]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/rcupdate.h
mm/hotplug: invalid PFNs from pfn_to_online_page()
[mirror_ubuntu-bionic-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/compiler.h>
38 #include <linux/atomic.h>
39 #include <linux/irqflags.h>
40 #include <linux/preempt.h>
41 #include <linux/bottom_half.h>
42 #include <linux/lockdep.h>
43 #include <asm/processor.h>
44 #include <linux/cpumask.h>
45
46 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
47 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
48 #define ulong2long(a) (*(long *)(&(a)))
49
50 /* Exported common interfaces */
51
52 #ifdef CONFIG_PREEMPT_RCU
53 void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 #else /* #ifdef CONFIG_PREEMPT_RCU */
55 #define call_rcu call_rcu_sched
56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
57
58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60 void synchronize_sched(void);
61 void rcu_barrier_tasks(void);
62
63 #ifdef CONFIG_PREEMPT_RCU
64
65 void __rcu_read_lock(void);
66 void __rcu_read_unlock(void);
67 void rcu_read_unlock_special(struct task_struct *t);
68 void synchronize_rcu(void);
69
70 /*
71 * Defined as a macro as it is a very low level header included from
72 * areas that don't even know about current. This gives the rcu_read_lock()
73 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
74 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
75 */
76 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
77
78 #else /* #ifdef CONFIG_PREEMPT_RCU */
79
80 static inline void __rcu_read_lock(void)
81 {
82 preempt_disable();
83 }
84
85 static inline void __rcu_read_unlock(void)
86 {
87 preempt_enable();
88 }
89
90 static inline void synchronize_rcu(void)
91 {
92 synchronize_sched();
93 }
94
95 static inline int rcu_preempt_depth(void)
96 {
97 return 0;
98 }
99
100 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
101
102 /* Internal to kernel */
103 void rcu_init(void);
104 extern int rcu_scheduler_active __read_mostly;
105 void rcu_sched_qs(void);
106 void rcu_bh_qs(void);
107 void rcu_check_callbacks(int user);
108 void rcu_report_dead(unsigned int cpu);
109 void rcu_cpu_starting(unsigned int cpu);
110 void rcutree_migrate_callbacks(int cpu);
111
112 #ifdef CONFIG_RCU_STALL_COMMON
113 void rcu_sysrq_start(void);
114 void rcu_sysrq_end(void);
115 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
116 static inline void rcu_sysrq_start(void) { }
117 static inline void rcu_sysrq_end(void) { }
118 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
119
120 #ifdef CONFIG_NO_HZ_FULL
121 void rcu_user_enter(void);
122 void rcu_user_exit(void);
123 #else
124 static inline void rcu_user_enter(void) { }
125 static inline void rcu_user_exit(void) { }
126 #endif /* CONFIG_NO_HZ_FULL */
127
128 #ifdef CONFIG_RCU_NOCB_CPU
129 void rcu_init_nohz(void);
130 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
131 static inline void rcu_init_nohz(void) { }
132 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
133
134 /**
135 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
136 * @a: Code that RCU needs to pay attention to.
137 *
138 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
139 * in the inner idle loop, that is, between the rcu_idle_enter() and
140 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
141 * critical sections. However, things like powertop need tracepoints
142 * in the inner idle loop.
143 *
144 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
145 * will tell RCU that it needs to pay attention, invoke its argument
146 * (in this example, calling the do_something_with_RCU() function),
147 * and then tell RCU to go back to ignoring this CPU. It is permissible
148 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
149 * on the order of a million or so, even on 32-bit systems). It is
150 * not legal to block within RCU_NONIDLE(), nor is it permissible to
151 * transfer control either into or out of RCU_NONIDLE()'s statement.
152 */
153 #define RCU_NONIDLE(a) \
154 do { \
155 rcu_irq_enter_irqson(); \
156 do { a; } while (0); \
157 rcu_irq_exit_irqson(); \
158 } while (0)
159
160 /*
161 * Note a voluntary context switch for RCU-tasks benefit. This is a
162 * macro rather than an inline function to avoid #include hell.
163 */
164 #ifdef CONFIG_TASKS_RCU
165 #define rcu_note_voluntary_context_switch_lite(t) \
166 do { \
167 if (READ_ONCE((t)->rcu_tasks_holdout)) \
168 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
169 } while (0)
170 #define rcu_note_voluntary_context_switch(t) \
171 do { \
172 rcu_all_qs(); \
173 rcu_note_voluntary_context_switch_lite(t); \
174 } while (0)
175 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
176 void synchronize_rcu_tasks(void);
177 void exit_tasks_rcu_start(void);
178 void exit_tasks_rcu_finish(void);
179 #else /* #ifdef CONFIG_TASKS_RCU */
180 #define rcu_note_voluntary_context_switch_lite(t) do { } while (0)
181 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
182 #define call_rcu_tasks call_rcu_sched
183 #define synchronize_rcu_tasks synchronize_sched
184 static inline void exit_tasks_rcu_start(void) { }
185 static inline void exit_tasks_rcu_finish(void) { }
186 #endif /* #else #ifdef CONFIG_TASKS_RCU */
187
188 /**
189 * cond_resched_rcu_qs - Report potential quiescent states to RCU
190 *
191 * This macro resembles cond_resched(), except that it is defined to
192 * report potential quiescent states to RCU-tasks even if the cond_resched()
193 * machinery were to be shut off, as some advocate for PREEMPT kernels.
194 */
195 #define cond_resched_rcu_qs() \
196 do { \
197 if (!cond_resched()) \
198 rcu_note_voluntary_context_switch(current); \
199 } while (0)
200
201 /*
202 * Infrastructure to implement the synchronize_() primitives in
203 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
204 */
205
206 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
207 #include <linux/rcutree.h>
208 #elif defined(CONFIG_TINY_RCU)
209 #include <linux/rcutiny.h>
210 #else
211 #error "Unknown RCU implementation specified to kernel configuration"
212 #endif
213
214 /*
215 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
216 * initialization and destruction of rcu_head on the stack. rcu_head structures
217 * allocated dynamically in the heap or defined statically don't need any
218 * initialization.
219 */
220 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
221 void init_rcu_head(struct rcu_head *head);
222 void destroy_rcu_head(struct rcu_head *head);
223 void init_rcu_head_on_stack(struct rcu_head *head);
224 void destroy_rcu_head_on_stack(struct rcu_head *head);
225 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
226 static inline void init_rcu_head(struct rcu_head *head) { }
227 static inline void destroy_rcu_head(struct rcu_head *head) { }
228 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
229 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
230 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
231
232 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
233 bool rcu_lockdep_current_cpu_online(void);
234 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
235 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
236 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
237
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239
240 static inline void rcu_lock_acquire(struct lockdep_map *map)
241 {
242 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
243 }
244
245 static inline void rcu_lock_release(struct lockdep_map *map)
246 {
247 lock_release(map, 1, _THIS_IP_);
248 }
249
250 extern struct lockdep_map rcu_lock_map;
251 extern struct lockdep_map rcu_bh_lock_map;
252 extern struct lockdep_map rcu_sched_lock_map;
253 extern struct lockdep_map rcu_callback_map;
254 int debug_lockdep_rcu_enabled(void);
255 int rcu_read_lock_held(void);
256 int rcu_read_lock_bh_held(void);
257 int rcu_read_lock_sched_held(void);
258
259 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260
261 # define rcu_lock_acquire(a) do { } while (0)
262 # define rcu_lock_release(a) do { } while (0)
263
264 static inline int rcu_read_lock_held(void)
265 {
266 return 1;
267 }
268
269 static inline int rcu_read_lock_bh_held(void)
270 {
271 return 1;
272 }
273
274 static inline int rcu_read_lock_sched_held(void)
275 {
276 return !preemptible();
277 }
278 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
279
280 #ifdef CONFIG_PROVE_RCU
281
282 /**
283 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
284 * @c: condition to check
285 * @s: informative message
286 */
287 #define RCU_LOCKDEP_WARN(c, s) \
288 do { \
289 static bool __section(.data.unlikely) __warned; \
290 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
291 __warned = true; \
292 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
293 } \
294 } while (0)
295
296 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
297 static inline void rcu_preempt_sleep_check(void)
298 {
299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
300 "Illegal context switch in RCU read-side critical section");
301 }
302 #else /* #ifdef CONFIG_PROVE_RCU */
303 static inline void rcu_preempt_sleep_check(void) { }
304 #endif /* #else #ifdef CONFIG_PROVE_RCU */
305
306 #define rcu_sleep_check() \
307 do { \
308 rcu_preempt_sleep_check(); \
309 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
310 "Illegal context switch in RCU-bh read-side critical section"); \
311 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
312 "Illegal context switch in RCU-sched read-side critical section"); \
313 } while (0)
314
315 #else /* #ifdef CONFIG_PROVE_RCU */
316
317 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
318 #define rcu_sleep_check() do { } while (0)
319
320 #endif /* #else #ifdef CONFIG_PROVE_RCU */
321
322 /*
323 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
324 * and rcu_assign_pointer(). Some of these could be folded into their
325 * callers, but they are left separate in order to ease introduction of
326 * multiple flavors of pointers to match the multiple flavors of RCU
327 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
328 * the future.
329 */
330
331 #ifdef __CHECKER__
332 #define rcu_dereference_sparse(p, space) \
333 ((void)(((typeof(*p) space *)p) == p))
334 #else /* #ifdef __CHECKER__ */
335 #define rcu_dereference_sparse(p, space)
336 #endif /* #else #ifdef __CHECKER__ */
337
338 #define __rcu_access_pointer(p, space) \
339 ({ \
340 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
341 rcu_dereference_sparse(p, space); \
342 ((typeof(*p) __force __kernel *)(_________p1)); \
343 })
344 #define __rcu_dereference_check(p, c, space) \
345 ({ \
346 /* Dependency order vs. p above. */ \
347 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
348 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
349 rcu_dereference_sparse(p, space); \
350 ((typeof(*p) __force __kernel *)(________p1)); \
351 })
352 #define __rcu_dereference_protected(p, c, space) \
353 ({ \
354 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
355 rcu_dereference_sparse(p, space); \
356 ((typeof(*p) __force __kernel *)(p)); \
357 })
358 #define rcu_dereference_raw(p) \
359 ({ \
360 /* Dependency order vs. p above. */ \
361 typeof(p) ________p1 = READ_ONCE(p); \
362 ((typeof(*p) __force __kernel *)(________p1)); \
363 })
364
365 /**
366 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
367 * @v: The value to statically initialize with.
368 */
369 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
370
371 /**
372 * rcu_assign_pointer() - assign to RCU-protected pointer
373 * @p: pointer to assign to
374 * @v: value to assign (publish)
375 *
376 * Assigns the specified value to the specified RCU-protected
377 * pointer, ensuring that any concurrent RCU readers will see
378 * any prior initialization.
379 *
380 * Inserts memory barriers on architectures that require them
381 * (which is most of them), and also prevents the compiler from
382 * reordering the code that initializes the structure after the pointer
383 * assignment. More importantly, this call documents which pointers
384 * will be dereferenced by RCU read-side code.
385 *
386 * In some special cases, you may use RCU_INIT_POINTER() instead
387 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
388 * to the fact that it does not constrain either the CPU or the compiler.
389 * That said, using RCU_INIT_POINTER() when you should have used
390 * rcu_assign_pointer() is a very bad thing that results in
391 * impossible-to-diagnose memory corruption. So please be careful.
392 * See the RCU_INIT_POINTER() comment header for details.
393 *
394 * Note that rcu_assign_pointer() evaluates each of its arguments only
395 * once, appearances notwithstanding. One of the "extra" evaluations
396 * is in typeof() and the other visible only to sparse (__CHECKER__),
397 * neither of which actually execute the argument. As with most cpp
398 * macros, this execute-arguments-only-once property is important, so
399 * please be careful when making changes to rcu_assign_pointer() and the
400 * other macros that it invokes.
401 */
402 #define rcu_assign_pointer(p, v) \
403 ({ \
404 uintptr_t _r_a_p__v = (uintptr_t)(v); \
405 \
406 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
407 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
408 else \
409 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
410 _r_a_p__v; \
411 })
412
413 /**
414 * rcu_swap_protected() - swap an RCU and a regular pointer
415 * @rcu_ptr: RCU pointer
416 * @ptr: regular pointer
417 * @c: the conditions under which the dereference will take place
418 *
419 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
420 * @c is the argument that is passed to the rcu_dereference_protected() call
421 * used to read that pointer.
422 */
423 #define rcu_swap_protected(rcu_ptr, ptr, c) do { \
424 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
425 rcu_assign_pointer((rcu_ptr), (ptr)); \
426 (ptr) = __tmp; \
427 } while (0)
428
429 /**
430 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
431 * @p: The pointer to read
432 *
433 * Return the value of the specified RCU-protected pointer, but omit the
434 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
435 * when the value of this pointer is accessed, but the pointer is not
436 * dereferenced, for example, when testing an RCU-protected pointer against
437 * NULL. Although rcu_access_pointer() may also be used in cases where
438 * update-side locks prevent the value of the pointer from changing, you
439 * should instead use rcu_dereference_protected() for this use case.
440 *
441 * It is also permissible to use rcu_access_pointer() when read-side
442 * access to the pointer was removed at least one grace period ago, as
443 * is the case in the context of the RCU callback that is freeing up
444 * the data, or after a synchronize_rcu() returns. This can be useful
445 * when tearing down multi-linked structures after a grace period
446 * has elapsed.
447 */
448 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
449
450 /**
451 * rcu_dereference_check() - rcu_dereference with debug checking
452 * @p: The pointer to read, prior to dereferencing
453 * @c: The conditions under which the dereference will take place
454 *
455 * Do an rcu_dereference(), but check that the conditions under which the
456 * dereference will take place are correct. Typically the conditions
457 * indicate the various locking conditions that should be held at that
458 * point. The check should return true if the conditions are satisfied.
459 * An implicit check for being in an RCU read-side critical section
460 * (rcu_read_lock()) is included.
461 *
462 * For example:
463 *
464 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
465 *
466 * could be used to indicate to lockdep that foo->bar may only be dereferenced
467 * if either rcu_read_lock() is held, or that the lock required to replace
468 * the bar struct at foo->bar is held.
469 *
470 * Note that the list of conditions may also include indications of when a lock
471 * need not be held, for example during initialisation or destruction of the
472 * target struct:
473 *
474 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
475 * atomic_read(&foo->usage) == 0);
476 *
477 * Inserts memory barriers on architectures that require them
478 * (currently only the Alpha), prevents the compiler from refetching
479 * (and from merging fetches), and, more importantly, documents exactly
480 * which pointers are protected by RCU and checks that the pointer is
481 * annotated as __rcu.
482 */
483 #define rcu_dereference_check(p, c) \
484 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
485
486 /**
487 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
488 * @p: The pointer to read, prior to dereferencing
489 * @c: The conditions under which the dereference will take place
490 *
491 * This is the RCU-bh counterpart to rcu_dereference_check().
492 */
493 #define rcu_dereference_bh_check(p, c) \
494 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
495
496 /**
497 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
498 * @p: The pointer to read, prior to dereferencing
499 * @c: The conditions under which the dereference will take place
500 *
501 * This is the RCU-sched counterpart to rcu_dereference_check().
502 */
503 #define rcu_dereference_sched_check(p, c) \
504 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
505 __rcu)
506
507 /*
508 * The tracing infrastructure traces RCU (we want that), but unfortunately
509 * some of the RCU checks causes tracing to lock up the system.
510 *
511 * The no-tracing version of rcu_dereference_raw() must not call
512 * rcu_read_lock_held().
513 */
514 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
515
516 /**
517 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
518 * @p: The pointer to read, prior to dereferencing
519 * @c: The conditions under which the dereference will take place
520 *
521 * Return the value of the specified RCU-protected pointer, but omit
522 * both the smp_read_barrier_depends() and the READ_ONCE(). This
523 * is useful in cases where update-side locks prevent the value of the
524 * pointer from changing. Please note that this primitive does *not*
525 * prevent the compiler from repeating this reference or combining it
526 * with other references, so it should not be used without protection
527 * of appropriate locks.
528 *
529 * This function is only for update-side use. Using this function
530 * when protected only by rcu_read_lock() will result in infrequent
531 * but very ugly failures.
532 */
533 #define rcu_dereference_protected(p, c) \
534 __rcu_dereference_protected((p), (c), __rcu)
535
536
537 /**
538 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
539 * @p: The pointer to read, prior to dereferencing
540 *
541 * This is a simple wrapper around rcu_dereference_check().
542 */
543 #define rcu_dereference(p) rcu_dereference_check(p, 0)
544
545 /**
546 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
547 * @p: The pointer to read, prior to dereferencing
548 *
549 * Makes rcu_dereference_check() do the dirty work.
550 */
551 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
552
553 /**
554 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
555 * @p: The pointer to read, prior to dereferencing
556 *
557 * Makes rcu_dereference_check() do the dirty work.
558 */
559 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
560
561 /**
562 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
563 * @p: The pointer to hand off
564 *
565 * This is simply an identity function, but it documents where a pointer
566 * is handed off from RCU to some other synchronization mechanism, for
567 * example, reference counting or locking. In C11, it would map to
568 * kill_dependency(). It could be used as follows:
569 * ``
570 * rcu_read_lock();
571 * p = rcu_dereference(gp);
572 * long_lived = is_long_lived(p);
573 * if (long_lived) {
574 * if (!atomic_inc_not_zero(p->refcnt))
575 * long_lived = false;
576 * else
577 * p = rcu_pointer_handoff(p);
578 * }
579 * rcu_read_unlock();
580 *``
581 */
582 #define rcu_pointer_handoff(p) (p)
583
584 /**
585 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
586 *
587 * When synchronize_rcu() is invoked on one CPU while other CPUs
588 * are within RCU read-side critical sections, then the
589 * synchronize_rcu() is guaranteed to block until after all the other
590 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
591 * on one CPU while other CPUs are within RCU read-side critical
592 * sections, invocation of the corresponding RCU callback is deferred
593 * until after the all the other CPUs exit their critical sections.
594 *
595 * Note, however, that RCU callbacks are permitted to run concurrently
596 * with new RCU read-side critical sections. One way that this can happen
597 * is via the following sequence of events: (1) CPU 0 enters an RCU
598 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
599 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
600 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
601 * callback is invoked. This is legal, because the RCU read-side critical
602 * section that was running concurrently with the call_rcu() (and which
603 * therefore might be referencing something that the corresponding RCU
604 * callback would free up) has completed before the corresponding
605 * RCU callback is invoked.
606 *
607 * RCU read-side critical sections may be nested. Any deferred actions
608 * will be deferred until the outermost RCU read-side critical section
609 * completes.
610 *
611 * You can avoid reading and understanding the next paragraph by
612 * following this rule: don't put anything in an rcu_read_lock() RCU
613 * read-side critical section that would block in a !PREEMPT kernel.
614 * But if you want the full story, read on!
615 *
616 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
617 * it is illegal to block while in an RCU read-side critical section.
618 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
619 * kernel builds, RCU read-side critical sections may be preempted,
620 * but explicit blocking is illegal. Finally, in preemptible RCU
621 * implementations in real-time (with -rt patchset) kernel builds, RCU
622 * read-side critical sections may be preempted and they may also block, but
623 * only when acquiring spinlocks that are subject to priority inheritance.
624 */
625 static __always_inline void rcu_read_lock(void)
626 {
627 __rcu_read_lock();
628 __acquire(RCU);
629 rcu_lock_acquire(&rcu_lock_map);
630 RCU_LOCKDEP_WARN(!rcu_is_watching(),
631 "rcu_read_lock() used illegally while idle");
632 }
633
634 /*
635 * So where is rcu_write_lock()? It does not exist, as there is no
636 * way for writers to lock out RCU readers. This is a feature, not
637 * a bug -- this property is what provides RCU's performance benefits.
638 * Of course, writers must coordinate with each other. The normal
639 * spinlock primitives work well for this, but any other technique may be
640 * used as well. RCU does not care how the writers keep out of each
641 * others' way, as long as they do so.
642 */
643
644 /**
645 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
646 *
647 * In most situations, rcu_read_unlock() is immune from deadlock.
648 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
649 * is responsible for deboosting, which it does via rt_mutex_unlock().
650 * Unfortunately, this function acquires the scheduler's runqueue and
651 * priority-inheritance spinlocks. This means that deadlock could result
652 * if the caller of rcu_read_unlock() already holds one of these locks or
653 * any lock that is ever acquired while holding them; or any lock which
654 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
655 * does not disable irqs while taking ->wait_lock.
656 *
657 * That said, RCU readers are never priority boosted unless they were
658 * preempted. Therefore, one way to avoid deadlock is to make sure
659 * that preemption never happens within any RCU read-side critical
660 * section whose outermost rcu_read_unlock() is called with one of
661 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
662 * a number of ways, for example, by invoking preempt_disable() before
663 * critical section's outermost rcu_read_lock().
664 *
665 * Given that the set of locks acquired by rt_mutex_unlock() might change
666 * at any time, a somewhat more future-proofed approach is to make sure
667 * that that preemption never happens within any RCU read-side critical
668 * section whose outermost rcu_read_unlock() is called with irqs disabled.
669 * This approach relies on the fact that rt_mutex_unlock() currently only
670 * acquires irq-disabled locks.
671 *
672 * The second of these two approaches is best in most situations,
673 * however, the first approach can also be useful, at least to those
674 * developers willing to keep abreast of the set of locks acquired by
675 * rt_mutex_unlock().
676 *
677 * See rcu_read_lock() for more information.
678 */
679 static inline void rcu_read_unlock(void)
680 {
681 RCU_LOCKDEP_WARN(!rcu_is_watching(),
682 "rcu_read_unlock() used illegally while idle");
683 __release(RCU);
684 __rcu_read_unlock();
685 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
686 }
687
688 /**
689 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
690 *
691 * This is equivalent of rcu_read_lock(), but to be used when updates
692 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
693 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
694 * softirq handler to be a quiescent state, a process in RCU read-side
695 * critical section must be protected by disabling softirqs. Read-side
696 * critical sections in interrupt context can use just rcu_read_lock(),
697 * though this should at least be commented to avoid confusing people
698 * reading the code.
699 *
700 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
701 * must occur in the same context, for example, it is illegal to invoke
702 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
703 * was invoked from some other task.
704 */
705 static inline void rcu_read_lock_bh(void)
706 {
707 local_bh_disable();
708 __acquire(RCU_BH);
709 rcu_lock_acquire(&rcu_bh_lock_map);
710 RCU_LOCKDEP_WARN(!rcu_is_watching(),
711 "rcu_read_lock_bh() used illegally while idle");
712 }
713
714 /*
715 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
716 *
717 * See rcu_read_lock_bh() for more information.
718 */
719 static inline void rcu_read_unlock_bh(void)
720 {
721 RCU_LOCKDEP_WARN(!rcu_is_watching(),
722 "rcu_read_unlock_bh() used illegally while idle");
723 rcu_lock_release(&rcu_bh_lock_map);
724 __release(RCU_BH);
725 local_bh_enable();
726 }
727
728 /**
729 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
730 *
731 * This is equivalent of rcu_read_lock(), but to be used when updates
732 * are being done using call_rcu_sched() or synchronize_rcu_sched().
733 * Read-side critical sections can also be introduced by anything that
734 * disables preemption, including local_irq_disable() and friends.
735 *
736 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
737 * must occur in the same context, for example, it is illegal to invoke
738 * rcu_read_unlock_sched() from process context if the matching
739 * rcu_read_lock_sched() was invoked from an NMI handler.
740 */
741 static inline void rcu_read_lock_sched(void)
742 {
743 preempt_disable();
744 __acquire(RCU_SCHED);
745 rcu_lock_acquire(&rcu_sched_lock_map);
746 RCU_LOCKDEP_WARN(!rcu_is_watching(),
747 "rcu_read_lock_sched() used illegally while idle");
748 }
749
750 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
751 static inline notrace void rcu_read_lock_sched_notrace(void)
752 {
753 preempt_disable_notrace();
754 __acquire(RCU_SCHED);
755 }
756
757 /*
758 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
759 *
760 * See rcu_read_lock_sched for more information.
761 */
762 static inline void rcu_read_unlock_sched(void)
763 {
764 RCU_LOCKDEP_WARN(!rcu_is_watching(),
765 "rcu_read_unlock_sched() used illegally while idle");
766 rcu_lock_release(&rcu_sched_lock_map);
767 __release(RCU_SCHED);
768 preempt_enable();
769 }
770
771 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
772 static inline notrace void rcu_read_unlock_sched_notrace(void)
773 {
774 __release(RCU_SCHED);
775 preempt_enable_notrace();
776 }
777
778 /**
779 * RCU_INIT_POINTER() - initialize an RCU protected pointer
780 * @p: The pointer to be initialized.
781 * @v: The value to initialized the pointer to.
782 *
783 * Initialize an RCU-protected pointer in special cases where readers
784 * do not need ordering constraints on the CPU or the compiler. These
785 * special cases are:
786 *
787 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
788 * 2. The caller has taken whatever steps are required to prevent
789 * RCU readers from concurrently accessing this pointer *or*
790 * 3. The referenced data structure has already been exposed to
791 * readers either at compile time or via rcu_assign_pointer() *and*
792 *
793 * a. You have not made *any* reader-visible changes to
794 * this structure since then *or*
795 * b. It is OK for readers accessing this structure from its
796 * new location to see the old state of the structure. (For
797 * example, the changes were to statistical counters or to
798 * other state where exact synchronization is not required.)
799 *
800 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
801 * result in impossible-to-diagnose memory corruption. As in the structures
802 * will look OK in crash dumps, but any concurrent RCU readers might
803 * see pre-initialized values of the referenced data structure. So
804 * please be very careful how you use RCU_INIT_POINTER()!!!
805 *
806 * If you are creating an RCU-protected linked structure that is accessed
807 * by a single external-to-structure RCU-protected pointer, then you may
808 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
809 * pointers, but you must use rcu_assign_pointer() to initialize the
810 * external-to-structure pointer *after* you have completely initialized
811 * the reader-accessible portions of the linked structure.
812 *
813 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
814 * ordering guarantees for either the CPU or the compiler.
815 */
816 #define RCU_INIT_POINTER(p, v) \
817 do { \
818 rcu_dereference_sparse(p, __rcu); \
819 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
820 } while (0)
821
822 /**
823 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
824 * @p: The pointer to be initialized.
825 * @v: The value to initialized the pointer to.
826 *
827 * GCC-style initialization for an RCU-protected pointer in a structure field.
828 */
829 #define RCU_POINTER_INITIALIZER(p, v) \
830 .p = RCU_INITIALIZER(v)
831
832 /*
833 * Does the specified offset indicate that the corresponding rcu_head
834 * structure can be handled by kfree_rcu()?
835 */
836 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
837
838 /*
839 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
840 */
841 #define __kfree_rcu(head, offset) \
842 do { \
843 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
844 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
845 } while (0)
846
847 /**
848 * kfree_rcu() - kfree an object after a grace period.
849 * @ptr: pointer to kfree
850 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
851 *
852 * Many rcu callbacks functions just call kfree() on the base structure.
853 * These functions are trivial, but their size adds up, and furthermore
854 * when they are used in a kernel module, that module must invoke the
855 * high-latency rcu_barrier() function at module-unload time.
856 *
857 * The kfree_rcu() function handles this issue. Rather than encoding a
858 * function address in the embedded rcu_head structure, kfree_rcu() instead
859 * encodes the offset of the rcu_head structure within the base structure.
860 * Because the functions are not allowed in the low-order 4096 bytes of
861 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
862 * If the offset is larger than 4095 bytes, a compile-time error will
863 * be generated in __kfree_rcu(). If this error is triggered, you can
864 * either fall back to use of call_rcu() or rearrange the structure to
865 * position the rcu_head structure into the first 4096 bytes.
866 *
867 * Note that the allowable offset might decrease in the future, for example,
868 * to allow something like kmem_cache_free_rcu().
869 *
870 * The BUILD_BUG_ON check must not involve any function calls, hence the
871 * checks are done in macros here.
872 */
873 #define kfree_rcu(ptr, rcu_head) \
874 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
875
876
877 /*
878 * Place this after a lock-acquisition primitive to guarantee that
879 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
880 * if the UNLOCK and LOCK are executed by the same CPU or if the
881 * UNLOCK and LOCK operate on the same lock variable.
882 */
883 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
884 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
885 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
886 #define smp_mb__after_unlock_lock() do { } while (0)
887 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
888
889
890 #endif /* __LINUX_RCUPDATE_H */