]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/rcupdate.h
Merge branch 'clk-fixes' into clk-next
[mirror_ubuntu-jammy-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
48
49 #include <asm/barrier.h>
50
51 extern int rcu_expedited; /* for sysctl */
52
53 #ifdef CONFIG_TINY_RCU
54 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
55 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
56 {
57 return false;
58 }
59
60 static inline void rcu_expedite_gp(void)
61 {
62 }
63
64 static inline void rcu_unexpedite_gp(void)
65 {
66 }
67 #else /* #ifdef CONFIG_TINY_RCU */
68 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
69 void rcu_expedite_gp(void);
70 void rcu_unexpedite_gp(void);
71 #endif /* #else #ifdef CONFIG_TINY_RCU */
72
73 enum rcutorture_type {
74 RCU_FLAVOR,
75 RCU_BH_FLAVOR,
76 RCU_SCHED_FLAVOR,
77 RCU_TASKS_FLAVOR,
78 SRCU_FLAVOR,
79 INVALID_RCU_FLAVOR
80 };
81
82 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
83 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84 unsigned long *gpnum, unsigned long *completed);
85 void rcutorture_record_test_transition(void);
86 void rcutorture_record_progress(unsigned long vernum);
87 void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
92 #else
93 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94 int *flags,
95 unsigned long *gpnum,
96 unsigned long *completed)
97 {
98 *flags = 0;
99 *gpnum = 0;
100 *completed = 0;
101 }
102 static inline void rcutorture_record_test_transition(void)
103 {
104 }
105 static inline void rcutorture_record_progress(unsigned long vernum)
106 {
107 }
108 #ifdef CONFIG_RCU_TRACE
109 void do_trace_rcu_torture_read(const char *rcutorturename,
110 struct rcu_head *rhp,
111 unsigned long secs,
112 unsigned long c_old,
113 unsigned long c);
114 #else
115 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116 do { } while (0)
117 #endif
118 #endif
119
120 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
121 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
122 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
123 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
124 #define ulong2long(a) (*(long *)(&(a)))
125
126 /* Exported common interfaces */
127
128 #ifdef CONFIG_PREEMPT_RCU
129
130 /**
131 * call_rcu() - Queue an RCU callback for invocation after a grace period.
132 * @head: structure to be used for queueing the RCU updates.
133 * @func: actual callback function to be invoked after the grace period
134 *
135 * The callback function will be invoked some time after a full grace
136 * period elapses, in other words after all pre-existing RCU read-side
137 * critical sections have completed. However, the callback function
138 * might well execute concurrently with RCU read-side critical sections
139 * that started after call_rcu() was invoked. RCU read-side critical
140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141 * and may be nested.
142 *
143 * Note that all CPUs must agree that the grace period extended beyond
144 * all pre-existing RCU read-side critical section. On systems with more
145 * than one CPU, this means that when "func()" is invoked, each CPU is
146 * guaranteed to have executed a full memory barrier since the end of its
147 * last RCU read-side critical section whose beginning preceded the call
148 * to call_rcu(). It also means that each CPU executing an RCU read-side
149 * critical section that continues beyond the start of "func()" must have
150 * executed a memory barrier after the call_rcu() but before the beginning
151 * of that RCU read-side critical section. Note that these guarantees
152 * include CPUs that are offline, idle, or executing in user mode, as
153 * well as CPUs that are executing in the kernel.
154 *
155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156 * resulting RCU callback function "func()", then both CPU A and CPU B are
157 * guaranteed to execute a full memory barrier during the time interval
158 * between the call to call_rcu() and the invocation of "func()" -- even
159 * if CPU A and CPU B are the same CPU (but again only if the system has
160 * more than one CPU).
161 */
162 void call_rcu(struct rcu_head *head,
163 void (*func)(struct rcu_head *head));
164
165 #else /* #ifdef CONFIG_PREEMPT_RCU */
166
167 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
168 #define call_rcu call_rcu_sched
169
170 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171
172 /**
173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174 * @head: structure to be used for queueing the RCU updates.
175 * @func: actual callback function to be invoked after the grace period
176 *
177 * The callback function will be invoked some time after a full grace
178 * period elapses, in other words after all currently executing RCU
179 * read-side critical sections have completed. call_rcu_bh() assumes
180 * that the read-side critical sections end on completion of a softirq
181 * handler. This means that read-side critical sections in process
182 * context must not be interrupted by softirqs. This interface is to be
183 * used when most of the read-side critical sections are in softirq context.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
186 * OR
187 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188 * These may be nested.
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
192 */
193 void call_rcu_bh(struct rcu_head *head,
194 void (*func)(struct rcu_head *head));
195
196 /**
197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198 * @head: structure to be used for queueing the RCU updates.
199 * @func: actual callback function to be invoked after the grace period
200 *
201 * The callback function will be invoked some time after a full grace
202 * period elapses, in other words after all currently executing RCU
203 * read-side critical sections have completed. call_rcu_sched() assumes
204 * that the read-side critical sections end on enabling of preemption
205 * or on voluntary preemption.
206 * RCU read-side critical sections are delimited by :
207 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
208 * OR
209 * anything that disables preemption.
210 * These may be nested.
211 *
212 * See the description of call_rcu() for more detailed information on
213 * memory ordering guarantees.
214 */
215 void call_rcu_sched(struct rcu_head *head,
216 void (*func)(struct rcu_head *rcu));
217
218 void synchronize_sched(void);
219
220 /*
221 * Structure allowing asynchronous waiting on RCU.
222 */
223 struct rcu_synchronize {
224 struct rcu_head head;
225 struct completion completion;
226 };
227 void wakeme_after_rcu(struct rcu_head *head);
228
229 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
230 struct rcu_synchronize *rs_array);
231
232 #define _wait_rcu_gp(checktiny, ...) \
233 do { \
234 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
235 const int __n = ARRAY_SIZE(__crcu_array); \
236 struct rcu_synchronize __rs_array[__n]; \
237 \
238 __wait_rcu_gp(checktiny, __n, __crcu_array, __rs_array); \
239 } while (0)
240
241 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
242
243 /**
244 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
245 * @...: List of call_rcu() functions for the flavors to wait on.
246 *
247 * This macro waits concurrently for multiple flavors of RCU grace periods.
248 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
249 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
250 * domain requires you to write a wrapper function for that SRCU domain's
251 * call_srcu() function, supplying the corresponding srcu_struct.
252 *
253 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
254 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
255 * is automatically a grace period.
256 */
257 #define synchronize_rcu_mult(...) \
258 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
259
260 /**
261 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
262 * @head: structure to be used for queueing the RCU updates.
263 * @func: actual callback function to be invoked after the grace period
264 *
265 * The callback function will be invoked some time after a full grace
266 * period elapses, in other words after all currently executing RCU
267 * read-side critical sections have completed. call_rcu_tasks() assumes
268 * that the read-side critical sections end at a voluntary context
269 * switch (not a preemption!), entry into idle, or transition to usermode
270 * execution. As such, there are no read-side primitives analogous to
271 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
272 * to determine that all tasks have passed through a safe state, not so
273 * much for data-strcuture synchronization.
274 *
275 * See the description of call_rcu() for more detailed information on
276 * memory ordering guarantees.
277 */
278 void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
279 void synchronize_rcu_tasks(void);
280 void rcu_barrier_tasks(void);
281
282 #ifdef CONFIG_PREEMPT_RCU
283
284 void __rcu_read_lock(void);
285 void __rcu_read_unlock(void);
286 void rcu_read_unlock_special(struct task_struct *t);
287 void synchronize_rcu(void);
288
289 /*
290 * Defined as a macro as it is a very low level header included from
291 * areas that don't even know about current. This gives the rcu_read_lock()
292 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
293 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
294 */
295 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
296
297 #else /* #ifdef CONFIG_PREEMPT_RCU */
298
299 static inline void __rcu_read_lock(void)
300 {
301 preempt_disable();
302 }
303
304 static inline void __rcu_read_unlock(void)
305 {
306 preempt_enable();
307 }
308
309 static inline void synchronize_rcu(void)
310 {
311 synchronize_sched();
312 }
313
314 static inline int rcu_preempt_depth(void)
315 {
316 return 0;
317 }
318
319 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
320
321 /* Internal to kernel */
322 void rcu_init(void);
323 void rcu_end_inkernel_boot(void);
324 void rcu_sched_qs(void);
325 void rcu_bh_qs(void);
326 void rcu_check_callbacks(int user);
327 struct notifier_block;
328 int rcu_cpu_notify(struct notifier_block *self,
329 unsigned long action, void *hcpu);
330
331 #ifdef CONFIG_RCU_STALL_COMMON
332 void rcu_sysrq_start(void);
333 void rcu_sysrq_end(void);
334 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
335 static inline void rcu_sysrq_start(void)
336 {
337 }
338 static inline void rcu_sysrq_end(void)
339 {
340 }
341 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
342
343 #ifdef CONFIG_NO_HZ_FULL
344 void rcu_user_enter(void);
345 void rcu_user_exit(void);
346 #else
347 static inline void rcu_user_enter(void) { }
348 static inline void rcu_user_exit(void) { }
349 static inline void rcu_user_hooks_switch(struct task_struct *prev,
350 struct task_struct *next) { }
351 #endif /* CONFIG_NO_HZ_FULL */
352
353 #ifdef CONFIG_RCU_NOCB_CPU
354 void rcu_init_nohz(void);
355 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
356 static inline void rcu_init_nohz(void)
357 {
358 }
359 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
360
361 /**
362 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
363 * @a: Code that RCU needs to pay attention to.
364 *
365 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
366 * in the inner idle loop, that is, between the rcu_idle_enter() and
367 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
368 * critical sections. However, things like powertop need tracepoints
369 * in the inner idle loop.
370 *
371 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
372 * will tell RCU that it needs to pay attending, invoke its argument
373 * (in this example, a call to the do_something_with_RCU() function),
374 * and then tell RCU to go back to ignoring this CPU. It is permissible
375 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
376 * quite limited. If deeper nesting is required, it will be necessary
377 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
378 */
379 #define RCU_NONIDLE(a) \
380 do { \
381 rcu_irq_enter(); \
382 do { a; } while (0); \
383 rcu_irq_exit(); \
384 } while (0)
385
386 /*
387 * Note a voluntary context switch for RCU-tasks benefit. This is a
388 * macro rather than an inline function to avoid #include hell.
389 */
390 #ifdef CONFIG_TASKS_RCU
391 #define TASKS_RCU(x) x
392 extern struct srcu_struct tasks_rcu_exit_srcu;
393 #define rcu_note_voluntary_context_switch(t) \
394 do { \
395 rcu_all_qs(); \
396 if (READ_ONCE((t)->rcu_tasks_holdout)) \
397 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
398 } while (0)
399 #else /* #ifdef CONFIG_TASKS_RCU */
400 #define TASKS_RCU(x) do { } while (0)
401 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
402 #endif /* #else #ifdef CONFIG_TASKS_RCU */
403
404 /**
405 * cond_resched_rcu_qs - Report potential quiescent states to RCU
406 *
407 * This macro resembles cond_resched(), except that it is defined to
408 * report potential quiescent states to RCU-tasks even if the cond_resched()
409 * machinery were to be shut off, as some advocate for PREEMPT kernels.
410 */
411 #define cond_resched_rcu_qs() \
412 do { \
413 if (!cond_resched()) \
414 rcu_note_voluntary_context_switch(current); \
415 } while (0)
416
417 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
418 bool __rcu_is_watching(void);
419 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
420
421 /*
422 * Infrastructure to implement the synchronize_() primitives in
423 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
424 */
425
426 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
427 #include <linux/rcutree.h>
428 #elif defined(CONFIG_TINY_RCU)
429 #include <linux/rcutiny.h>
430 #else
431 #error "Unknown RCU implementation specified to kernel configuration"
432 #endif
433
434 /*
435 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
436 * initialization and destruction of rcu_head on the stack. rcu_head structures
437 * allocated dynamically in the heap or defined statically don't need any
438 * initialization.
439 */
440 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
441 void init_rcu_head(struct rcu_head *head);
442 void destroy_rcu_head(struct rcu_head *head);
443 void init_rcu_head_on_stack(struct rcu_head *head);
444 void destroy_rcu_head_on_stack(struct rcu_head *head);
445 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
446 static inline void init_rcu_head(struct rcu_head *head)
447 {
448 }
449
450 static inline void destroy_rcu_head(struct rcu_head *head)
451 {
452 }
453
454 static inline void init_rcu_head_on_stack(struct rcu_head *head)
455 {
456 }
457
458 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
459 {
460 }
461 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
462
463 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
464 bool rcu_lockdep_current_cpu_online(void);
465 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
466 static inline bool rcu_lockdep_current_cpu_online(void)
467 {
468 return true;
469 }
470 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
471
472 #ifdef CONFIG_DEBUG_LOCK_ALLOC
473
474 static inline void rcu_lock_acquire(struct lockdep_map *map)
475 {
476 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
477 }
478
479 static inline void rcu_lock_release(struct lockdep_map *map)
480 {
481 lock_release(map, 1, _THIS_IP_);
482 }
483
484 extern struct lockdep_map rcu_lock_map;
485 extern struct lockdep_map rcu_bh_lock_map;
486 extern struct lockdep_map rcu_sched_lock_map;
487 extern struct lockdep_map rcu_callback_map;
488 int debug_lockdep_rcu_enabled(void);
489
490 int rcu_read_lock_held(void);
491 int rcu_read_lock_bh_held(void);
492
493 /**
494 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
495 *
496 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
497 * RCU-sched read-side critical section. In absence of
498 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
499 * critical section unless it can prove otherwise.
500 */
501 #ifdef CONFIG_PREEMPT_COUNT
502 int rcu_read_lock_sched_held(void);
503 #else /* #ifdef CONFIG_PREEMPT_COUNT */
504 static inline int rcu_read_lock_sched_held(void)
505 {
506 return 1;
507 }
508 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
509
510 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
511
512 # define rcu_lock_acquire(a) do { } while (0)
513 # define rcu_lock_release(a) do { } while (0)
514
515 static inline int rcu_read_lock_held(void)
516 {
517 return 1;
518 }
519
520 static inline int rcu_read_lock_bh_held(void)
521 {
522 return 1;
523 }
524
525 #ifdef CONFIG_PREEMPT_COUNT
526 static inline int rcu_read_lock_sched_held(void)
527 {
528 return preempt_count() != 0 || irqs_disabled();
529 }
530 #else /* #ifdef CONFIG_PREEMPT_COUNT */
531 static inline int rcu_read_lock_sched_held(void)
532 {
533 return 1;
534 }
535 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
536
537 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
538
539 /* Deprecate rcu_lockdep_assert(): Use RCU_LOCKDEP_WARN() instead. */
540 static inline void __attribute((deprecated)) deprecate_rcu_lockdep_assert(void)
541 {
542 }
543
544 #ifdef CONFIG_PROVE_RCU
545
546 /**
547 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
548 * @c: condition to check
549 * @s: informative message
550 */
551 #define rcu_lockdep_assert(c, s) \
552 do { \
553 static bool __section(.data.unlikely) __warned; \
554 deprecate_rcu_lockdep_assert(); \
555 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
556 __warned = true; \
557 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
558 } \
559 } while (0)
560
561 /**
562 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
563 * @c: condition to check
564 * @s: informative message
565 */
566 #define RCU_LOCKDEP_WARN(c, s) \
567 do { \
568 static bool __section(.data.unlikely) __warned; \
569 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
570 __warned = true; \
571 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
572 } \
573 } while (0)
574
575 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
576 static inline void rcu_preempt_sleep_check(void)
577 {
578 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
579 "Illegal context switch in RCU read-side critical section");
580 }
581 #else /* #ifdef CONFIG_PROVE_RCU */
582 static inline void rcu_preempt_sleep_check(void)
583 {
584 }
585 #endif /* #else #ifdef CONFIG_PROVE_RCU */
586
587 #define rcu_sleep_check() \
588 do { \
589 rcu_preempt_sleep_check(); \
590 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
591 "Illegal context switch in RCU-bh read-side critical section"); \
592 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
593 "Illegal context switch in RCU-sched read-side critical section"); \
594 } while (0)
595
596 #else /* #ifdef CONFIG_PROVE_RCU */
597
598 #define rcu_lockdep_assert(c, s) deprecate_rcu_lockdep_assert()
599 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
600 #define rcu_sleep_check() do { } while (0)
601
602 #endif /* #else #ifdef CONFIG_PROVE_RCU */
603
604 /*
605 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
606 * and rcu_assign_pointer(). Some of these could be folded into their
607 * callers, but they are left separate in order to ease introduction of
608 * multiple flavors of pointers to match the multiple flavors of RCU
609 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
610 * the future.
611 */
612
613 #ifdef __CHECKER__
614 #define rcu_dereference_sparse(p, space) \
615 ((void)(((typeof(*p) space *)p) == p))
616 #else /* #ifdef __CHECKER__ */
617 #define rcu_dereference_sparse(p, space)
618 #endif /* #else #ifdef __CHECKER__ */
619
620 #define __rcu_access_pointer(p, space) \
621 ({ \
622 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
623 rcu_dereference_sparse(p, space); \
624 ((typeof(*p) __force __kernel *)(_________p1)); \
625 })
626 #define __rcu_dereference_check(p, c, space) \
627 ({ \
628 /* Dependency order vs. p above. */ \
629 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
630 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
631 rcu_dereference_sparse(p, space); \
632 ((typeof(*p) __force __kernel *)(________p1)); \
633 })
634 #define __rcu_dereference_protected(p, c, space) \
635 ({ \
636 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
637 rcu_dereference_sparse(p, space); \
638 ((typeof(*p) __force __kernel *)(p)); \
639 })
640
641 /**
642 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
643 * @v: The value to statically initialize with.
644 */
645 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
646
647 /**
648 * rcu_assign_pointer() - assign to RCU-protected pointer
649 * @p: pointer to assign to
650 * @v: value to assign (publish)
651 *
652 * Assigns the specified value to the specified RCU-protected
653 * pointer, ensuring that any concurrent RCU readers will see
654 * any prior initialization.
655 *
656 * Inserts memory barriers on architectures that require them
657 * (which is most of them), and also prevents the compiler from
658 * reordering the code that initializes the structure after the pointer
659 * assignment. More importantly, this call documents which pointers
660 * will be dereferenced by RCU read-side code.
661 *
662 * In some special cases, you may use RCU_INIT_POINTER() instead
663 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
664 * to the fact that it does not constrain either the CPU or the compiler.
665 * That said, using RCU_INIT_POINTER() when you should have used
666 * rcu_assign_pointer() is a very bad thing that results in
667 * impossible-to-diagnose memory corruption. So please be careful.
668 * See the RCU_INIT_POINTER() comment header for details.
669 *
670 * Note that rcu_assign_pointer() evaluates each of its arguments only
671 * once, appearances notwithstanding. One of the "extra" evaluations
672 * is in typeof() and the other visible only to sparse (__CHECKER__),
673 * neither of which actually execute the argument. As with most cpp
674 * macros, this execute-arguments-only-once property is important, so
675 * please be careful when making changes to rcu_assign_pointer() and the
676 * other macros that it invokes.
677 */
678 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
679
680 /**
681 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
682 * @p: The pointer to read
683 *
684 * Return the value of the specified RCU-protected pointer, but omit the
685 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
686 * when the value of this pointer is accessed, but the pointer is not
687 * dereferenced, for example, when testing an RCU-protected pointer against
688 * NULL. Although rcu_access_pointer() may also be used in cases where
689 * update-side locks prevent the value of the pointer from changing, you
690 * should instead use rcu_dereference_protected() for this use case.
691 *
692 * It is also permissible to use rcu_access_pointer() when read-side
693 * access to the pointer was removed at least one grace period ago, as
694 * is the case in the context of the RCU callback that is freeing up
695 * the data, or after a synchronize_rcu() returns. This can be useful
696 * when tearing down multi-linked structures after a grace period
697 * has elapsed.
698 */
699 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
700
701 /**
702 * rcu_dereference_check() - rcu_dereference with debug checking
703 * @p: The pointer to read, prior to dereferencing
704 * @c: The conditions under which the dereference will take place
705 *
706 * Do an rcu_dereference(), but check that the conditions under which the
707 * dereference will take place are correct. Typically the conditions
708 * indicate the various locking conditions that should be held at that
709 * point. The check should return true if the conditions are satisfied.
710 * An implicit check for being in an RCU read-side critical section
711 * (rcu_read_lock()) is included.
712 *
713 * For example:
714 *
715 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
716 *
717 * could be used to indicate to lockdep that foo->bar may only be dereferenced
718 * if either rcu_read_lock() is held, or that the lock required to replace
719 * the bar struct at foo->bar is held.
720 *
721 * Note that the list of conditions may also include indications of when a lock
722 * need not be held, for example during initialisation or destruction of the
723 * target struct:
724 *
725 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
726 * atomic_read(&foo->usage) == 0);
727 *
728 * Inserts memory barriers on architectures that require them
729 * (currently only the Alpha), prevents the compiler from refetching
730 * (and from merging fetches), and, more importantly, documents exactly
731 * which pointers are protected by RCU and checks that the pointer is
732 * annotated as __rcu.
733 */
734 #define rcu_dereference_check(p, c) \
735 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
736
737 /**
738 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
739 * @p: The pointer to read, prior to dereferencing
740 * @c: The conditions under which the dereference will take place
741 *
742 * This is the RCU-bh counterpart to rcu_dereference_check().
743 */
744 #define rcu_dereference_bh_check(p, c) \
745 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
746
747 /**
748 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
749 * @p: The pointer to read, prior to dereferencing
750 * @c: The conditions under which the dereference will take place
751 *
752 * This is the RCU-sched counterpart to rcu_dereference_check().
753 */
754 #define rcu_dereference_sched_check(p, c) \
755 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
756 __rcu)
757
758 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
759
760 /*
761 * The tracing infrastructure traces RCU (we want that), but unfortunately
762 * some of the RCU checks causes tracing to lock up the system.
763 *
764 * The tracing version of rcu_dereference_raw() must not call
765 * rcu_read_lock_held().
766 */
767 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
768
769 /**
770 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
771 * @p: The pointer to read, prior to dereferencing
772 * @c: The conditions under which the dereference will take place
773 *
774 * Return the value of the specified RCU-protected pointer, but omit
775 * both the smp_read_barrier_depends() and the READ_ONCE(). This
776 * is useful in cases where update-side locks prevent the value of the
777 * pointer from changing. Please note that this primitive does -not-
778 * prevent the compiler from repeating this reference or combining it
779 * with other references, so it should not be used without protection
780 * of appropriate locks.
781 *
782 * This function is only for update-side use. Using this function
783 * when protected only by rcu_read_lock() will result in infrequent
784 * but very ugly failures.
785 */
786 #define rcu_dereference_protected(p, c) \
787 __rcu_dereference_protected((p), (c), __rcu)
788
789
790 /**
791 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
792 * @p: The pointer to read, prior to dereferencing
793 *
794 * This is a simple wrapper around rcu_dereference_check().
795 */
796 #define rcu_dereference(p) rcu_dereference_check(p, 0)
797
798 /**
799 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
800 * @p: The pointer to read, prior to dereferencing
801 *
802 * Makes rcu_dereference_check() do the dirty work.
803 */
804 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
805
806 /**
807 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
808 * @p: The pointer to read, prior to dereferencing
809 *
810 * Makes rcu_dereference_check() do the dirty work.
811 */
812 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
813
814 /**
815 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
816 *
817 * When synchronize_rcu() is invoked on one CPU while other CPUs
818 * are within RCU read-side critical sections, then the
819 * synchronize_rcu() is guaranteed to block until after all the other
820 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
821 * on one CPU while other CPUs are within RCU read-side critical
822 * sections, invocation of the corresponding RCU callback is deferred
823 * until after the all the other CPUs exit their critical sections.
824 *
825 * Note, however, that RCU callbacks are permitted to run concurrently
826 * with new RCU read-side critical sections. One way that this can happen
827 * is via the following sequence of events: (1) CPU 0 enters an RCU
828 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
829 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
830 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
831 * callback is invoked. This is legal, because the RCU read-side critical
832 * section that was running concurrently with the call_rcu() (and which
833 * therefore might be referencing something that the corresponding RCU
834 * callback would free up) has completed before the corresponding
835 * RCU callback is invoked.
836 *
837 * RCU read-side critical sections may be nested. Any deferred actions
838 * will be deferred until the outermost RCU read-side critical section
839 * completes.
840 *
841 * You can avoid reading and understanding the next paragraph by
842 * following this rule: don't put anything in an rcu_read_lock() RCU
843 * read-side critical section that would block in a !PREEMPT kernel.
844 * But if you want the full story, read on!
845 *
846 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
847 * it is illegal to block while in an RCU read-side critical section.
848 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
849 * kernel builds, RCU read-side critical sections may be preempted,
850 * but explicit blocking is illegal. Finally, in preemptible RCU
851 * implementations in real-time (with -rt patchset) kernel builds, RCU
852 * read-side critical sections may be preempted and they may also block, but
853 * only when acquiring spinlocks that are subject to priority inheritance.
854 */
855 static inline void rcu_read_lock(void)
856 {
857 __rcu_read_lock();
858 __acquire(RCU);
859 rcu_lock_acquire(&rcu_lock_map);
860 RCU_LOCKDEP_WARN(!rcu_is_watching(),
861 "rcu_read_lock() used illegally while idle");
862 }
863
864 /*
865 * So where is rcu_write_lock()? It does not exist, as there is no
866 * way for writers to lock out RCU readers. This is a feature, not
867 * a bug -- this property is what provides RCU's performance benefits.
868 * Of course, writers must coordinate with each other. The normal
869 * spinlock primitives work well for this, but any other technique may be
870 * used as well. RCU does not care how the writers keep out of each
871 * others' way, as long as they do so.
872 */
873
874 /**
875 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
876 *
877 * In most situations, rcu_read_unlock() is immune from deadlock.
878 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
879 * is responsible for deboosting, which it does via rt_mutex_unlock().
880 * Unfortunately, this function acquires the scheduler's runqueue and
881 * priority-inheritance spinlocks. This means that deadlock could result
882 * if the caller of rcu_read_unlock() already holds one of these locks or
883 * any lock that is ever acquired while holding them; or any lock which
884 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
885 * does not disable irqs while taking ->wait_lock.
886 *
887 * That said, RCU readers are never priority boosted unless they were
888 * preempted. Therefore, one way to avoid deadlock is to make sure
889 * that preemption never happens within any RCU read-side critical
890 * section whose outermost rcu_read_unlock() is called with one of
891 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
892 * a number of ways, for example, by invoking preempt_disable() before
893 * critical section's outermost rcu_read_lock().
894 *
895 * Given that the set of locks acquired by rt_mutex_unlock() might change
896 * at any time, a somewhat more future-proofed approach is to make sure
897 * that that preemption never happens within any RCU read-side critical
898 * section whose outermost rcu_read_unlock() is called with irqs disabled.
899 * This approach relies on the fact that rt_mutex_unlock() currently only
900 * acquires irq-disabled locks.
901 *
902 * The second of these two approaches is best in most situations,
903 * however, the first approach can also be useful, at least to those
904 * developers willing to keep abreast of the set of locks acquired by
905 * rt_mutex_unlock().
906 *
907 * See rcu_read_lock() for more information.
908 */
909 static inline void rcu_read_unlock(void)
910 {
911 RCU_LOCKDEP_WARN(!rcu_is_watching(),
912 "rcu_read_unlock() used illegally while idle");
913 __release(RCU);
914 __rcu_read_unlock();
915 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
916 }
917
918 /**
919 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
920 *
921 * This is equivalent of rcu_read_lock(), but to be used when updates
922 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
923 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
924 * softirq handler to be a quiescent state, a process in RCU read-side
925 * critical section must be protected by disabling softirqs. Read-side
926 * critical sections in interrupt context can use just rcu_read_lock(),
927 * though this should at least be commented to avoid confusing people
928 * reading the code.
929 *
930 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
931 * must occur in the same context, for example, it is illegal to invoke
932 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
933 * was invoked from some other task.
934 */
935 static inline void rcu_read_lock_bh(void)
936 {
937 local_bh_disable();
938 __acquire(RCU_BH);
939 rcu_lock_acquire(&rcu_bh_lock_map);
940 RCU_LOCKDEP_WARN(!rcu_is_watching(),
941 "rcu_read_lock_bh() used illegally while idle");
942 }
943
944 /*
945 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
946 *
947 * See rcu_read_lock_bh() for more information.
948 */
949 static inline void rcu_read_unlock_bh(void)
950 {
951 RCU_LOCKDEP_WARN(!rcu_is_watching(),
952 "rcu_read_unlock_bh() used illegally while idle");
953 rcu_lock_release(&rcu_bh_lock_map);
954 __release(RCU_BH);
955 local_bh_enable();
956 }
957
958 /**
959 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
960 *
961 * This is equivalent of rcu_read_lock(), but to be used when updates
962 * are being done using call_rcu_sched() or synchronize_rcu_sched().
963 * Read-side critical sections can also be introduced by anything that
964 * disables preemption, including local_irq_disable() and friends.
965 *
966 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
967 * must occur in the same context, for example, it is illegal to invoke
968 * rcu_read_unlock_sched() from process context if the matching
969 * rcu_read_lock_sched() was invoked from an NMI handler.
970 */
971 static inline void rcu_read_lock_sched(void)
972 {
973 preempt_disable();
974 __acquire(RCU_SCHED);
975 rcu_lock_acquire(&rcu_sched_lock_map);
976 RCU_LOCKDEP_WARN(!rcu_is_watching(),
977 "rcu_read_lock_sched() used illegally while idle");
978 }
979
980 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
981 static inline notrace void rcu_read_lock_sched_notrace(void)
982 {
983 preempt_disable_notrace();
984 __acquire(RCU_SCHED);
985 }
986
987 /*
988 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
989 *
990 * See rcu_read_lock_sched for more information.
991 */
992 static inline void rcu_read_unlock_sched(void)
993 {
994 RCU_LOCKDEP_WARN(!rcu_is_watching(),
995 "rcu_read_unlock_sched() used illegally while idle");
996 rcu_lock_release(&rcu_sched_lock_map);
997 __release(RCU_SCHED);
998 preempt_enable();
999 }
1000
1001 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1002 static inline notrace void rcu_read_unlock_sched_notrace(void)
1003 {
1004 __release(RCU_SCHED);
1005 preempt_enable_notrace();
1006 }
1007
1008 /**
1009 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1010 *
1011 * Initialize an RCU-protected pointer in special cases where readers
1012 * do not need ordering constraints on the CPU or the compiler. These
1013 * special cases are:
1014 *
1015 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1016 * 2. The caller has taken whatever steps are required to prevent
1017 * RCU readers from concurrently accessing this pointer -or-
1018 * 3. The referenced data structure has already been exposed to
1019 * readers either at compile time or via rcu_assign_pointer() -and-
1020 * a. You have not made -any- reader-visible changes to
1021 * this structure since then -or-
1022 * b. It is OK for readers accessing this structure from its
1023 * new location to see the old state of the structure. (For
1024 * example, the changes were to statistical counters or to
1025 * other state where exact synchronization is not required.)
1026 *
1027 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1028 * result in impossible-to-diagnose memory corruption. As in the structures
1029 * will look OK in crash dumps, but any concurrent RCU readers might
1030 * see pre-initialized values of the referenced data structure. So
1031 * please be very careful how you use RCU_INIT_POINTER()!!!
1032 *
1033 * If you are creating an RCU-protected linked structure that is accessed
1034 * by a single external-to-structure RCU-protected pointer, then you may
1035 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1036 * pointers, but you must use rcu_assign_pointer() to initialize the
1037 * external-to-structure pointer -after- you have completely initialized
1038 * the reader-accessible portions of the linked structure.
1039 *
1040 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1041 * ordering guarantees for either the CPU or the compiler.
1042 */
1043 #define RCU_INIT_POINTER(p, v) \
1044 do { \
1045 rcu_dereference_sparse(p, __rcu); \
1046 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1047 } while (0)
1048
1049 /**
1050 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1051 *
1052 * GCC-style initialization for an RCU-protected pointer in a structure field.
1053 */
1054 #define RCU_POINTER_INITIALIZER(p, v) \
1055 .p = RCU_INITIALIZER(v)
1056
1057 /*
1058 * Does the specified offset indicate that the corresponding rcu_head
1059 * structure can be handled by kfree_rcu()?
1060 */
1061 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1062
1063 /*
1064 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1065 */
1066 #define __kfree_rcu(head, offset) \
1067 do { \
1068 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1069 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1070 } while (0)
1071
1072 /**
1073 * kfree_rcu() - kfree an object after a grace period.
1074 * @ptr: pointer to kfree
1075 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1076 *
1077 * Many rcu callbacks functions just call kfree() on the base structure.
1078 * These functions are trivial, but their size adds up, and furthermore
1079 * when they are used in a kernel module, that module must invoke the
1080 * high-latency rcu_barrier() function at module-unload time.
1081 *
1082 * The kfree_rcu() function handles this issue. Rather than encoding a
1083 * function address in the embedded rcu_head structure, kfree_rcu() instead
1084 * encodes the offset of the rcu_head structure within the base structure.
1085 * Because the functions are not allowed in the low-order 4096 bytes of
1086 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1087 * If the offset is larger than 4095 bytes, a compile-time error will
1088 * be generated in __kfree_rcu(). If this error is triggered, you can
1089 * either fall back to use of call_rcu() or rearrange the structure to
1090 * position the rcu_head structure into the first 4096 bytes.
1091 *
1092 * Note that the allowable offset might decrease in the future, for example,
1093 * to allow something like kmem_cache_free_rcu().
1094 *
1095 * The BUILD_BUG_ON check must not involve any function calls, hence the
1096 * checks are done in macros here.
1097 */
1098 #define kfree_rcu(ptr, rcu_head) \
1099 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1100
1101 #ifdef CONFIG_TINY_RCU
1102 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1103 {
1104 *nextevt = KTIME_MAX;
1105 return 0;
1106 }
1107 #endif /* #ifdef CONFIG_TINY_RCU */
1108
1109 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1110 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1111 #elif defined(CONFIG_RCU_NOCB_CPU)
1112 bool rcu_is_nocb_cpu(int cpu);
1113 #else
1114 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1115 #endif
1116
1117
1118 /* Only for use by adaptive-ticks code. */
1119 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1120 bool rcu_sys_is_idle(void);
1121 void rcu_sysidle_force_exit(void);
1122 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1123
1124 static inline bool rcu_sys_is_idle(void)
1125 {
1126 return false;
1127 }
1128
1129 static inline void rcu_sysidle_force_exit(void)
1130 {
1131 }
1132
1133 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1134
1135
1136 #endif /* __LINUX_RCUPDATE_H */