]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/rcupdate.h
ipc/mqueue: switch back to using non-max values on create
[mirror_ubuntu-bionic-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp);
57 #else
58 static inline void rcutorture_record_test_transition(void)
59 {
60 }
61 static inline void rcutorture_record_progress(unsigned long vernum)
62 {
63 }
64 #ifdef CONFIG_RCU_TRACE
65 extern void do_trace_rcu_torture_read(char *rcutorturename,
66 struct rcu_head *rhp);
67 #else
68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69 #endif
70 #endif
71
72 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
73 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
74 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
75 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
76
77 /* Exported common interfaces */
78
79 #ifdef CONFIG_PREEMPT_RCU
80
81 /**
82 * call_rcu() - Queue an RCU callback for invocation after a grace period.
83 * @head: structure to be used for queueing the RCU updates.
84 * @func: actual callback function to be invoked after the grace period
85 *
86 * The callback function will be invoked some time after a full grace
87 * period elapses, in other words after all pre-existing RCU read-side
88 * critical sections have completed. However, the callback function
89 * might well execute concurrently with RCU read-side critical sections
90 * that started after call_rcu() was invoked. RCU read-side critical
91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92 * and may be nested.
93 */
94 extern void call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *head));
96
97 #else /* #ifdef CONFIG_PREEMPT_RCU */
98
99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
100 #define call_rcu call_rcu_sched
101
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
103
104 /**
105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
106 * @head: structure to be used for queueing the RCU updates.
107 * @func: actual callback function to be invoked after the grace period
108 *
109 * The callback function will be invoked some time after a full grace
110 * period elapses, in other words after all currently executing RCU
111 * read-side critical sections have completed. call_rcu_bh() assumes
112 * that the read-side critical sections end on completion of a softirq
113 * handler. This means that read-side critical sections in process
114 * context must not be interrupted by softirqs. This interface is to be
115 * used when most of the read-side critical sections are in softirq context.
116 * RCU read-side critical sections are delimited by :
117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
118 * OR
119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
120 * These may be nested.
121 */
122 extern void call_rcu_bh(struct rcu_head *head,
123 void (*func)(struct rcu_head *head));
124
125 /**
126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
127 * @head: structure to be used for queueing the RCU updates.
128 * @func: actual callback function to be invoked after the grace period
129 *
130 * The callback function will be invoked some time after a full grace
131 * period elapses, in other words after all currently executing RCU
132 * read-side critical sections have completed. call_rcu_sched() assumes
133 * that the read-side critical sections end on enabling of preemption
134 * or on voluntary preemption.
135 * RCU read-side critical sections are delimited by :
136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
137 * OR
138 * anything that disables preemption.
139 * These may be nested.
140 */
141 extern void call_rcu_sched(struct rcu_head *head,
142 void (*func)(struct rcu_head *rcu));
143
144 extern void synchronize_sched(void);
145
146 #ifdef CONFIG_PREEMPT_RCU
147
148 extern void __rcu_read_lock(void);
149 extern void __rcu_read_unlock(void);
150 void synchronize_rcu(void);
151
152 /*
153 * Defined as a macro as it is a very low level header included from
154 * areas that don't even know about current. This gives the rcu_read_lock()
155 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
156 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
157 */
158 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
159
160 #else /* #ifdef CONFIG_PREEMPT_RCU */
161
162 static inline void __rcu_read_lock(void)
163 {
164 preempt_disable();
165 }
166
167 static inline void __rcu_read_unlock(void)
168 {
169 preempt_enable();
170 }
171
172 static inline void synchronize_rcu(void)
173 {
174 synchronize_sched();
175 }
176
177 static inline int rcu_preempt_depth(void)
178 {
179 return 0;
180 }
181
182 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
183
184 /* Internal to kernel */
185 extern void rcu_sched_qs(int cpu);
186 extern void rcu_bh_qs(int cpu);
187 extern void rcu_preempt_note_context_switch(void);
188 extern void rcu_check_callbacks(int cpu, int user);
189 struct notifier_block;
190 extern void rcu_idle_enter(void);
191 extern void rcu_idle_exit(void);
192 extern void rcu_irq_enter(void);
193 extern void rcu_irq_exit(void);
194 extern void exit_rcu(void);
195
196 /**
197 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
198 * @a: Code that RCU needs to pay attention to.
199 *
200 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
201 * in the inner idle loop, that is, between the rcu_idle_enter() and
202 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
203 * critical sections. However, things like powertop need tracepoints
204 * in the inner idle loop.
205 *
206 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
207 * will tell RCU that it needs to pay attending, invoke its argument
208 * (in this example, a call to the do_something_with_RCU() function),
209 * and then tell RCU to go back to ignoring this CPU. It is permissible
210 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
211 * quite limited. If deeper nesting is required, it will be necessary
212 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
213 *
214 * This macro may be used from process-level code only.
215 */
216 #define RCU_NONIDLE(a) \
217 do { \
218 rcu_idle_exit(); \
219 do { a; } while (0); \
220 rcu_idle_enter(); \
221 } while (0)
222
223 /*
224 * Infrastructure to implement the synchronize_() primitives in
225 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
226 */
227
228 typedef void call_rcu_func_t(struct rcu_head *head,
229 void (*func)(struct rcu_head *head));
230 void wait_rcu_gp(call_rcu_func_t crf);
231
232 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
233 #include <linux/rcutree.h>
234 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
235 #include <linux/rcutiny.h>
236 #else
237 #error "Unknown RCU implementation specified to kernel configuration"
238 #endif
239
240 /*
241 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
242 * initialization and destruction of rcu_head on the stack. rcu_head structures
243 * allocated dynamically in the heap or defined statically don't need any
244 * initialization.
245 */
246 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
247 extern void init_rcu_head_on_stack(struct rcu_head *head);
248 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
249 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
250 static inline void init_rcu_head_on_stack(struct rcu_head *head)
251 {
252 }
253
254 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
255 {
256 }
257 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
258
259 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
260 bool rcu_lockdep_current_cpu_online(void);
261 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
262 static inline bool rcu_lockdep_current_cpu_online(void)
263 {
264 return 1;
265 }
266 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
267
268 #ifdef CONFIG_DEBUG_LOCK_ALLOC
269
270 #ifdef CONFIG_PROVE_RCU
271 extern int rcu_is_cpu_idle(void);
272 #else /* !CONFIG_PROVE_RCU */
273 static inline int rcu_is_cpu_idle(void)
274 {
275 return 0;
276 }
277 #endif /* else !CONFIG_PROVE_RCU */
278
279 static inline void rcu_lock_acquire(struct lockdep_map *map)
280 {
281 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
282 }
283
284 static inline void rcu_lock_release(struct lockdep_map *map)
285 {
286 lock_release(map, 1, _THIS_IP_);
287 }
288
289 extern struct lockdep_map rcu_lock_map;
290 extern struct lockdep_map rcu_bh_lock_map;
291 extern struct lockdep_map rcu_sched_lock_map;
292 extern int debug_lockdep_rcu_enabled(void);
293
294 /**
295 * rcu_read_lock_held() - might we be in RCU read-side critical section?
296 *
297 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
298 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
299 * this assumes we are in an RCU read-side critical section unless it can
300 * prove otherwise. This is useful for debug checks in functions that
301 * require that they be called within an RCU read-side critical section.
302 *
303 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
304 * and while lockdep is disabled.
305 *
306 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
307 * occur in the same context, for example, it is illegal to invoke
308 * rcu_read_unlock() in process context if the matching rcu_read_lock()
309 * was invoked from within an irq handler.
310 *
311 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
312 * offline from an RCU perspective, so check for those as well.
313 */
314 static inline int rcu_read_lock_held(void)
315 {
316 if (!debug_lockdep_rcu_enabled())
317 return 1;
318 if (rcu_is_cpu_idle())
319 return 0;
320 if (!rcu_lockdep_current_cpu_online())
321 return 0;
322 return lock_is_held(&rcu_lock_map);
323 }
324
325 /*
326 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
327 * hell.
328 */
329 extern int rcu_read_lock_bh_held(void);
330
331 /**
332 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
333 *
334 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
335 * RCU-sched read-side critical section. In absence of
336 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
337 * critical section unless it can prove otherwise. Note that disabling
338 * of preemption (including disabling irqs) counts as an RCU-sched
339 * read-side critical section. This is useful for debug checks in functions
340 * that required that they be called within an RCU-sched read-side
341 * critical section.
342 *
343 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
344 * and while lockdep is disabled.
345 *
346 * Note that if the CPU is in the idle loop from an RCU point of
347 * view (ie: that we are in the section between rcu_idle_enter() and
348 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
349 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
350 * that are in such a section, considering these as in extended quiescent
351 * state, so such a CPU is effectively never in an RCU read-side critical
352 * section regardless of what RCU primitives it invokes. This state of
353 * affairs is required --- we need to keep an RCU-free window in idle
354 * where the CPU may possibly enter into low power mode. This way we can
355 * notice an extended quiescent state to other CPUs that started a grace
356 * period. Otherwise we would delay any grace period as long as we run in
357 * the idle task.
358 *
359 * Similarly, we avoid claiming an SRCU read lock held if the current
360 * CPU is offline.
361 */
362 #ifdef CONFIG_PREEMPT_COUNT
363 static inline int rcu_read_lock_sched_held(void)
364 {
365 int lockdep_opinion = 0;
366
367 if (!debug_lockdep_rcu_enabled())
368 return 1;
369 if (rcu_is_cpu_idle())
370 return 0;
371 if (!rcu_lockdep_current_cpu_online())
372 return 0;
373 if (debug_locks)
374 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
375 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
376 }
377 #else /* #ifdef CONFIG_PREEMPT_COUNT */
378 static inline int rcu_read_lock_sched_held(void)
379 {
380 return 1;
381 }
382 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
383
384 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
385
386 # define rcu_lock_acquire(a) do { } while (0)
387 # define rcu_lock_release(a) do { } while (0)
388
389 static inline int rcu_read_lock_held(void)
390 {
391 return 1;
392 }
393
394 static inline int rcu_read_lock_bh_held(void)
395 {
396 return 1;
397 }
398
399 #ifdef CONFIG_PREEMPT_COUNT
400 static inline int rcu_read_lock_sched_held(void)
401 {
402 return preempt_count() != 0 || irqs_disabled();
403 }
404 #else /* #ifdef CONFIG_PREEMPT_COUNT */
405 static inline int rcu_read_lock_sched_held(void)
406 {
407 return 1;
408 }
409 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
410
411 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
412
413 #ifdef CONFIG_PROVE_RCU
414
415 extern int rcu_my_thread_group_empty(void);
416
417 /**
418 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
419 * @c: condition to check
420 * @s: informative message
421 */
422 #define rcu_lockdep_assert(c, s) \
423 do { \
424 static bool __section(.data.unlikely) __warned; \
425 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
426 __warned = true; \
427 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
428 } \
429 } while (0)
430
431 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
432 static inline void rcu_preempt_sleep_check(void)
433 {
434 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
435 "Illegal context switch in RCU read-side "
436 "critical section");
437 }
438 #else /* #ifdef CONFIG_PROVE_RCU */
439 static inline void rcu_preempt_sleep_check(void)
440 {
441 }
442 #endif /* #else #ifdef CONFIG_PROVE_RCU */
443
444 #define rcu_sleep_check() \
445 do { \
446 rcu_preempt_sleep_check(); \
447 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
448 "Illegal context switch in RCU-bh" \
449 " read-side critical section"); \
450 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
451 "Illegal context switch in RCU-sched"\
452 " read-side critical section"); \
453 } while (0)
454
455 #else /* #ifdef CONFIG_PROVE_RCU */
456
457 #define rcu_lockdep_assert(c, s) do { } while (0)
458 #define rcu_sleep_check() do { } while (0)
459
460 #endif /* #else #ifdef CONFIG_PROVE_RCU */
461
462 /*
463 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
464 * and rcu_assign_pointer(). Some of these could be folded into their
465 * callers, but they are left separate in order to ease introduction of
466 * multiple flavors of pointers to match the multiple flavors of RCU
467 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
468 * the future.
469 */
470
471 #ifdef __CHECKER__
472 #define rcu_dereference_sparse(p, space) \
473 ((void)(((typeof(*p) space *)p) == p))
474 #else /* #ifdef __CHECKER__ */
475 #define rcu_dereference_sparse(p, space)
476 #endif /* #else #ifdef __CHECKER__ */
477
478 #define __rcu_access_pointer(p, space) \
479 ({ \
480 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
481 rcu_dereference_sparse(p, space); \
482 ((typeof(*p) __force __kernel *)(_________p1)); \
483 })
484 #define __rcu_dereference_check(p, c, space) \
485 ({ \
486 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
487 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
488 " usage"); \
489 rcu_dereference_sparse(p, space); \
490 smp_read_barrier_depends(); \
491 ((typeof(*p) __force __kernel *)(_________p1)); \
492 })
493 #define __rcu_dereference_protected(p, c, space) \
494 ({ \
495 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
496 " usage"); \
497 rcu_dereference_sparse(p, space); \
498 ((typeof(*p) __force __kernel *)(p)); \
499 })
500
501 #define __rcu_access_index(p, space) \
502 ({ \
503 typeof(p) _________p1 = ACCESS_ONCE(p); \
504 rcu_dereference_sparse(p, space); \
505 (_________p1); \
506 })
507 #define __rcu_dereference_index_check(p, c) \
508 ({ \
509 typeof(p) _________p1 = ACCESS_ONCE(p); \
510 rcu_lockdep_assert(c, \
511 "suspicious rcu_dereference_index_check()" \
512 " usage"); \
513 smp_read_barrier_depends(); \
514 (_________p1); \
515 })
516 #define __rcu_assign_pointer(p, v, space) \
517 ({ \
518 smp_wmb(); \
519 (p) = (typeof(*v) __force space *)(v); \
520 })
521
522
523 /**
524 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
525 * @p: The pointer to read
526 *
527 * Return the value of the specified RCU-protected pointer, but omit the
528 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
529 * when the value of this pointer is accessed, but the pointer is not
530 * dereferenced, for example, when testing an RCU-protected pointer against
531 * NULL. Although rcu_access_pointer() may also be used in cases where
532 * update-side locks prevent the value of the pointer from changing, you
533 * should instead use rcu_dereference_protected() for this use case.
534 *
535 * It is also permissible to use rcu_access_pointer() when read-side
536 * access to the pointer was removed at least one grace period ago, as
537 * is the case in the context of the RCU callback that is freeing up
538 * the data, or after a synchronize_rcu() returns. This can be useful
539 * when tearing down multi-linked structures after a grace period
540 * has elapsed.
541 */
542 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
543
544 /**
545 * rcu_dereference_check() - rcu_dereference with debug checking
546 * @p: The pointer to read, prior to dereferencing
547 * @c: The conditions under which the dereference will take place
548 *
549 * Do an rcu_dereference(), but check that the conditions under which the
550 * dereference will take place are correct. Typically the conditions
551 * indicate the various locking conditions that should be held at that
552 * point. The check should return true if the conditions are satisfied.
553 * An implicit check for being in an RCU read-side critical section
554 * (rcu_read_lock()) is included.
555 *
556 * For example:
557 *
558 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
559 *
560 * could be used to indicate to lockdep that foo->bar may only be dereferenced
561 * if either rcu_read_lock() is held, or that the lock required to replace
562 * the bar struct at foo->bar is held.
563 *
564 * Note that the list of conditions may also include indications of when a lock
565 * need not be held, for example during initialisation or destruction of the
566 * target struct:
567 *
568 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
569 * atomic_read(&foo->usage) == 0);
570 *
571 * Inserts memory barriers on architectures that require them
572 * (currently only the Alpha), prevents the compiler from refetching
573 * (and from merging fetches), and, more importantly, documents exactly
574 * which pointers are protected by RCU and checks that the pointer is
575 * annotated as __rcu.
576 */
577 #define rcu_dereference_check(p, c) \
578 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
579
580 /**
581 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
582 * @p: The pointer to read, prior to dereferencing
583 * @c: The conditions under which the dereference will take place
584 *
585 * This is the RCU-bh counterpart to rcu_dereference_check().
586 */
587 #define rcu_dereference_bh_check(p, c) \
588 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
589
590 /**
591 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
592 * @p: The pointer to read, prior to dereferencing
593 * @c: The conditions under which the dereference will take place
594 *
595 * This is the RCU-sched counterpart to rcu_dereference_check().
596 */
597 #define rcu_dereference_sched_check(p, c) \
598 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
599 __rcu)
600
601 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
602
603 /**
604 * rcu_access_index() - fetch RCU index with no dereferencing
605 * @p: The index to read
606 *
607 * Return the value of the specified RCU-protected index, but omit the
608 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
609 * when the value of this index is accessed, but the index is not
610 * dereferenced, for example, when testing an RCU-protected index against
611 * -1. Although rcu_access_index() may also be used in cases where
612 * update-side locks prevent the value of the index from changing, you
613 * should instead use rcu_dereference_index_protected() for this use case.
614 */
615 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
616
617 /**
618 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
619 * @p: The pointer to read, prior to dereferencing
620 * @c: The conditions under which the dereference will take place
621 *
622 * Similar to rcu_dereference_check(), but omits the sparse checking.
623 * This allows rcu_dereference_index_check() to be used on integers,
624 * which can then be used as array indices. Attempting to use
625 * rcu_dereference_check() on an integer will give compiler warnings
626 * because the sparse address-space mechanism relies on dereferencing
627 * the RCU-protected pointer. Dereferencing integers is not something
628 * that even gcc will put up with.
629 *
630 * Note that this function does not implicitly check for RCU read-side
631 * critical sections. If this function gains lots of uses, it might
632 * make sense to provide versions for each flavor of RCU, but it does
633 * not make sense as of early 2010.
634 */
635 #define rcu_dereference_index_check(p, c) \
636 __rcu_dereference_index_check((p), (c))
637
638 /**
639 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
640 * @p: The pointer to read, prior to dereferencing
641 * @c: The conditions under which the dereference will take place
642 *
643 * Return the value of the specified RCU-protected pointer, but omit
644 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
645 * is useful in cases where update-side locks prevent the value of the
646 * pointer from changing. Please note that this primitive does -not-
647 * prevent the compiler from repeating this reference or combining it
648 * with other references, so it should not be used without protection
649 * of appropriate locks.
650 *
651 * This function is only for update-side use. Using this function
652 * when protected only by rcu_read_lock() will result in infrequent
653 * but very ugly failures.
654 */
655 #define rcu_dereference_protected(p, c) \
656 __rcu_dereference_protected((p), (c), __rcu)
657
658
659 /**
660 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
661 * @p: The pointer to read, prior to dereferencing
662 *
663 * This is a simple wrapper around rcu_dereference_check().
664 */
665 #define rcu_dereference(p) rcu_dereference_check(p, 0)
666
667 /**
668 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
669 * @p: The pointer to read, prior to dereferencing
670 *
671 * Makes rcu_dereference_check() do the dirty work.
672 */
673 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
674
675 /**
676 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
677 * @p: The pointer to read, prior to dereferencing
678 *
679 * Makes rcu_dereference_check() do the dirty work.
680 */
681 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
682
683 /**
684 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
685 *
686 * When synchronize_rcu() is invoked on one CPU while other CPUs
687 * are within RCU read-side critical sections, then the
688 * synchronize_rcu() is guaranteed to block until after all the other
689 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
690 * on one CPU while other CPUs are within RCU read-side critical
691 * sections, invocation of the corresponding RCU callback is deferred
692 * until after the all the other CPUs exit their critical sections.
693 *
694 * Note, however, that RCU callbacks are permitted to run concurrently
695 * with new RCU read-side critical sections. One way that this can happen
696 * is via the following sequence of events: (1) CPU 0 enters an RCU
697 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
698 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
699 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
700 * callback is invoked. This is legal, because the RCU read-side critical
701 * section that was running concurrently with the call_rcu() (and which
702 * therefore might be referencing something that the corresponding RCU
703 * callback would free up) has completed before the corresponding
704 * RCU callback is invoked.
705 *
706 * RCU read-side critical sections may be nested. Any deferred actions
707 * will be deferred until the outermost RCU read-side critical section
708 * completes.
709 *
710 * You can avoid reading and understanding the next paragraph by
711 * following this rule: don't put anything in an rcu_read_lock() RCU
712 * read-side critical section that would block in a !PREEMPT kernel.
713 * But if you want the full story, read on!
714 *
715 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
716 * is illegal to block while in an RCU read-side critical section. In
717 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
718 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
719 * be preempted, but explicit blocking is illegal. Finally, in preemptible
720 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
721 * RCU read-side critical sections may be preempted and they may also
722 * block, but only when acquiring spinlocks that are subject to priority
723 * inheritance.
724 */
725 static inline void rcu_read_lock(void)
726 {
727 __rcu_read_lock();
728 __acquire(RCU);
729 rcu_lock_acquire(&rcu_lock_map);
730 rcu_lockdep_assert(!rcu_is_cpu_idle(),
731 "rcu_read_lock() used illegally while idle");
732 }
733
734 /*
735 * So where is rcu_write_lock()? It does not exist, as there is no
736 * way for writers to lock out RCU readers. This is a feature, not
737 * a bug -- this property is what provides RCU's performance benefits.
738 * Of course, writers must coordinate with each other. The normal
739 * spinlock primitives work well for this, but any other technique may be
740 * used as well. RCU does not care how the writers keep out of each
741 * others' way, as long as they do so.
742 */
743
744 /**
745 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
746 *
747 * See rcu_read_lock() for more information.
748 */
749 static inline void rcu_read_unlock(void)
750 {
751 rcu_lockdep_assert(!rcu_is_cpu_idle(),
752 "rcu_read_unlock() used illegally while idle");
753 rcu_lock_release(&rcu_lock_map);
754 __release(RCU);
755 __rcu_read_unlock();
756 }
757
758 /**
759 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
760 *
761 * This is equivalent of rcu_read_lock(), but to be used when updates
762 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
763 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
764 * softirq handler to be a quiescent state, a process in RCU read-side
765 * critical section must be protected by disabling softirqs. Read-side
766 * critical sections in interrupt context can use just rcu_read_lock(),
767 * though this should at least be commented to avoid confusing people
768 * reading the code.
769 *
770 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
771 * must occur in the same context, for example, it is illegal to invoke
772 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
773 * was invoked from some other task.
774 */
775 static inline void rcu_read_lock_bh(void)
776 {
777 local_bh_disable();
778 __acquire(RCU_BH);
779 rcu_lock_acquire(&rcu_bh_lock_map);
780 rcu_lockdep_assert(!rcu_is_cpu_idle(),
781 "rcu_read_lock_bh() used illegally while idle");
782 }
783
784 /*
785 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
786 *
787 * See rcu_read_lock_bh() for more information.
788 */
789 static inline void rcu_read_unlock_bh(void)
790 {
791 rcu_lockdep_assert(!rcu_is_cpu_idle(),
792 "rcu_read_unlock_bh() used illegally while idle");
793 rcu_lock_release(&rcu_bh_lock_map);
794 __release(RCU_BH);
795 local_bh_enable();
796 }
797
798 /**
799 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
800 *
801 * This is equivalent of rcu_read_lock(), but to be used when updates
802 * are being done using call_rcu_sched() or synchronize_rcu_sched().
803 * Read-side critical sections can also be introduced by anything that
804 * disables preemption, including local_irq_disable() and friends.
805 *
806 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
807 * must occur in the same context, for example, it is illegal to invoke
808 * rcu_read_unlock_sched() from process context if the matching
809 * rcu_read_lock_sched() was invoked from an NMI handler.
810 */
811 static inline void rcu_read_lock_sched(void)
812 {
813 preempt_disable();
814 __acquire(RCU_SCHED);
815 rcu_lock_acquire(&rcu_sched_lock_map);
816 rcu_lockdep_assert(!rcu_is_cpu_idle(),
817 "rcu_read_lock_sched() used illegally while idle");
818 }
819
820 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
821 static inline notrace void rcu_read_lock_sched_notrace(void)
822 {
823 preempt_disable_notrace();
824 __acquire(RCU_SCHED);
825 }
826
827 /*
828 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
829 *
830 * See rcu_read_lock_sched for more information.
831 */
832 static inline void rcu_read_unlock_sched(void)
833 {
834 rcu_lockdep_assert(!rcu_is_cpu_idle(),
835 "rcu_read_unlock_sched() used illegally while idle");
836 rcu_lock_release(&rcu_sched_lock_map);
837 __release(RCU_SCHED);
838 preempt_enable();
839 }
840
841 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
842 static inline notrace void rcu_read_unlock_sched_notrace(void)
843 {
844 __release(RCU_SCHED);
845 preempt_enable_notrace();
846 }
847
848 /**
849 * rcu_assign_pointer() - assign to RCU-protected pointer
850 * @p: pointer to assign to
851 * @v: value to assign (publish)
852 *
853 * Assigns the specified value to the specified RCU-protected
854 * pointer, ensuring that any concurrent RCU readers will see
855 * any prior initialization. Returns the value assigned.
856 *
857 * Inserts memory barriers on architectures that require them
858 * (which is most of them), and also prevents the compiler from
859 * reordering the code that initializes the structure after the pointer
860 * assignment. More importantly, this call documents which pointers
861 * will be dereferenced by RCU read-side code.
862 *
863 * In some special cases, you may use RCU_INIT_POINTER() instead
864 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
865 * to the fact that it does not constrain either the CPU or the compiler.
866 * That said, using RCU_INIT_POINTER() when you should have used
867 * rcu_assign_pointer() is a very bad thing that results in
868 * impossible-to-diagnose memory corruption. So please be careful.
869 * See the RCU_INIT_POINTER() comment header for details.
870 */
871 #define rcu_assign_pointer(p, v) \
872 __rcu_assign_pointer((p), (v), __rcu)
873
874 /**
875 * RCU_INIT_POINTER() - initialize an RCU protected pointer
876 *
877 * Initialize an RCU-protected pointer in special cases where readers
878 * do not need ordering constraints on the CPU or the compiler. These
879 * special cases are:
880 *
881 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
882 * 2. The caller has taken whatever steps are required to prevent
883 * RCU readers from concurrently accessing this pointer -or-
884 * 3. The referenced data structure has already been exposed to
885 * readers either at compile time or via rcu_assign_pointer() -and-
886 * a. You have not made -any- reader-visible changes to
887 * this structure since then -or-
888 * b. It is OK for readers accessing this structure from its
889 * new location to see the old state of the structure. (For
890 * example, the changes were to statistical counters or to
891 * other state where exact synchronization is not required.)
892 *
893 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
894 * result in impossible-to-diagnose memory corruption. As in the structures
895 * will look OK in crash dumps, but any concurrent RCU readers might
896 * see pre-initialized values of the referenced data structure. So
897 * please be very careful how you use RCU_INIT_POINTER()!!!
898 *
899 * If you are creating an RCU-protected linked structure that is accessed
900 * by a single external-to-structure RCU-protected pointer, then you may
901 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
902 * pointers, but you must use rcu_assign_pointer() to initialize the
903 * external-to-structure pointer -after- you have completely initialized
904 * the reader-accessible portions of the linked structure.
905 */
906 #define RCU_INIT_POINTER(p, v) \
907 p = (typeof(*v) __force __rcu *)(v)
908
909 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
910 {
911 return offset < 4096;
912 }
913
914 static __always_inline
915 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
916 {
917 typedef void (*rcu_callback)(struct rcu_head *);
918
919 BUILD_BUG_ON(!__builtin_constant_p(offset));
920
921 /* See the kfree_rcu() header comment. */
922 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
923
924 kfree_call_rcu(head, (rcu_callback)offset);
925 }
926
927 /*
928 * Does the specified offset indicate that the corresponding rcu_head
929 * structure can be handled by kfree_rcu()?
930 */
931 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
932
933 /*
934 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
935 */
936 #define __kfree_rcu(head, offset) \
937 do { \
938 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
939 call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
940 } while (0)
941
942 /**
943 * kfree_rcu() - kfree an object after a grace period.
944 * @ptr: pointer to kfree
945 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
946 *
947 * Many rcu callbacks functions just call kfree() on the base structure.
948 * These functions are trivial, but their size adds up, and furthermore
949 * when they are used in a kernel module, that module must invoke the
950 * high-latency rcu_barrier() function at module-unload time.
951 *
952 * The kfree_rcu() function handles this issue. Rather than encoding a
953 * function address in the embedded rcu_head structure, kfree_rcu() instead
954 * encodes the offset of the rcu_head structure within the base structure.
955 * Because the functions are not allowed in the low-order 4096 bytes of
956 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
957 * If the offset is larger than 4095 bytes, a compile-time error will
958 * be generated in __kfree_rcu(). If this error is triggered, you can
959 * either fall back to use of call_rcu() or rearrange the structure to
960 * position the rcu_head structure into the first 4096 bytes.
961 *
962 * Note that the allowable offset might decrease in the future, for example,
963 * to allow something like kmem_cache_free_rcu().
964 *
965 * The BUILD_BUG_ON check must not involve any function calls, hence the
966 * checks are done in macros here.
967 */
968 #define kfree_rcu(ptr, rcu_head) \
969 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
970
971 #endif /* __LINUX_RCUPDATE_H */