]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/rcupdate.h
Merge tag 'xtensa-20170303' of git://github.com/jcmvbkbc/linux-xtensa
[mirror_ubuntu-artful-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/debugobjects.h>
44 #include <linux/bug.h>
45 #include <linux/compiler.h>
46 #include <linux/ktime.h>
47 #include <linux/irqflags.h>
48
49 #include <asm/barrier.h>
50
51 #ifndef CONFIG_TINY_RCU
52 extern int rcu_expedited; /* for sysctl */
53 extern int rcu_normal; /* also for sysctl */
54 #endif /* #ifndef CONFIG_TINY_RCU */
55
56 #ifdef CONFIG_TINY_RCU
57 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
58 static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */
59 {
60 return true;
61 }
62 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
63 {
64 return false;
65 }
66
67 static inline void rcu_expedite_gp(void)
68 {
69 }
70
71 static inline void rcu_unexpedite_gp(void)
72 {
73 }
74 #else /* #ifdef CONFIG_TINY_RCU */
75 bool rcu_gp_is_normal(void); /* Internal RCU use. */
76 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
77 void rcu_expedite_gp(void);
78 void rcu_unexpedite_gp(void);
79 #endif /* #else #ifdef CONFIG_TINY_RCU */
80
81 enum rcutorture_type {
82 RCU_FLAVOR,
83 RCU_BH_FLAVOR,
84 RCU_SCHED_FLAVOR,
85 RCU_TASKS_FLAVOR,
86 SRCU_FLAVOR,
87 INVALID_RCU_FLAVOR
88 };
89
90 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
91 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
92 unsigned long *gpnum, unsigned long *completed);
93 void rcutorture_record_test_transition(void);
94 void rcutorture_record_progress(unsigned long vernum);
95 void do_trace_rcu_torture_read(const char *rcutorturename,
96 struct rcu_head *rhp,
97 unsigned long secs,
98 unsigned long c_old,
99 unsigned long c);
100 #else
101 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
102 int *flags,
103 unsigned long *gpnum,
104 unsigned long *completed)
105 {
106 *flags = 0;
107 *gpnum = 0;
108 *completed = 0;
109 }
110 static inline void rcutorture_record_test_transition(void)
111 {
112 }
113 static inline void rcutorture_record_progress(unsigned long vernum)
114 {
115 }
116 #ifdef CONFIG_RCU_TRACE
117 void do_trace_rcu_torture_read(const char *rcutorturename,
118 struct rcu_head *rhp,
119 unsigned long secs,
120 unsigned long c_old,
121 unsigned long c);
122 #else
123 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
124 do { } while (0)
125 #endif
126 #endif
127
128 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
129 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
130 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
131 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
132 #define ulong2long(a) (*(long *)(&(a)))
133
134 /* Exported common interfaces */
135
136 #ifdef CONFIG_PREEMPT_RCU
137
138 /**
139 * call_rcu() - Queue an RCU callback for invocation after a grace period.
140 * @head: structure to be used for queueing the RCU updates.
141 * @func: actual callback function to be invoked after the grace period
142 *
143 * The callback function will be invoked some time after a full grace
144 * period elapses, in other words after all pre-existing RCU read-side
145 * critical sections have completed. However, the callback function
146 * might well execute concurrently with RCU read-side critical sections
147 * that started after call_rcu() was invoked. RCU read-side critical
148 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
149 * and may be nested.
150 *
151 * Note that all CPUs must agree that the grace period extended beyond
152 * all pre-existing RCU read-side critical section. On systems with more
153 * than one CPU, this means that when "func()" is invoked, each CPU is
154 * guaranteed to have executed a full memory barrier since the end of its
155 * last RCU read-side critical section whose beginning preceded the call
156 * to call_rcu(). It also means that each CPU executing an RCU read-side
157 * critical section that continues beyond the start of "func()" must have
158 * executed a memory barrier after the call_rcu() but before the beginning
159 * of that RCU read-side critical section. Note that these guarantees
160 * include CPUs that are offline, idle, or executing in user mode, as
161 * well as CPUs that are executing in the kernel.
162 *
163 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
164 * resulting RCU callback function "func()", then both CPU A and CPU B are
165 * guaranteed to execute a full memory barrier during the time interval
166 * between the call to call_rcu() and the invocation of "func()" -- even
167 * if CPU A and CPU B are the same CPU (but again only if the system has
168 * more than one CPU).
169 */
170 void call_rcu(struct rcu_head *head,
171 rcu_callback_t func);
172
173 #else /* #ifdef CONFIG_PREEMPT_RCU */
174
175 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
176 #define call_rcu call_rcu_sched
177
178 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
179
180 /**
181 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
182 * @head: structure to be used for queueing the RCU updates.
183 * @func: actual callback function to be invoked after the grace period
184 *
185 * The callback function will be invoked some time after a full grace
186 * period elapses, in other words after all currently executing RCU
187 * read-side critical sections have completed. call_rcu_bh() assumes
188 * that the read-side critical sections end on completion of a softirq
189 * handler. This means that read-side critical sections in process
190 * context must not be interrupted by softirqs. This interface is to be
191 * used when most of the read-side critical sections are in softirq context.
192 * RCU read-side critical sections are delimited by :
193 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
194 * OR
195 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
196 * These may be nested.
197 *
198 * See the description of call_rcu() for more detailed information on
199 * memory ordering guarantees.
200 */
201 void call_rcu_bh(struct rcu_head *head,
202 rcu_callback_t func);
203
204 /**
205 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
206 * @head: structure to be used for queueing the RCU updates.
207 * @func: actual callback function to be invoked after the grace period
208 *
209 * The callback function will be invoked some time after a full grace
210 * period elapses, in other words after all currently executing RCU
211 * read-side critical sections have completed. call_rcu_sched() assumes
212 * that the read-side critical sections end on enabling of preemption
213 * or on voluntary preemption.
214 * RCU read-side critical sections are delimited by :
215 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
216 * OR
217 * anything that disables preemption.
218 * These may be nested.
219 *
220 * See the description of call_rcu() for more detailed information on
221 * memory ordering guarantees.
222 */
223 void call_rcu_sched(struct rcu_head *head,
224 rcu_callback_t func);
225
226 void synchronize_sched(void);
227
228 /**
229 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
230 * @head: structure to be used for queueing the RCU updates.
231 * @func: actual callback function to be invoked after the grace period
232 *
233 * The callback function will be invoked some time after a full grace
234 * period elapses, in other words after all currently executing RCU
235 * read-side critical sections have completed. call_rcu_tasks() assumes
236 * that the read-side critical sections end at a voluntary context
237 * switch (not a preemption!), entry into idle, or transition to usermode
238 * execution. As such, there are no read-side primitives analogous to
239 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
240 * to determine that all tasks have passed through a safe state, not so
241 * much for data-strcuture synchronization.
242 *
243 * See the description of call_rcu() for more detailed information on
244 * memory ordering guarantees.
245 */
246 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
247 void synchronize_rcu_tasks(void);
248 void rcu_barrier_tasks(void);
249
250 #ifdef CONFIG_PREEMPT_RCU
251
252 void __rcu_read_lock(void);
253 void __rcu_read_unlock(void);
254 void rcu_read_unlock_special(struct task_struct *t);
255 void synchronize_rcu(void);
256
257 /*
258 * Defined as a macro as it is a very low level header included from
259 * areas that don't even know about current. This gives the rcu_read_lock()
260 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
261 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
262 */
263 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
264
265 #else /* #ifdef CONFIG_PREEMPT_RCU */
266
267 static inline void __rcu_read_lock(void)
268 {
269 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
270 preempt_disable();
271 }
272
273 static inline void __rcu_read_unlock(void)
274 {
275 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
276 preempt_enable();
277 }
278
279 static inline void synchronize_rcu(void)
280 {
281 synchronize_sched();
282 }
283
284 static inline int rcu_preempt_depth(void)
285 {
286 return 0;
287 }
288
289 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
290
291 /* Internal to kernel */
292 void rcu_init(void);
293 void rcu_sched_qs(void);
294 void rcu_bh_qs(void);
295 void rcu_check_callbacks(int user);
296 void rcu_report_dead(unsigned int cpu);
297 void rcu_cpu_starting(unsigned int cpu);
298
299 #ifndef CONFIG_TINY_RCU
300 void rcu_end_inkernel_boot(void);
301 #else /* #ifndef CONFIG_TINY_RCU */
302 static inline void rcu_end_inkernel_boot(void) { }
303 #endif /* #ifndef CONFIG_TINY_RCU */
304
305 #ifdef CONFIG_RCU_STALL_COMMON
306 void rcu_sysrq_start(void);
307 void rcu_sysrq_end(void);
308 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
309 static inline void rcu_sysrq_start(void)
310 {
311 }
312 static inline void rcu_sysrq_end(void)
313 {
314 }
315 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
316
317 #ifdef CONFIG_NO_HZ_FULL
318 void rcu_user_enter(void);
319 void rcu_user_exit(void);
320 #else
321 static inline void rcu_user_enter(void) { }
322 static inline void rcu_user_exit(void) { }
323 #endif /* CONFIG_NO_HZ_FULL */
324
325 #ifdef CONFIG_RCU_NOCB_CPU
326 void rcu_init_nohz(void);
327 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
328 static inline void rcu_init_nohz(void)
329 {
330 }
331 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
332
333 /**
334 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
335 * @a: Code that RCU needs to pay attention to.
336 *
337 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
338 * in the inner idle loop, that is, between the rcu_idle_enter() and
339 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
340 * critical sections. However, things like powertop need tracepoints
341 * in the inner idle loop.
342 *
343 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
344 * will tell RCU that it needs to pay attention, invoke its argument
345 * (in this example, calling the do_something_with_RCU() function),
346 * and then tell RCU to go back to ignoring this CPU. It is permissible
347 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
348 * on the order of a million or so, even on 32-bit systems). It is
349 * not legal to block within RCU_NONIDLE(), nor is it permissible to
350 * transfer control either into or out of RCU_NONIDLE()'s statement.
351 */
352 #define RCU_NONIDLE(a) \
353 do { \
354 rcu_irq_enter_irqson(); \
355 do { a; } while (0); \
356 rcu_irq_exit_irqson(); \
357 } while (0)
358
359 /*
360 * Note a voluntary context switch for RCU-tasks benefit. This is a
361 * macro rather than an inline function to avoid #include hell.
362 */
363 #ifdef CONFIG_TASKS_RCU
364 #define TASKS_RCU(x) x
365 extern struct srcu_struct tasks_rcu_exit_srcu;
366 #define rcu_note_voluntary_context_switch(t) \
367 do { \
368 rcu_all_qs(); \
369 if (READ_ONCE((t)->rcu_tasks_holdout)) \
370 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
371 } while (0)
372 #else /* #ifdef CONFIG_TASKS_RCU */
373 #define TASKS_RCU(x) do { } while (0)
374 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
375 #endif /* #else #ifdef CONFIG_TASKS_RCU */
376
377 /**
378 * cond_resched_rcu_qs - Report potential quiescent states to RCU
379 *
380 * This macro resembles cond_resched(), except that it is defined to
381 * report potential quiescent states to RCU-tasks even if the cond_resched()
382 * machinery were to be shut off, as some advocate for PREEMPT kernels.
383 */
384 #define cond_resched_rcu_qs() \
385 do { \
386 if (!cond_resched()) \
387 rcu_note_voluntary_context_switch(current); \
388 } while (0)
389
390 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
391 bool __rcu_is_watching(void);
392 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
393
394 /*
395 * Infrastructure to implement the synchronize_() primitives in
396 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
397 */
398
399 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
400 #include <linux/rcutree.h>
401 #elif defined(CONFIG_TINY_RCU)
402 #include <linux/rcutiny.h>
403 #else
404 #error "Unknown RCU implementation specified to kernel configuration"
405 #endif
406
407 #define RCU_SCHEDULER_INACTIVE 0
408 #define RCU_SCHEDULER_INIT 1
409 #define RCU_SCHEDULER_RUNNING 2
410
411 /*
412 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
413 * initialization and destruction of rcu_head on the stack. rcu_head structures
414 * allocated dynamically in the heap or defined statically don't need any
415 * initialization.
416 */
417 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
418 void init_rcu_head(struct rcu_head *head);
419 void destroy_rcu_head(struct rcu_head *head);
420 void init_rcu_head_on_stack(struct rcu_head *head);
421 void destroy_rcu_head_on_stack(struct rcu_head *head);
422 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
423 static inline void init_rcu_head(struct rcu_head *head)
424 {
425 }
426
427 static inline void destroy_rcu_head(struct rcu_head *head)
428 {
429 }
430
431 static inline void init_rcu_head_on_stack(struct rcu_head *head)
432 {
433 }
434
435 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
436 {
437 }
438 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
439
440 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
441 bool rcu_lockdep_current_cpu_online(void);
442 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
443 static inline bool rcu_lockdep_current_cpu_online(void)
444 {
445 return true;
446 }
447 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
448
449 #ifdef CONFIG_DEBUG_LOCK_ALLOC
450
451 static inline void rcu_lock_acquire(struct lockdep_map *map)
452 {
453 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
454 }
455
456 static inline void rcu_lock_release(struct lockdep_map *map)
457 {
458 lock_release(map, 1, _THIS_IP_);
459 }
460
461 extern struct lockdep_map rcu_lock_map;
462 extern struct lockdep_map rcu_bh_lock_map;
463 extern struct lockdep_map rcu_sched_lock_map;
464 extern struct lockdep_map rcu_callback_map;
465 int debug_lockdep_rcu_enabled(void);
466
467 int rcu_read_lock_held(void);
468 int rcu_read_lock_bh_held(void);
469
470 /**
471 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
472 *
473 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
474 * RCU-sched read-side critical section. In absence of
475 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
476 * critical section unless it can prove otherwise.
477 */
478 int rcu_read_lock_sched_held(void);
479
480 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
481
482 # define rcu_lock_acquire(a) do { } while (0)
483 # define rcu_lock_release(a) do { } while (0)
484
485 static inline int rcu_read_lock_held(void)
486 {
487 return 1;
488 }
489
490 static inline int rcu_read_lock_bh_held(void)
491 {
492 return 1;
493 }
494
495 static inline int rcu_read_lock_sched_held(void)
496 {
497 return !preemptible();
498 }
499 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
500
501 #ifdef CONFIG_PROVE_RCU
502
503 /**
504 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
505 * @c: condition to check
506 * @s: informative message
507 */
508 #define RCU_LOCKDEP_WARN(c, s) \
509 do { \
510 static bool __section(.data.unlikely) __warned; \
511 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
512 __warned = true; \
513 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
514 } \
515 } while (0)
516
517 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
518 static inline void rcu_preempt_sleep_check(void)
519 {
520 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
521 "Illegal context switch in RCU read-side critical section");
522 }
523 #else /* #ifdef CONFIG_PROVE_RCU */
524 static inline void rcu_preempt_sleep_check(void)
525 {
526 }
527 #endif /* #else #ifdef CONFIG_PROVE_RCU */
528
529 #define rcu_sleep_check() \
530 do { \
531 rcu_preempt_sleep_check(); \
532 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
533 "Illegal context switch in RCU-bh read-side critical section"); \
534 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
535 "Illegal context switch in RCU-sched read-side critical section"); \
536 } while (0)
537
538 #else /* #ifdef CONFIG_PROVE_RCU */
539
540 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
541 #define rcu_sleep_check() do { } while (0)
542
543 #endif /* #else #ifdef CONFIG_PROVE_RCU */
544
545 /*
546 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
547 * and rcu_assign_pointer(). Some of these could be folded into their
548 * callers, but they are left separate in order to ease introduction of
549 * multiple flavors of pointers to match the multiple flavors of RCU
550 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
551 * the future.
552 */
553
554 #ifdef __CHECKER__
555 #define rcu_dereference_sparse(p, space) \
556 ((void)(((typeof(*p) space *)p) == p))
557 #else /* #ifdef __CHECKER__ */
558 #define rcu_dereference_sparse(p, space)
559 #endif /* #else #ifdef __CHECKER__ */
560
561 #define __rcu_access_pointer(p, space) \
562 ({ \
563 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
564 rcu_dereference_sparse(p, space); \
565 ((typeof(*p) __force __kernel *)(_________p1)); \
566 })
567 #define __rcu_dereference_check(p, c, space) \
568 ({ \
569 /* Dependency order vs. p above. */ \
570 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
571 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
572 rcu_dereference_sparse(p, space); \
573 ((typeof(*p) __force __kernel *)(________p1)); \
574 })
575 #define __rcu_dereference_protected(p, c, space) \
576 ({ \
577 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
578 rcu_dereference_sparse(p, space); \
579 ((typeof(*p) __force __kernel *)(p)); \
580 })
581 #define rcu_dereference_raw(p) \
582 ({ \
583 /* Dependency order vs. p above. */ \
584 typeof(p) ________p1 = lockless_dereference(p); \
585 ((typeof(*p) __force __kernel *)(________p1)); \
586 })
587
588 /**
589 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
590 * @v: The value to statically initialize with.
591 */
592 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
593
594 /**
595 * rcu_assign_pointer() - assign to RCU-protected pointer
596 * @p: pointer to assign to
597 * @v: value to assign (publish)
598 *
599 * Assigns the specified value to the specified RCU-protected
600 * pointer, ensuring that any concurrent RCU readers will see
601 * any prior initialization.
602 *
603 * Inserts memory barriers on architectures that require them
604 * (which is most of them), and also prevents the compiler from
605 * reordering the code that initializes the structure after the pointer
606 * assignment. More importantly, this call documents which pointers
607 * will be dereferenced by RCU read-side code.
608 *
609 * In some special cases, you may use RCU_INIT_POINTER() instead
610 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
611 * to the fact that it does not constrain either the CPU or the compiler.
612 * That said, using RCU_INIT_POINTER() when you should have used
613 * rcu_assign_pointer() is a very bad thing that results in
614 * impossible-to-diagnose memory corruption. So please be careful.
615 * See the RCU_INIT_POINTER() comment header for details.
616 *
617 * Note that rcu_assign_pointer() evaluates each of its arguments only
618 * once, appearances notwithstanding. One of the "extra" evaluations
619 * is in typeof() and the other visible only to sparse (__CHECKER__),
620 * neither of which actually execute the argument. As with most cpp
621 * macros, this execute-arguments-only-once property is important, so
622 * please be careful when making changes to rcu_assign_pointer() and the
623 * other macros that it invokes.
624 */
625 #define rcu_assign_pointer(p, v) \
626 ({ \
627 uintptr_t _r_a_p__v = (uintptr_t)(v); \
628 \
629 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
630 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
631 else \
632 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
633 _r_a_p__v; \
634 })
635
636 /**
637 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
638 * @p: The pointer to read
639 *
640 * Return the value of the specified RCU-protected pointer, but omit the
641 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
642 * when the value of this pointer is accessed, but the pointer is not
643 * dereferenced, for example, when testing an RCU-protected pointer against
644 * NULL. Although rcu_access_pointer() may also be used in cases where
645 * update-side locks prevent the value of the pointer from changing, you
646 * should instead use rcu_dereference_protected() for this use case.
647 *
648 * It is also permissible to use rcu_access_pointer() when read-side
649 * access to the pointer was removed at least one grace period ago, as
650 * is the case in the context of the RCU callback that is freeing up
651 * the data, or after a synchronize_rcu() returns. This can be useful
652 * when tearing down multi-linked structures after a grace period
653 * has elapsed.
654 */
655 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
656
657 /**
658 * rcu_dereference_check() - rcu_dereference with debug checking
659 * @p: The pointer to read, prior to dereferencing
660 * @c: The conditions under which the dereference will take place
661 *
662 * Do an rcu_dereference(), but check that the conditions under which the
663 * dereference will take place are correct. Typically the conditions
664 * indicate the various locking conditions that should be held at that
665 * point. The check should return true if the conditions are satisfied.
666 * An implicit check for being in an RCU read-side critical section
667 * (rcu_read_lock()) is included.
668 *
669 * For example:
670 *
671 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
672 *
673 * could be used to indicate to lockdep that foo->bar may only be dereferenced
674 * if either rcu_read_lock() is held, or that the lock required to replace
675 * the bar struct at foo->bar is held.
676 *
677 * Note that the list of conditions may also include indications of when a lock
678 * need not be held, for example during initialisation or destruction of the
679 * target struct:
680 *
681 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
682 * atomic_read(&foo->usage) == 0);
683 *
684 * Inserts memory barriers on architectures that require them
685 * (currently only the Alpha), prevents the compiler from refetching
686 * (and from merging fetches), and, more importantly, documents exactly
687 * which pointers are protected by RCU and checks that the pointer is
688 * annotated as __rcu.
689 */
690 #define rcu_dereference_check(p, c) \
691 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
692
693 /**
694 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
695 * @p: The pointer to read, prior to dereferencing
696 * @c: The conditions under which the dereference will take place
697 *
698 * This is the RCU-bh counterpart to rcu_dereference_check().
699 */
700 #define rcu_dereference_bh_check(p, c) \
701 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
702
703 /**
704 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
705 * @p: The pointer to read, prior to dereferencing
706 * @c: The conditions under which the dereference will take place
707 *
708 * This is the RCU-sched counterpart to rcu_dereference_check().
709 */
710 #define rcu_dereference_sched_check(p, c) \
711 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
712 __rcu)
713
714 /*
715 * The tracing infrastructure traces RCU (we want that), but unfortunately
716 * some of the RCU checks causes tracing to lock up the system.
717 *
718 * The no-tracing version of rcu_dereference_raw() must not call
719 * rcu_read_lock_held().
720 */
721 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
722
723 /**
724 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
725 * @p: The pointer to read, prior to dereferencing
726 * @c: The conditions under which the dereference will take place
727 *
728 * Return the value of the specified RCU-protected pointer, but omit
729 * both the smp_read_barrier_depends() and the READ_ONCE(). This
730 * is useful in cases where update-side locks prevent the value of the
731 * pointer from changing. Please note that this primitive does -not-
732 * prevent the compiler from repeating this reference or combining it
733 * with other references, so it should not be used without protection
734 * of appropriate locks.
735 *
736 * This function is only for update-side use. Using this function
737 * when protected only by rcu_read_lock() will result in infrequent
738 * but very ugly failures.
739 */
740 #define rcu_dereference_protected(p, c) \
741 __rcu_dereference_protected((p), (c), __rcu)
742
743
744 /**
745 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
746 * @p: The pointer to read, prior to dereferencing
747 *
748 * This is a simple wrapper around rcu_dereference_check().
749 */
750 #define rcu_dereference(p) rcu_dereference_check(p, 0)
751
752 /**
753 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
754 * @p: The pointer to read, prior to dereferencing
755 *
756 * Makes rcu_dereference_check() do the dirty work.
757 */
758 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
759
760 /**
761 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
762 * @p: The pointer to read, prior to dereferencing
763 *
764 * Makes rcu_dereference_check() do the dirty work.
765 */
766 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
767
768 /**
769 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
770 * @p: The pointer to hand off
771 *
772 * This is simply an identity function, but it documents where a pointer
773 * is handed off from RCU to some other synchronization mechanism, for
774 * example, reference counting or locking. In C11, it would map to
775 * kill_dependency(). It could be used as follows:
776 *
777 * rcu_read_lock();
778 * p = rcu_dereference(gp);
779 * long_lived = is_long_lived(p);
780 * if (long_lived) {
781 * if (!atomic_inc_not_zero(p->refcnt))
782 * long_lived = false;
783 * else
784 * p = rcu_pointer_handoff(p);
785 * }
786 * rcu_read_unlock();
787 */
788 #define rcu_pointer_handoff(p) (p)
789
790 /**
791 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
792 *
793 * When synchronize_rcu() is invoked on one CPU while other CPUs
794 * are within RCU read-side critical sections, then the
795 * synchronize_rcu() is guaranteed to block until after all the other
796 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
797 * on one CPU while other CPUs are within RCU read-side critical
798 * sections, invocation of the corresponding RCU callback is deferred
799 * until after the all the other CPUs exit their critical sections.
800 *
801 * Note, however, that RCU callbacks are permitted to run concurrently
802 * with new RCU read-side critical sections. One way that this can happen
803 * is via the following sequence of events: (1) CPU 0 enters an RCU
804 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
805 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
806 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
807 * callback is invoked. This is legal, because the RCU read-side critical
808 * section that was running concurrently with the call_rcu() (and which
809 * therefore might be referencing something that the corresponding RCU
810 * callback would free up) has completed before the corresponding
811 * RCU callback is invoked.
812 *
813 * RCU read-side critical sections may be nested. Any deferred actions
814 * will be deferred until the outermost RCU read-side critical section
815 * completes.
816 *
817 * You can avoid reading and understanding the next paragraph by
818 * following this rule: don't put anything in an rcu_read_lock() RCU
819 * read-side critical section that would block in a !PREEMPT kernel.
820 * But if you want the full story, read on!
821 *
822 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
823 * it is illegal to block while in an RCU read-side critical section.
824 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
825 * kernel builds, RCU read-side critical sections may be preempted,
826 * but explicit blocking is illegal. Finally, in preemptible RCU
827 * implementations in real-time (with -rt patchset) kernel builds, RCU
828 * read-side critical sections may be preempted and they may also block, but
829 * only when acquiring spinlocks that are subject to priority inheritance.
830 */
831 static inline void rcu_read_lock(void)
832 {
833 __rcu_read_lock();
834 __acquire(RCU);
835 rcu_lock_acquire(&rcu_lock_map);
836 RCU_LOCKDEP_WARN(!rcu_is_watching(),
837 "rcu_read_lock() used illegally while idle");
838 }
839
840 /*
841 * So where is rcu_write_lock()? It does not exist, as there is no
842 * way for writers to lock out RCU readers. This is a feature, not
843 * a bug -- this property is what provides RCU's performance benefits.
844 * Of course, writers must coordinate with each other. The normal
845 * spinlock primitives work well for this, but any other technique may be
846 * used as well. RCU does not care how the writers keep out of each
847 * others' way, as long as they do so.
848 */
849
850 /**
851 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
852 *
853 * In most situations, rcu_read_unlock() is immune from deadlock.
854 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
855 * is responsible for deboosting, which it does via rt_mutex_unlock().
856 * Unfortunately, this function acquires the scheduler's runqueue and
857 * priority-inheritance spinlocks. This means that deadlock could result
858 * if the caller of rcu_read_unlock() already holds one of these locks or
859 * any lock that is ever acquired while holding them; or any lock which
860 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
861 * does not disable irqs while taking ->wait_lock.
862 *
863 * That said, RCU readers are never priority boosted unless they were
864 * preempted. Therefore, one way to avoid deadlock is to make sure
865 * that preemption never happens within any RCU read-side critical
866 * section whose outermost rcu_read_unlock() is called with one of
867 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
868 * a number of ways, for example, by invoking preempt_disable() before
869 * critical section's outermost rcu_read_lock().
870 *
871 * Given that the set of locks acquired by rt_mutex_unlock() might change
872 * at any time, a somewhat more future-proofed approach is to make sure
873 * that that preemption never happens within any RCU read-side critical
874 * section whose outermost rcu_read_unlock() is called with irqs disabled.
875 * This approach relies on the fact that rt_mutex_unlock() currently only
876 * acquires irq-disabled locks.
877 *
878 * The second of these two approaches is best in most situations,
879 * however, the first approach can also be useful, at least to those
880 * developers willing to keep abreast of the set of locks acquired by
881 * rt_mutex_unlock().
882 *
883 * See rcu_read_lock() for more information.
884 */
885 static inline void rcu_read_unlock(void)
886 {
887 RCU_LOCKDEP_WARN(!rcu_is_watching(),
888 "rcu_read_unlock() used illegally while idle");
889 __release(RCU);
890 __rcu_read_unlock();
891 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
892 }
893
894 /**
895 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
896 *
897 * This is equivalent of rcu_read_lock(), but to be used when updates
898 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
899 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
900 * softirq handler to be a quiescent state, a process in RCU read-side
901 * critical section must be protected by disabling softirqs. Read-side
902 * critical sections in interrupt context can use just rcu_read_lock(),
903 * though this should at least be commented to avoid confusing people
904 * reading the code.
905 *
906 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
907 * must occur in the same context, for example, it is illegal to invoke
908 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
909 * was invoked from some other task.
910 */
911 static inline void rcu_read_lock_bh(void)
912 {
913 local_bh_disable();
914 __acquire(RCU_BH);
915 rcu_lock_acquire(&rcu_bh_lock_map);
916 RCU_LOCKDEP_WARN(!rcu_is_watching(),
917 "rcu_read_lock_bh() used illegally while idle");
918 }
919
920 /*
921 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
922 *
923 * See rcu_read_lock_bh() for more information.
924 */
925 static inline void rcu_read_unlock_bh(void)
926 {
927 RCU_LOCKDEP_WARN(!rcu_is_watching(),
928 "rcu_read_unlock_bh() used illegally while idle");
929 rcu_lock_release(&rcu_bh_lock_map);
930 __release(RCU_BH);
931 local_bh_enable();
932 }
933
934 /**
935 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
936 *
937 * This is equivalent of rcu_read_lock(), but to be used when updates
938 * are being done using call_rcu_sched() or synchronize_rcu_sched().
939 * Read-side critical sections can also be introduced by anything that
940 * disables preemption, including local_irq_disable() and friends.
941 *
942 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
943 * must occur in the same context, for example, it is illegal to invoke
944 * rcu_read_unlock_sched() from process context if the matching
945 * rcu_read_lock_sched() was invoked from an NMI handler.
946 */
947 static inline void rcu_read_lock_sched(void)
948 {
949 preempt_disable();
950 __acquire(RCU_SCHED);
951 rcu_lock_acquire(&rcu_sched_lock_map);
952 RCU_LOCKDEP_WARN(!rcu_is_watching(),
953 "rcu_read_lock_sched() used illegally while idle");
954 }
955
956 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
957 static inline notrace void rcu_read_lock_sched_notrace(void)
958 {
959 preempt_disable_notrace();
960 __acquire(RCU_SCHED);
961 }
962
963 /*
964 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
965 *
966 * See rcu_read_lock_sched for more information.
967 */
968 static inline void rcu_read_unlock_sched(void)
969 {
970 RCU_LOCKDEP_WARN(!rcu_is_watching(),
971 "rcu_read_unlock_sched() used illegally while idle");
972 rcu_lock_release(&rcu_sched_lock_map);
973 __release(RCU_SCHED);
974 preempt_enable();
975 }
976
977 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
978 static inline notrace void rcu_read_unlock_sched_notrace(void)
979 {
980 __release(RCU_SCHED);
981 preempt_enable_notrace();
982 }
983
984 /**
985 * RCU_INIT_POINTER() - initialize an RCU protected pointer
986 *
987 * Initialize an RCU-protected pointer in special cases where readers
988 * do not need ordering constraints on the CPU or the compiler. These
989 * special cases are:
990 *
991 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
992 * 2. The caller has taken whatever steps are required to prevent
993 * RCU readers from concurrently accessing this pointer -or-
994 * 3. The referenced data structure has already been exposed to
995 * readers either at compile time or via rcu_assign_pointer() -and-
996 * a. You have not made -any- reader-visible changes to
997 * this structure since then -or-
998 * b. It is OK for readers accessing this structure from its
999 * new location to see the old state of the structure. (For
1000 * example, the changes were to statistical counters or to
1001 * other state where exact synchronization is not required.)
1002 *
1003 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1004 * result in impossible-to-diagnose memory corruption. As in the structures
1005 * will look OK in crash dumps, but any concurrent RCU readers might
1006 * see pre-initialized values of the referenced data structure. So
1007 * please be very careful how you use RCU_INIT_POINTER()!!!
1008 *
1009 * If you are creating an RCU-protected linked structure that is accessed
1010 * by a single external-to-structure RCU-protected pointer, then you may
1011 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1012 * pointers, but you must use rcu_assign_pointer() to initialize the
1013 * external-to-structure pointer -after- you have completely initialized
1014 * the reader-accessible portions of the linked structure.
1015 *
1016 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1017 * ordering guarantees for either the CPU or the compiler.
1018 */
1019 #define RCU_INIT_POINTER(p, v) \
1020 do { \
1021 rcu_dereference_sparse(p, __rcu); \
1022 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1023 } while (0)
1024
1025 /**
1026 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1027 *
1028 * GCC-style initialization for an RCU-protected pointer in a structure field.
1029 */
1030 #define RCU_POINTER_INITIALIZER(p, v) \
1031 .p = RCU_INITIALIZER(v)
1032
1033 /*
1034 * Does the specified offset indicate that the corresponding rcu_head
1035 * structure can be handled by kfree_rcu()?
1036 */
1037 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1038
1039 /*
1040 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1041 */
1042 #define __kfree_rcu(head, offset) \
1043 do { \
1044 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1045 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1046 } while (0)
1047
1048 /**
1049 * kfree_rcu() - kfree an object after a grace period.
1050 * @ptr: pointer to kfree
1051 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1052 *
1053 * Many rcu callbacks functions just call kfree() on the base structure.
1054 * These functions are trivial, but their size adds up, and furthermore
1055 * when they are used in a kernel module, that module must invoke the
1056 * high-latency rcu_barrier() function at module-unload time.
1057 *
1058 * The kfree_rcu() function handles this issue. Rather than encoding a
1059 * function address in the embedded rcu_head structure, kfree_rcu() instead
1060 * encodes the offset of the rcu_head structure within the base structure.
1061 * Because the functions are not allowed in the low-order 4096 bytes of
1062 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1063 * If the offset is larger than 4095 bytes, a compile-time error will
1064 * be generated in __kfree_rcu(). If this error is triggered, you can
1065 * either fall back to use of call_rcu() or rearrange the structure to
1066 * position the rcu_head structure into the first 4096 bytes.
1067 *
1068 * Note that the allowable offset might decrease in the future, for example,
1069 * to allow something like kmem_cache_free_rcu().
1070 *
1071 * The BUILD_BUG_ON check must not involve any function calls, hence the
1072 * checks are done in macros here.
1073 */
1074 #define kfree_rcu(ptr, rcu_head) \
1075 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1076
1077 #ifdef CONFIG_TINY_RCU
1078 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1079 {
1080 *nextevt = KTIME_MAX;
1081 return 0;
1082 }
1083 #endif /* #ifdef CONFIG_TINY_RCU */
1084
1085 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1086 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1087 #elif defined(CONFIG_RCU_NOCB_CPU)
1088 bool rcu_is_nocb_cpu(int cpu);
1089 #else
1090 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1091 #endif
1092
1093
1094 /* Only for use by adaptive-ticks code. */
1095 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1096 bool rcu_sys_is_idle(void);
1097 void rcu_sysidle_force_exit(void);
1098 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1099
1100 static inline bool rcu_sys_is_idle(void)
1101 {
1102 return false;
1103 }
1104
1105 static inline void rcu_sysidle_force_exit(void)
1106 {
1107 }
1108
1109 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1110
1111
1112 /*
1113 * Dump the ftrace buffer, but only one time per callsite per boot.
1114 */
1115 #define rcu_ftrace_dump(oops_dump_mode) \
1116 do { \
1117 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
1118 \
1119 if (!atomic_read(&___rfd_beenhere) && \
1120 !atomic_xchg(&___rfd_beenhere, 1)) \
1121 ftrace_dump(oops_dump_mode); \
1122 } while (0)
1123
1124 /*
1125 * Place this after a lock-acquisition primitive to guarantee that
1126 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1127 * if the UNLOCK and LOCK are executed by the same CPU or if the
1128 * UNLOCK and LOCK operate on the same lock variable.
1129 */
1130 #ifdef CONFIG_PPC
1131 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1132 #else /* #ifdef CONFIG_PPC */
1133 #define smp_mb__after_unlock_lock() do { } while (0)
1134 #endif /* #else #ifdef CONFIG_PPC */
1135
1136
1137 #endif /* __LINUX_RCUPDATE_H */