]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/rmap.h
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / include / linux / rmap.h
1 #ifndef _LINUX_RMAP_H
2 #define _LINUX_RMAP_H
3 /*
4 * Declarations for Reverse Mapping functions in mm/rmap.c
5 */
6
7 #include <linux/list.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/rwsem.h>
11 #include <linux/memcontrol.h>
12 #include <linux/highmem.h>
13
14 /*
15 * The anon_vma heads a list of private "related" vmas, to scan if
16 * an anonymous page pointing to this anon_vma needs to be unmapped:
17 * the vmas on the list will be related by forking, or by splitting.
18 *
19 * Since vmas come and go as they are split and merged (particularly
20 * in mprotect), the mapping field of an anonymous page cannot point
21 * directly to a vma: instead it points to an anon_vma, on whose list
22 * the related vmas can be easily linked or unlinked.
23 *
24 * After unlinking the last vma on the list, we must garbage collect
25 * the anon_vma object itself: we're guaranteed no page can be
26 * pointing to this anon_vma once its vma list is empty.
27 */
28 struct anon_vma {
29 struct anon_vma *root; /* Root of this anon_vma tree */
30 struct rw_semaphore rwsem; /* W: modification, R: walking the list */
31 /*
32 * The refcount is taken on an anon_vma when there is no
33 * guarantee that the vma of page tables will exist for
34 * the duration of the operation. A caller that takes
35 * the reference is responsible for clearing up the
36 * anon_vma if they are the last user on release
37 */
38 atomic_t refcount;
39
40 /*
41 * Count of child anon_vmas and VMAs which points to this anon_vma.
42 *
43 * This counter is used for making decision about reusing anon_vma
44 * instead of forking new one. See comments in function anon_vma_clone.
45 */
46 unsigned degree;
47
48 struct anon_vma *parent; /* Parent of this anon_vma */
49
50 /*
51 * NOTE: the LSB of the rb_root.rb_node is set by
52 * mm_take_all_locks() _after_ taking the above lock. So the
53 * rb_root must only be read/written after taking the above lock
54 * to be sure to see a valid next pointer. The LSB bit itself
55 * is serialized by a system wide lock only visible to
56 * mm_take_all_locks() (mm_all_locks_mutex).
57 */
58
59 /* Interval tree of private "related" vmas */
60 struct rb_root_cached rb_root;
61 };
62
63 /*
64 * The copy-on-write semantics of fork mean that an anon_vma
65 * can become associated with multiple processes. Furthermore,
66 * each child process will have its own anon_vma, where new
67 * pages for that process are instantiated.
68 *
69 * This structure allows us to find the anon_vmas associated
70 * with a VMA, or the VMAs associated with an anon_vma.
71 * The "same_vma" list contains the anon_vma_chains linking
72 * all the anon_vmas associated with this VMA.
73 * The "rb" field indexes on an interval tree the anon_vma_chains
74 * which link all the VMAs associated with this anon_vma.
75 */
76 struct anon_vma_chain {
77 struct vm_area_struct *vma;
78 struct anon_vma *anon_vma;
79 struct list_head same_vma; /* locked by mmap_sem & page_table_lock */
80 struct rb_node rb; /* locked by anon_vma->rwsem */
81 unsigned long rb_subtree_last;
82 #ifdef CONFIG_DEBUG_VM_RB
83 unsigned long cached_vma_start, cached_vma_last;
84 #endif
85 };
86
87 enum ttu_flags {
88 TTU_MIGRATION = 0x1, /* migration mode */
89 TTU_MUNLOCK = 0x2, /* munlock mode */
90
91 TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */
92 TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */
93 TTU_IGNORE_ACCESS = 0x10, /* don't age */
94 TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */
95 TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible
96 * and caller guarantees they will
97 * do a final flush if necessary */
98 TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock:
99 * caller holds it */
100 TTU_SPLIT_FREEZE = 0x100, /* freeze pte under splitting thp */
101 };
102
103 #ifdef CONFIG_MMU
104 static inline void get_anon_vma(struct anon_vma *anon_vma)
105 {
106 atomic_inc(&anon_vma->refcount);
107 }
108
109 void __put_anon_vma(struct anon_vma *anon_vma);
110
111 static inline void put_anon_vma(struct anon_vma *anon_vma)
112 {
113 if (atomic_dec_and_test(&anon_vma->refcount))
114 __put_anon_vma(anon_vma);
115 }
116
117 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
118 {
119 down_write(&anon_vma->root->rwsem);
120 }
121
122 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
123 {
124 up_write(&anon_vma->root->rwsem);
125 }
126
127 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
128 {
129 down_read(&anon_vma->root->rwsem);
130 }
131
132 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
133 {
134 up_read(&anon_vma->root->rwsem);
135 }
136
137
138 /*
139 * anon_vma helper functions.
140 */
141 void anon_vma_init(void); /* create anon_vma_cachep */
142 int __anon_vma_prepare(struct vm_area_struct *);
143 void unlink_anon_vmas(struct vm_area_struct *);
144 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
145 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
146
147 static inline int anon_vma_prepare(struct vm_area_struct *vma)
148 {
149 if (likely(vma->anon_vma))
150 return 0;
151
152 return __anon_vma_prepare(vma);
153 }
154
155 static inline void anon_vma_merge(struct vm_area_struct *vma,
156 struct vm_area_struct *next)
157 {
158 VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
159 unlink_anon_vmas(next);
160 }
161
162 struct anon_vma *page_get_anon_vma(struct page *page);
163
164 /* bitflags for do_page_add_anon_rmap() */
165 #define RMAP_EXCLUSIVE 0x01
166 #define RMAP_COMPOUND 0x02
167
168 /*
169 * rmap interfaces called when adding or removing pte of page
170 */
171 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
172 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
173 unsigned long, bool);
174 void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
175 unsigned long, int);
176 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
177 unsigned long, bool);
178 void page_add_file_rmap(struct page *, bool);
179 void page_remove_rmap(struct page *, bool);
180
181 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
182 unsigned long);
183 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
184 unsigned long);
185
186 static inline void page_dup_rmap(struct page *page, bool compound)
187 {
188 atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
189 }
190
191 /*
192 * Called from mm/vmscan.c to handle paging out
193 */
194 int page_referenced(struct page *, int is_locked,
195 struct mem_cgroup *memcg, unsigned long *vm_flags);
196
197 bool try_to_unmap(struct page *, enum ttu_flags flags);
198
199 /* Avoid racy checks */
200 #define PVMW_SYNC (1 << 0)
201 /* Look for migarion entries rather than present PTEs */
202 #define PVMW_MIGRATION (1 << 1)
203
204 struct page_vma_mapped_walk {
205 struct page *page;
206 struct vm_area_struct *vma;
207 unsigned long address;
208 pmd_t *pmd;
209 pte_t *pte;
210 spinlock_t *ptl;
211 unsigned int flags;
212 };
213
214 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
215 {
216 if (pvmw->pte)
217 pte_unmap(pvmw->pte);
218 if (pvmw->ptl)
219 spin_unlock(pvmw->ptl);
220 }
221
222 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
223
224 /*
225 * Used by swapoff to help locate where page is expected in vma.
226 */
227 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
228
229 /*
230 * Cleans the PTEs of shared mappings.
231 * (and since clean PTEs should also be readonly, write protects them too)
232 *
233 * returns the number of cleaned PTEs.
234 */
235 int page_mkclean(struct page *);
236
237 /*
238 * called in munlock()/munmap() path to check for other vmas holding
239 * the page mlocked.
240 */
241 void try_to_munlock(struct page *);
242
243 void remove_migration_ptes(struct page *old, struct page *new, bool locked);
244
245 /*
246 * Called by memory-failure.c to kill processes.
247 */
248 struct anon_vma *page_lock_anon_vma_read(struct page *page);
249 void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
250 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
251
252 /*
253 * rmap_walk_control: To control rmap traversing for specific needs
254 *
255 * arg: passed to rmap_one() and invalid_vma()
256 * rmap_one: executed on each vma where page is mapped
257 * done: for checking traversing termination condition
258 * anon_lock: for getting anon_lock by optimized way rather than default
259 * invalid_vma: for skipping uninterested vma
260 */
261 struct rmap_walk_control {
262 void *arg;
263 /*
264 * Return false if page table scanning in rmap_walk should be stopped.
265 * Otherwise, return true.
266 */
267 bool (*rmap_one)(struct page *page, struct vm_area_struct *vma,
268 unsigned long addr, void *arg);
269 int (*done)(struct page *page);
270 struct anon_vma *(*anon_lock)(struct page *page);
271 bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
272 };
273
274 void rmap_walk(struct page *page, struct rmap_walk_control *rwc);
275 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc);
276
277 #else /* !CONFIG_MMU */
278
279 #define anon_vma_init() do {} while (0)
280 #define anon_vma_prepare(vma) (0)
281 #define anon_vma_link(vma) do {} while (0)
282
283 static inline int page_referenced(struct page *page, int is_locked,
284 struct mem_cgroup *memcg,
285 unsigned long *vm_flags)
286 {
287 *vm_flags = 0;
288 return 0;
289 }
290
291 #define try_to_unmap(page, refs) false
292
293 static inline int page_mkclean(struct page *page)
294 {
295 return 0;
296 }
297
298
299 #endif /* CONFIG_MMU */
300
301 #endif /* _LINUX_RMAP_H */