]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/rcupdate.h
UBUNTU: SAUCE: LSM stacking: procfs: add smack subdir to attrs
[mirror_ubuntu-artful-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/compiler.h>
38 #include <linux/atomic.h>
39 #include <linux/irqflags.h>
40 #include <linux/preempt.h>
41 #include <linux/bottom_half.h>
42 #include <linux/lockdep.h>
43 #include <asm/processor.h>
44 #include <linux/cpumask.h>
45
46 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
47 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
48 #define ulong2long(a) (*(long *)(&(a)))
49
50 /* Exported common interfaces */
51
52 #ifdef CONFIG_PREEMPT_RCU
53 void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 #else /* #ifdef CONFIG_PREEMPT_RCU */
55 #define call_rcu call_rcu_sched
56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
57
58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60 void synchronize_sched(void);
61 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
62 void synchronize_rcu_tasks(void);
63 void rcu_barrier_tasks(void);
64
65 #ifdef CONFIG_PREEMPT_RCU
66
67 void __rcu_read_lock(void);
68 void __rcu_read_unlock(void);
69 void rcu_read_unlock_special(struct task_struct *t);
70 void synchronize_rcu(void);
71
72 /*
73 * Defined as a macro as it is a very low level header included from
74 * areas that don't even know about current. This gives the rcu_read_lock()
75 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
76 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
77 */
78 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
79
80 #else /* #ifdef CONFIG_PREEMPT_RCU */
81
82 static inline void __rcu_read_lock(void)
83 {
84 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
85 preempt_disable();
86 }
87
88 static inline void __rcu_read_unlock(void)
89 {
90 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
91 preempt_enable();
92 }
93
94 static inline void synchronize_rcu(void)
95 {
96 synchronize_sched();
97 }
98
99 static inline int rcu_preempt_depth(void)
100 {
101 return 0;
102 }
103
104 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
105
106 /* Internal to kernel */
107 void rcu_init(void);
108 void rcu_sched_qs(void);
109 void rcu_bh_qs(void);
110 void rcu_check_callbacks(int user);
111 void rcu_report_dead(unsigned int cpu);
112 void rcu_cpu_starting(unsigned int cpu);
113
114 #ifdef CONFIG_RCU_STALL_COMMON
115 void rcu_sysrq_start(void);
116 void rcu_sysrq_end(void);
117 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
118 static inline void rcu_sysrq_start(void) { }
119 static inline void rcu_sysrq_end(void) { }
120 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
121
122 #ifdef CONFIG_NO_HZ_FULL
123 void rcu_user_enter(void);
124 void rcu_user_exit(void);
125 #else
126 static inline void rcu_user_enter(void) { }
127 static inline void rcu_user_exit(void) { }
128 #endif /* CONFIG_NO_HZ_FULL */
129
130 #ifdef CONFIG_RCU_NOCB_CPU
131 void rcu_init_nohz(void);
132 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
133 static inline void rcu_init_nohz(void) { }
134 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
135
136 /**
137 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
138 * @a: Code that RCU needs to pay attention to.
139 *
140 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
141 * in the inner idle loop, that is, between the rcu_idle_enter() and
142 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
143 * critical sections. However, things like powertop need tracepoints
144 * in the inner idle loop.
145 *
146 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
147 * will tell RCU that it needs to pay attention, invoke its argument
148 * (in this example, calling the do_something_with_RCU() function),
149 * and then tell RCU to go back to ignoring this CPU. It is permissible
150 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
151 * on the order of a million or so, even on 32-bit systems). It is
152 * not legal to block within RCU_NONIDLE(), nor is it permissible to
153 * transfer control either into or out of RCU_NONIDLE()'s statement.
154 */
155 #define RCU_NONIDLE(a) \
156 do { \
157 rcu_irq_enter_irqson(); \
158 do { a; } while (0); \
159 rcu_irq_exit_irqson(); \
160 } while (0)
161
162 /*
163 * Note a voluntary context switch for RCU-tasks benefit. This is a
164 * macro rather than an inline function to avoid #include hell.
165 */
166 #ifdef CONFIG_TASKS_RCU
167 #define TASKS_RCU(x) x
168 extern struct srcu_struct tasks_rcu_exit_srcu;
169 #define rcu_note_voluntary_context_switch_lite(t) \
170 do { \
171 if (READ_ONCE((t)->rcu_tasks_holdout)) \
172 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
173 } while (0)
174 #define rcu_note_voluntary_context_switch(t) \
175 do { \
176 rcu_all_qs(); \
177 rcu_note_voluntary_context_switch_lite(t); \
178 } while (0)
179 #else /* #ifdef CONFIG_TASKS_RCU */
180 #define TASKS_RCU(x) do { } while (0)
181 #define rcu_note_voluntary_context_switch_lite(t) do { } while (0)
182 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
183 #endif /* #else #ifdef CONFIG_TASKS_RCU */
184
185 /**
186 * cond_resched_rcu_qs - Report potential quiescent states to RCU
187 *
188 * This macro resembles cond_resched(), except that it is defined to
189 * report potential quiescent states to RCU-tasks even if the cond_resched()
190 * machinery were to be shut off, as some advocate for PREEMPT kernels.
191 */
192 #define cond_resched_rcu_qs() \
193 do { \
194 if (!cond_resched()) \
195 rcu_note_voluntary_context_switch(current); \
196 } while (0)
197
198 /*
199 * Infrastructure to implement the synchronize_() primitives in
200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
201 */
202
203 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
204 #include <linux/rcutree.h>
205 #elif defined(CONFIG_TINY_RCU)
206 #include <linux/rcutiny.h>
207 #else
208 #error "Unknown RCU implementation specified to kernel configuration"
209 #endif
210
211 /*
212 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
213 * initialization and destruction of rcu_head on the stack. rcu_head structures
214 * allocated dynamically in the heap or defined statically don't need any
215 * initialization.
216 */
217 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
218 void init_rcu_head(struct rcu_head *head);
219 void destroy_rcu_head(struct rcu_head *head);
220 void init_rcu_head_on_stack(struct rcu_head *head);
221 void destroy_rcu_head_on_stack(struct rcu_head *head);
222 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
223 static inline void init_rcu_head(struct rcu_head *head) { }
224 static inline void destroy_rcu_head(struct rcu_head *head) { }
225 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
226 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
227 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
228
229 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
230 bool rcu_lockdep_current_cpu_online(void);
231 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
232 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
233 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
234
235 #ifdef CONFIG_DEBUG_LOCK_ALLOC
236
237 static inline void rcu_lock_acquire(struct lockdep_map *map)
238 {
239 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
240 }
241
242 static inline void rcu_lock_release(struct lockdep_map *map)
243 {
244 lock_release(map, 1, _THIS_IP_);
245 }
246
247 extern struct lockdep_map rcu_lock_map;
248 extern struct lockdep_map rcu_bh_lock_map;
249 extern struct lockdep_map rcu_sched_lock_map;
250 extern struct lockdep_map rcu_callback_map;
251 int debug_lockdep_rcu_enabled(void);
252 int rcu_read_lock_held(void);
253 int rcu_read_lock_bh_held(void);
254 int rcu_read_lock_sched_held(void);
255
256 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
257
258 # define rcu_lock_acquire(a) do { } while (0)
259 # define rcu_lock_release(a) do { } while (0)
260
261 static inline int rcu_read_lock_held(void)
262 {
263 return 1;
264 }
265
266 static inline int rcu_read_lock_bh_held(void)
267 {
268 return 1;
269 }
270
271 static inline int rcu_read_lock_sched_held(void)
272 {
273 return !preemptible();
274 }
275 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
276
277 #ifdef CONFIG_PROVE_RCU
278
279 /**
280 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
281 * @c: condition to check
282 * @s: informative message
283 */
284 #define RCU_LOCKDEP_WARN(c, s) \
285 do { \
286 static bool __section(.data.unlikely) __warned; \
287 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
288 __warned = true; \
289 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
290 } \
291 } while (0)
292
293 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
294 static inline void rcu_preempt_sleep_check(void)
295 {
296 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
297 "Illegal context switch in RCU read-side critical section");
298 }
299 #else /* #ifdef CONFIG_PROVE_RCU */
300 static inline void rcu_preempt_sleep_check(void) { }
301 #endif /* #else #ifdef CONFIG_PROVE_RCU */
302
303 #define rcu_sleep_check() \
304 do { \
305 rcu_preempt_sleep_check(); \
306 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
307 "Illegal context switch in RCU-bh read-side critical section"); \
308 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
309 "Illegal context switch in RCU-sched read-side critical section"); \
310 } while (0)
311
312 #else /* #ifdef CONFIG_PROVE_RCU */
313
314 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
315 #define rcu_sleep_check() do { } while (0)
316
317 #endif /* #else #ifdef CONFIG_PROVE_RCU */
318
319 /*
320 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
321 * and rcu_assign_pointer(). Some of these could be folded into their
322 * callers, but they are left separate in order to ease introduction of
323 * multiple flavors of pointers to match the multiple flavors of RCU
324 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
325 * the future.
326 */
327
328 #ifdef __CHECKER__
329 #define rcu_dereference_sparse(p, space) \
330 ((void)(((typeof(*p) space *)p) == p))
331 #else /* #ifdef __CHECKER__ */
332 #define rcu_dereference_sparse(p, space)
333 #endif /* #else #ifdef __CHECKER__ */
334
335 #define __rcu_access_pointer(p, space) \
336 ({ \
337 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
338 rcu_dereference_sparse(p, space); \
339 ((typeof(*p) __force __kernel *)(_________p1)); \
340 })
341 #define __rcu_dereference_check(p, c, space) \
342 ({ \
343 /* Dependency order vs. p above. */ \
344 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
345 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
346 rcu_dereference_sparse(p, space); \
347 ((typeof(*p) __force __kernel *)(________p1)); \
348 })
349 #define __rcu_dereference_protected(p, c, space) \
350 ({ \
351 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
352 rcu_dereference_sparse(p, space); \
353 ((typeof(*p) __force __kernel *)(p)); \
354 })
355 #define rcu_dereference_raw(p) \
356 ({ \
357 /* Dependency order vs. p above. */ \
358 typeof(p) ________p1 = lockless_dereference(p); \
359 ((typeof(*p) __force __kernel *)(________p1)); \
360 })
361
362 /**
363 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
364 * @v: The value to statically initialize with.
365 */
366 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
367
368 /**
369 * rcu_assign_pointer() - assign to RCU-protected pointer
370 * @p: pointer to assign to
371 * @v: value to assign (publish)
372 *
373 * Assigns the specified value to the specified RCU-protected
374 * pointer, ensuring that any concurrent RCU readers will see
375 * any prior initialization.
376 *
377 * Inserts memory barriers on architectures that require them
378 * (which is most of them), and also prevents the compiler from
379 * reordering the code that initializes the structure after the pointer
380 * assignment. More importantly, this call documents which pointers
381 * will be dereferenced by RCU read-side code.
382 *
383 * In some special cases, you may use RCU_INIT_POINTER() instead
384 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
385 * to the fact that it does not constrain either the CPU or the compiler.
386 * That said, using RCU_INIT_POINTER() when you should have used
387 * rcu_assign_pointer() is a very bad thing that results in
388 * impossible-to-diagnose memory corruption. So please be careful.
389 * See the RCU_INIT_POINTER() comment header for details.
390 *
391 * Note that rcu_assign_pointer() evaluates each of its arguments only
392 * once, appearances notwithstanding. One of the "extra" evaluations
393 * is in typeof() and the other visible only to sparse (__CHECKER__),
394 * neither of which actually execute the argument. As with most cpp
395 * macros, this execute-arguments-only-once property is important, so
396 * please be careful when making changes to rcu_assign_pointer() and the
397 * other macros that it invokes.
398 */
399 #define rcu_assign_pointer(p, v) \
400 ({ \
401 uintptr_t _r_a_p__v = (uintptr_t)(v); \
402 \
403 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
404 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
405 else \
406 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
407 _r_a_p__v; \
408 })
409
410 /**
411 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
412 * @p: The pointer to read
413 *
414 * Return the value of the specified RCU-protected pointer, but omit the
415 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
416 * when the value of this pointer is accessed, but the pointer is not
417 * dereferenced, for example, when testing an RCU-protected pointer against
418 * NULL. Although rcu_access_pointer() may also be used in cases where
419 * update-side locks prevent the value of the pointer from changing, you
420 * should instead use rcu_dereference_protected() for this use case.
421 *
422 * It is also permissible to use rcu_access_pointer() when read-side
423 * access to the pointer was removed at least one grace period ago, as
424 * is the case in the context of the RCU callback that is freeing up
425 * the data, or after a synchronize_rcu() returns. This can be useful
426 * when tearing down multi-linked structures after a grace period
427 * has elapsed.
428 */
429 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
430
431 /**
432 * rcu_dereference_check() - rcu_dereference with debug checking
433 * @p: The pointer to read, prior to dereferencing
434 * @c: The conditions under which the dereference will take place
435 *
436 * Do an rcu_dereference(), but check that the conditions under which the
437 * dereference will take place are correct. Typically the conditions
438 * indicate the various locking conditions that should be held at that
439 * point. The check should return true if the conditions are satisfied.
440 * An implicit check for being in an RCU read-side critical section
441 * (rcu_read_lock()) is included.
442 *
443 * For example:
444 *
445 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
446 *
447 * could be used to indicate to lockdep that foo->bar may only be dereferenced
448 * if either rcu_read_lock() is held, or that the lock required to replace
449 * the bar struct at foo->bar is held.
450 *
451 * Note that the list of conditions may also include indications of when a lock
452 * need not be held, for example during initialisation or destruction of the
453 * target struct:
454 *
455 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
456 * atomic_read(&foo->usage) == 0);
457 *
458 * Inserts memory barriers on architectures that require them
459 * (currently only the Alpha), prevents the compiler from refetching
460 * (and from merging fetches), and, more importantly, documents exactly
461 * which pointers are protected by RCU and checks that the pointer is
462 * annotated as __rcu.
463 */
464 #define rcu_dereference_check(p, c) \
465 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
466
467 /**
468 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
469 * @p: The pointer to read, prior to dereferencing
470 * @c: The conditions under which the dereference will take place
471 *
472 * This is the RCU-bh counterpart to rcu_dereference_check().
473 */
474 #define rcu_dereference_bh_check(p, c) \
475 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
476
477 /**
478 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
479 * @p: The pointer to read, prior to dereferencing
480 * @c: The conditions under which the dereference will take place
481 *
482 * This is the RCU-sched counterpart to rcu_dereference_check().
483 */
484 #define rcu_dereference_sched_check(p, c) \
485 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
486 __rcu)
487
488 /*
489 * The tracing infrastructure traces RCU (we want that), but unfortunately
490 * some of the RCU checks causes tracing to lock up the system.
491 *
492 * The no-tracing version of rcu_dereference_raw() must not call
493 * rcu_read_lock_held().
494 */
495 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
496
497 /**
498 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
499 * @p: The pointer to read, prior to dereferencing
500 * @c: The conditions under which the dereference will take place
501 *
502 * Return the value of the specified RCU-protected pointer, but omit
503 * both the smp_read_barrier_depends() and the READ_ONCE(). This
504 * is useful in cases where update-side locks prevent the value of the
505 * pointer from changing. Please note that this primitive does -not-
506 * prevent the compiler from repeating this reference or combining it
507 * with other references, so it should not be used without protection
508 * of appropriate locks.
509 *
510 * This function is only for update-side use. Using this function
511 * when protected only by rcu_read_lock() will result in infrequent
512 * but very ugly failures.
513 */
514 #define rcu_dereference_protected(p, c) \
515 __rcu_dereference_protected((p), (c), __rcu)
516
517
518 /**
519 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
520 * @p: The pointer to read, prior to dereferencing
521 *
522 * This is a simple wrapper around rcu_dereference_check().
523 */
524 #define rcu_dereference(p) rcu_dereference_check(p, 0)
525
526 /**
527 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
528 * @p: The pointer to read, prior to dereferencing
529 *
530 * Makes rcu_dereference_check() do the dirty work.
531 */
532 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
533
534 /**
535 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
536 * @p: The pointer to read, prior to dereferencing
537 *
538 * Makes rcu_dereference_check() do the dirty work.
539 */
540 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
541
542 /**
543 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
544 * @p: The pointer to hand off
545 *
546 * This is simply an identity function, but it documents where a pointer
547 * is handed off from RCU to some other synchronization mechanism, for
548 * example, reference counting or locking. In C11, it would map to
549 * kill_dependency(). It could be used as follows:
550 *
551 * rcu_read_lock();
552 * p = rcu_dereference(gp);
553 * long_lived = is_long_lived(p);
554 * if (long_lived) {
555 * if (!atomic_inc_not_zero(p->refcnt))
556 * long_lived = false;
557 * else
558 * p = rcu_pointer_handoff(p);
559 * }
560 * rcu_read_unlock();
561 */
562 #define rcu_pointer_handoff(p) (p)
563
564 /**
565 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
566 *
567 * When synchronize_rcu() is invoked on one CPU while other CPUs
568 * are within RCU read-side critical sections, then the
569 * synchronize_rcu() is guaranteed to block until after all the other
570 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
571 * on one CPU while other CPUs are within RCU read-side critical
572 * sections, invocation of the corresponding RCU callback is deferred
573 * until after the all the other CPUs exit their critical sections.
574 *
575 * Note, however, that RCU callbacks are permitted to run concurrently
576 * with new RCU read-side critical sections. One way that this can happen
577 * is via the following sequence of events: (1) CPU 0 enters an RCU
578 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
579 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
580 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
581 * callback is invoked. This is legal, because the RCU read-side critical
582 * section that was running concurrently with the call_rcu() (and which
583 * therefore might be referencing something that the corresponding RCU
584 * callback would free up) has completed before the corresponding
585 * RCU callback is invoked.
586 *
587 * RCU read-side critical sections may be nested. Any deferred actions
588 * will be deferred until the outermost RCU read-side critical section
589 * completes.
590 *
591 * You can avoid reading and understanding the next paragraph by
592 * following this rule: don't put anything in an rcu_read_lock() RCU
593 * read-side critical section that would block in a !PREEMPT kernel.
594 * But if you want the full story, read on!
595 *
596 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
597 * it is illegal to block while in an RCU read-side critical section.
598 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
599 * kernel builds, RCU read-side critical sections may be preempted,
600 * but explicit blocking is illegal. Finally, in preemptible RCU
601 * implementations in real-time (with -rt patchset) kernel builds, RCU
602 * read-side critical sections may be preempted and they may also block, but
603 * only when acquiring spinlocks that are subject to priority inheritance.
604 */
605 static inline void rcu_read_lock(void)
606 {
607 __rcu_read_lock();
608 __acquire(RCU);
609 rcu_lock_acquire(&rcu_lock_map);
610 RCU_LOCKDEP_WARN(!rcu_is_watching(),
611 "rcu_read_lock() used illegally while idle");
612 }
613
614 /*
615 * So where is rcu_write_lock()? It does not exist, as there is no
616 * way for writers to lock out RCU readers. This is a feature, not
617 * a bug -- this property is what provides RCU's performance benefits.
618 * Of course, writers must coordinate with each other. The normal
619 * spinlock primitives work well for this, but any other technique may be
620 * used as well. RCU does not care how the writers keep out of each
621 * others' way, as long as they do so.
622 */
623
624 /**
625 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
626 *
627 * In most situations, rcu_read_unlock() is immune from deadlock.
628 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
629 * is responsible for deboosting, which it does via rt_mutex_unlock().
630 * Unfortunately, this function acquires the scheduler's runqueue and
631 * priority-inheritance spinlocks. This means that deadlock could result
632 * if the caller of rcu_read_unlock() already holds one of these locks or
633 * any lock that is ever acquired while holding them; or any lock which
634 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
635 * does not disable irqs while taking ->wait_lock.
636 *
637 * That said, RCU readers are never priority boosted unless they were
638 * preempted. Therefore, one way to avoid deadlock is to make sure
639 * that preemption never happens within any RCU read-side critical
640 * section whose outermost rcu_read_unlock() is called with one of
641 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
642 * a number of ways, for example, by invoking preempt_disable() before
643 * critical section's outermost rcu_read_lock().
644 *
645 * Given that the set of locks acquired by rt_mutex_unlock() might change
646 * at any time, a somewhat more future-proofed approach is to make sure
647 * that that preemption never happens within any RCU read-side critical
648 * section whose outermost rcu_read_unlock() is called with irqs disabled.
649 * This approach relies on the fact that rt_mutex_unlock() currently only
650 * acquires irq-disabled locks.
651 *
652 * The second of these two approaches is best in most situations,
653 * however, the first approach can also be useful, at least to those
654 * developers willing to keep abreast of the set of locks acquired by
655 * rt_mutex_unlock().
656 *
657 * See rcu_read_lock() for more information.
658 */
659 static inline void rcu_read_unlock(void)
660 {
661 RCU_LOCKDEP_WARN(!rcu_is_watching(),
662 "rcu_read_unlock() used illegally while idle");
663 __release(RCU);
664 __rcu_read_unlock();
665 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
666 }
667
668 /**
669 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
670 *
671 * This is equivalent of rcu_read_lock(), but to be used when updates
672 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
673 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
674 * softirq handler to be a quiescent state, a process in RCU read-side
675 * critical section must be protected by disabling softirqs. Read-side
676 * critical sections in interrupt context can use just rcu_read_lock(),
677 * though this should at least be commented to avoid confusing people
678 * reading the code.
679 *
680 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
681 * must occur in the same context, for example, it is illegal to invoke
682 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
683 * was invoked from some other task.
684 */
685 static inline void rcu_read_lock_bh(void)
686 {
687 local_bh_disable();
688 __acquire(RCU_BH);
689 rcu_lock_acquire(&rcu_bh_lock_map);
690 RCU_LOCKDEP_WARN(!rcu_is_watching(),
691 "rcu_read_lock_bh() used illegally while idle");
692 }
693
694 /*
695 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
696 *
697 * See rcu_read_lock_bh() for more information.
698 */
699 static inline void rcu_read_unlock_bh(void)
700 {
701 RCU_LOCKDEP_WARN(!rcu_is_watching(),
702 "rcu_read_unlock_bh() used illegally while idle");
703 rcu_lock_release(&rcu_bh_lock_map);
704 __release(RCU_BH);
705 local_bh_enable();
706 }
707
708 /**
709 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
710 *
711 * This is equivalent of rcu_read_lock(), but to be used when updates
712 * are being done using call_rcu_sched() or synchronize_rcu_sched().
713 * Read-side critical sections can also be introduced by anything that
714 * disables preemption, including local_irq_disable() and friends.
715 *
716 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
717 * must occur in the same context, for example, it is illegal to invoke
718 * rcu_read_unlock_sched() from process context if the matching
719 * rcu_read_lock_sched() was invoked from an NMI handler.
720 */
721 static inline void rcu_read_lock_sched(void)
722 {
723 preempt_disable();
724 __acquire(RCU_SCHED);
725 rcu_lock_acquire(&rcu_sched_lock_map);
726 RCU_LOCKDEP_WARN(!rcu_is_watching(),
727 "rcu_read_lock_sched() used illegally while idle");
728 }
729
730 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
731 static inline notrace void rcu_read_lock_sched_notrace(void)
732 {
733 preempt_disable_notrace();
734 __acquire(RCU_SCHED);
735 }
736
737 /*
738 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
739 *
740 * See rcu_read_lock_sched for more information.
741 */
742 static inline void rcu_read_unlock_sched(void)
743 {
744 RCU_LOCKDEP_WARN(!rcu_is_watching(),
745 "rcu_read_unlock_sched() used illegally while idle");
746 rcu_lock_release(&rcu_sched_lock_map);
747 __release(RCU_SCHED);
748 preempt_enable();
749 }
750
751 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
752 static inline notrace void rcu_read_unlock_sched_notrace(void)
753 {
754 __release(RCU_SCHED);
755 preempt_enable_notrace();
756 }
757
758 /**
759 * RCU_INIT_POINTER() - initialize an RCU protected pointer
760 *
761 * Initialize an RCU-protected pointer in special cases where readers
762 * do not need ordering constraints on the CPU or the compiler. These
763 * special cases are:
764 *
765 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
766 * 2. The caller has taken whatever steps are required to prevent
767 * RCU readers from concurrently accessing this pointer -or-
768 * 3. The referenced data structure has already been exposed to
769 * readers either at compile time or via rcu_assign_pointer() -and-
770 * a. You have not made -any- reader-visible changes to
771 * this structure since then -or-
772 * b. It is OK for readers accessing this structure from its
773 * new location to see the old state of the structure. (For
774 * example, the changes were to statistical counters or to
775 * other state where exact synchronization is not required.)
776 *
777 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
778 * result in impossible-to-diagnose memory corruption. As in the structures
779 * will look OK in crash dumps, but any concurrent RCU readers might
780 * see pre-initialized values of the referenced data structure. So
781 * please be very careful how you use RCU_INIT_POINTER()!!!
782 *
783 * If you are creating an RCU-protected linked structure that is accessed
784 * by a single external-to-structure RCU-protected pointer, then you may
785 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
786 * pointers, but you must use rcu_assign_pointer() to initialize the
787 * external-to-structure pointer -after- you have completely initialized
788 * the reader-accessible portions of the linked structure.
789 *
790 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
791 * ordering guarantees for either the CPU or the compiler.
792 */
793 #define RCU_INIT_POINTER(p, v) \
794 do { \
795 rcu_dereference_sparse(p, __rcu); \
796 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
797 } while (0)
798
799 /**
800 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
801 *
802 * GCC-style initialization for an RCU-protected pointer in a structure field.
803 */
804 #define RCU_POINTER_INITIALIZER(p, v) \
805 .p = RCU_INITIALIZER(v)
806
807 /*
808 * Does the specified offset indicate that the corresponding rcu_head
809 * structure can be handled by kfree_rcu()?
810 */
811 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
812
813 /*
814 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
815 */
816 #define __kfree_rcu(head, offset) \
817 do { \
818 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
819 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
820 } while (0)
821
822 /**
823 * kfree_rcu() - kfree an object after a grace period.
824 * @ptr: pointer to kfree
825 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
826 *
827 * Many rcu callbacks functions just call kfree() on the base structure.
828 * These functions are trivial, but their size adds up, and furthermore
829 * when they are used in a kernel module, that module must invoke the
830 * high-latency rcu_barrier() function at module-unload time.
831 *
832 * The kfree_rcu() function handles this issue. Rather than encoding a
833 * function address in the embedded rcu_head structure, kfree_rcu() instead
834 * encodes the offset of the rcu_head structure within the base structure.
835 * Because the functions are not allowed in the low-order 4096 bytes of
836 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
837 * If the offset is larger than 4095 bytes, a compile-time error will
838 * be generated in __kfree_rcu(). If this error is triggered, you can
839 * either fall back to use of call_rcu() or rearrange the structure to
840 * position the rcu_head structure into the first 4096 bytes.
841 *
842 * Note that the allowable offset might decrease in the future, for example,
843 * to allow something like kmem_cache_free_rcu().
844 *
845 * The BUILD_BUG_ON check must not involve any function calls, hence the
846 * checks are done in macros here.
847 */
848 #define kfree_rcu(ptr, rcu_head) \
849 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
850
851
852 /*
853 * Place this after a lock-acquisition primitive to guarantee that
854 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
855 * if the UNLOCK and LOCK are executed by the same CPU or if the
856 * UNLOCK and LOCK operate on the same lock variable.
857 */
858 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
859 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
860 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
861 #define smp_mb__after_unlock_lock() do { } while (0)
862 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
863
864
865 #endif /* __LINUX_RCUPDATE_H */