]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/rculist.h
Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / include / linux / rculist.h
1 #ifndef _LINUX_RCULIST_H
2 #define _LINUX_RCULIST_H
3
4 #ifdef __KERNEL__
5
6 /*
7 * RCU-protected list version
8 */
9 #include <linux/list.h>
10 #include <linux/rcupdate.h>
11
12 /*
13 * Why is there no list_empty_rcu()? Because list_empty() serves this
14 * purpose. The list_empty() function fetches the RCU-protected pointer
15 * and compares it to the address of the list head, but neither dereferences
16 * this pointer itself nor provides this pointer to the caller. Therefore,
17 * it is not necessary to use rcu_dereference(), so that list_empty() can
18 * be used anywhere you would want to use a list_empty_rcu().
19 */
20
21 /*
22 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
23 * @list: list to be initialized
24 *
25 * You should instead use INIT_LIST_HEAD() for normal initialization and
26 * cleanup tasks, when readers have no access to the list being initialized.
27 * However, if the list being initialized is visible to readers, you
28 * need to keep the compiler from being too mischievous.
29 */
30 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
31 {
32 WRITE_ONCE(list->next, list);
33 WRITE_ONCE(list->prev, list);
34 }
35
36 /*
37 * return the ->next pointer of a list_head in an rcu safe
38 * way, we must not access it directly
39 */
40 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
41
42 /*
43 * Insert a new entry between two known consecutive entries.
44 *
45 * This is only for internal list manipulation where we know
46 * the prev/next entries already!
47 */
48 #ifndef CONFIG_DEBUG_LIST
49 static inline void __list_add_rcu(struct list_head *new,
50 struct list_head *prev, struct list_head *next)
51 {
52 new->next = next;
53 new->prev = prev;
54 rcu_assign_pointer(list_next_rcu(prev), new);
55 next->prev = new;
56 }
57 #else
58 void __list_add_rcu(struct list_head *new,
59 struct list_head *prev, struct list_head *next);
60 #endif
61
62 /**
63 * list_add_rcu - add a new entry to rcu-protected list
64 * @new: new entry to be added
65 * @head: list head to add it after
66 *
67 * Insert a new entry after the specified head.
68 * This is good for implementing stacks.
69 *
70 * The caller must take whatever precautions are necessary
71 * (such as holding appropriate locks) to avoid racing
72 * with another list-mutation primitive, such as list_add_rcu()
73 * or list_del_rcu(), running on this same list.
74 * However, it is perfectly legal to run concurrently with
75 * the _rcu list-traversal primitives, such as
76 * list_for_each_entry_rcu().
77 */
78 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
79 {
80 __list_add_rcu(new, head, head->next);
81 }
82
83 /**
84 * list_add_tail_rcu - add a new entry to rcu-protected list
85 * @new: new entry to be added
86 * @head: list head to add it before
87 *
88 * Insert a new entry before the specified head.
89 * This is useful for implementing queues.
90 *
91 * The caller must take whatever precautions are necessary
92 * (such as holding appropriate locks) to avoid racing
93 * with another list-mutation primitive, such as list_add_tail_rcu()
94 * or list_del_rcu(), running on this same list.
95 * However, it is perfectly legal to run concurrently with
96 * the _rcu list-traversal primitives, such as
97 * list_for_each_entry_rcu().
98 */
99 static inline void list_add_tail_rcu(struct list_head *new,
100 struct list_head *head)
101 {
102 __list_add_rcu(new, head->prev, head);
103 }
104
105 /**
106 * list_del_rcu - deletes entry from list without re-initialization
107 * @entry: the element to delete from the list.
108 *
109 * Note: list_empty() on entry does not return true after this,
110 * the entry is in an undefined state. It is useful for RCU based
111 * lockfree traversal.
112 *
113 * In particular, it means that we can not poison the forward
114 * pointers that may still be used for walking the list.
115 *
116 * The caller must take whatever precautions are necessary
117 * (such as holding appropriate locks) to avoid racing
118 * with another list-mutation primitive, such as list_del_rcu()
119 * or list_add_rcu(), running on this same list.
120 * However, it is perfectly legal to run concurrently with
121 * the _rcu list-traversal primitives, such as
122 * list_for_each_entry_rcu().
123 *
124 * Note that the caller is not permitted to immediately free
125 * the newly deleted entry. Instead, either synchronize_rcu()
126 * or call_rcu() must be used to defer freeing until an RCU
127 * grace period has elapsed.
128 */
129 static inline void list_del_rcu(struct list_head *entry)
130 {
131 __list_del_entry(entry);
132 entry->prev = LIST_POISON2;
133 }
134
135 /**
136 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
137 * @n: the element to delete from the hash list.
138 *
139 * Note: list_unhashed() on the node return true after this. It is
140 * useful for RCU based read lockfree traversal if the writer side
141 * must know if the list entry is still hashed or already unhashed.
142 *
143 * In particular, it means that we can not poison the forward pointers
144 * that may still be used for walking the hash list and we can only
145 * zero the pprev pointer so list_unhashed() will return true after
146 * this.
147 *
148 * The caller must take whatever precautions are necessary (such as
149 * holding appropriate locks) to avoid racing with another
150 * list-mutation primitive, such as hlist_add_head_rcu() or
151 * hlist_del_rcu(), running on this same list. However, it is
152 * perfectly legal to run concurrently with the _rcu list-traversal
153 * primitives, such as hlist_for_each_entry_rcu().
154 */
155 static inline void hlist_del_init_rcu(struct hlist_node *n)
156 {
157 if (!hlist_unhashed(n)) {
158 __hlist_del(n);
159 n->pprev = NULL;
160 }
161 }
162
163 /**
164 * list_replace_rcu - replace old entry by new one
165 * @old : the element to be replaced
166 * @new : the new element to insert
167 *
168 * The @old entry will be replaced with the @new entry atomically.
169 * Note: @old should not be empty.
170 */
171 static inline void list_replace_rcu(struct list_head *old,
172 struct list_head *new)
173 {
174 new->next = old->next;
175 new->prev = old->prev;
176 rcu_assign_pointer(list_next_rcu(new->prev), new);
177 new->next->prev = new;
178 old->prev = LIST_POISON2;
179 }
180
181 /**
182 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
183 * @list: the RCU-protected list to splice
184 * @head: the place in the list to splice the first list into
185 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
186 *
187 * @head can be RCU-read traversed concurrently with this function.
188 *
189 * Note that this function blocks.
190 *
191 * Important note: the caller must take whatever action is necessary to
192 * prevent any other updates to @head. In principle, it is possible
193 * to modify the list as soon as sync() begins execution.
194 * If this sort of thing becomes necessary, an alternative version
195 * based on call_rcu() could be created. But only if -really-
196 * needed -- there is no shortage of RCU API members.
197 */
198 static inline void list_splice_init_rcu(struct list_head *list,
199 struct list_head *head,
200 void (*sync)(void))
201 {
202 struct list_head *first = list->next;
203 struct list_head *last = list->prev;
204 struct list_head *at = head->next;
205
206 if (list_empty(list))
207 return;
208
209 /*
210 * "first" and "last" tracking list, so initialize it. RCU readers
211 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
212 * instead of INIT_LIST_HEAD().
213 */
214
215 INIT_LIST_HEAD_RCU(list);
216
217 /*
218 * At this point, the list body still points to the source list.
219 * Wait for any readers to finish using the list before splicing
220 * the list body into the new list. Any new readers will see
221 * an empty list.
222 */
223
224 sync();
225
226 /*
227 * Readers are finished with the source list, so perform splice.
228 * The order is important if the new list is global and accessible
229 * to concurrent RCU readers. Note that RCU readers are not
230 * permitted to traverse the prev pointers without excluding
231 * this function.
232 */
233
234 last->next = at;
235 rcu_assign_pointer(list_next_rcu(head), first);
236 first->prev = head;
237 at->prev = last;
238 }
239
240 /**
241 * list_entry_rcu - get the struct for this entry
242 * @ptr: the &struct list_head pointer.
243 * @type: the type of the struct this is embedded in.
244 * @member: the name of the list_head within the struct.
245 *
246 * This primitive may safely run concurrently with the _rcu list-mutation
247 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
248 */
249 #define list_entry_rcu(ptr, type, member) \
250 container_of(lockless_dereference(ptr), type, member)
251
252 /**
253 * Where are list_empty_rcu() and list_first_entry_rcu()?
254 *
255 * Implementing those functions following their counterparts list_empty() and
256 * list_first_entry() is not advisable because they lead to subtle race
257 * conditions as the following snippet shows:
258 *
259 * if (!list_empty_rcu(mylist)) {
260 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
261 * do_something(bar);
262 * }
263 *
264 * The list may not be empty when list_empty_rcu checks it, but it may be when
265 * list_first_entry_rcu rereads the ->next pointer.
266 *
267 * Rereading the ->next pointer is not a problem for list_empty() and
268 * list_first_entry() because they would be protected by a lock that blocks
269 * writers.
270 *
271 * See list_first_or_null_rcu for an alternative.
272 */
273
274 /**
275 * list_first_or_null_rcu - get the first element from a list
276 * @ptr: the list head to take the element from.
277 * @type: the type of the struct this is embedded in.
278 * @member: the name of the list_head within the struct.
279 *
280 * Note that if the list is empty, it returns NULL.
281 *
282 * This primitive may safely run concurrently with the _rcu list-mutation
283 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
284 */
285 #define list_first_or_null_rcu(ptr, type, member) \
286 ({ \
287 struct list_head *__ptr = (ptr); \
288 struct list_head *__next = READ_ONCE(__ptr->next); \
289 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
290 })
291
292 /**
293 * list_for_each_entry_rcu - iterate over rcu list of given type
294 * @pos: the type * to use as a loop cursor.
295 * @head: the head for your list.
296 * @member: the name of the list_head within the struct.
297 *
298 * This list-traversal primitive may safely run concurrently with
299 * the _rcu list-mutation primitives such as list_add_rcu()
300 * as long as the traversal is guarded by rcu_read_lock().
301 */
302 #define list_for_each_entry_rcu(pos, head, member) \
303 for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
304 &pos->member != (head); \
305 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
306
307 /**
308 * list_for_each_entry_continue_rcu - continue iteration over list of given type
309 * @pos: the type * to use as a loop cursor.
310 * @head: the head for your list.
311 * @member: the name of the list_head within the struct.
312 *
313 * Continue to iterate over list of given type, continuing after
314 * the current position.
315 */
316 #define list_for_each_entry_continue_rcu(pos, head, member) \
317 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
318 &pos->member != (head); \
319 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
320
321 /**
322 * hlist_del_rcu - deletes entry from hash list without re-initialization
323 * @n: the element to delete from the hash list.
324 *
325 * Note: list_unhashed() on entry does not return true after this,
326 * the entry is in an undefined state. It is useful for RCU based
327 * lockfree traversal.
328 *
329 * In particular, it means that we can not poison the forward
330 * pointers that may still be used for walking the hash list.
331 *
332 * The caller must take whatever precautions are necessary
333 * (such as holding appropriate locks) to avoid racing
334 * with another list-mutation primitive, such as hlist_add_head_rcu()
335 * or hlist_del_rcu(), running on this same list.
336 * However, it is perfectly legal to run concurrently with
337 * the _rcu list-traversal primitives, such as
338 * hlist_for_each_entry().
339 */
340 static inline void hlist_del_rcu(struct hlist_node *n)
341 {
342 __hlist_del(n);
343 n->pprev = LIST_POISON2;
344 }
345
346 /**
347 * hlist_replace_rcu - replace old entry by new one
348 * @old : the element to be replaced
349 * @new : the new element to insert
350 *
351 * The @old entry will be replaced with the @new entry atomically.
352 */
353 static inline void hlist_replace_rcu(struct hlist_node *old,
354 struct hlist_node *new)
355 {
356 struct hlist_node *next = old->next;
357
358 new->next = next;
359 new->pprev = old->pprev;
360 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
361 if (next)
362 new->next->pprev = &new->next;
363 old->pprev = LIST_POISON2;
364 }
365
366 /*
367 * return the first or the next element in an RCU protected hlist
368 */
369 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
370 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
371 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
372
373 /**
374 * hlist_add_head_rcu
375 * @n: the element to add to the hash list.
376 * @h: the list to add to.
377 *
378 * Description:
379 * Adds the specified element to the specified hlist,
380 * while permitting racing traversals.
381 *
382 * The caller must take whatever precautions are necessary
383 * (such as holding appropriate locks) to avoid racing
384 * with another list-mutation primitive, such as hlist_add_head_rcu()
385 * or hlist_del_rcu(), running on this same list.
386 * However, it is perfectly legal to run concurrently with
387 * the _rcu list-traversal primitives, such as
388 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
389 * problems on Alpha CPUs. Regardless of the type of CPU, the
390 * list-traversal primitive must be guarded by rcu_read_lock().
391 */
392 static inline void hlist_add_head_rcu(struct hlist_node *n,
393 struct hlist_head *h)
394 {
395 struct hlist_node *first = h->first;
396
397 n->next = first;
398 n->pprev = &h->first;
399 rcu_assign_pointer(hlist_first_rcu(h), n);
400 if (first)
401 first->pprev = &n->next;
402 }
403
404 /**
405 * hlist_add_before_rcu
406 * @n: the new element to add to the hash list.
407 * @next: the existing element to add the new element before.
408 *
409 * Description:
410 * Adds the specified element to the specified hlist
411 * before the specified node while permitting racing traversals.
412 *
413 * The caller must take whatever precautions are necessary
414 * (such as holding appropriate locks) to avoid racing
415 * with another list-mutation primitive, such as hlist_add_head_rcu()
416 * or hlist_del_rcu(), running on this same list.
417 * However, it is perfectly legal to run concurrently with
418 * the _rcu list-traversal primitives, such as
419 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
420 * problems on Alpha CPUs.
421 */
422 static inline void hlist_add_before_rcu(struct hlist_node *n,
423 struct hlist_node *next)
424 {
425 n->pprev = next->pprev;
426 n->next = next;
427 rcu_assign_pointer(hlist_pprev_rcu(n), n);
428 next->pprev = &n->next;
429 }
430
431 /**
432 * hlist_add_behind_rcu
433 * @n: the new element to add to the hash list.
434 * @prev: the existing element to add the new element after.
435 *
436 * Description:
437 * Adds the specified element to the specified hlist
438 * after the specified node while permitting racing traversals.
439 *
440 * The caller must take whatever precautions are necessary
441 * (such as holding appropriate locks) to avoid racing
442 * with another list-mutation primitive, such as hlist_add_head_rcu()
443 * or hlist_del_rcu(), running on this same list.
444 * However, it is perfectly legal to run concurrently with
445 * the _rcu list-traversal primitives, such as
446 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
447 * problems on Alpha CPUs.
448 */
449 static inline void hlist_add_behind_rcu(struct hlist_node *n,
450 struct hlist_node *prev)
451 {
452 n->next = prev->next;
453 n->pprev = &prev->next;
454 rcu_assign_pointer(hlist_next_rcu(prev), n);
455 if (n->next)
456 n->next->pprev = &n->next;
457 }
458
459 #define __hlist_for_each_rcu(pos, head) \
460 for (pos = rcu_dereference(hlist_first_rcu(head)); \
461 pos; \
462 pos = rcu_dereference(hlist_next_rcu(pos)))
463
464 /**
465 * hlist_for_each_entry_rcu - iterate over rcu list of given type
466 * @pos: the type * to use as a loop cursor.
467 * @head: the head for your list.
468 * @member: the name of the hlist_node within the struct.
469 *
470 * This list-traversal primitive may safely run concurrently with
471 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
472 * as long as the traversal is guarded by rcu_read_lock().
473 */
474 #define hlist_for_each_entry_rcu(pos, head, member) \
475 for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
476 typeof(*(pos)), member); \
477 pos; \
478 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
479 &(pos)->member)), typeof(*(pos)), member))
480
481 /**
482 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
483 * @pos: the type * to use as a loop cursor.
484 * @head: the head for your list.
485 * @member: the name of the hlist_node within the struct.
486 *
487 * This list-traversal primitive may safely run concurrently with
488 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
489 * as long as the traversal is guarded by rcu_read_lock().
490 *
491 * This is the same as hlist_for_each_entry_rcu() except that it does
492 * not do any RCU debugging or tracing.
493 */
494 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
495 for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
496 typeof(*(pos)), member); \
497 pos; \
498 pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
499 &(pos)->member)), typeof(*(pos)), member))
500
501 /**
502 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
503 * @pos: the type * to use as a loop cursor.
504 * @head: the head for your list.
505 * @member: the name of the hlist_node within the struct.
506 *
507 * This list-traversal primitive may safely run concurrently with
508 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
509 * as long as the traversal is guarded by rcu_read_lock().
510 */
511 #define hlist_for_each_entry_rcu_bh(pos, head, member) \
512 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
513 typeof(*(pos)), member); \
514 pos; \
515 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
516 &(pos)->member)), typeof(*(pos)), member))
517
518 /**
519 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
520 * @pos: the type * to use as a loop cursor.
521 * @member: the name of the hlist_node within the struct.
522 */
523 #define hlist_for_each_entry_continue_rcu(pos, member) \
524 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
525 &(pos)->member)), typeof(*(pos)), member); \
526 pos; \
527 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
528 &(pos)->member)), typeof(*(pos)), member))
529
530 /**
531 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
532 * @pos: the type * to use as a loop cursor.
533 * @member: the name of the hlist_node within the struct.
534 */
535 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
536 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
537 &(pos)->member)), typeof(*(pos)), member); \
538 pos; \
539 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
540 &(pos)->member)), typeof(*(pos)), member))
541
542 /**
543 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
544 * @pos: the type * to use as a loop cursor.
545 * @member: the name of the hlist_node within the struct.
546 */
547 #define hlist_for_each_entry_from_rcu(pos, member) \
548 for (; pos; \
549 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
550 &(pos)->member)), typeof(*(pos)), member))
551
552 #endif /* __KERNEL__ */
553 #endif