to add to the hash list.
556 * @prev: the existing element to add the new element after.
557 *
558 * Description:
559 * Adds the specified element to the specified hlist
560 * after the specified node while permitting racing traversals.
561 *
562 * The caller must take whatever precautions are necessary
563 * (such as holding appropriate locks) to avoid racing
564 * with another list-mutation primitive, such as hlist_add_head_rcu()
565 * or hlist_del_rcu(), running on this same list.
566 * However, it is perfectly legal to run concurrently with
567 * the _rcu list-traversal primitives, such as
568 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
569 * problems on Alpha CPUs.
570 */
571 static inline void hlist_add_behind_rcu(struct hlist_node *n,
572 struct hlist_node *prev)
573 {
574 n->next = prev->next;
575 n->pprev = &prev->next;
576 rcu_assign_pointer(hlist_next_rcu(prev), n);
577 if (n->next)
578 n->next->pprev = &n->next;
579 }
580
581 #define __hlist_for_each_rcu(pos, head) \
582 for (pos = rcu_dereference(hlist_first_rcu(head)); \
583 pos; \
584 pos = rcu_dereference(hlist_next_rcu(pos)))
585
586 /**
587 * hlist_for_each_entry_rcu - iterate over rcu list of given type
588 * @pos: the type * to use as a loop cursor.
589 * @head: the head for your list.
590 * @member: the name of the hlist_node within the struct.
591 *
592 * This list-traversal primitive may safely run concurrently with
593 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
594 * as long as the traversal is guarded by rcu_read_lock().
595 */
596 #define hlist_for_each_entry_rcu(pos, head, member) \
597 for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
598 typeof(*(pos)), member); \
599 pos; \
600 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
601 &(pos)->member)), typeof(*(pos)), member))
602
603 /**
604 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
605 * @pos: the type * to use as a loop cursor.
606 * @head: the head for your list.
607 * @member: the name of the hlist_node within the struct.
608 *
609 * This list-traversal primitive may safely run concurrently with
610 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
611 * as long as the traversal is guarded by rcu_read_lock().
612 *
613 * This is the same as hlist_for_each_entry_rcu() except that it does
614 * not do any RCU debugging or tracing.
615 */
616 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
617 for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
618 typeof(*(pos)), member); \
619 pos; \
620 pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
621 &(pos)->member)), typeof(*(pos)), member))
622
623 /**
624 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
625 * @pos: the type * to use as a loop cursor.
626 * @head: the head for your list.
627 * @member: the name of the hlist_node within the struct.
628 *
629 * This list-traversal primitive may safely run concurrently with
630 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
631 * as long as the traversal is guarded by rcu_read_lock().
632 */
633 #define hlist_for_each_entry_rcu_bh(pos, head, member) \
634 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
635 typeof(*(pos)), member); \
636 pos; \
637 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
638 &(pos)->member)), typeof(*(pos)), member))
639
640 /**
641 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
642 * @pos: the type * to use as a loop cursor.
643 * @member: the name of the hlist_node within the struct.
644 */
645 #define hlist_for_each_entry_continue_rcu(pos, member) \
646 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
647 &(pos)->member)), typeof(*(pos)), member); \
648 pos; \
649 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
650 &(pos)->member)), typeof(*(pos)), member))
651
652 /**
653 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
654 * @pos: the type * to use as a loop cursor.
655 * @member: the name of the hlist_node within the struct.
656 */
657 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
658 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
659 &(pos)->member)), typeof(*(pos)), member); \
660 pos; \
661 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
662 &(pos)->member)), typeof(*(pos)), member))
663
664 /**
665 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
666 * @pos: the type * to use as a loop cursor.
667 * @member: the name of the hlist_node within the struct.
668 */
669 #define hlist_for_each_entry_from_rcu(pos, member) \
670 for (; pos; \
671 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
672 &(pos)->member)), typeof(*(pos)), member))
673
674 #endif /* __KERNEL__ */
675 #endif