]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/rculist.h
Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-bionic-kernel.git] / include / linux / rculist.h
1 #ifndef _LINUX_RCULIST_H
2 #define _LINUX_RCULIST_H
3
4 #ifdef __KERNEL__
5
6 /*
7 * RCU-protected list version
8 */
9 #include <linux/list.h>
10 #include <linux/rcupdate.h>
11
12 /*
13 * Why is there no list_empty_rcu()? Because list_empty() serves this
14 * purpose. The list_empty() function fetches the RCU-protected pointer
15 * and compares it to the address of the list head, but neither dereferences
16 * this pointer itself nor provides this pointer to the caller. Therefore,
17 * it is not necessary to use rcu_dereference(), so that list_empty() can
18 * be used anywhere you would want to use a list_empty_rcu().
19 */
20
21 /*
22 * return the ->next pointer of a list_head in an rcu safe
23 * way, we must not access it directly
24 */
25 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
26
27 /*
28 * Insert a new entry between two known consecutive entries.
29 *
30 * This is only for internal list manipulation where we know
31 * the prev/next entries already!
32 */
33 #ifndef CONFIG_DEBUG_LIST
34 static inline void __list_add_rcu(struct list_head *new,
35 struct list_head *prev, struct list_head *next)
36 {
37 new->next = next;
38 new->prev = prev;
39 rcu_assign_pointer(list_next_rcu(prev), new);
40 next->prev = new;
41 }
42 #else
43 extern void __list_add_rcu(struct list_head *new,
44 struct list_head *prev, struct list_head *next);
45 #endif
46
47 /**
48 * list_add_rcu - add a new entry to rcu-protected list
49 * @new: new entry to be added
50 * @head: list head to add it after
51 *
52 * Insert a new entry after the specified head.
53 * This is good for implementing stacks.
54 *
55 * The caller must take whatever precautions are necessary
56 * (such as holding appropriate locks) to avoid racing
57 * with another list-mutation primitive, such as list_add_rcu()
58 * or list_del_rcu(), running on this same list.
59 * However, it is perfectly legal to run concurrently with
60 * the _rcu list-traversal primitives, such as
61 * list_for_each_entry_rcu().
62 */
63 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
64 {
65 __list_add_rcu(new, head, head->next);
66 }
67
68 /**
69 * list_add_tail_rcu - add a new entry to rcu-protected list
70 * @new: new entry to be added
71 * @head: list head to add it before
72 *
73 * Insert a new entry before the specified head.
74 * This is useful for implementing queues.
75 *
76 * The caller must take whatever precautions are necessary
77 * (such as holding appropriate locks) to avoid racing
78 * with another list-mutation primitive, such as list_add_tail_rcu()
79 * or list_del_rcu(), running on this same list.
80 * However, it is perfectly legal to run concurrently with
81 * the _rcu list-traversal primitives, such as
82 * list_for_each_entry_rcu().
83 */
84 static inline void list_add_tail_rcu(struct list_head *new,
85 struct list_head *head)
86 {
87 __list_add_rcu(new, head->prev, head);
88 }
89
90 /**
91 * list_del_rcu - deletes entry from list without re-initialization
92 * @entry: the element to delete from the list.
93 *
94 * Note: list_empty() on entry does not return true after this,
95 * the entry is in an undefined state. It is useful for RCU based
96 * lockfree traversal.
97 *
98 * In particular, it means that we can not poison the forward
99 * pointers that may still be used for walking the list.
100 *
101 * The caller must take whatever precautions are necessary
102 * (such as holding appropriate locks) to avoid racing
103 * with another list-mutation primitive, such as list_del_rcu()
104 * or list_add_rcu(), running on this same list.
105 * However, it is perfectly legal to run concurrently with
106 * the _rcu list-traversal primitives, such as
107 * list_for_each_entry_rcu().
108 *
109 * Note that the caller is not permitted to immediately free
110 * the newly deleted entry. Instead, either synchronize_rcu()
111 * or call_rcu() must be used to defer freeing until an RCU
112 * grace period has elapsed.
113 */
114 static inline void list_del_rcu(struct list_head *entry)
115 {
116 __list_del_entry(entry);
117 entry->prev = LIST_POISON2;
118 }
119
120 /**
121 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
122 * @n: the element to delete from the hash list.
123 *
124 * Note: list_unhashed() on the node return true after this. It is
125 * useful for RCU based read lockfree traversal if the writer side
126 * must know if the list entry is still hashed or already unhashed.
127 *
128 * In particular, it means that we can not poison the forward pointers
129 * that may still be used for walking the hash list and we can only
130 * zero the pprev pointer so list_unhashed() will return true after
131 * this.
132 *
133 * The caller must take whatever precautions are necessary (such as
134 * holding appropriate locks) to avoid racing with another
135 * list-mutation primitive, such as hlist_add_head_rcu() or
136 * hlist_del_rcu(), running on this same list. However, it is
137 * perfectly legal to run concurrently with the _rcu list-traversal
138 * primitives, such as hlist_for_each_entry_rcu().
139 */
140 static inline void hlist_del_init_rcu(struct hlist_node *n)
141 {
142 if (!hlist_unhashed(n)) {
143 __hlist_del(n);
144 n->pprev = NULL;
145 }
146 }
147
148 /**
149 * list_replace_rcu - replace old entry by new one
150 * @old : the element to be replaced
151 * @new : the new element to insert
152 *
153 * The @old entry will be replaced with the @new entry atomically.
154 * Note: @old should not be empty.
155 */
156 static inline void list_replace_rcu(struct list_head *old,
157 struct list_head *new)
158 {
159 new->next = old->next;
160 new->prev = old->prev;
161 rcu_assign_pointer(list_next_rcu(new->prev), new);
162 new->next->prev = new;
163 old->prev = LIST_POISON2;
164 }
165
166 /**
167 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
168 * @list: the RCU-protected list to splice
169 * @head: the place in the list to splice the first list into
170 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
171 *
172 * @head can be RCU-read traversed concurrently with this function.
173 *
174 * Note that this function blocks.
175 *
176 * Important note: the caller must take whatever action is necessary to
177 * prevent any other updates to @head. In principle, it is possible
178 * to modify the list as soon as sync() begins execution.
179 * If this sort of thing becomes necessary, an alternative version
180 * based on call_rcu() could be created. But only if -really-
181 * needed -- there is no shortage of RCU API members.
182 */
183 static inline void list_splice_init_rcu(struct list_head *list,
184 struct list_head *head,
185 void (*sync)(void))
186 {
187 struct list_head *first = list->next;
188 struct list_head *last = list->prev;
189 struct list_head *at = head->next;
190
191 if (list_empty(list))
192 return;
193
194 /* "first" and "last" tracking list, so initialize it. */
195
196 INIT_LIST_HEAD(list);
197
198 /*
199 * At this point, the list body still points to the source list.
200 * Wait for any readers to finish using the list before splicing
201 * the list body into the new list. Any new readers will see
202 * an empty list.
203 */
204
205 sync();
206
207 /*
208 * Readers are finished with the source list, so perform splice.
209 * The order is important if the new list is global and accessible
210 * to concurrent RCU readers. Note that RCU readers are not
211 * permitted to traverse the prev pointers without excluding
212 * this function.
213 */
214
215 last->next = at;
216 rcu_assign_pointer(list_next_rcu(head), first);
217 first->prev = head;
218 at->prev = last;
219 }
220
221 /**
222 * list_entry_rcu - get the struct for this entry
223 * @ptr: the &struct list_head pointer.
224 * @type: the type of the struct this is embedded in.
225 * @member: the name of the list_struct within the struct.
226 *
227 * This primitive may safely run concurrently with the _rcu list-mutation
228 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
229 */
230 #define list_entry_rcu(ptr, type, member) \
231 ({typeof (*ptr) __rcu *__ptr = (typeof (*ptr) __rcu __force *)ptr; \
232 container_of((typeof(ptr))rcu_dereference_raw(__ptr), type, member); \
233 })
234
235 /**
236 * Where are list_empty_rcu() and list_first_entry_rcu()?
237 *
238 * Implementing those functions following their counterparts list_empty() and
239 * list_first_entry() is not advisable because they lead to subtle race
240 * conditions as the following snippet shows:
241 *
242 * if (!list_empty_rcu(mylist)) {
243 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
244 * do_something(bar);
245 * }
246 *
247 * The list may not be empty when list_empty_rcu checks it, but it may be when
248 * list_first_entry_rcu rereads the ->next pointer.
249 *
250 * Rereading the ->next pointer is not a problem for list_empty() and
251 * list_first_entry() because they would be protected by a lock that blocks
252 * writers.
253 *
254 * See list_first_or_null_rcu for an alternative.
255 */
256
257 /**
258 * list_first_or_null_rcu - get the first element from a list
259 * @ptr: the list head to take the element from.
260 * @type: the type of the struct this is embedded in.
261 * @member: the name of the list_struct within the struct.
262 *
263 * Note that if the list is empty, it returns NULL.
264 *
265 * This primitive may safely run concurrently with the _rcu list-mutation
266 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
267 */
268 #define list_first_or_null_rcu(ptr, type, member) \
269 ({struct list_head *__ptr = (ptr); \
270 struct list_head __rcu *__next = list_next_rcu(__ptr); \
271 likely(__ptr != __next) ? container_of(__next, type, member) : NULL; \
272 })
273
274 /**
275 * list_for_each_entry_rcu - iterate over rcu list of given type
276 * @pos: the type * to use as a loop cursor.
277 * @head: the head for your list.
278 * @member: the name of the list_struct within the struct.
279 *
280 * This list-traversal primitive may safely run concurrently with
281 * the _rcu list-mutation primitives such as list_add_rcu()
282 * as long as the traversal is guarded by rcu_read_lock().
283 */
284 #define list_for_each_entry_rcu(pos, head, member) \
285 for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
286 &pos->member != (head); \
287 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
288
289
290 /**
291 * list_for_each_continue_rcu
292 * @pos: the &struct list_head to use as a loop cursor.
293 * @head: the head for your list.
294 *
295 * Iterate over an rcu-protected list, continuing after current point.
296 *
297 * This list-traversal primitive may safely run concurrently with
298 * the _rcu list-mutation primitives such as list_add_rcu()
299 * as long as the traversal is guarded by rcu_read_lock().
300 */
301 #define list_for_each_continue_rcu(pos, head) \
302 for ((pos) = rcu_dereference_raw(list_next_rcu(pos)); \
303 (pos) != (head); \
304 (pos) = rcu_dereference_raw(list_next_rcu(pos)))
305
306 /**
307 * list_for_each_entry_continue_rcu - continue iteration over list of given type
308 * @pos: the type * to use as a loop cursor.
309 * @head: the head for your list.
310 * @member: the name of the list_struct within the struct.
311 *
312 * Continue to iterate over list of given type, continuing after
313 * the current position.
314 */
315 #define list_for_each_entry_continue_rcu(pos, head, member) \
316 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
317 &pos->member != (head); \
318 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
319
320 /**
321 * hlist_del_rcu - deletes entry from hash list without re-initialization
322 * @n: the element to delete from the hash list.
323 *
324 * Note: list_unhashed() on entry does not return true after this,
325 * the entry is in an undefined state. It is useful for RCU based
326 * lockfree traversal.
327 *
328 * In particular, it means that we can not poison the forward
329 * pointers that may still be used for walking the hash list.
330 *
331 * The caller must take whatever precautions are necessary
332 * (such as holding appropriate locks) to avoid racing
333 * with another list-mutation primitive, such as hlist_add_head_rcu()
334 * or hlist_del_rcu(), running on this same list.
335 * However, it is perfectly legal to run concurrently with
336 * the _rcu list-traversal primitives, such as
337 * hlist_for_each_entry().
338 */
339 static inline void hlist_del_rcu(struct hlist_node *n)
340 {
341 __hlist_del(n);
342 n->pprev = LIST_POISON2;
343 }
344
345 /**
346 * hlist_replace_rcu - replace old entry by new one
347 * @old : the element to be replaced
348 * @new : the new element to insert
349 *
350 * The @old entry will be replaced with the @new entry atomically.
351 */
352 static inline void hlist_replace_rcu(struct hlist_node *old,
353 struct hlist_node *new)
354 {
355 struct hlist_node *next = old->next;
356
357 new->next = next;
358 new->pprev = old->pprev;
359 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
360 if (next)
361 new->next->pprev = &new->next;
362 old->pprev = LIST_POISON2;
363 }
364
365 /*
366 * return the first or the next element in an RCU protected hlist
367 */
368 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
369 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
370 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
371
372 /**
373 * hlist_add_head_rcu
374 * @n: the element to add to the hash list.
375 * @h: the list to add to.
376 *
377 * Description:
378 * Adds the specified element to the specified hlist,
379 * while permitting racing traversals.
380 *
381 * The caller must take whatever precautions are necessary
382 * (such as holding appropriate locks) to avoid racing
383 * with another list-mutation primitive, such as hlist_add_head_rcu()
384 * or hlist_del_rcu(), running on this same list.
385 * However, it is perfectly legal to run concurrently with
386 * the _rcu list-traversal primitives, such as
387 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
388 * problems on Alpha CPUs. Regardless of the type of CPU, the
389 * list-traversal primitive must be guarded by rcu_read_lock().
390 */
391 static inline void hlist_add_head_rcu(struct hlist_node *n,
392 struct hlist_head *h)
393 {
394 struct hlist_node *first = h->first;
395
396 n->next = first;
397 n->pprev = &h->first;
398 rcu_assign_pointer(hlist_first_rcu(h), n);
399 if (first)
400 first->pprev = &n->next;
401 }
402
403 /**
404 * hlist_add_before_rcu
405 * @n: the new element to add to the hash list.
406 * @next: the existing element to add the new element before.
407 *
408 * Description:
409 * Adds the specified element to the specified hlist
410 * before the specified node while permitting racing traversals.
411 *
412 * The caller must take whatever precautions are necessary
413 * (such as holding appropriate locks) to avoid racing
414 * with another list-mutation primitive, such as hlist_add_head_rcu()
415 * or hlist_del_rcu(), running on this same list.
416 * However, it is perfectly legal to run concurrently with
417 * the _rcu list-traversal primitives, such as
418 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
419 * problems on Alpha CPUs.
420 */
421 static inline void hlist_add_before_rcu(struct hlist_node *n,
422 struct hlist_node *next)
423 {
424 n->pprev = next->pprev;
425 n->next = next;
426 rcu_assign_pointer(hlist_pprev_rcu(n), n);
427 next->pprev = &n->next;
428 }
429
430 /**
431 * hlist_add_after_rcu
432 * @prev: the existing element to add the new element after.
433 * @n: the new element to add to the hash list.
434 *
435 * Description:
436 * Adds the specified element to the specified hlist
437 * after the specified node while permitting racing traversals.
438 *
439 * The caller must take whatever precautions are necessary
440 * (such as holding appropriate locks) to avoid racing
441 * with another list-mutation primitive, such as hlist_add_head_rcu()
442 * or hlist_del_rcu(), running on this same list.
443 * However, it is perfectly legal to run concurrently with
444 * the _rcu list-traversal primitives, such as
445 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
446 * problems on Alpha CPUs.
447 */
448 static inline void hlist_add_after_rcu(struct hlist_node *prev,
449 struct hlist_node *n)
450 {
451 n->next = prev->next;
452 n->pprev = &prev->next;
453 rcu_assign_pointer(hlist_next_rcu(prev), n);
454 if (n->next)
455 n->next->pprev = &n->next;
456 }
457
458 #define __hlist_for_each_rcu(pos, head) \
459 for (pos = rcu_dereference(hlist_first_rcu(head)); \
460 pos; \
461 pos = rcu_dereference(hlist_next_rcu(pos)))
462
463 /**
464 * hlist_for_each_entry_rcu - iterate over rcu list of given type
465 * @tpos: the type * to use as a loop cursor.
466 * @pos: the &struct hlist_node to use as a loop cursor.
467 * @head: the head for your list.
468 * @member: the name of the hlist_node within the struct.
469 *
470 * This list-traversal primitive may safely run concurrently with
471 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
472 * as long as the traversal is guarded by rcu_read_lock().
473 */
474 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
475 for (pos = rcu_dereference_raw(hlist_first_rcu(head)); \
476 pos && \
477 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
478 pos = rcu_dereference_raw(hlist_next_rcu(pos)))
479
480 /**
481 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
482 * @tpos: the type * to use as a loop cursor.
483 * @pos: the &struct hlist_node to use as a loop cursor.
484 * @head: the head for your list.
485 * @member: the name of the hlist_node within the struct.
486 *
487 * This list-traversal primitive may safely run concurrently with
488 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
489 * as long as the traversal is guarded by rcu_read_lock().
490 */
491 #define hlist_for_each_entry_rcu_bh(tpos, pos, head, member) \
492 for (pos = rcu_dereference_bh((head)->first); \
493 pos && \
494 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
495 pos = rcu_dereference_bh(pos->next))
496
497 /**
498 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
499 * @tpos: the type * to use as a loop cursor.
500 * @pos: the &struct hlist_node to use as a loop cursor.
501 * @member: the name of the hlist_node within the struct.
502 */
503 #define hlist_for_each_entry_continue_rcu(tpos, pos, member) \
504 for (pos = rcu_dereference((pos)->next); \
505 pos && \
506 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
507 pos = rcu_dereference(pos->next))
508
509 /**
510 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
511 * @tpos: the type * to use as a loop cursor.
512 * @pos: the &struct hlist_node to use as a loop cursor.
513 * @member: the name of the hlist_node within the struct.
514 */
515 #define hlist_for_each_entry_continue_rcu_bh(tpos, pos, member) \
516 for (pos = rcu_dereference_bh((pos)->next); \
517 pos && \
518 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
519 pos = rcu_dereference_bh(pos->next))
520
521
522 #endif /* __KERNEL__ */
523 #endif