]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/rcupdate.h
Merge branch 'for-3.9' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-artful-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp,
57 unsigned long secs,
58 unsigned long c_old,
59 unsigned long c);
60 #else
61 static inline void rcutorture_record_test_transition(void)
62 {
63 }
64 static inline void rcutorture_record_progress(unsigned long vernum)
65 {
66 }
67 #ifdef CONFIG_RCU_TRACE
68 extern void do_trace_rcu_torture_read(char *rcutorturename,
69 struct rcu_head *rhp,
70 unsigned long secs,
71 unsigned long c_old,
72 unsigned long c);
73 #else
74 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
75 do { } while (0)
76 #endif
77 #endif
78
79 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
80 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
81 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
82 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
83
84 /* Exported common interfaces */
85
86 #ifdef CONFIG_PREEMPT_RCU
87
88 /**
89 * call_rcu() - Queue an RCU callback for invocation after a grace period.
90 * @head: structure to be used for queueing the RCU updates.
91 * @func: actual callback function to be invoked after the grace period
92 *
93 * The callback function will be invoked some time after a full grace
94 * period elapses, in other words after all pre-existing RCU read-side
95 * critical sections have completed. However, the callback function
96 * might well execute concurrently with RCU read-side critical sections
97 * that started after call_rcu() was invoked. RCU read-side critical
98 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
99 * and may be nested.
100 *
101 * Note that all CPUs must agree that the grace period extended beyond
102 * all pre-existing RCU read-side critical section. On systems with more
103 * than one CPU, this means that when "func()" is invoked, each CPU is
104 * guaranteed to have executed a full memory barrier since the end of its
105 * last RCU read-side critical section whose beginning preceded the call
106 * to call_rcu(). It also means that each CPU executing an RCU read-side
107 * critical section that continues beyond the start of "func()" must have
108 * executed a memory barrier after the call_rcu() but before the beginning
109 * of that RCU read-side critical section. Note that these guarantees
110 * include CPUs that are offline, idle, or executing in user mode, as
111 * well as CPUs that are executing in the kernel.
112 *
113 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
114 * resulting RCU callback function "func()", then both CPU A and CPU B are
115 * guaranteed to execute a full memory barrier during the time interval
116 * between the call to call_rcu() and the invocation of "func()" -- even
117 * if CPU A and CPU B are the same CPU (but again only if the system has
118 * more than one CPU).
119 */
120 extern void call_rcu(struct rcu_head *head,
121 void (*func)(struct rcu_head *head));
122
123 #else /* #ifdef CONFIG_PREEMPT_RCU */
124
125 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
126 #define call_rcu call_rcu_sched
127
128 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
129
130 /**
131 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
132 * @head: structure to be used for queueing the RCU updates.
133 * @func: actual callback function to be invoked after the grace period
134 *
135 * The callback function will be invoked some time after a full grace
136 * period elapses, in other words after all currently executing RCU
137 * read-side critical sections have completed. call_rcu_bh() assumes
138 * that the read-side critical sections end on completion of a softirq
139 * handler. This means that read-side critical sections in process
140 * context must not be interrupted by softirqs. This interface is to be
141 * used when most of the read-side critical sections are in softirq context.
142 * RCU read-side critical sections are delimited by :
143 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
144 * OR
145 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
146 * These may be nested.
147 *
148 * See the description of call_rcu() for more detailed information on
149 * memory ordering guarantees.
150 */
151 extern void call_rcu_bh(struct rcu_head *head,
152 void (*func)(struct rcu_head *head));
153
154 /**
155 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
156 * @head: structure to be used for queueing the RCU updates.
157 * @func: actual callback function to be invoked after the grace period
158 *
159 * The callback function will be invoked some time after a full grace
160 * period elapses, in other words after all currently executing RCU
161 * read-side critical sections have completed. call_rcu_sched() assumes
162 * that the read-side critical sections end on enabling of preemption
163 * or on voluntary preemption.
164 * RCU read-side critical sections are delimited by :
165 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
166 * OR
167 * anything that disables preemption.
168 * These may be nested.
169 *
170 * See the description of call_rcu() for more detailed information on
171 * memory ordering guarantees.
172 */
173 extern void call_rcu_sched(struct rcu_head *head,
174 void (*func)(struct rcu_head *rcu));
175
176 extern void synchronize_sched(void);
177
178 #ifdef CONFIG_PREEMPT_RCU
179
180 extern void __rcu_read_lock(void);
181 extern void __rcu_read_unlock(void);
182 extern void rcu_read_unlock_special(struct task_struct *t);
183 void synchronize_rcu(void);
184
185 /*
186 * Defined as a macro as it is a very low level header included from
187 * areas that don't even know about current. This gives the rcu_read_lock()
188 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
189 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
190 */
191 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
192
193 #else /* #ifdef CONFIG_PREEMPT_RCU */
194
195 static inline void __rcu_read_lock(void)
196 {
197 preempt_disable();
198 }
199
200 static inline void __rcu_read_unlock(void)
201 {
202 preempt_enable();
203 }
204
205 static inline void synchronize_rcu(void)
206 {
207 synchronize_sched();
208 }
209
210 static inline int rcu_preempt_depth(void)
211 {
212 return 0;
213 }
214
215 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
216
217 /* Internal to kernel */
218 extern void rcu_sched_qs(int cpu);
219 extern void rcu_bh_qs(int cpu);
220 extern void rcu_check_callbacks(int cpu, int user);
221 struct notifier_block;
222 extern void rcu_idle_enter(void);
223 extern void rcu_idle_exit(void);
224 extern void rcu_irq_enter(void);
225 extern void rcu_irq_exit(void);
226
227 #ifdef CONFIG_RCU_USER_QS
228 extern void rcu_user_enter(void);
229 extern void rcu_user_exit(void);
230 extern void rcu_user_enter_after_irq(void);
231 extern void rcu_user_exit_after_irq(void);
232 #else
233 static inline void rcu_user_enter(void) { }
234 static inline void rcu_user_exit(void) { }
235 static inline void rcu_user_enter_after_irq(void) { }
236 static inline void rcu_user_exit_after_irq(void) { }
237 static inline void rcu_user_hooks_switch(struct task_struct *prev,
238 struct task_struct *next) { }
239 #endif /* CONFIG_RCU_USER_QS */
240
241 extern void exit_rcu(void);
242
243 /**
244 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
245 * @a: Code that RCU needs to pay attention to.
246 *
247 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
248 * in the inner idle loop, that is, between the rcu_idle_enter() and
249 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
250 * critical sections. However, things like powertop need tracepoints
251 * in the inner idle loop.
252 *
253 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
254 * will tell RCU that it needs to pay attending, invoke its argument
255 * (in this example, a call to the do_something_with_RCU() function),
256 * and then tell RCU to go back to ignoring this CPU. It is permissible
257 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
258 * quite limited. If deeper nesting is required, it will be necessary
259 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
260 */
261 #define RCU_NONIDLE(a) \
262 do { \
263 rcu_irq_enter(); \
264 do { a; } while (0); \
265 rcu_irq_exit(); \
266 } while (0)
267
268 /*
269 * Infrastructure to implement the synchronize_() primitives in
270 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
271 */
272
273 typedef void call_rcu_func_t(struct rcu_head *head,
274 void (*func)(struct rcu_head *head));
275 void wait_rcu_gp(call_rcu_func_t crf);
276
277 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
278 #include <linux/rcutree.h>
279 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
280 #include <linux/rcutiny.h>
281 #else
282 #error "Unknown RCU implementation specified to kernel configuration"
283 #endif
284
285 /*
286 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
287 * initialization and destruction of rcu_head on the stack. rcu_head structures
288 * allocated dynamically in the heap or defined statically don't need any
289 * initialization.
290 */
291 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
292 extern void init_rcu_head_on_stack(struct rcu_head *head);
293 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
294 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
295 static inline void init_rcu_head_on_stack(struct rcu_head *head)
296 {
297 }
298
299 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
300 {
301 }
302 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
303
304 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
305 extern int rcu_is_cpu_idle(void);
306 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
307
308 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
309 bool rcu_lockdep_current_cpu_online(void);
310 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
311 static inline bool rcu_lockdep_current_cpu_online(void)
312 {
313 return 1;
314 }
315 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
316
317 #ifdef CONFIG_DEBUG_LOCK_ALLOC
318
319 static inline void rcu_lock_acquire(struct lockdep_map *map)
320 {
321 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
322 }
323
324 static inline void rcu_lock_release(struct lockdep_map *map)
325 {
326 lock_release(map, 1, _THIS_IP_);
327 }
328
329 extern struct lockdep_map rcu_lock_map;
330 extern struct lockdep_map rcu_bh_lock_map;
331 extern struct lockdep_map rcu_sched_lock_map;
332 extern int debug_lockdep_rcu_enabled(void);
333
334 /**
335 * rcu_read_lock_held() - might we be in RCU read-side critical section?
336 *
337 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
338 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
339 * this assumes we are in an RCU read-side critical section unless it can
340 * prove otherwise. This is useful for debug checks in functions that
341 * require that they be called within an RCU read-side critical section.
342 *
343 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
344 * and while lockdep is disabled.
345 *
346 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
347 * occur in the same context, for example, it is illegal to invoke
348 * rcu_read_unlock() in process context if the matching rcu_read_lock()
349 * was invoked from within an irq handler.
350 *
351 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
352 * offline from an RCU perspective, so check for those as well.
353 */
354 static inline int rcu_read_lock_held(void)
355 {
356 if (!debug_lockdep_rcu_enabled())
357 return 1;
358 if (rcu_is_cpu_idle())
359 return 0;
360 if (!rcu_lockdep_current_cpu_online())
361 return 0;
362 return lock_is_held(&rcu_lock_map);
363 }
364
365 /*
366 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
367 * hell.
368 */
369 extern int rcu_read_lock_bh_held(void);
370
371 /**
372 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
373 *
374 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
375 * RCU-sched read-side critical section. In absence of
376 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
377 * critical section unless it can prove otherwise. Note that disabling
378 * of preemption (including disabling irqs) counts as an RCU-sched
379 * read-side critical section. This is useful for debug checks in functions
380 * that required that they be called within an RCU-sched read-side
381 * critical section.
382 *
383 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
384 * and while lockdep is disabled.
385 *
386 * Note that if the CPU is in the idle loop from an RCU point of
387 * view (ie: that we are in the section between rcu_idle_enter() and
388 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
389 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
390 * that are in such a section, considering these as in extended quiescent
391 * state, so such a CPU is effectively never in an RCU read-side critical
392 * section regardless of what RCU primitives it invokes. This state of
393 * affairs is required --- we need to keep an RCU-free window in idle
394 * where the CPU may possibly enter into low power mode. This way we can
395 * notice an extended quiescent state to other CPUs that started a grace
396 * period. Otherwise we would delay any grace period as long as we run in
397 * the idle task.
398 *
399 * Similarly, we avoid claiming an SRCU read lock held if the current
400 * CPU is offline.
401 */
402 #ifdef CONFIG_PREEMPT_COUNT
403 static inline int rcu_read_lock_sched_held(void)
404 {
405 int lockdep_opinion = 0;
406
407 if (!debug_lockdep_rcu_enabled())
408 return 1;
409 if (rcu_is_cpu_idle())
410 return 0;
411 if (!rcu_lockdep_current_cpu_online())
412 return 0;
413 if (debug_locks)
414 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
415 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
416 }
417 #else /* #ifdef CONFIG_PREEMPT_COUNT */
418 static inline int rcu_read_lock_sched_held(void)
419 {
420 return 1;
421 }
422 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
423
424 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
425
426 # define rcu_lock_acquire(a) do { } while (0)
427 # define rcu_lock_release(a) do { } while (0)
428
429 static inline int rcu_read_lock_held(void)
430 {
431 return 1;
432 }
433
434 static inline int rcu_read_lock_bh_held(void)
435 {
436 return 1;
437 }
438
439 #ifdef CONFIG_PREEMPT_COUNT
440 static inline int rcu_read_lock_sched_held(void)
441 {
442 return preempt_count() != 0 || irqs_disabled();
443 }
444 #else /* #ifdef CONFIG_PREEMPT_COUNT */
445 static inline int rcu_read_lock_sched_held(void)
446 {
447 return 1;
448 }
449 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
450
451 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
452
453 #ifdef CONFIG_PROVE_RCU
454
455 extern int rcu_my_thread_group_empty(void);
456
457 /**
458 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
459 * @c: condition to check
460 * @s: informative message
461 */
462 #define rcu_lockdep_assert(c, s) \
463 do { \
464 static bool __section(.data.unlikely) __warned; \
465 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
466 __warned = true; \
467 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
468 } \
469 } while (0)
470
471 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
472 static inline void rcu_preempt_sleep_check(void)
473 {
474 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
475 "Illegal context switch in RCU read-side critical section");
476 }
477 #else /* #ifdef CONFIG_PROVE_RCU */
478 static inline void rcu_preempt_sleep_check(void)
479 {
480 }
481 #endif /* #else #ifdef CONFIG_PROVE_RCU */
482
483 #define rcu_sleep_check() \
484 do { \
485 rcu_preempt_sleep_check(); \
486 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
487 "Illegal context switch in RCU-bh" \
488 " read-side critical section"); \
489 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
490 "Illegal context switch in RCU-sched"\
491 " read-side critical section"); \
492 } while (0)
493
494 #else /* #ifdef CONFIG_PROVE_RCU */
495
496 #define rcu_lockdep_assert(c, s) do { } while (0)
497 #define rcu_sleep_check() do { } while (0)
498
499 #endif /* #else #ifdef CONFIG_PROVE_RCU */
500
501 /*
502 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
503 * and rcu_assign_pointer(). Some of these could be folded into their
504 * callers, but they are left separate in order to ease introduction of
505 * multiple flavors of pointers to match the multiple flavors of RCU
506 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
507 * the future.
508 */
509
510 #ifdef __CHECKER__
511 #define rcu_dereference_sparse(p, space) \
512 ((void)(((typeof(*p) space *)p) == p))
513 #else /* #ifdef __CHECKER__ */
514 #define rcu_dereference_sparse(p, space)
515 #endif /* #else #ifdef __CHECKER__ */
516
517 #define __rcu_access_pointer(p, space) \
518 ({ \
519 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
520 rcu_dereference_sparse(p, space); \
521 ((typeof(*p) __force __kernel *)(_________p1)); \
522 })
523 #define __rcu_dereference_check(p, c, space) \
524 ({ \
525 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
526 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
527 " usage"); \
528 rcu_dereference_sparse(p, space); \
529 smp_read_barrier_depends(); \
530 ((typeof(*p) __force __kernel *)(_________p1)); \
531 })
532 #define __rcu_dereference_protected(p, c, space) \
533 ({ \
534 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
535 " usage"); \
536 rcu_dereference_sparse(p, space); \
537 ((typeof(*p) __force __kernel *)(p)); \
538 })
539
540 #define __rcu_access_index(p, space) \
541 ({ \
542 typeof(p) _________p1 = ACCESS_ONCE(p); \
543 rcu_dereference_sparse(p, space); \
544 (_________p1); \
545 })
546 #define __rcu_dereference_index_check(p, c) \
547 ({ \
548 typeof(p) _________p1 = ACCESS_ONCE(p); \
549 rcu_lockdep_assert(c, \
550 "suspicious rcu_dereference_index_check()" \
551 " usage"); \
552 smp_read_barrier_depends(); \
553 (_________p1); \
554 })
555 #define __rcu_assign_pointer(p, v, space) \
556 do { \
557 smp_wmb(); \
558 (p) = (typeof(*v) __force space *)(v); \
559 } while (0)
560
561
562 /**
563 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
564 * @p: The pointer to read
565 *
566 * Return the value of the specified RCU-protected pointer, but omit the
567 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
568 * when the value of this pointer is accessed, but the pointer is not
569 * dereferenced, for example, when testing an RCU-protected pointer against
570 * NULL. Although rcu_access_pointer() may also be used in cases where
571 * update-side locks prevent the value of the pointer from changing, you
572 * should instead use rcu_dereference_protected() for this use case.
573 *
574 * It is also permissible to use rcu_access_pointer() when read-side
575 * access to the pointer was removed at least one grace period ago, as
576 * is the case in the context of the RCU callback that is freeing up
577 * the data, or after a synchronize_rcu() returns. This can be useful
578 * when tearing down multi-linked structures after a grace period
579 * has elapsed.
580 */
581 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
582
583 /**
584 * rcu_dereference_check() - rcu_dereference with debug checking
585 * @p: The pointer to read, prior to dereferencing
586 * @c: The conditions under which the dereference will take place
587 *
588 * Do an rcu_dereference(), but check that the conditions under which the
589 * dereference will take place are correct. Typically the conditions
590 * indicate the various locking conditions that should be held at that
591 * point. The check should return true if the conditions are satisfied.
592 * An implicit check for being in an RCU read-side critical section
593 * (rcu_read_lock()) is included.
594 *
595 * For example:
596 *
597 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
598 *
599 * could be used to indicate to lockdep that foo->bar may only be dereferenced
600 * if either rcu_read_lock() is held, or that the lock required to replace
601 * the bar struct at foo->bar is held.
602 *
603 * Note that the list of conditions may also include indications of when a lock
604 * need not be held, for example during initialisation or destruction of the
605 * target struct:
606 *
607 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
608 * atomic_read(&foo->usage) == 0);
609 *
610 * Inserts memory barriers on architectures that require them
611 * (currently only the Alpha), prevents the compiler from refetching
612 * (and from merging fetches), and, more importantly, documents exactly
613 * which pointers are protected by RCU and checks that the pointer is
614 * annotated as __rcu.
615 */
616 #define rcu_dereference_check(p, c) \
617 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
618
619 /**
620 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
621 * @p: The pointer to read, prior to dereferencing
622 * @c: The conditions under which the dereference will take place
623 *
624 * This is the RCU-bh counterpart to rcu_dereference_check().
625 */
626 #define rcu_dereference_bh_check(p, c) \
627 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
628
629 /**
630 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
631 * @p: The pointer to read, prior to dereferencing
632 * @c: The conditions under which the dereference will take place
633 *
634 * This is the RCU-sched counterpart to rcu_dereference_check().
635 */
636 #define rcu_dereference_sched_check(p, c) \
637 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
638 __rcu)
639
640 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
641
642 /**
643 * rcu_access_index() - fetch RCU index with no dereferencing
644 * @p: The index to read
645 *
646 * Return the value of the specified RCU-protected index, but omit the
647 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
648 * when the value of this index is accessed, but the index is not
649 * dereferenced, for example, when testing an RCU-protected index against
650 * -1. Although rcu_access_index() may also be used in cases where
651 * update-side locks prevent the value of the index from changing, you
652 * should instead use rcu_dereference_index_protected() for this use case.
653 */
654 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
655
656 /**
657 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
658 * @p: The pointer to read, prior to dereferencing
659 * @c: The conditions under which the dereference will take place
660 *
661 * Similar to rcu_dereference_check(), but omits the sparse checking.
662 * This allows rcu_dereference_index_check() to be used on integers,
663 * which can then be used as array indices. Attempting to use
664 * rcu_dereference_check() on an integer will give compiler warnings
665 * because the sparse address-space mechanism relies on dereferencing
666 * the RCU-protected pointer. Dereferencing integers is not something
667 * that even gcc will put up with.
668 *
669 * Note that this function does not implicitly check for RCU read-side
670 * critical sections. If this function gains lots of uses, it might
671 * make sense to provide versions for each flavor of RCU, but it does
672 * not make sense as of early 2010.
673 */
674 #define rcu_dereference_index_check(p, c) \
675 __rcu_dereference_index_check((p), (c))
676
677 /**
678 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
679 * @p: The pointer to read, prior to dereferencing
680 * @c: The conditions under which the dereference will take place
681 *
682 * Return the value of the specified RCU-protected pointer, but omit
683 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
684 * is useful in cases where update-side locks prevent the value of the
685 * pointer from changing. Please note that this primitive does -not-
686 * prevent the compiler from repeating this reference or combining it
687 * with other references, so it should not be used without protection
688 * of appropriate locks.
689 *
690 * This function is only for update-side use. Using this function
691 * when protected only by rcu_read_lock() will result in infrequent
692 * but very ugly failures.
693 */
694 #define rcu_dereference_protected(p, c) \
695 __rcu_dereference_protected((p), (c), __rcu)
696
697
698 /**
699 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
700 * @p: The pointer to read, prior to dereferencing
701 *
702 * This is a simple wrapper around rcu_dereference_check().
703 */
704 #define rcu_dereference(p) rcu_dereference_check(p, 0)
705
706 /**
707 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
708 * @p: The pointer to read, prior to dereferencing
709 *
710 * Makes rcu_dereference_check() do the dirty work.
711 */
712 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
713
714 /**
715 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
716 * @p: The pointer to read, prior to dereferencing
717 *
718 * Makes rcu_dereference_check() do the dirty work.
719 */
720 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
721
722 /**
723 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
724 *
725 * When synchronize_rcu() is invoked on one CPU while other CPUs
726 * are within RCU read-side critical sections, then the
727 * synchronize_rcu() is guaranteed to block until after all the other
728 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
729 * on one CPU while other CPUs are within RCU read-side critical
730 * sections, invocation of the corresponding RCU callback is deferred
731 * until after the all the other CPUs exit their critical sections.
732 *
733 * Note, however, that RCU callbacks are permitted to run concurrently
734 * with new RCU read-side critical sections. One way that this can happen
735 * is via the following sequence of events: (1) CPU 0 enters an RCU
736 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
737 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
738 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
739 * callback is invoked. This is legal, because the RCU read-side critical
740 * section that was running concurrently with the call_rcu() (and which
741 * therefore might be referencing something that the corresponding RCU
742 * callback would free up) has completed before the corresponding
743 * RCU callback is invoked.
744 *
745 * RCU read-side critical sections may be nested. Any deferred actions
746 * will be deferred until the outermost RCU read-side critical section
747 * completes.
748 *
749 * You can avoid reading and understanding the next paragraph by
750 * following this rule: don't put anything in an rcu_read_lock() RCU
751 * read-side critical section that would block in a !PREEMPT kernel.
752 * But if you want the full story, read on!
753 *
754 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
755 * is illegal to block while in an RCU read-side critical section. In
756 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
757 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
758 * be preempted, but explicit blocking is illegal. Finally, in preemptible
759 * RCU implementations in real-time (with -rt patchset) kernel builds,
760 * RCU read-side critical sections may be preempted and they may also
761 * block, but only when acquiring spinlocks that are subject to priority
762 * inheritance.
763 */
764 static inline void rcu_read_lock(void)
765 {
766 __rcu_read_lock();
767 __acquire(RCU);
768 rcu_lock_acquire(&rcu_lock_map);
769 rcu_lockdep_assert(!rcu_is_cpu_idle(),
770 "rcu_read_lock() used illegally while idle");
771 }
772
773 /*
774 * So where is rcu_write_lock()? It does not exist, as there is no
775 * way for writers to lock out RCU readers. This is a feature, not
776 * a bug -- this property is what provides RCU's performance benefits.
777 * Of course, writers must coordinate with each other. The normal
778 * spinlock primitives work well for this, but any other technique may be
779 * used as well. RCU does not care how the writers keep out of each
780 * others' way, as long as they do so.
781 */
782
783 /**
784 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
785 *
786 * See rcu_read_lock() for more information.
787 */
788 static inline void rcu_read_unlock(void)
789 {
790 rcu_lockdep_assert(!rcu_is_cpu_idle(),
791 "rcu_read_unlock() used illegally while idle");
792 rcu_lock_release(&rcu_lock_map);
793 __release(RCU);
794 __rcu_read_unlock();
795 }
796
797 /**
798 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
799 *
800 * This is equivalent of rcu_read_lock(), but to be used when updates
801 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
802 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
803 * softirq handler to be a quiescent state, a process in RCU read-side
804 * critical section must be protected by disabling softirqs. Read-side
805 * critical sections in interrupt context can use just rcu_read_lock(),
806 * though this should at least be commented to avoid confusing people
807 * reading the code.
808 *
809 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
810 * must occur in the same context, for example, it is illegal to invoke
811 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
812 * was invoked from some other task.
813 */
814 static inline void rcu_read_lock_bh(void)
815 {
816 local_bh_disable();
817 __acquire(RCU_BH);
818 rcu_lock_acquire(&rcu_bh_lock_map);
819 rcu_lockdep_assert(!rcu_is_cpu_idle(),
820 "rcu_read_lock_bh() used illegally while idle");
821 }
822
823 /*
824 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
825 *
826 * See rcu_read_lock_bh() for more information.
827 */
828 static inline void rcu_read_unlock_bh(void)
829 {
830 rcu_lockdep_assert(!rcu_is_cpu_idle(),
831 "rcu_read_unlock_bh() used illegally while idle");
832 rcu_lock_release(&rcu_bh_lock_map);
833 __release(RCU_BH);
834 local_bh_enable();
835 }
836
837 /**
838 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
839 *
840 * This is equivalent of rcu_read_lock(), but to be used when updates
841 * are being done using call_rcu_sched() or synchronize_rcu_sched().
842 * Read-side critical sections can also be introduced by anything that
843 * disables preemption, including local_irq_disable() and friends.
844 *
845 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
846 * must occur in the same context, for example, it is illegal to invoke
847 * rcu_read_unlock_sched() from process context if the matching
848 * rcu_read_lock_sched() was invoked from an NMI handler.
849 */
850 static inline void rcu_read_lock_sched(void)
851 {
852 preempt_disable();
853 __acquire(RCU_SCHED);
854 rcu_lock_acquire(&rcu_sched_lock_map);
855 rcu_lockdep_assert(!rcu_is_cpu_idle(),
856 "rcu_read_lock_sched() used illegally while idle");
857 }
858
859 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
860 static inline notrace void rcu_read_lock_sched_notrace(void)
861 {
862 preempt_disable_notrace();
863 __acquire(RCU_SCHED);
864 }
865
866 /*
867 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
868 *
869 * See rcu_read_lock_sched for more information.
870 */
871 static inline void rcu_read_unlock_sched(void)
872 {
873 rcu_lockdep_assert(!rcu_is_cpu_idle(),
874 "rcu_read_unlock_sched() used illegally while idle");
875 rcu_lock_release(&rcu_sched_lock_map);
876 __release(RCU_SCHED);
877 preempt_enable();
878 }
879
880 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
881 static inline notrace void rcu_read_unlock_sched_notrace(void)
882 {
883 __release(RCU_SCHED);
884 preempt_enable_notrace();
885 }
886
887 /**
888 * rcu_assign_pointer() - assign to RCU-protected pointer
889 * @p: pointer to assign to
890 * @v: value to assign (publish)
891 *
892 * Assigns the specified value to the specified RCU-protected
893 * pointer, ensuring that any concurrent RCU readers will see
894 * any prior initialization.
895 *
896 * Inserts memory barriers on architectures that require them
897 * (which is most of them), and also prevents the compiler from
898 * reordering the code that initializes the structure after the pointer
899 * assignment. More importantly, this call documents which pointers
900 * will be dereferenced by RCU read-side code.
901 *
902 * In some special cases, you may use RCU_INIT_POINTER() instead
903 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
904 * to the fact that it does not constrain either the CPU or the compiler.
905 * That said, using RCU_INIT_POINTER() when you should have used
906 * rcu_assign_pointer() is a very bad thing that results in
907 * impossible-to-diagnose memory corruption. So please be careful.
908 * See the RCU_INIT_POINTER() comment header for details.
909 */
910 #define rcu_assign_pointer(p, v) \
911 __rcu_assign_pointer((p), (v), __rcu)
912
913 /**
914 * RCU_INIT_POINTER() - initialize an RCU protected pointer
915 *
916 * Initialize an RCU-protected pointer in special cases where readers
917 * do not need ordering constraints on the CPU or the compiler. These
918 * special cases are:
919 *
920 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
921 * 2. The caller has taken whatever steps are required to prevent
922 * RCU readers from concurrently accessing this pointer -or-
923 * 3. The referenced data structure has already been exposed to
924 * readers either at compile time or via rcu_assign_pointer() -and-
925 * a. You have not made -any- reader-visible changes to
926 * this structure since then -or-
927 * b. It is OK for readers accessing this structure from its
928 * new location to see the old state of the structure. (For
929 * example, the changes were to statistical counters or to
930 * other state where exact synchronization is not required.)
931 *
932 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
933 * result in impossible-to-diagnose memory corruption. As in the structures
934 * will look OK in crash dumps, but any concurrent RCU readers might
935 * see pre-initialized values of the referenced data structure. So
936 * please be very careful how you use RCU_INIT_POINTER()!!!
937 *
938 * If you are creating an RCU-protected linked structure that is accessed
939 * by a single external-to-structure RCU-protected pointer, then you may
940 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
941 * pointers, but you must use rcu_assign_pointer() to initialize the
942 * external-to-structure pointer -after- you have completely initialized
943 * the reader-accessible portions of the linked structure.
944 */
945 #define RCU_INIT_POINTER(p, v) \
946 do { \
947 p = (typeof(*v) __force __rcu *)(v); \
948 } while (0)
949
950 /**
951 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
952 *
953 * GCC-style initialization for an RCU-protected pointer in a structure field.
954 */
955 #define RCU_POINTER_INITIALIZER(p, v) \
956 .p = (typeof(*v) __force __rcu *)(v)
957
958 /*
959 * Does the specified offset indicate that the corresponding rcu_head
960 * structure can be handled by kfree_rcu()?
961 */
962 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
963
964 /*
965 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
966 */
967 #define __kfree_rcu(head, offset) \
968 do { \
969 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
970 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
971 } while (0)
972
973 /**
974 * kfree_rcu() - kfree an object after a grace period.
975 * @ptr: pointer to kfree
976 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
977 *
978 * Many rcu callbacks functions just call kfree() on the base structure.
979 * These functions are trivial, but their size adds up, and furthermore
980 * when they are used in a kernel module, that module must invoke the
981 * high-latency rcu_barrier() function at module-unload time.
982 *
983 * The kfree_rcu() function handles this issue. Rather than encoding a
984 * function address in the embedded rcu_head structure, kfree_rcu() instead
985 * encodes the offset of the rcu_head structure within the base structure.
986 * Because the functions are not allowed in the low-order 4096 bytes of
987 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
988 * If the offset is larger than 4095 bytes, a compile-time error will
989 * be generated in __kfree_rcu(). If this error is triggered, you can
990 * either fall back to use of call_rcu() or rearrange the structure to
991 * position the rcu_head structure into the first 4096 bytes.
992 *
993 * Note that the allowable offset might decrease in the future, for example,
994 * to allow something like kmem_cache_free_rcu().
995 *
996 * The BUILD_BUG_ON check must not involve any function calls, hence the
997 * checks are done in macros here.
998 */
999 #define kfree_rcu(ptr, rcu_head) \
1000 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1001
1002 #endif /* __LINUX_RCUPDATE_H */