]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/rcupdate.h
rcu: Use true/false instead of 1/0 for a bool type
[mirror_ubuntu-bionic-kernel.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <asm/barrier.h>
48
49 extern int rcu_expedited; /* for sysctl */
50 #ifdef CONFIG_RCU_TORTURE_TEST
51 extern int rcutorture_runnable; /* for sysctl */
52 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
53
54 enum rcutorture_type {
55 RCU_FLAVOR,
56 RCU_BH_FLAVOR,
57 RCU_SCHED_FLAVOR,
58 SRCU_FLAVOR,
59 INVALID_RCU_FLAVOR
60 };
61
62 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
63 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
64 unsigned long *gpnum, unsigned long *completed);
65 void rcutorture_record_test_transition(void);
66 void rcutorture_record_progress(unsigned long vernum);
67 void do_trace_rcu_torture_read(const char *rcutorturename,
68 struct rcu_head *rhp,
69 unsigned long secs,
70 unsigned long c_old,
71 unsigned long c);
72 #else
73 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
74 int *flags,
75 unsigned long *gpnum,
76 unsigned long *completed)
77 {
78 *flags = 0;
79 *gpnum = 0;
80 *completed = 0;
81 }
82 static inline void rcutorture_record_test_transition(void)
83 {
84 }
85 static inline void rcutorture_record_progress(unsigned long vernum)
86 {
87 }
88 #ifdef CONFIG_RCU_TRACE
89 void do_trace_rcu_torture_read(const char *rcutorturename,
90 struct rcu_head *rhp,
91 unsigned long secs,
92 unsigned long c_old,
93 unsigned long c);
94 #else
95 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
96 do { } while (0)
97 #endif
98 #endif
99
100 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
101 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
102 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
103 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
104 #define ulong2long(a) (*(long *)(&(a)))
105
106 /* Exported common interfaces */
107
108 #ifdef CONFIG_PREEMPT_RCU
109
110 /**
111 * call_rcu() - Queue an RCU callback for invocation after a grace period.
112 * @head: structure to be used for queueing the RCU updates.
113 * @func: actual callback function to be invoked after the grace period
114 *
115 * The callback function will be invoked some time after a full grace
116 * period elapses, in other words after all pre-existing RCU read-side
117 * critical sections have completed. However, the callback function
118 * might well execute concurrently with RCU read-side critical sections
119 * that started after call_rcu() was invoked. RCU read-side critical
120 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
121 * and may be nested.
122 *
123 * Note that all CPUs must agree that the grace period extended beyond
124 * all pre-existing RCU read-side critical section. On systems with more
125 * than one CPU, this means that when "func()" is invoked, each CPU is
126 * guaranteed to have executed a full memory barrier since the end of its
127 * last RCU read-side critical section whose beginning preceded the call
128 * to call_rcu(). It also means that each CPU executing an RCU read-side
129 * critical section that continues beyond the start of "func()" must have
130 * executed a memory barrier after the call_rcu() but before the beginning
131 * of that RCU read-side critical section. Note that these guarantees
132 * include CPUs that are offline, idle, or executing in user mode, as
133 * well as CPUs that are executing in the kernel.
134 *
135 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
136 * resulting RCU callback function "func()", then both CPU A and CPU B are
137 * guaranteed to execute a full memory barrier during the time interval
138 * between the call to call_rcu() and the invocation of "func()" -- even
139 * if CPU A and CPU B are the same CPU (but again only if the system has
140 * more than one CPU).
141 */
142 void call_rcu(struct rcu_head *head,
143 void (*func)(struct rcu_head *head));
144
145 #else /* #ifdef CONFIG_PREEMPT_RCU */
146
147 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
148 #define call_rcu call_rcu_sched
149
150 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
151
152 /**
153 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
154 * @head: structure to be used for queueing the RCU updates.
155 * @func: actual callback function to be invoked after the grace period
156 *
157 * The callback function will be invoked some time after a full grace
158 * period elapses, in other words after all currently executing RCU
159 * read-side critical sections have completed. call_rcu_bh() assumes
160 * that the read-side critical sections end on completion of a softirq
161 * handler. This means that read-side critical sections in process
162 * context must not be interrupted by softirqs. This interface is to be
163 * used when most of the read-side critical sections are in softirq context.
164 * RCU read-side critical sections are delimited by :
165 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
166 * OR
167 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
168 * These may be nested.
169 *
170 * See the description of call_rcu() for more detailed information on
171 * memory ordering guarantees.
172 */
173 void call_rcu_bh(struct rcu_head *head,
174 void (*func)(struct rcu_head *head));
175
176 /**
177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
178 * @head: structure to be used for queueing the RCU updates.
179 * @func: actual callback function to be invoked after the grace period
180 *
181 * The callback function will be invoked some time after a full grace
182 * period elapses, in other words after all currently executing RCU
183 * read-side critical sections have completed. call_rcu_sched() assumes
184 * that the read-side critical sections end on enabling of preemption
185 * or on voluntary preemption.
186 * RCU read-side critical sections are delimited by :
187 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
188 * OR
189 * anything that disables preemption.
190 * These may be nested.
191 *
192 * See the description of call_rcu() for more detailed information on
193 * memory ordering guarantees.
194 */
195 void call_rcu_sched(struct rcu_head *head,
196 void (*func)(struct rcu_head *rcu));
197
198 void synchronize_sched(void);
199
200 #ifdef CONFIG_PREEMPT_RCU
201
202 void __rcu_read_lock(void);
203 void __rcu_read_unlock(void);
204 void rcu_read_unlock_special(struct task_struct *t);
205 void synchronize_rcu(void);
206
207 /*
208 * Defined as a macro as it is a very low level header included from
209 * areas that don't even know about current. This gives the rcu_read_lock()
210 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
211 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
212 */
213 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
214
215 #else /* #ifdef CONFIG_PREEMPT_RCU */
216
217 static inline void __rcu_read_lock(void)
218 {
219 preempt_disable();
220 }
221
222 static inline void __rcu_read_unlock(void)
223 {
224 preempt_enable();
225 }
226
227 static inline void synchronize_rcu(void)
228 {
229 synchronize_sched();
230 }
231
232 static inline int rcu_preempt_depth(void)
233 {
234 return 0;
235 }
236
237 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
238
239 /* Internal to kernel */
240 void rcu_init(void);
241 void rcu_sched_qs(int cpu);
242 void rcu_bh_qs(int cpu);
243 void rcu_check_callbacks(int cpu, int user);
244 struct notifier_block;
245 void rcu_idle_enter(void);
246 void rcu_idle_exit(void);
247 void rcu_irq_enter(void);
248 void rcu_irq_exit(void);
249
250 #ifdef CONFIG_RCU_STALL_COMMON
251 void rcu_sysrq_start(void);
252 void rcu_sysrq_end(void);
253 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
254 static inline void rcu_sysrq_start(void)
255 {
256 }
257 static inline void rcu_sysrq_end(void)
258 {
259 }
260 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
261
262 #ifdef CONFIG_RCU_USER_QS
263 void rcu_user_enter(void);
264 void rcu_user_exit(void);
265 #else
266 static inline void rcu_user_enter(void) { }
267 static inline void rcu_user_exit(void) { }
268 static inline void rcu_user_hooks_switch(struct task_struct *prev,
269 struct task_struct *next) { }
270 #endif /* CONFIG_RCU_USER_QS */
271
272 /**
273 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
274 * @a: Code that RCU needs to pay attention to.
275 *
276 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
277 * in the inner idle loop, that is, between the rcu_idle_enter() and
278 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
279 * critical sections. However, things like powertop need tracepoints
280 * in the inner idle loop.
281 *
282 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
283 * will tell RCU that it needs to pay attending, invoke its argument
284 * (in this example, a call to the do_something_with_RCU() function),
285 * and then tell RCU to go back to ignoring this CPU. It is permissible
286 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
287 * quite limited. If deeper nesting is required, it will be necessary
288 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
289 */
290 #define RCU_NONIDLE(a) \
291 do { \
292 rcu_irq_enter(); \
293 do { a; } while (0); \
294 rcu_irq_exit(); \
295 } while (0)
296
297 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
298 bool __rcu_is_watching(void);
299 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
300
301 /*
302 * Infrastructure to implement the synchronize_() primitives in
303 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
304 */
305
306 typedef void call_rcu_func_t(struct rcu_head *head,
307 void (*func)(struct rcu_head *head));
308 void wait_rcu_gp(call_rcu_func_t crf);
309
310 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
311 #include <linux/rcutree.h>
312 #elif defined(CONFIG_TINY_RCU)
313 #include <linux/rcutiny.h>
314 #else
315 #error "Unknown RCU implementation specified to kernel configuration"
316 #endif
317
318 /*
319 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
320 * initialization and destruction of rcu_head on the stack. rcu_head structures
321 * allocated dynamically in the heap or defined statically don't need any
322 * initialization.
323 */
324 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
325 void init_rcu_head(struct rcu_head *head);
326 void destroy_rcu_head(struct rcu_head *head);
327 void init_rcu_head_on_stack(struct rcu_head *head);
328 void destroy_rcu_head_on_stack(struct rcu_head *head);
329 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
330 static inline void init_rcu_head(struct rcu_head *head)
331 {
332 }
333
334 static inline void destroy_rcu_head(struct rcu_head *head)
335 {
336 }
337
338 static inline void init_rcu_head_on_stack(struct rcu_head *head)
339 {
340 }
341
342 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
343 {
344 }
345 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
346
347 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
348 bool rcu_lockdep_current_cpu_online(void);
349 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
350 static inline bool rcu_lockdep_current_cpu_online(void)
351 {
352 return true;
353 }
354 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
355
356 #ifdef CONFIG_DEBUG_LOCK_ALLOC
357
358 static inline void rcu_lock_acquire(struct lockdep_map *map)
359 {
360 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
361 }
362
363 static inline void rcu_lock_release(struct lockdep_map *map)
364 {
365 lock_release(map, 1, _THIS_IP_);
366 }
367
368 extern struct lockdep_map rcu_lock_map;
369 extern struct lockdep_map rcu_bh_lock_map;
370 extern struct lockdep_map rcu_sched_lock_map;
371 extern struct lockdep_map rcu_callback_map;
372 int debug_lockdep_rcu_enabled(void);
373
374 /**
375 * rcu_read_lock_held() - might we be in RCU read-side critical section?
376 *
377 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
378 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
379 * this assumes we are in an RCU read-side critical section unless it can
380 * prove otherwise. This is useful for debug checks in functions that
381 * require that they be called within an RCU read-side critical section.
382 *
383 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
384 * and while lockdep is disabled.
385 *
386 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
387 * occur in the same context, for example, it is illegal to invoke
388 * rcu_read_unlock() in process context if the matching rcu_read_lock()
389 * was invoked from within an irq handler.
390 *
391 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
392 * offline from an RCU perspective, so check for those as well.
393 */
394 static inline int rcu_read_lock_held(void)
395 {
396 if (!debug_lockdep_rcu_enabled())
397 return 1;
398 if (!rcu_is_watching())
399 return 0;
400 if (!rcu_lockdep_current_cpu_online())
401 return 0;
402 return lock_is_held(&rcu_lock_map);
403 }
404
405 /*
406 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
407 * hell.
408 */
409 int rcu_read_lock_bh_held(void);
410
411 /**
412 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
413 *
414 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
415 * RCU-sched read-side critical section. In absence of
416 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
417 * critical section unless it can prove otherwise. Note that disabling
418 * of preemption (including disabling irqs) counts as an RCU-sched
419 * read-side critical section. This is useful for debug checks in functions
420 * that required that they be called within an RCU-sched read-side
421 * critical section.
422 *
423 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
424 * and while lockdep is disabled.
425 *
426 * Note that if the CPU is in the idle loop from an RCU point of
427 * view (ie: that we are in the section between rcu_idle_enter() and
428 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
429 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
430 * that are in such a section, considering these as in extended quiescent
431 * state, so such a CPU is effectively never in an RCU read-side critical
432 * section regardless of what RCU primitives it invokes. This state of
433 * affairs is required --- we need to keep an RCU-free window in idle
434 * where the CPU may possibly enter into low power mode. This way we can
435 * notice an extended quiescent state to other CPUs that started a grace
436 * period. Otherwise we would delay any grace period as long as we run in
437 * the idle task.
438 *
439 * Similarly, we avoid claiming an SRCU read lock held if the current
440 * CPU is offline.
441 */
442 #ifdef CONFIG_PREEMPT_COUNT
443 static inline int rcu_read_lock_sched_held(void)
444 {
445 int lockdep_opinion = 0;
446
447 if (!debug_lockdep_rcu_enabled())
448 return 1;
449 if (!rcu_is_watching())
450 return 0;
451 if (!rcu_lockdep_current_cpu_online())
452 return 0;
453 if (debug_locks)
454 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
455 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
456 }
457 #else /* #ifdef CONFIG_PREEMPT_COUNT */
458 static inline int rcu_read_lock_sched_held(void)
459 {
460 return 1;
461 }
462 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
463
464 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
465
466 # define rcu_lock_acquire(a) do { } while (0)
467 # define rcu_lock_release(a) do { } while (0)
468
469 static inline int rcu_read_lock_held(void)
470 {
471 return 1;
472 }
473
474 static inline int rcu_read_lock_bh_held(void)
475 {
476 return 1;
477 }
478
479 #ifdef CONFIG_PREEMPT_COUNT
480 static inline int rcu_read_lock_sched_held(void)
481 {
482 return preempt_count() != 0 || irqs_disabled();
483 }
484 #else /* #ifdef CONFIG_PREEMPT_COUNT */
485 static inline int rcu_read_lock_sched_held(void)
486 {
487 return 1;
488 }
489 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
490
491 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
492
493 #ifdef CONFIG_PROVE_RCU
494
495 /**
496 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
497 * @c: condition to check
498 * @s: informative message
499 */
500 #define rcu_lockdep_assert(c, s) \
501 do { \
502 static bool __section(.data.unlikely) __warned; \
503 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
504 __warned = true; \
505 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
506 } \
507 } while (0)
508
509 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
510 static inline void rcu_preempt_sleep_check(void)
511 {
512 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
513 "Illegal context switch in RCU read-side critical section");
514 }
515 #else /* #ifdef CONFIG_PROVE_RCU */
516 static inline void rcu_preempt_sleep_check(void)
517 {
518 }
519 #endif /* #else #ifdef CONFIG_PROVE_RCU */
520
521 #define rcu_sleep_check() \
522 do { \
523 rcu_preempt_sleep_check(); \
524 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
525 "Illegal context switch in RCU-bh read-side critical section"); \
526 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
527 "Illegal context switch in RCU-sched read-side critical section"); \
528 } while (0)
529
530 #else /* #ifdef CONFIG_PROVE_RCU */
531
532 #define rcu_lockdep_assert(c, s) do { } while (0)
533 #define rcu_sleep_check() do { } while (0)
534
535 #endif /* #else #ifdef CONFIG_PROVE_RCU */
536
537 /*
538 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
539 * and rcu_assign_pointer(). Some of these could be folded into their
540 * callers, but they are left separate in order to ease introduction of
541 * multiple flavors of pointers to match the multiple flavors of RCU
542 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
543 * the future.
544 */
545
546 #ifdef __CHECKER__
547 #define rcu_dereference_sparse(p, space) \
548 ((void)(((typeof(*p) space *)p) == p))
549 #else /* #ifdef __CHECKER__ */
550 #define rcu_dereference_sparse(p, space)
551 #endif /* #else #ifdef __CHECKER__ */
552
553 #define __rcu_access_pointer(p, space) \
554 ({ \
555 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
556 rcu_dereference_sparse(p, space); \
557 ((typeof(*p) __force __kernel *)(_________p1)); \
558 })
559 #define __rcu_dereference_check(p, c, space) \
560 ({ \
561 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
562 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
563 rcu_dereference_sparse(p, space); \
564 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
565 ((typeof(*p) __force __kernel *)(_________p1)); \
566 })
567 #define __rcu_dereference_protected(p, c, space) \
568 ({ \
569 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
570 rcu_dereference_sparse(p, space); \
571 ((typeof(*p) __force __kernel *)(p)); \
572 })
573
574 #define __rcu_access_index(p, space) \
575 ({ \
576 typeof(p) _________p1 = ACCESS_ONCE(p); \
577 rcu_dereference_sparse(p, space); \
578 (_________p1); \
579 })
580 #define __rcu_dereference_index_check(p, c) \
581 ({ \
582 typeof(p) _________p1 = ACCESS_ONCE(p); \
583 rcu_lockdep_assert(c, \
584 "suspicious rcu_dereference_index_check() usage"); \
585 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
586 (_________p1); \
587 })
588
589 /**
590 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
591 * @v: The value to statically initialize with.
592 */
593 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
594
595 /**
596 * rcu_assign_pointer() - assign to RCU-protected pointer
597 * @p: pointer to assign to
598 * @v: value to assign (publish)
599 *
600 * Assigns the specified value to the specified RCU-protected
601 * pointer, ensuring that any concurrent RCU readers will see
602 * any prior initialization.
603 *
604 * Inserts memory barriers on architectures that require them
605 * (which is most of them), and also prevents the compiler from
606 * reordering the code that initializes the structure after the pointer
607 * assignment. More importantly, this call documents which pointers
608 * will be dereferenced by RCU read-side code.
609 *
610 * In some special cases, you may use RCU_INIT_POINTER() instead
611 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
612 * to the fact that it does not constrain either the CPU or the compiler.
613 * That said, using RCU_INIT_POINTER() when you should have used
614 * rcu_assign_pointer() is a very bad thing that results in
615 * impossible-to-diagnose memory corruption. So please be careful.
616 * See the RCU_INIT_POINTER() comment header for details.
617 *
618 * Note that rcu_assign_pointer() evaluates each of its arguments only
619 * once, appearances notwithstanding. One of the "extra" evaluations
620 * is in typeof() and the other visible only to sparse (__CHECKER__),
621 * neither of which actually execute the argument. As with most cpp
622 * macros, this execute-arguments-only-once property is important, so
623 * please be careful when making changes to rcu_assign_pointer() and the
624 * other macros that it invokes.
625 */
626 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
627
628 /**
629 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
630 * @p: The pointer to read
631 *
632 * Return the value of the specified RCU-protected pointer, but omit the
633 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
634 * when the value of this pointer is accessed, but the pointer is not
635 * dereferenced, for example, when testing an RCU-protected pointer against
636 * NULL. Although rcu_access_pointer() may also be used in cases where
637 * update-side locks prevent the value of the pointer from changing, you
638 * should instead use rcu_dereference_protected() for this use case.
639 *
640 * It is also permissible to use rcu_access_pointer() when read-side
641 * access to the pointer was removed at least one grace period ago, as
642 * is the case in the context of the RCU callback that is freeing up
643 * the data, or after a synchronize_rcu() returns. This can be useful
644 * when tearing down multi-linked structures after a grace period
645 * has elapsed.
646 */
647 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
648
649 /**
650 * rcu_dereference_check() - rcu_dereference with debug checking
651 * @p: The pointer to read, prior to dereferencing
652 * @c: The conditions under which the dereference will take place
653 *
654 * Do an rcu_dereference(), but check that the conditions under which the
655 * dereference will take place are correct. Typically the conditions
656 * indicate the various locking conditions that should be held at that
657 * point. The check should return true if the conditions are satisfied.
658 * An implicit check for being in an RCU read-side critical section
659 * (rcu_read_lock()) is included.
660 *
661 * For example:
662 *
663 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
664 *
665 * could be used to indicate to lockdep that foo->bar may only be dereferenced
666 * if either rcu_read_lock() is held, or that the lock required to replace
667 * the bar struct at foo->bar is held.
668 *
669 * Note that the list of conditions may also include indications of when a lock
670 * need not be held, for example during initialisation or destruction of the
671 * target struct:
672 *
673 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
674 * atomic_read(&foo->usage) == 0);
675 *
676 * Inserts memory barriers on architectures that require them
677 * (currently only the Alpha), prevents the compiler from refetching
678 * (and from merging fetches), and, more importantly, documents exactly
679 * which pointers are protected by RCU and checks that the pointer is
680 * annotated as __rcu.
681 */
682 #define rcu_dereference_check(p, c) \
683 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
684
685 /**
686 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
687 * @p: The pointer to read, prior to dereferencing
688 * @c: The conditions under which the dereference will take place
689 *
690 * This is the RCU-bh counterpart to rcu_dereference_check().
691 */
692 #define rcu_dereference_bh_check(p, c) \
693 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
694
695 /**
696 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
697 * @p: The pointer to read, prior to dereferencing
698 * @c: The conditions under which the dereference will take place
699 *
700 * This is the RCU-sched counterpart to rcu_dereference_check().
701 */
702 #define rcu_dereference_sched_check(p, c) \
703 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
704 __rcu)
705
706 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
707
708 /*
709 * The tracing infrastructure traces RCU (we want that), but unfortunately
710 * some of the RCU checks causes tracing to lock up the system.
711 *
712 * The tracing version of rcu_dereference_raw() must not call
713 * rcu_read_lock_held().
714 */
715 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
716
717 /**
718 * rcu_access_index() - fetch RCU index with no dereferencing
719 * @p: The index to read
720 *
721 * Return the value of the specified RCU-protected index, but omit the
722 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
723 * when the value of this index is accessed, but the index is not
724 * dereferenced, for example, when testing an RCU-protected index against
725 * -1. Although rcu_access_index() may also be used in cases where
726 * update-side locks prevent the value of the index from changing, you
727 * should instead use rcu_dereference_index_protected() for this use case.
728 */
729 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
730
731 /**
732 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
733 * @p: The pointer to read, prior to dereferencing
734 * @c: The conditions under which the dereference will take place
735 *
736 * Similar to rcu_dereference_check(), but omits the sparse checking.
737 * This allows rcu_dereference_index_check() to be used on integers,
738 * which can then be used as array indices. Attempting to use
739 * rcu_dereference_check() on an integer will give compiler warnings
740 * because the sparse address-space mechanism relies on dereferencing
741 * the RCU-protected pointer. Dereferencing integers is not something
742 * that even gcc will put up with.
743 *
744 * Note that this function does not implicitly check for RCU read-side
745 * critical sections. If this function gains lots of uses, it might
746 * make sense to provide versions for each flavor of RCU, but it does
747 * not make sense as of early 2010.
748 */
749 #define rcu_dereference_index_check(p, c) \
750 __rcu_dereference_index_check((p), (c))
751
752 /**
753 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
754 * @p: The pointer to read, prior to dereferencing
755 * @c: The conditions under which the dereference will take place
756 *
757 * Return the value of the specified RCU-protected pointer, but omit
758 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
759 * is useful in cases where update-side locks prevent the value of the
760 * pointer from changing. Please note that this primitive does -not-
761 * prevent the compiler from repeating this reference or combining it
762 * with other references, so it should not be used without protection
763 * of appropriate locks.
764 *
765 * This function is only for update-side use. Using this function
766 * when protected only by rcu_read_lock() will result in infrequent
767 * but very ugly failures.
768 */
769 #define rcu_dereference_protected(p, c) \
770 __rcu_dereference_protected((p), (c), __rcu)
771
772
773 /**
774 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
775 * @p: The pointer to read, prior to dereferencing
776 *
777 * This is a simple wrapper around rcu_dereference_check().
778 */
779 #define rcu_dereference(p) rcu_dereference_check(p, 0)
780
781 /**
782 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
783 * @p: The pointer to read, prior to dereferencing
784 *
785 * Makes rcu_dereference_check() do the dirty work.
786 */
787 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
788
789 /**
790 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
791 * @p: The pointer to read, prior to dereferencing
792 *
793 * Makes rcu_dereference_check() do the dirty work.
794 */
795 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
796
797 /**
798 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
799 *
800 * When synchronize_rcu() is invoked on one CPU while other CPUs
801 * are within RCU read-side critical sections, then the
802 * synchronize_rcu() is guaranteed to block until after all the other
803 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
804 * on one CPU while other CPUs are within RCU read-side critical
805 * sections, invocation of the corresponding RCU callback is deferred
806 * until after the all the other CPUs exit their critical sections.
807 *
808 * Note, however, that RCU callbacks are permitted to run concurrently
809 * with new RCU read-side critical sections. One way that this can happen
810 * is via the following sequence of events: (1) CPU 0 enters an RCU
811 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
812 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
813 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
814 * callback is invoked. This is legal, because the RCU read-side critical
815 * section that was running concurrently with the call_rcu() (and which
816 * therefore might be referencing something that the corresponding RCU
817 * callback would free up) has completed before the corresponding
818 * RCU callback is invoked.
819 *
820 * RCU read-side critical sections may be nested. Any deferred actions
821 * will be deferred until the outermost RCU read-side critical section
822 * completes.
823 *
824 * You can avoid reading and understanding the next paragraph by
825 * following this rule: don't put anything in an rcu_read_lock() RCU
826 * read-side critical section that would block in a !PREEMPT kernel.
827 * But if you want the full story, read on!
828 *
829 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
830 * it is illegal to block while in an RCU read-side critical section.
831 * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
832 * kernel builds, RCU read-side critical sections may be preempted,
833 * but explicit blocking is illegal. Finally, in preemptible RCU
834 * implementations in real-time (with -rt patchset) kernel builds, RCU
835 * read-side critical sections may be preempted and they may also block, but
836 * only when acquiring spinlocks that are subject to priority inheritance.
837 */
838 static inline void rcu_read_lock(void)
839 {
840 __rcu_read_lock();
841 __acquire(RCU);
842 rcu_lock_acquire(&rcu_lock_map);
843 rcu_lockdep_assert(rcu_is_watching(),
844 "rcu_read_lock() used illegally while idle");
845 }
846
847 /*
848 * So where is rcu_write_lock()? It does not exist, as there is no
849 * way for writers to lock out RCU readers. This is a feature, not
850 * a bug -- this property is what provides RCU's performance benefits.
851 * Of course, writers must coordinate with each other. The normal
852 * spinlock primitives work well for this, but any other technique may be
853 * used as well. RCU does not care how the writers keep out of each
854 * others' way, as long as they do so.
855 */
856
857 /**
858 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
859 *
860 * In most situations, rcu_read_unlock() is immune from deadlock.
861 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
862 * is responsible for deboosting, which it does via rt_mutex_unlock().
863 * Unfortunately, this function acquires the scheduler's runqueue and
864 * priority-inheritance spinlocks. This means that deadlock could result
865 * if the caller of rcu_read_unlock() already holds one of these locks or
866 * any lock that is ever acquired while holding them.
867 *
868 * That said, RCU readers are never priority boosted unless they were
869 * preempted. Therefore, one way to avoid deadlock is to make sure
870 * that preemption never happens within any RCU read-side critical
871 * section whose outermost rcu_read_unlock() is called with one of
872 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
873 * a number of ways, for example, by invoking preempt_disable() before
874 * critical section's outermost rcu_read_lock().
875 *
876 * Given that the set of locks acquired by rt_mutex_unlock() might change
877 * at any time, a somewhat more future-proofed approach is to make sure
878 * that that preemption never happens within any RCU read-side critical
879 * section whose outermost rcu_read_unlock() is called with irqs disabled.
880 * This approach relies on the fact that rt_mutex_unlock() currently only
881 * acquires irq-disabled locks.
882 *
883 * The second of these two approaches is best in most situations,
884 * however, the first approach can also be useful, at least to those
885 * developers willing to keep abreast of the set of locks acquired by
886 * rt_mutex_unlock().
887 *
888 * See rcu_read_lock() for more information.
889 */
890 static inline void rcu_read_unlock(void)
891 {
892 rcu_lockdep_assert(rcu_is_watching(),
893 "rcu_read_unlock() used illegally while idle");
894 rcu_lock_release(&rcu_lock_map);
895 __release(RCU);
896 __rcu_read_unlock();
897 }
898
899 /**
900 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
901 *
902 * This is equivalent of rcu_read_lock(), but to be used when updates
903 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
904 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
905 * softirq handler to be a quiescent state, a process in RCU read-side
906 * critical section must be protected by disabling softirqs. Read-side
907 * critical sections in interrupt context can use just rcu_read_lock(),
908 * though this should at least be commented to avoid confusing people
909 * reading the code.
910 *
911 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
912 * must occur in the same context, for example, it is illegal to invoke
913 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
914 * was invoked from some other task.
915 */
916 static inline void rcu_read_lock_bh(void)
917 {
918 local_bh_disable();
919 __acquire(RCU_BH);
920 rcu_lock_acquire(&rcu_bh_lock_map);
921 rcu_lockdep_assert(rcu_is_watching(),
922 "rcu_read_lock_bh() used illegally while idle");
923 }
924
925 /*
926 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
927 *
928 * See rcu_read_lock_bh() for more information.
929 */
930 static inline void rcu_read_unlock_bh(void)
931 {
932 rcu_lockdep_assert(rcu_is_watching(),
933 "rcu_read_unlock_bh() used illegally while idle");
934 rcu_lock_release(&rcu_bh_lock_map);
935 __release(RCU_BH);
936 local_bh_enable();
937 }
938
939 /**
940 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
941 *
942 * This is equivalent of rcu_read_lock(), but to be used when updates
943 * are being done using call_rcu_sched() or synchronize_rcu_sched().
944 * Read-side critical sections can also be introduced by anything that
945 * disables preemption, including local_irq_disable() and friends.
946 *
947 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
948 * must occur in the same context, for example, it is illegal to invoke
949 * rcu_read_unlock_sched() from process context if the matching
950 * rcu_read_lock_sched() was invoked from an NMI handler.
951 */
952 static inline void rcu_read_lock_sched(void)
953 {
954 preempt_disable();
955 __acquire(RCU_SCHED);
956 rcu_lock_acquire(&rcu_sched_lock_map);
957 rcu_lockdep_assert(rcu_is_watching(),
958 "rcu_read_lock_sched() used illegally while idle");
959 }
960
961 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
962 static inline notrace void rcu_read_lock_sched_notrace(void)
963 {
964 preempt_disable_notrace();
965 __acquire(RCU_SCHED);
966 }
967
968 /*
969 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
970 *
971 * See rcu_read_lock_sched for more information.
972 */
973 static inline void rcu_read_unlock_sched(void)
974 {
975 rcu_lockdep_assert(rcu_is_watching(),
976 "rcu_read_unlock_sched() used illegally while idle");
977 rcu_lock_release(&rcu_sched_lock_map);
978 __release(RCU_SCHED);
979 preempt_enable();
980 }
981
982 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
983 static inline notrace void rcu_read_unlock_sched_notrace(void)
984 {
985 __release(RCU_SCHED);
986 preempt_enable_notrace();
987 }
988
989 /**
990 * RCU_INIT_POINTER() - initialize an RCU protected pointer
991 *
992 * Initialize an RCU-protected pointer in special cases where readers
993 * do not need ordering constraints on the CPU or the compiler. These
994 * special cases are:
995 *
996 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
997 * 2. The caller has taken whatever steps are required to prevent
998 * RCU readers from concurrently accessing this pointer -or-
999 * 3. The referenced data structure has already been exposed to
1000 * readers either at compile time or via rcu_assign_pointer() -and-
1001 * a. You have not made -any- reader-visible changes to
1002 * this structure since then -or-
1003 * b. It is OK for readers accessing this structure from its
1004 * new location to see the old state of the structure. (For
1005 * example, the changes were to statistical counters or to
1006 * other state where exact synchronization is not required.)
1007 *
1008 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1009 * result in impossible-to-diagnose memory corruption. As in the structures
1010 * will look OK in crash dumps, but any concurrent RCU readers might
1011 * see pre-initialized values of the referenced data structure. So
1012 * please be very careful how you use RCU_INIT_POINTER()!!!
1013 *
1014 * If you are creating an RCU-protected linked structure that is accessed
1015 * by a single external-to-structure RCU-protected pointer, then you may
1016 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1017 * pointers, but you must use rcu_assign_pointer() to initialize the
1018 * external-to-structure pointer -after- you have completely initialized
1019 * the reader-accessible portions of the linked structure.
1020 *
1021 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1022 * ordering guarantees for either the CPU or the compiler.
1023 */
1024 #define RCU_INIT_POINTER(p, v) \
1025 do { \
1026 p = RCU_INITIALIZER(v); \
1027 } while (0)
1028
1029 /**
1030 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1031 *
1032 * GCC-style initialization for an RCU-protected pointer in a structure field.
1033 */
1034 #define RCU_POINTER_INITIALIZER(p, v) \
1035 .p = RCU_INITIALIZER(v)
1036
1037 /*
1038 * Does the specified offset indicate that the corresponding rcu_head
1039 * structure can be handled by kfree_rcu()?
1040 */
1041 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1042
1043 /*
1044 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1045 */
1046 #define __kfree_rcu(head, offset) \
1047 do { \
1048 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1049 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1050 } while (0)
1051
1052 /**
1053 * kfree_rcu() - kfree an object after a grace period.
1054 * @ptr: pointer to kfree
1055 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1056 *
1057 * Many rcu callbacks functions just call kfree() on the base structure.
1058 * These functions are trivial, but their size adds up, and furthermore
1059 * when they are used in a kernel module, that module must invoke the
1060 * high-latency rcu_barrier() function at module-unload time.
1061 *
1062 * The kfree_rcu() function handles this issue. Rather than encoding a
1063 * function address in the embedded rcu_head structure, kfree_rcu() instead
1064 * encodes the offset of the rcu_head structure within the base structure.
1065 * Because the functions are not allowed in the low-order 4096 bytes of
1066 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1067 * If the offset is larger than 4095 bytes, a compile-time error will
1068 * be generated in __kfree_rcu(). If this error is triggered, you can
1069 * either fall back to use of call_rcu() or rearrange the structure to
1070 * position the rcu_head structure into the first 4096 bytes.
1071 *
1072 * Note that the allowable offset might decrease in the future, for example,
1073 * to allow something like kmem_cache_free_rcu().
1074 *
1075 * The BUILD_BUG_ON check must not involve any function calls, hence the
1076 * checks are done in macros here.
1077 */
1078 #define kfree_rcu(ptr, rcu_head) \
1079 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1080
1081 #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1082 static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1083 {
1084 *delta_jiffies = ULONG_MAX;
1085 return 0;
1086 }
1087 #endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1088
1089 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1090 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1091 #elif defined(CONFIG_RCU_NOCB_CPU)
1092 bool rcu_is_nocb_cpu(int cpu);
1093 #else
1094 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1095 #endif
1096
1097
1098 /* Only for use by adaptive-ticks code. */
1099 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1100 bool rcu_sys_is_idle(void);
1101 void rcu_sysidle_force_exit(void);
1102 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1103
1104 static inline bool rcu_sys_is_idle(void)
1105 {
1106 return false;
1107 }
1108
1109 static inline void rcu_sysidle_force_exit(void)
1110 {
1111 }
1112
1113 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1114
1115
1116 #endif /* __LINUX_RCUPDATE_H */