]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
oom: move oom_adj value from task_struct to signal_struct
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern void calc_global_load(void);
144 extern u64 cpu_nr_migrations(int cpu);
145
146 extern unsigned long get_parent_ip(unsigned long addr);
147
148 struct seq_file;
149 struct cfs_rq;
150 struct task_group;
151 #ifdef CONFIG_SCHED_DEBUG
152 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
153 extern void proc_sched_set_task(struct task_struct *p);
154 extern void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
156 #else
157 static inline void
158 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 {
160 }
161 static inline void proc_sched_set_task(struct task_struct *p)
162 {
163 }
164 static inline void
165 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 {
167 }
168 #endif
169
170 extern unsigned long long time_sync_thresh;
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194
195 /* Convenience macros for the sake of set_task_state */
196 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
197 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
198 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
199
200 /* Convenience macros for the sake of wake_up */
201 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
202 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
203
204 /* get_task_state() */
205 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
206 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
207 __TASK_TRACED)
208
209 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
210 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
211 #define task_is_stopped_or_traced(task) \
212 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
213 #define task_contributes_to_load(task) \
214 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
215 (task->flags & PF_FREEZING) == 0)
216
217 #define __set_task_state(tsk, state_value) \
218 do { (tsk)->state = (state_value); } while (0)
219 #define set_task_state(tsk, state_value) \
220 set_mb((tsk)->state, (state_value))
221
222 /*
223 * set_current_state() includes a barrier so that the write of current->state
224 * is correctly serialised wrt the caller's subsequent test of whether to
225 * actually sleep:
226 *
227 * set_current_state(TASK_UNINTERRUPTIBLE);
228 * if (do_i_need_to_sleep())
229 * schedule();
230 *
231 * If the caller does not need such serialisation then use __set_current_state()
232 */
233 #define __set_current_state(state_value) \
234 do { current->state = (state_value); } while (0)
235 #define set_current_state(state_value) \
236 set_mb(current->state, (state_value))
237
238 /* Task command name length */
239 #define TASK_COMM_LEN 16
240
241 #include <linux/spinlock.h>
242
243 /*
244 * This serializes "schedule()" and also protects
245 * the run-queue from deletions/modifications (but
246 * _adding_ to the beginning of the run-queue has
247 * a separate lock).
248 */
249 extern rwlock_t tasklist_lock;
250 extern spinlock_t mmlist_lock;
251
252 struct task_struct;
253
254 extern void sched_init(void);
255 extern void sched_init_smp(void);
256 extern asmlinkage void schedule_tail(struct task_struct *prev);
257 extern void init_idle(struct task_struct *idle, int cpu);
258 extern void init_idle_bootup_task(struct task_struct *idle);
259
260 extern int runqueue_is_locked(int cpu);
261 extern void task_rq_unlock_wait(struct task_struct *p);
262
263 extern cpumask_var_t nohz_cpu_mask;
264 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
265 extern int select_nohz_load_balancer(int cpu);
266 extern int get_nohz_load_balancer(void);
267 #else
268 static inline int select_nohz_load_balancer(int cpu)
269 {
270 return 0;
271 }
272 #endif
273
274 /*
275 * Only dump TASK_* tasks. (0 for all tasks)
276 */
277 extern void show_state_filter(unsigned long state_filter);
278
279 static inline void show_state(void)
280 {
281 show_state_filter(0);
282 }
283
284 extern void show_regs(struct pt_regs *);
285
286 /*
287 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
288 * task), SP is the stack pointer of the first frame that should be shown in the back
289 * trace (or NULL if the entire call-chain of the task should be shown).
290 */
291 extern void show_stack(struct task_struct *task, unsigned long *sp);
292
293 void io_schedule(void);
294 long io_schedule_timeout(long timeout);
295
296 extern void cpu_init (void);
297 extern void trap_init(void);
298 extern void update_process_times(int user);
299 extern void scheduler_tick(void);
300
301 extern void sched_show_task(struct task_struct *p);
302
303 #ifdef CONFIG_DETECT_SOFTLOCKUP
304 extern void softlockup_tick(void);
305 extern void touch_softlockup_watchdog(void);
306 extern void touch_all_softlockup_watchdogs(void);
307 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
308 struct file *filp, void __user *buffer,
309 size_t *lenp, loff_t *ppos);
310 extern unsigned int softlockup_panic;
311 extern int softlockup_thresh;
312 #else
313 static inline void softlockup_tick(void)
314 {
315 }
316 static inline void touch_softlockup_watchdog(void)
317 {
318 }
319 static inline void touch_all_softlockup_watchdogs(void)
320 {
321 }
322 #endif
323
324 #ifdef CONFIG_DETECT_HUNG_TASK
325 extern unsigned int sysctl_hung_task_panic;
326 extern unsigned long sysctl_hung_task_check_count;
327 extern unsigned long sysctl_hung_task_timeout_secs;
328 extern unsigned long sysctl_hung_task_warnings;
329 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
330 struct file *filp, void __user *buffer,
331 size_t *lenp, loff_t *ppos);
332 #endif
333
334 /* Attach to any functions which should be ignored in wchan output. */
335 #define __sched __attribute__((__section__(".sched.text")))
336
337 /* Linker adds these: start and end of __sched functions */
338 extern char __sched_text_start[], __sched_text_end[];
339
340 /* Is this address in the __sched functions? */
341 extern int in_sched_functions(unsigned long addr);
342
343 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
344 extern signed long schedule_timeout(signed long timeout);
345 extern signed long schedule_timeout_interruptible(signed long timeout);
346 extern signed long schedule_timeout_killable(signed long timeout);
347 extern signed long schedule_timeout_uninterruptible(signed long timeout);
348 asmlinkage void __schedule(void);
349 asmlinkage void schedule(void);
350 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
351
352 struct nsproxy;
353 struct user_namespace;
354
355 /*
356 * Default maximum number of active map areas, this limits the number of vmas
357 * per mm struct. Users can overwrite this number by sysctl but there is a
358 * problem.
359 *
360 * When a program's coredump is generated as ELF format, a section is created
361 * per a vma. In ELF, the number of sections is represented in unsigned short.
362 * This means the number of sections should be smaller than 65535 at coredump.
363 * Because the kernel adds some informative sections to a image of program at
364 * generating coredump, we need some margin. The number of extra sections is
365 * 1-3 now and depends on arch. We use "5" as safe margin, here.
366 */
367 #define MAPCOUNT_ELF_CORE_MARGIN (5)
368 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
369
370 extern int sysctl_max_map_count;
371
372 #include <linux/aio.h>
373
374 extern unsigned long
375 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
376 unsigned long, unsigned long);
377 extern unsigned long
378 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
379 unsigned long len, unsigned long pgoff,
380 unsigned long flags);
381 extern void arch_unmap_area(struct mm_struct *, unsigned long);
382 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
383
384 #if USE_SPLIT_PTLOCKS
385 /*
386 * The mm counters are not protected by its page_table_lock,
387 * so must be incremented atomically.
388 */
389 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
390 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
391 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
392 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
393 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
394
395 #else /* !USE_SPLIT_PTLOCKS */
396 /*
397 * The mm counters are protected by its page_table_lock,
398 * so can be incremented directly.
399 */
400 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
401 #define get_mm_counter(mm, member) ((mm)->_##member)
402 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
403 #define inc_mm_counter(mm, member) (mm)->_##member++
404 #define dec_mm_counter(mm, member) (mm)->_##member--
405
406 #endif /* !USE_SPLIT_PTLOCKS */
407
408 #define get_mm_rss(mm) \
409 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
410 #define update_hiwater_rss(mm) do { \
411 unsigned long _rss = get_mm_rss(mm); \
412 if ((mm)->hiwater_rss < _rss) \
413 (mm)->hiwater_rss = _rss; \
414 } while (0)
415 #define update_hiwater_vm(mm) do { \
416 if ((mm)->hiwater_vm < (mm)->total_vm) \
417 (mm)->hiwater_vm = (mm)->total_vm; \
418 } while (0)
419
420 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
421 {
422 return max(mm->hiwater_rss, get_mm_rss(mm));
423 }
424
425 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
426 {
427 return max(mm->hiwater_vm, mm->total_vm);
428 }
429
430 extern void set_dumpable(struct mm_struct *mm, int value);
431 extern int get_dumpable(struct mm_struct *mm);
432
433 /* mm flags */
434 /* dumpable bits */
435 #define MMF_DUMPABLE 0 /* core dump is permitted */
436 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
437
438 #define MMF_DUMPABLE_BITS 2
439 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
440
441 /* coredump filter bits */
442 #define MMF_DUMP_ANON_PRIVATE 2
443 #define MMF_DUMP_ANON_SHARED 3
444 #define MMF_DUMP_MAPPED_PRIVATE 4
445 #define MMF_DUMP_MAPPED_SHARED 5
446 #define MMF_DUMP_ELF_HEADERS 6
447 #define MMF_DUMP_HUGETLB_PRIVATE 7
448 #define MMF_DUMP_HUGETLB_SHARED 8
449
450 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
451 #define MMF_DUMP_FILTER_BITS 7
452 #define MMF_DUMP_FILTER_MASK \
453 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
454 #define MMF_DUMP_FILTER_DEFAULT \
455 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
456 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
457
458 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
459 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
460 #else
461 # define MMF_DUMP_MASK_DEFAULT_ELF 0
462 #endif
463 /* leave room for more dump flags */
464 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
465
466 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
467
468 struct sighand_struct {
469 atomic_t count;
470 struct k_sigaction action[_NSIG];
471 spinlock_t siglock;
472 wait_queue_head_t signalfd_wqh;
473 };
474
475 struct pacct_struct {
476 int ac_flag;
477 long ac_exitcode;
478 unsigned long ac_mem;
479 cputime_t ac_utime, ac_stime;
480 unsigned long ac_minflt, ac_majflt;
481 };
482
483 /**
484 * struct task_cputime - collected CPU time counts
485 * @utime: time spent in user mode, in &cputime_t units
486 * @stime: time spent in kernel mode, in &cputime_t units
487 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
488 *
489 * This structure groups together three kinds of CPU time that are
490 * tracked for threads and thread groups. Most things considering
491 * CPU time want to group these counts together and treat all three
492 * of them in parallel.
493 */
494 struct task_cputime {
495 cputime_t utime;
496 cputime_t stime;
497 unsigned long long sum_exec_runtime;
498 };
499 /* Alternate field names when used to cache expirations. */
500 #define prof_exp stime
501 #define virt_exp utime
502 #define sched_exp sum_exec_runtime
503
504 #define INIT_CPUTIME \
505 (struct task_cputime) { \
506 .utime = cputime_zero, \
507 .stime = cputime_zero, \
508 .sum_exec_runtime = 0, \
509 }
510
511 /*
512 * Disable preemption until the scheduler is running.
513 * Reset by start_kernel()->sched_init()->init_idle().
514 *
515 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
516 * before the scheduler is active -- see should_resched().
517 */
518 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
519
520 /**
521 * struct thread_group_cputimer - thread group interval timer counts
522 * @cputime: thread group interval timers.
523 * @running: non-zero when there are timers running and
524 * @cputime receives updates.
525 * @lock: lock for fields in this struct.
526 *
527 * This structure contains the version of task_cputime, above, that is
528 * used for thread group CPU timer calculations.
529 */
530 struct thread_group_cputimer {
531 struct task_cputime cputime;
532 int running;
533 spinlock_t lock;
534 };
535
536 /*
537 * NOTE! "signal_struct" does not have it's own
538 * locking, because a shared signal_struct always
539 * implies a shared sighand_struct, so locking
540 * sighand_struct is always a proper superset of
541 * the locking of signal_struct.
542 */
543 struct signal_struct {
544 atomic_t count;
545 atomic_t live;
546
547 wait_queue_head_t wait_chldexit; /* for wait4() */
548
549 /* current thread group signal load-balancing target: */
550 struct task_struct *curr_target;
551
552 /* shared signal handling: */
553 struct sigpending shared_pending;
554
555 /* thread group exit support */
556 int group_exit_code;
557 /* overloaded:
558 * - notify group_exit_task when ->count is equal to notify_count
559 * - everyone except group_exit_task is stopped during signal delivery
560 * of fatal signals, group_exit_task processes the signal.
561 */
562 int notify_count;
563 struct task_struct *group_exit_task;
564
565 /* thread group stop support, overloads group_exit_code too */
566 int group_stop_count;
567 unsigned int flags; /* see SIGNAL_* flags below */
568
569 /* POSIX.1b Interval Timers */
570 struct list_head posix_timers;
571
572 /* ITIMER_REAL timer for the process */
573 struct hrtimer real_timer;
574 struct pid *leader_pid;
575 ktime_t it_real_incr;
576
577 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
578 cputime_t it_prof_expires, it_virt_expires;
579 cputime_t it_prof_incr, it_virt_incr;
580
581 /*
582 * Thread group totals for process CPU timers.
583 * See thread_group_cputimer(), et al, for details.
584 */
585 struct thread_group_cputimer cputimer;
586
587 /* Earliest-expiration cache. */
588 struct task_cputime cputime_expires;
589
590 struct list_head cpu_timers[3];
591
592 struct pid *tty_old_pgrp;
593
594 /* boolean value for session group leader */
595 int leader;
596
597 struct tty_struct *tty; /* NULL if no tty */
598
599 /*
600 * Cumulative resource counters for dead threads in the group,
601 * and for reaped dead child processes forked by this group.
602 * Live threads maintain their own counters and add to these
603 * in __exit_signal, except for the group leader.
604 */
605 cputime_t utime, stime, cutime, cstime;
606 cputime_t gtime;
607 cputime_t cgtime;
608 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
609 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
610 unsigned long inblock, oublock, cinblock, coublock;
611 struct task_io_accounting ioac;
612
613 /*
614 * Cumulative ns of schedule CPU time fo dead threads in the
615 * group, not including a zombie group leader, (This only differs
616 * from jiffies_to_ns(utime + stime) if sched_clock uses something
617 * other than jiffies.)
618 */
619 unsigned long long sum_sched_runtime;
620
621 /*
622 * We don't bother to synchronize most readers of this at all,
623 * because there is no reader checking a limit that actually needs
624 * to get both rlim_cur and rlim_max atomically, and either one
625 * alone is a single word that can safely be read normally.
626 * getrlimit/setrlimit use task_lock(current->group_leader) to
627 * protect this instead of the siglock, because they really
628 * have no need to disable irqs.
629 */
630 struct rlimit rlim[RLIM_NLIMITS];
631
632 #ifdef CONFIG_BSD_PROCESS_ACCT
633 struct pacct_struct pacct; /* per-process accounting information */
634 #endif
635 #ifdef CONFIG_TASKSTATS
636 struct taskstats *stats;
637 #endif
638 #ifdef CONFIG_AUDIT
639 unsigned audit_tty;
640 struct tty_audit_buf *tty_audit_buf;
641 #endif
642
643 int oom_adj; /* OOM kill score adjustment (bit shift) */
644 };
645
646 /* Context switch must be unlocked if interrupts are to be enabled */
647 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
648 # define __ARCH_WANT_UNLOCKED_CTXSW
649 #endif
650
651 /*
652 * Bits in flags field of signal_struct.
653 */
654 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
655 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
656 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
657 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
658 /*
659 * Pending notifications to parent.
660 */
661 #define SIGNAL_CLD_STOPPED 0x00000010
662 #define SIGNAL_CLD_CONTINUED 0x00000020
663 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
664
665 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
666
667 /* If true, all threads except ->group_exit_task have pending SIGKILL */
668 static inline int signal_group_exit(const struct signal_struct *sig)
669 {
670 return (sig->flags & SIGNAL_GROUP_EXIT) ||
671 (sig->group_exit_task != NULL);
672 }
673
674 /*
675 * Some day this will be a full-fledged user tracking system..
676 */
677 struct user_struct {
678 atomic_t __count; /* reference count */
679 atomic_t processes; /* How many processes does this user have? */
680 atomic_t files; /* How many open files does this user have? */
681 atomic_t sigpending; /* How many pending signals does this user have? */
682 #ifdef CONFIG_INOTIFY_USER
683 atomic_t inotify_watches; /* How many inotify watches does this user have? */
684 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
685 #endif
686 #ifdef CONFIG_EPOLL
687 atomic_t epoll_watches; /* The number of file descriptors currently watched */
688 #endif
689 #ifdef CONFIG_POSIX_MQUEUE
690 /* protected by mq_lock */
691 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
692 #endif
693 unsigned long locked_shm; /* How many pages of mlocked shm ? */
694
695 #ifdef CONFIG_KEYS
696 struct key *uid_keyring; /* UID specific keyring */
697 struct key *session_keyring; /* UID's default session keyring */
698 #endif
699
700 /* Hash table maintenance information */
701 struct hlist_node uidhash_node;
702 uid_t uid;
703 struct user_namespace *user_ns;
704
705 #ifdef CONFIG_USER_SCHED
706 struct task_group *tg;
707 #ifdef CONFIG_SYSFS
708 struct kobject kobj;
709 struct delayed_work work;
710 #endif
711 #endif
712
713 #ifdef CONFIG_PERF_EVENTS
714 atomic_long_t locked_vm;
715 #endif
716 };
717
718 extern int uids_sysfs_init(void);
719
720 extern struct user_struct *find_user(uid_t);
721
722 extern struct user_struct root_user;
723 #define INIT_USER (&root_user)
724
725
726 struct backing_dev_info;
727 struct reclaim_state;
728
729 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
730 struct sched_info {
731 /* cumulative counters */
732 unsigned long pcount; /* # of times run on this cpu */
733 unsigned long long run_delay; /* time spent waiting on a runqueue */
734
735 /* timestamps */
736 unsigned long long last_arrival,/* when we last ran on a cpu */
737 last_queued; /* when we were last queued to run */
738 #ifdef CONFIG_SCHEDSTATS
739 /* BKL stats */
740 unsigned int bkl_count;
741 #endif
742 };
743 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
744
745 #ifdef CONFIG_TASK_DELAY_ACCT
746 struct task_delay_info {
747 spinlock_t lock;
748 unsigned int flags; /* Private per-task flags */
749
750 /* For each stat XXX, add following, aligned appropriately
751 *
752 * struct timespec XXX_start, XXX_end;
753 * u64 XXX_delay;
754 * u32 XXX_count;
755 *
756 * Atomicity of updates to XXX_delay, XXX_count protected by
757 * single lock above (split into XXX_lock if contention is an issue).
758 */
759
760 /*
761 * XXX_count is incremented on every XXX operation, the delay
762 * associated with the operation is added to XXX_delay.
763 * XXX_delay contains the accumulated delay time in nanoseconds.
764 */
765 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
766 u64 blkio_delay; /* wait for sync block io completion */
767 u64 swapin_delay; /* wait for swapin block io completion */
768 u32 blkio_count; /* total count of the number of sync block */
769 /* io operations performed */
770 u32 swapin_count; /* total count of the number of swapin block */
771 /* io operations performed */
772
773 struct timespec freepages_start, freepages_end;
774 u64 freepages_delay; /* wait for memory reclaim */
775 u32 freepages_count; /* total count of memory reclaim */
776 };
777 #endif /* CONFIG_TASK_DELAY_ACCT */
778
779 static inline int sched_info_on(void)
780 {
781 #ifdef CONFIG_SCHEDSTATS
782 return 1;
783 #elif defined(CONFIG_TASK_DELAY_ACCT)
784 extern int delayacct_on;
785 return delayacct_on;
786 #else
787 return 0;
788 #endif
789 }
790
791 enum cpu_idle_type {
792 CPU_IDLE,
793 CPU_NOT_IDLE,
794 CPU_NEWLY_IDLE,
795 CPU_MAX_IDLE_TYPES
796 };
797
798 /*
799 * sched-domains (multiprocessor balancing) declarations:
800 */
801
802 /*
803 * Increase resolution of nice-level calculations:
804 */
805 #define SCHED_LOAD_SHIFT 10
806 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
807
808 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
809
810 #ifdef CONFIG_SMP
811 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
812 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
813 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
814 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
815 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
816 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
817 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
818 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
819 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
820 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
821 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
822
823 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
824
825 enum powersavings_balance_level {
826 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
827 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
828 * first for long running threads
829 */
830 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
831 * cpu package for power savings
832 */
833 MAX_POWERSAVINGS_BALANCE_LEVELS
834 };
835
836 extern int sched_mc_power_savings, sched_smt_power_savings;
837
838 static inline int sd_balance_for_mc_power(void)
839 {
840 if (sched_smt_power_savings)
841 return SD_POWERSAVINGS_BALANCE;
842
843 return SD_PREFER_SIBLING;
844 }
845
846 static inline int sd_balance_for_package_power(void)
847 {
848 if (sched_mc_power_savings | sched_smt_power_savings)
849 return SD_POWERSAVINGS_BALANCE;
850
851 return SD_PREFER_SIBLING;
852 }
853
854 /*
855 * Optimise SD flags for power savings:
856 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
857 * Keep default SD flags if sched_{smt,mc}_power_saving=0
858 */
859
860 static inline int sd_power_saving_flags(void)
861 {
862 if (sched_mc_power_savings | sched_smt_power_savings)
863 return SD_BALANCE_NEWIDLE;
864
865 return 0;
866 }
867
868 struct sched_group {
869 struct sched_group *next; /* Must be a circular list */
870
871 /*
872 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
873 * single CPU.
874 */
875 unsigned int cpu_power;
876
877 /*
878 * The CPUs this group covers.
879 *
880 * NOTE: this field is variable length. (Allocated dynamically
881 * by attaching extra space to the end of the structure,
882 * depending on how many CPUs the kernel has booted up with)
883 *
884 * It is also be embedded into static data structures at build
885 * time. (See 'struct static_sched_group' in kernel/sched.c)
886 */
887 unsigned long cpumask[0];
888 };
889
890 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
891 {
892 return to_cpumask(sg->cpumask);
893 }
894
895 enum sched_domain_level {
896 SD_LV_NONE = 0,
897 SD_LV_SIBLING,
898 SD_LV_MC,
899 SD_LV_CPU,
900 SD_LV_NODE,
901 SD_LV_ALLNODES,
902 SD_LV_MAX
903 };
904
905 struct sched_domain_attr {
906 int relax_domain_level;
907 };
908
909 #define SD_ATTR_INIT (struct sched_domain_attr) { \
910 .relax_domain_level = -1, \
911 }
912
913 struct sched_domain {
914 /* These fields must be setup */
915 struct sched_domain *parent; /* top domain must be null terminated */
916 struct sched_domain *child; /* bottom domain must be null terminated */
917 struct sched_group *groups; /* the balancing groups of the domain */
918 unsigned long min_interval; /* Minimum balance interval ms */
919 unsigned long max_interval; /* Maximum balance interval ms */
920 unsigned int busy_factor; /* less balancing by factor if busy */
921 unsigned int imbalance_pct; /* No balance until over watermark */
922 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
923 unsigned int busy_idx;
924 unsigned int idle_idx;
925 unsigned int newidle_idx;
926 unsigned int wake_idx;
927 unsigned int forkexec_idx;
928 unsigned int smt_gain;
929 int flags; /* See SD_* */
930 enum sched_domain_level level;
931
932 /* Runtime fields. */
933 unsigned long last_balance; /* init to jiffies. units in jiffies */
934 unsigned int balance_interval; /* initialise to 1. units in ms. */
935 unsigned int nr_balance_failed; /* initialise to 0 */
936
937 u64 last_update;
938
939 #ifdef CONFIG_SCHEDSTATS
940 /* load_balance() stats */
941 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
942 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
943 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
944 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
945 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
946 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
947 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
948 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
949
950 /* Active load balancing */
951 unsigned int alb_count;
952 unsigned int alb_failed;
953 unsigned int alb_pushed;
954
955 /* SD_BALANCE_EXEC stats */
956 unsigned int sbe_count;
957 unsigned int sbe_balanced;
958 unsigned int sbe_pushed;
959
960 /* SD_BALANCE_FORK stats */
961 unsigned int sbf_count;
962 unsigned int sbf_balanced;
963 unsigned int sbf_pushed;
964
965 /* try_to_wake_up() stats */
966 unsigned int ttwu_wake_remote;
967 unsigned int ttwu_move_affine;
968 unsigned int ttwu_move_balance;
969 #endif
970 #ifdef CONFIG_SCHED_DEBUG
971 char *name;
972 #endif
973
974 /*
975 * Span of all CPUs in this domain.
976 *
977 * NOTE: this field is variable length. (Allocated dynamically
978 * by attaching extra space to the end of the structure,
979 * depending on how many CPUs the kernel has booted up with)
980 *
981 * It is also be embedded into static data structures at build
982 * time. (See 'struct static_sched_domain' in kernel/sched.c)
983 */
984 unsigned long span[0];
985 };
986
987 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
988 {
989 return to_cpumask(sd->span);
990 }
991
992 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
993 struct sched_domain_attr *dattr_new);
994
995 /* Test a flag in parent sched domain */
996 static inline int test_sd_parent(struct sched_domain *sd, int flag)
997 {
998 if (sd->parent && (sd->parent->flags & flag))
999 return 1;
1000
1001 return 0;
1002 }
1003
1004 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1005 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1006
1007 #else /* CONFIG_SMP */
1008
1009 struct sched_domain_attr;
1010
1011 static inline void
1012 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1013 struct sched_domain_attr *dattr_new)
1014 {
1015 }
1016 #endif /* !CONFIG_SMP */
1017
1018
1019 struct io_context; /* See blkdev.h */
1020
1021
1022 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1023 extern void prefetch_stack(struct task_struct *t);
1024 #else
1025 static inline void prefetch_stack(struct task_struct *t) { }
1026 #endif
1027
1028 struct audit_context; /* See audit.c */
1029 struct mempolicy;
1030 struct pipe_inode_info;
1031 struct uts_namespace;
1032
1033 struct rq;
1034 struct sched_domain;
1035
1036 /*
1037 * wake flags
1038 */
1039 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1040 #define WF_FORK 0x02 /* child wakeup after fork */
1041
1042 struct sched_class {
1043 const struct sched_class *next;
1044
1045 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1046 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1047 void (*yield_task) (struct rq *rq);
1048
1049 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1050
1051 struct task_struct * (*pick_next_task) (struct rq *rq);
1052 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1053
1054 #ifdef CONFIG_SMP
1055 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1056
1057 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1058 struct rq *busiest, unsigned long max_load_move,
1059 struct sched_domain *sd, enum cpu_idle_type idle,
1060 int *all_pinned, int *this_best_prio);
1061
1062 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1063 struct rq *busiest, struct sched_domain *sd,
1064 enum cpu_idle_type idle);
1065 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1066 void (*post_schedule) (struct rq *this_rq);
1067 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1068
1069 void (*set_cpus_allowed)(struct task_struct *p,
1070 const struct cpumask *newmask);
1071
1072 void (*rq_online)(struct rq *rq);
1073 void (*rq_offline)(struct rq *rq);
1074 #endif
1075
1076 void (*set_curr_task) (struct rq *rq);
1077 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1078 void (*task_new) (struct rq *rq, struct task_struct *p);
1079
1080 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1081 int running);
1082 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1083 int running);
1084 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1085 int oldprio, int running);
1086
1087 unsigned int (*get_rr_interval) (struct task_struct *task);
1088
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090 void (*moved_group) (struct task_struct *p);
1091 #endif
1092 };
1093
1094 struct load_weight {
1095 unsigned long weight, inv_weight;
1096 };
1097
1098 /*
1099 * CFS stats for a schedulable entity (task, task-group etc)
1100 *
1101 * Current field usage histogram:
1102 *
1103 * 4 se->block_start
1104 * 4 se->run_node
1105 * 4 se->sleep_start
1106 * 6 se->load.weight
1107 */
1108 struct sched_entity {
1109 struct load_weight load; /* for load-balancing */
1110 struct rb_node run_node;
1111 struct list_head group_node;
1112 unsigned int on_rq;
1113
1114 u64 exec_start;
1115 u64 sum_exec_runtime;
1116 u64 vruntime;
1117 u64 prev_sum_exec_runtime;
1118
1119 u64 last_wakeup;
1120 u64 avg_overlap;
1121
1122 u64 nr_migrations;
1123
1124 u64 start_runtime;
1125 u64 avg_wakeup;
1126
1127 u64 avg_running;
1128
1129 #ifdef CONFIG_SCHEDSTATS
1130 u64 wait_start;
1131 u64 wait_max;
1132 u64 wait_count;
1133 u64 wait_sum;
1134 u64 iowait_count;
1135 u64 iowait_sum;
1136
1137 u64 sleep_start;
1138 u64 sleep_max;
1139 s64 sum_sleep_runtime;
1140
1141 u64 block_start;
1142 u64 block_max;
1143 u64 exec_max;
1144 u64 slice_max;
1145
1146 u64 nr_migrations_cold;
1147 u64 nr_failed_migrations_affine;
1148 u64 nr_failed_migrations_running;
1149 u64 nr_failed_migrations_hot;
1150 u64 nr_forced_migrations;
1151 u64 nr_forced2_migrations;
1152
1153 u64 nr_wakeups;
1154 u64 nr_wakeups_sync;
1155 u64 nr_wakeups_migrate;
1156 u64 nr_wakeups_local;
1157 u64 nr_wakeups_remote;
1158 u64 nr_wakeups_affine;
1159 u64 nr_wakeups_affine_attempts;
1160 u64 nr_wakeups_passive;
1161 u64 nr_wakeups_idle;
1162 #endif
1163
1164 #ifdef CONFIG_FAIR_GROUP_SCHED
1165 struct sched_entity *parent;
1166 /* rq on which this entity is (to be) queued: */
1167 struct cfs_rq *cfs_rq;
1168 /* rq "owned" by this entity/group: */
1169 struct cfs_rq *my_q;
1170 #endif
1171 };
1172
1173 struct sched_rt_entity {
1174 struct list_head run_list;
1175 unsigned long timeout;
1176 unsigned int time_slice;
1177 int nr_cpus_allowed;
1178
1179 struct sched_rt_entity *back;
1180 #ifdef CONFIG_RT_GROUP_SCHED
1181 struct sched_rt_entity *parent;
1182 /* rq on which this entity is (to be) queued: */
1183 struct rt_rq *rt_rq;
1184 /* rq "owned" by this entity/group: */
1185 struct rt_rq *my_q;
1186 #endif
1187 };
1188
1189 struct rcu_node;
1190
1191 struct task_struct {
1192 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1193 void *stack;
1194 atomic_t usage;
1195 unsigned int flags; /* per process flags, defined below */
1196 unsigned int ptrace;
1197
1198 int lock_depth; /* BKL lock depth */
1199
1200 #ifdef CONFIG_SMP
1201 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1202 int oncpu;
1203 #endif
1204 #endif
1205
1206 int prio, static_prio, normal_prio;
1207 unsigned int rt_priority;
1208 const struct sched_class *sched_class;
1209 struct sched_entity se;
1210 struct sched_rt_entity rt;
1211
1212 #ifdef CONFIG_PREEMPT_NOTIFIERS
1213 /* list of struct preempt_notifier: */
1214 struct hlist_head preempt_notifiers;
1215 #endif
1216
1217 /*
1218 * fpu_counter contains the number of consecutive context switches
1219 * that the FPU is used. If this is over a threshold, the lazy fpu
1220 * saving becomes unlazy to save the trap. This is an unsigned char
1221 * so that after 256 times the counter wraps and the behavior turns
1222 * lazy again; this to deal with bursty apps that only use FPU for
1223 * a short time
1224 */
1225 unsigned char fpu_counter;
1226 #ifdef CONFIG_BLK_DEV_IO_TRACE
1227 unsigned int btrace_seq;
1228 #endif
1229
1230 unsigned int policy;
1231 cpumask_t cpus_allowed;
1232
1233 #ifdef CONFIG_TREE_PREEMPT_RCU
1234 int rcu_read_lock_nesting;
1235 char rcu_read_unlock_special;
1236 struct rcu_node *rcu_blocked_node;
1237 struct list_head rcu_node_entry;
1238 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1239
1240 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1241 struct sched_info sched_info;
1242 #endif
1243
1244 struct list_head tasks;
1245 struct plist_node pushable_tasks;
1246
1247 struct mm_struct *mm, *active_mm;
1248
1249 /* task state */
1250 struct linux_binfmt *binfmt;
1251 int exit_state;
1252 int exit_code, exit_signal;
1253 int pdeath_signal; /* The signal sent when the parent dies */
1254 /* ??? */
1255 unsigned int personality;
1256 unsigned did_exec:1;
1257 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1258 * execve */
1259 unsigned in_iowait:1;
1260
1261
1262 /* Revert to default priority/policy when forking */
1263 unsigned sched_reset_on_fork:1;
1264
1265 pid_t pid;
1266 pid_t tgid;
1267
1268 #ifdef CONFIG_CC_STACKPROTECTOR
1269 /* Canary value for the -fstack-protector gcc feature */
1270 unsigned long stack_canary;
1271 #endif
1272
1273 /*
1274 * pointers to (original) parent process, youngest child, younger sibling,
1275 * older sibling, respectively. (p->father can be replaced with
1276 * p->real_parent->pid)
1277 */
1278 struct task_struct *real_parent; /* real parent process */
1279 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1280 /*
1281 * children/sibling forms the list of my natural children
1282 */
1283 struct list_head children; /* list of my children */
1284 struct list_head sibling; /* linkage in my parent's children list */
1285 struct task_struct *group_leader; /* threadgroup leader */
1286
1287 /*
1288 * ptraced is the list of tasks this task is using ptrace on.
1289 * This includes both natural children and PTRACE_ATTACH targets.
1290 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1291 */
1292 struct list_head ptraced;
1293 struct list_head ptrace_entry;
1294
1295 /*
1296 * This is the tracer handle for the ptrace BTS extension.
1297 * This field actually belongs to the ptracer task.
1298 */
1299 struct bts_context *bts;
1300
1301 /* PID/PID hash table linkage. */
1302 struct pid_link pids[PIDTYPE_MAX];
1303 struct list_head thread_group;
1304
1305 struct completion *vfork_done; /* for vfork() */
1306 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1307 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1308
1309 cputime_t utime, stime, utimescaled, stimescaled;
1310 cputime_t gtime;
1311 cputime_t prev_utime, prev_stime;
1312 unsigned long nvcsw, nivcsw; /* context switch counts */
1313 struct timespec start_time; /* monotonic time */
1314 struct timespec real_start_time; /* boot based time */
1315 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1316 unsigned long min_flt, maj_flt;
1317
1318 struct task_cputime cputime_expires;
1319 struct list_head cpu_timers[3];
1320
1321 /* process credentials */
1322 const struct cred *real_cred; /* objective and real subjective task
1323 * credentials (COW) */
1324 const struct cred *cred; /* effective (overridable) subjective task
1325 * credentials (COW) */
1326 struct mutex cred_guard_mutex; /* guard against foreign influences on
1327 * credential calculations
1328 * (notably. ptrace) */
1329 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1330
1331 char comm[TASK_COMM_LEN]; /* executable name excluding path
1332 - access with [gs]et_task_comm (which lock
1333 it with task_lock())
1334 - initialized normally by flush_old_exec */
1335 /* file system info */
1336 int link_count, total_link_count;
1337 #ifdef CONFIG_SYSVIPC
1338 /* ipc stuff */
1339 struct sysv_sem sysvsem;
1340 #endif
1341 #ifdef CONFIG_DETECT_HUNG_TASK
1342 /* hung task detection */
1343 unsigned long last_switch_count;
1344 #endif
1345 /* CPU-specific state of this task */
1346 struct thread_struct thread;
1347 /* filesystem information */
1348 struct fs_struct *fs;
1349 /* open file information */
1350 struct files_struct *files;
1351 /* namespaces */
1352 struct nsproxy *nsproxy;
1353 /* signal handlers */
1354 struct signal_struct *signal;
1355 struct sighand_struct *sighand;
1356
1357 sigset_t blocked, real_blocked;
1358 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1359 struct sigpending pending;
1360
1361 unsigned long sas_ss_sp;
1362 size_t sas_ss_size;
1363 int (*notifier)(void *priv);
1364 void *notifier_data;
1365 sigset_t *notifier_mask;
1366 struct audit_context *audit_context;
1367 #ifdef CONFIG_AUDITSYSCALL
1368 uid_t loginuid;
1369 unsigned int sessionid;
1370 #endif
1371 seccomp_t seccomp;
1372
1373 /* Thread group tracking */
1374 u32 parent_exec_id;
1375 u32 self_exec_id;
1376 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1377 * mempolicy */
1378 spinlock_t alloc_lock;
1379
1380 #ifdef CONFIG_GENERIC_HARDIRQS
1381 /* IRQ handler threads */
1382 struct irqaction *irqaction;
1383 #endif
1384
1385 /* Protection of the PI data structures: */
1386 spinlock_t pi_lock;
1387
1388 #ifdef CONFIG_RT_MUTEXES
1389 /* PI waiters blocked on a rt_mutex held by this task */
1390 struct plist_head pi_waiters;
1391 /* Deadlock detection and priority inheritance handling */
1392 struct rt_mutex_waiter *pi_blocked_on;
1393 #endif
1394
1395 #ifdef CONFIG_DEBUG_MUTEXES
1396 /* mutex deadlock detection */
1397 struct mutex_waiter *blocked_on;
1398 #endif
1399 #ifdef CONFIG_TRACE_IRQFLAGS
1400 unsigned int irq_events;
1401 int hardirqs_enabled;
1402 unsigned long hardirq_enable_ip;
1403 unsigned int hardirq_enable_event;
1404 unsigned long hardirq_disable_ip;
1405 unsigned int hardirq_disable_event;
1406 int softirqs_enabled;
1407 unsigned long softirq_disable_ip;
1408 unsigned int softirq_disable_event;
1409 unsigned long softirq_enable_ip;
1410 unsigned int softirq_enable_event;
1411 int hardirq_context;
1412 int softirq_context;
1413 #endif
1414 #ifdef CONFIG_LOCKDEP
1415 # define MAX_LOCK_DEPTH 48UL
1416 u64 curr_chain_key;
1417 int lockdep_depth;
1418 unsigned int lockdep_recursion;
1419 struct held_lock held_locks[MAX_LOCK_DEPTH];
1420 gfp_t lockdep_reclaim_gfp;
1421 #endif
1422
1423 /* journalling filesystem info */
1424 void *journal_info;
1425
1426 /* stacked block device info */
1427 struct bio *bio_list, **bio_tail;
1428
1429 /* VM state */
1430 struct reclaim_state *reclaim_state;
1431
1432 struct backing_dev_info *backing_dev_info;
1433
1434 struct io_context *io_context;
1435
1436 unsigned long ptrace_message;
1437 siginfo_t *last_siginfo; /* For ptrace use. */
1438 struct task_io_accounting ioac;
1439 #if defined(CONFIG_TASK_XACCT)
1440 u64 acct_rss_mem1; /* accumulated rss usage */
1441 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1442 cputime_t acct_timexpd; /* stime + utime since last update */
1443 #endif
1444 #ifdef CONFIG_CPUSETS
1445 nodemask_t mems_allowed; /* Protected by alloc_lock */
1446 int cpuset_mem_spread_rotor;
1447 #endif
1448 #ifdef CONFIG_CGROUPS
1449 /* Control Group info protected by css_set_lock */
1450 struct css_set *cgroups;
1451 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1452 struct list_head cg_list;
1453 #endif
1454 #ifdef CONFIG_FUTEX
1455 struct robust_list_head __user *robust_list;
1456 #ifdef CONFIG_COMPAT
1457 struct compat_robust_list_head __user *compat_robust_list;
1458 #endif
1459 struct list_head pi_state_list;
1460 struct futex_pi_state *pi_state_cache;
1461 #endif
1462 #ifdef CONFIG_PERF_EVENTS
1463 struct perf_event_context *perf_event_ctxp;
1464 struct mutex perf_event_mutex;
1465 struct list_head perf_event_list;
1466 #endif
1467 #ifdef CONFIG_NUMA
1468 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1469 short il_next;
1470 #endif
1471 atomic_t fs_excl; /* holding fs exclusive resources */
1472 struct rcu_head rcu;
1473
1474 /*
1475 * cache last used pipe for splice
1476 */
1477 struct pipe_inode_info *splice_pipe;
1478 #ifdef CONFIG_TASK_DELAY_ACCT
1479 struct task_delay_info *delays;
1480 #endif
1481 #ifdef CONFIG_FAULT_INJECTION
1482 int make_it_fail;
1483 #endif
1484 struct prop_local_single dirties;
1485 #ifdef CONFIG_LATENCYTOP
1486 int latency_record_count;
1487 struct latency_record latency_record[LT_SAVECOUNT];
1488 #endif
1489 /*
1490 * time slack values; these are used to round up poll() and
1491 * select() etc timeout values. These are in nanoseconds.
1492 */
1493 unsigned long timer_slack_ns;
1494 unsigned long default_timer_slack_ns;
1495
1496 struct list_head *scm_work_list;
1497 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1498 /* Index of current stored adress in ret_stack */
1499 int curr_ret_stack;
1500 /* Stack of return addresses for return function tracing */
1501 struct ftrace_ret_stack *ret_stack;
1502 /* time stamp for last schedule */
1503 unsigned long long ftrace_timestamp;
1504 /*
1505 * Number of functions that haven't been traced
1506 * because of depth overrun.
1507 */
1508 atomic_t trace_overrun;
1509 /* Pause for the tracing */
1510 atomic_t tracing_graph_pause;
1511 #endif
1512 #ifdef CONFIG_TRACING
1513 /* state flags for use by tracers */
1514 unsigned long trace;
1515 /* bitmask of trace recursion */
1516 unsigned long trace_recursion;
1517 #endif /* CONFIG_TRACING */
1518 };
1519
1520 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1521 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1522
1523 /*
1524 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1525 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1526 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1527 * values are inverted: lower p->prio value means higher priority.
1528 *
1529 * The MAX_USER_RT_PRIO value allows the actual maximum
1530 * RT priority to be separate from the value exported to
1531 * user-space. This allows kernel threads to set their
1532 * priority to a value higher than any user task. Note:
1533 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1534 */
1535
1536 #define MAX_USER_RT_PRIO 100
1537 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1538
1539 #define MAX_PRIO (MAX_RT_PRIO + 40)
1540 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1541
1542 static inline int rt_prio(int prio)
1543 {
1544 if (unlikely(prio < MAX_RT_PRIO))
1545 return 1;
1546 return 0;
1547 }
1548
1549 static inline int rt_task(struct task_struct *p)
1550 {
1551 return rt_prio(p->prio);
1552 }
1553
1554 static inline struct pid *task_pid(struct task_struct *task)
1555 {
1556 return task->pids[PIDTYPE_PID].pid;
1557 }
1558
1559 static inline struct pid *task_tgid(struct task_struct *task)
1560 {
1561 return task->group_leader->pids[PIDTYPE_PID].pid;
1562 }
1563
1564 /*
1565 * Without tasklist or rcu lock it is not safe to dereference
1566 * the result of task_pgrp/task_session even if task == current,
1567 * we can race with another thread doing sys_setsid/sys_setpgid.
1568 */
1569 static inline struct pid *task_pgrp(struct task_struct *task)
1570 {
1571 return task->group_leader->pids[PIDTYPE_PGID].pid;
1572 }
1573
1574 static inline struct pid *task_session(struct task_struct *task)
1575 {
1576 return task->group_leader->pids[PIDTYPE_SID].pid;
1577 }
1578
1579 struct pid_namespace;
1580
1581 /*
1582 * the helpers to get the task's different pids as they are seen
1583 * from various namespaces
1584 *
1585 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1586 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1587 * current.
1588 * task_xid_nr_ns() : id seen from the ns specified;
1589 *
1590 * set_task_vxid() : assigns a virtual id to a task;
1591 *
1592 * see also pid_nr() etc in include/linux/pid.h
1593 */
1594 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1595 struct pid_namespace *ns);
1596
1597 static inline pid_t task_pid_nr(struct task_struct *tsk)
1598 {
1599 return tsk->pid;
1600 }
1601
1602 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1603 struct pid_namespace *ns)
1604 {
1605 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1606 }
1607
1608 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1609 {
1610 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1611 }
1612
1613
1614 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1615 {
1616 return tsk->tgid;
1617 }
1618
1619 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1620
1621 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1622 {
1623 return pid_vnr(task_tgid(tsk));
1624 }
1625
1626
1627 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1628 struct pid_namespace *ns)
1629 {
1630 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1631 }
1632
1633 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1634 {
1635 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1636 }
1637
1638
1639 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1640 struct pid_namespace *ns)
1641 {
1642 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1643 }
1644
1645 static inline pid_t task_session_vnr(struct task_struct *tsk)
1646 {
1647 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1648 }
1649
1650 /* obsolete, do not use */
1651 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1652 {
1653 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1654 }
1655
1656 /**
1657 * pid_alive - check that a task structure is not stale
1658 * @p: Task structure to be checked.
1659 *
1660 * Test if a process is not yet dead (at most zombie state)
1661 * If pid_alive fails, then pointers within the task structure
1662 * can be stale and must not be dereferenced.
1663 */
1664 static inline int pid_alive(struct task_struct *p)
1665 {
1666 return p->pids[PIDTYPE_PID].pid != NULL;
1667 }
1668
1669 /**
1670 * is_global_init - check if a task structure is init
1671 * @tsk: Task structure to be checked.
1672 *
1673 * Check if a task structure is the first user space task the kernel created.
1674 */
1675 static inline int is_global_init(struct task_struct *tsk)
1676 {
1677 return tsk->pid == 1;
1678 }
1679
1680 /*
1681 * is_container_init:
1682 * check whether in the task is init in its own pid namespace.
1683 */
1684 extern int is_container_init(struct task_struct *tsk);
1685
1686 extern struct pid *cad_pid;
1687
1688 extern void free_task(struct task_struct *tsk);
1689 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1690
1691 extern void __put_task_struct(struct task_struct *t);
1692
1693 static inline void put_task_struct(struct task_struct *t)
1694 {
1695 if (atomic_dec_and_test(&t->usage))
1696 __put_task_struct(t);
1697 }
1698
1699 extern cputime_t task_utime(struct task_struct *p);
1700 extern cputime_t task_stime(struct task_struct *p);
1701 extern cputime_t task_gtime(struct task_struct *p);
1702
1703 /*
1704 * Per process flags
1705 */
1706 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1707 /* Not implemented yet, only for 486*/
1708 #define PF_STARTING 0x00000002 /* being created */
1709 #define PF_EXITING 0x00000004 /* getting shut down */
1710 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1711 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1712 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1713 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1714 #define PF_DUMPCORE 0x00000200 /* dumped core */
1715 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1716 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1717 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1718 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1719 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1720 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1721 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1722 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1723 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1724 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1725 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1726 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1727 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1728 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1729 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1730 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1731 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1732 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1733 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1734 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1735 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1736
1737 /*
1738 * Only the _current_ task can read/write to tsk->flags, but other
1739 * tasks can access tsk->flags in readonly mode for example
1740 * with tsk_used_math (like during threaded core dumping).
1741 * There is however an exception to this rule during ptrace
1742 * or during fork: the ptracer task is allowed to write to the
1743 * child->flags of its traced child (same goes for fork, the parent
1744 * can write to the child->flags), because we're guaranteed the
1745 * child is not running and in turn not changing child->flags
1746 * at the same time the parent does it.
1747 */
1748 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1749 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1750 #define clear_used_math() clear_stopped_child_used_math(current)
1751 #define set_used_math() set_stopped_child_used_math(current)
1752 #define conditional_stopped_child_used_math(condition, child) \
1753 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1754 #define conditional_used_math(condition) \
1755 conditional_stopped_child_used_math(condition, current)
1756 #define copy_to_stopped_child_used_math(child) \
1757 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1758 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1759 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1760 #define used_math() tsk_used_math(current)
1761
1762 #ifdef CONFIG_TREE_PREEMPT_RCU
1763
1764 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1765 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1766
1767 static inline void rcu_copy_process(struct task_struct *p)
1768 {
1769 p->rcu_read_lock_nesting = 0;
1770 p->rcu_read_unlock_special = 0;
1771 p->rcu_blocked_node = NULL;
1772 INIT_LIST_HEAD(&p->rcu_node_entry);
1773 }
1774
1775 #else
1776
1777 static inline void rcu_copy_process(struct task_struct *p)
1778 {
1779 }
1780
1781 #endif
1782
1783 #ifdef CONFIG_SMP
1784 extern int set_cpus_allowed_ptr(struct task_struct *p,
1785 const struct cpumask *new_mask);
1786 #else
1787 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1788 const struct cpumask *new_mask)
1789 {
1790 if (!cpumask_test_cpu(0, new_mask))
1791 return -EINVAL;
1792 return 0;
1793 }
1794 #endif
1795 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1796 {
1797 return set_cpus_allowed_ptr(p, &new_mask);
1798 }
1799
1800 /*
1801 * Architectures can set this to 1 if they have specified
1802 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1803 * but then during bootup it turns out that sched_clock()
1804 * is reliable after all:
1805 */
1806 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1807 extern int sched_clock_stable;
1808 #endif
1809
1810 extern unsigned long long sched_clock(void);
1811
1812 extern void sched_clock_init(void);
1813 extern u64 sched_clock_cpu(int cpu);
1814
1815 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1816 static inline void sched_clock_tick(void)
1817 {
1818 }
1819
1820 static inline void sched_clock_idle_sleep_event(void)
1821 {
1822 }
1823
1824 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1825 {
1826 }
1827 #else
1828 extern void sched_clock_tick(void);
1829 extern void sched_clock_idle_sleep_event(void);
1830 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1831 #endif
1832
1833 /*
1834 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1835 * clock constructed from sched_clock():
1836 */
1837 extern unsigned long long cpu_clock(int cpu);
1838
1839 extern unsigned long long
1840 task_sched_runtime(struct task_struct *task);
1841 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1842
1843 /* sched_exec is called by processes performing an exec */
1844 #ifdef CONFIG_SMP
1845 extern void sched_exec(void);
1846 #else
1847 #define sched_exec() {}
1848 #endif
1849
1850 extern void sched_clock_idle_sleep_event(void);
1851 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1852
1853 #ifdef CONFIG_HOTPLUG_CPU
1854 extern void idle_task_exit(void);
1855 #else
1856 static inline void idle_task_exit(void) {}
1857 #endif
1858
1859 extern void sched_idle_next(void);
1860
1861 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1862 extern void wake_up_idle_cpu(int cpu);
1863 #else
1864 static inline void wake_up_idle_cpu(int cpu) { }
1865 #endif
1866
1867 extern unsigned int sysctl_sched_latency;
1868 extern unsigned int sysctl_sched_min_granularity;
1869 extern unsigned int sysctl_sched_wakeup_granularity;
1870 extern unsigned int sysctl_sched_shares_ratelimit;
1871 extern unsigned int sysctl_sched_shares_thresh;
1872 extern unsigned int sysctl_sched_child_runs_first;
1873 #ifdef CONFIG_SCHED_DEBUG
1874 extern unsigned int sysctl_sched_features;
1875 extern unsigned int sysctl_sched_migration_cost;
1876 extern unsigned int sysctl_sched_nr_migrate;
1877 extern unsigned int sysctl_sched_time_avg;
1878 extern unsigned int sysctl_timer_migration;
1879
1880 int sched_nr_latency_handler(struct ctl_table *table, int write,
1881 struct file *file, void __user *buffer, size_t *length,
1882 loff_t *ppos);
1883 #endif
1884 #ifdef CONFIG_SCHED_DEBUG
1885 static inline unsigned int get_sysctl_timer_migration(void)
1886 {
1887 return sysctl_timer_migration;
1888 }
1889 #else
1890 static inline unsigned int get_sysctl_timer_migration(void)
1891 {
1892 return 1;
1893 }
1894 #endif
1895 extern unsigned int sysctl_sched_rt_period;
1896 extern int sysctl_sched_rt_runtime;
1897
1898 int sched_rt_handler(struct ctl_table *table, int write,
1899 struct file *filp, void __user *buffer, size_t *lenp,
1900 loff_t *ppos);
1901
1902 extern unsigned int sysctl_sched_compat_yield;
1903
1904 #ifdef CONFIG_RT_MUTEXES
1905 extern int rt_mutex_getprio(struct task_struct *p);
1906 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1907 extern void rt_mutex_adjust_pi(struct task_struct *p);
1908 #else
1909 static inline int rt_mutex_getprio(struct task_struct *p)
1910 {
1911 return p->normal_prio;
1912 }
1913 # define rt_mutex_adjust_pi(p) do { } while (0)
1914 #endif
1915
1916 extern void set_user_nice(struct task_struct *p, long nice);
1917 extern int task_prio(const struct task_struct *p);
1918 extern int task_nice(const struct task_struct *p);
1919 extern int can_nice(const struct task_struct *p, const int nice);
1920 extern int task_curr(const struct task_struct *p);
1921 extern int idle_cpu(int cpu);
1922 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1923 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1924 struct sched_param *);
1925 extern struct task_struct *idle_task(int cpu);
1926 extern struct task_struct *curr_task(int cpu);
1927 extern void set_curr_task(int cpu, struct task_struct *p);
1928
1929 void yield(void);
1930
1931 /*
1932 * The default (Linux) execution domain.
1933 */
1934 extern struct exec_domain default_exec_domain;
1935
1936 union thread_union {
1937 struct thread_info thread_info;
1938 unsigned long stack[THREAD_SIZE/sizeof(long)];
1939 };
1940
1941 #ifndef __HAVE_ARCH_KSTACK_END
1942 static inline int kstack_end(void *addr)
1943 {
1944 /* Reliable end of stack detection:
1945 * Some APM bios versions misalign the stack
1946 */
1947 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1948 }
1949 #endif
1950
1951 extern union thread_union init_thread_union;
1952 extern struct task_struct init_task;
1953
1954 extern struct mm_struct init_mm;
1955
1956 extern struct pid_namespace init_pid_ns;
1957
1958 /*
1959 * find a task by one of its numerical ids
1960 *
1961 * find_task_by_pid_ns():
1962 * finds a task by its pid in the specified namespace
1963 * find_task_by_vpid():
1964 * finds a task by its virtual pid
1965 *
1966 * see also find_vpid() etc in include/linux/pid.h
1967 */
1968
1969 extern struct task_struct *find_task_by_vpid(pid_t nr);
1970 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1971 struct pid_namespace *ns);
1972
1973 extern void __set_special_pids(struct pid *pid);
1974
1975 /* per-UID process charging. */
1976 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1977 static inline struct user_struct *get_uid(struct user_struct *u)
1978 {
1979 atomic_inc(&u->__count);
1980 return u;
1981 }
1982 extern void free_uid(struct user_struct *);
1983 extern void release_uids(struct user_namespace *ns);
1984
1985 #include <asm/current.h>
1986
1987 extern void do_timer(unsigned long ticks);
1988
1989 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1990 extern int wake_up_process(struct task_struct *tsk);
1991 extern void wake_up_new_task(struct task_struct *tsk,
1992 unsigned long clone_flags);
1993 #ifdef CONFIG_SMP
1994 extern void kick_process(struct task_struct *tsk);
1995 #else
1996 static inline void kick_process(struct task_struct *tsk) { }
1997 #endif
1998 extern void sched_fork(struct task_struct *p, int clone_flags);
1999 extern void sched_dead(struct task_struct *p);
2000
2001 extern void proc_caches_init(void);
2002 extern void flush_signals(struct task_struct *);
2003 extern void __flush_signals(struct task_struct *);
2004 extern void ignore_signals(struct task_struct *);
2005 extern void flush_signal_handlers(struct task_struct *, int force_default);
2006 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2007
2008 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2009 {
2010 unsigned long flags;
2011 int ret;
2012
2013 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2014 ret = dequeue_signal(tsk, mask, info);
2015 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2016
2017 return ret;
2018 }
2019
2020 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2021 sigset_t *mask);
2022 extern void unblock_all_signals(void);
2023 extern void release_task(struct task_struct * p);
2024 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2025 extern int force_sigsegv(int, struct task_struct *);
2026 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2027 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2028 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2029 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2030 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2031 extern int kill_pid(struct pid *pid, int sig, int priv);
2032 extern int kill_proc_info(int, struct siginfo *, pid_t);
2033 extern int do_notify_parent(struct task_struct *, int);
2034 extern void force_sig(int, struct task_struct *);
2035 extern void force_sig_specific(int, struct task_struct *);
2036 extern int send_sig(int, struct task_struct *, int);
2037 extern void zap_other_threads(struct task_struct *p);
2038 extern struct sigqueue *sigqueue_alloc(void);
2039 extern void sigqueue_free(struct sigqueue *);
2040 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2041 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2042 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2043
2044 static inline int kill_cad_pid(int sig, int priv)
2045 {
2046 return kill_pid(cad_pid, sig, priv);
2047 }
2048
2049 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2050 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2051 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2052 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2053
2054 static inline int is_si_special(const struct siginfo *info)
2055 {
2056 return info <= SEND_SIG_FORCED;
2057 }
2058
2059 /* True if we are on the alternate signal stack. */
2060
2061 static inline int on_sig_stack(unsigned long sp)
2062 {
2063 return (sp - current->sas_ss_sp < current->sas_ss_size);
2064 }
2065
2066 static inline int sas_ss_flags(unsigned long sp)
2067 {
2068 return (current->sas_ss_size == 0 ? SS_DISABLE
2069 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2070 }
2071
2072 /*
2073 * Routines for handling mm_structs
2074 */
2075 extern struct mm_struct * mm_alloc(void);
2076
2077 /* mmdrop drops the mm and the page tables */
2078 extern void __mmdrop(struct mm_struct *);
2079 static inline void mmdrop(struct mm_struct * mm)
2080 {
2081 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2082 __mmdrop(mm);
2083 }
2084
2085 /* mmput gets rid of the mappings and all user-space */
2086 extern void mmput(struct mm_struct *);
2087 /* Grab a reference to a task's mm, if it is not already going away */
2088 extern struct mm_struct *get_task_mm(struct task_struct *task);
2089 /* Remove the current tasks stale references to the old mm_struct */
2090 extern void mm_release(struct task_struct *, struct mm_struct *);
2091 /* Allocate a new mm structure and copy contents from tsk->mm */
2092 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2093
2094 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2095 struct task_struct *, struct pt_regs *);
2096 extern void flush_thread(void);
2097 extern void exit_thread(void);
2098
2099 extern void exit_files(struct task_struct *);
2100 extern void __cleanup_signal(struct signal_struct *);
2101 extern void __cleanup_sighand(struct sighand_struct *);
2102
2103 extern void exit_itimers(struct signal_struct *);
2104 extern void flush_itimer_signals(void);
2105
2106 extern NORET_TYPE void do_group_exit(int);
2107
2108 extern void daemonize(const char *, ...);
2109 extern int allow_signal(int);
2110 extern int disallow_signal(int);
2111
2112 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2113 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2114 struct task_struct *fork_idle(int);
2115
2116 extern void set_task_comm(struct task_struct *tsk, char *from);
2117 extern char *get_task_comm(char *to, struct task_struct *tsk);
2118
2119 #ifdef CONFIG_SMP
2120 extern void wait_task_context_switch(struct task_struct *p);
2121 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2122 #else
2123 static inline void wait_task_context_switch(struct task_struct *p) {}
2124 static inline unsigned long wait_task_inactive(struct task_struct *p,
2125 long match_state)
2126 {
2127 return 1;
2128 }
2129 #endif
2130
2131 #define next_task(p) \
2132 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2133
2134 #define for_each_process(p) \
2135 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2136
2137 extern bool current_is_single_threaded(void);
2138
2139 /*
2140 * Careful: do_each_thread/while_each_thread is a double loop so
2141 * 'break' will not work as expected - use goto instead.
2142 */
2143 #define do_each_thread(g, t) \
2144 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2145
2146 #define while_each_thread(g, t) \
2147 while ((t = next_thread(t)) != g)
2148
2149 /* de_thread depends on thread_group_leader not being a pid based check */
2150 #define thread_group_leader(p) (p == p->group_leader)
2151
2152 /* Do to the insanities of de_thread it is possible for a process
2153 * to have the pid of the thread group leader without actually being
2154 * the thread group leader. For iteration through the pids in proc
2155 * all we care about is that we have a task with the appropriate
2156 * pid, we don't actually care if we have the right task.
2157 */
2158 static inline int has_group_leader_pid(struct task_struct *p)
2159 {
2160 return p->pid == p->tgid;
2161 }
2162
2163 static inline
2164 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2165 {
2166 return p1->tgid == p2->tgid;
2167 }
2168
2169 static inline struct task_struct *next_thread(const struct task_struct *p)
2170 {
2171 return list_entry_rcu(p->thread_group.next,
2172 struct task_struct, thread_group);
2173 }
2174
2175 static inline int thread_group_empty(struct task_struct *p)
2176 {
2177 return list_empty(&p->thread_group);
2178 }
2179
2180 #define delay_group_leader(p) \
2181 (thread_group_leader(p) && !thread_group_empty(p))
2182
2183 static inline int task_detached(struct task_struct *p)
2184 {
2185 return p->exit_signal == -1;
2186 }
2187
2188 /*
2189 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2190 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2191 * pins the final release of task.io_context. Also protects ->cpuset and
2192 * ->cgroup.subsys[].
2193 *
2194 * Nests both inside and outside of read_lock(&tasklist_lock).
2195 * It must not be nested with write_lock_irq(&tasklist_lock),
2196 * neither inside nor outside.
2197 */
2198 static inline void task_lock(struct task_struct *p)
2199 {
2200 spin_lock(&p->alloc_lock);
2201 }
2202
2203 static inline void task_unlock(struct task_struct *p)
2204 {
2205 spin_unlock(&p->alloc_lock);
2206 }
2207
2208 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2209 unsigned long *flags);
2210
2211 static inline void unlock_task_sighand(struct task_struct *tsk,
2212 unsigned long *flags)
2213 {
2214 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2215 }
2216
2217 #ifndef __HAVE_THREAD_FUNCTIONS
2218
2219 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2220 #define task_stack_page(task) ((task)->stack)
2221
2222 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2223 {
2224 *task_thread_info(p) = *task_thread_info(org);
2225 task_thread_info(p)->task = p;
2226 }
2227
2228 static inline unsigned long *end_of_stack(struct task_struct *p)
2229 {
2230 return (unsigned long *)(task_thread_info(p) + 1);
2231 }
2232
2233 #endif
2234
2235 static inline int object_is_on_stack(void *obj)
2236 {
2237 void *stack = task_stack_page(current);
2238
2239 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2240 }
2241
2242 extern void thread_info_cache_init(void);
2243
2244 #ifdef CONFIG_DEBUG_STACK_USAGE
2245 static inline unsigned long stack_not_used(struct task_struct *p)
2246 {
2247 unsigned long *n = end_of_stack(p);
2248
2249 do { /* Skip over canary */
2250 n++;
2251 } while (!*n);
2252
2253 return (unsigned long)n - (unsigned long)end_of_stack(p);
2254 }
2255 #endif
2256
2257 /* set thread flags in other task's structures
2258 * - see asm/thread_info.h for TIF_xxxx flags available
2259 */
2260 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2261 {
2262 set_ti_thread_flag(task_thread_info(tsk), flag);
2263 }
2264
2265 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2266 {
2267 clear_ti_thread_flag(task_thread_info(tsk), flag);
2268 }
2269
2270 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2271 {
2272 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2273 }
2274
2275 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2276 {
2277 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2278 }
2279
2280 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2281 {
2282 return test_ti_thread_flag(task_thread_info(tsk), flag);
2283 }
2284
2285 static inline void set_tsk_need_resched(struct task_struct *tsk)
2286 {
2287 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2288 }
2289
2290 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2291 {
2292 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2293 }
2294
2295 static inline int test_tsk_need_resched(struct task_struct *tsk)
2296 {
2297 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2298 }
2299
2300 static inline int restart_syscall(void)
2301 {
2302 set_tsk_thread_flag(current, TIF_SIGPENDING);
2303 return -ERESTARTNOINTR;
2304 }
2305
2306 static inline int signal_pending(struct task_struct *p)
2307 {
2308 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2309 }
2310
2311 extern int __fatal_signal_pending(struct task_struct *p);
2312
2313 static inline int fatal_signal_pending(struct task_struct *p)
2314 {
2315 return signal_pending(p) && __fatal_signal_pending(p);
2316 }
2317
2318 static inline int signal_pending_state(long state, struct task_struct *p)
2319 {
2320 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2321 return 0;
2322 if (!signal_pending(p))
2323 return 0;
2324
2325 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2326 }
2327
2328 static inline int need_resched(void)
2329 {
2330 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2331 }
2332
2333 /*
2334 * cond_resched() and cond_resched_lock(): latency reduction via
2335 * explicit rescheduling in places that are safe. The return
2336 * value indicates whether a reschedule was done in fact.
2337 * cond_resched_lock() will drop the spinlock before scheduling,
2338 * cond_resched_softirq() will enable bhs before scheduling.
2339 */
2340 extern int _cond_resched(void);
2341
2342 #define cond_resched() ({ \
2343 __might_sleep(__FILE__, __LINE__, 0); \
2344 _cond_resched(); \
2345 })
2346
2347 extern int __cond_resched_lock(spinlock_t *lock);
2348
2349 #ifdef CONFIG_PREEMPT
2350 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2351 #else
2352 #define PREEMPT_LOCK_OFFSET 0
2353 #endif
2354
2355 #define cond_resched_lock(lock) ({ \
2356 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2357 __cond_resched_lock(lock); \
2358 })
2359
2360 extern int __cond_resched_softirq(void);
2361
2362 #define cond_resched_softirq() ({ \
2363 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2364 __cond_resched_softirq(); \
2365 })
2366
2367 /*
2368 * Does a critical section need to be broken due to another
2369 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2370 * but a general need for low latency)
2371 */
2372 static inline int spin_needbreak(spinlock_t *lock)
2373 {
2374 #ifdef CONFIG_PREEMPT
2375 return spin_is_contended(lock);
2376 #else
2377 return 0;
2378 #endif
2379 }
2380
2381 /*
2382 * Thread group CPU time accounting.
2383 */
2384 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2385 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2386
2387 static inline void thread_group_cputime_init(struct signal_struct *sig)
2388 {
2389 sig->cputimer.cputime = INIT_CPUTIME;
2390 spin_lock_init(&sig->cputimer.lock);
2391 sig->cputimer.running = 0;
2392 }
2393
2394 static inline void thread_group_cputime_free(struct signal_struct *sig)
2395 {
2396 }
2397
2398 /*
2399 * Reevaluate whether the task has signals pending delivery.
2400 * Wake the task if so.
2401 * This is required every time the blocked sigset_t changes.
2402 * callers must hold sighand->siglock.
2403 */
2404 extern void recalc_sigpending_and_wake(struct task_struct *t);
2405 extern void recalc_sigpending(void);
2406
2407 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2408
2409 /*
2410 * Wrappers for p->thread_info->cpu access. No-op on UP.
2411 */
2412 #ifdef CONFIG_SMP
2413
2414 static inline unsigned int task_cpu(const struct task_struct *p)
2415 {
2416 return task_thread_info(p)->cpu;
2417 }
2418
2419 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2420
2421 #else
2422
2423 static inline unsigned int task_cpu(const struct task_struct *p)
2424 {
2425 return 0;
2426 }
2427
2428 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2429 {
2430 }
2431
2432 #endif /* CONFIG_SMP */
2433
2434 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2435
2436 #ifdef CONFIG_TRACING
2437 extern void
2438 __trace_special(void *__tr, void *__data,
2439 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2440 #else
2441 static inline void
2442 __trace_special(void *__tr, void *__data,
2443 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2444 {
2445 }
2446 #endif
2447
2448 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2449 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2450
2451 extern void normalize_rt_tasks(void);
2452
2453 #ifdef CONFIG_GROUP_SCHED
2454
2455 extern struct task_group init_task_group;
2456 #ifdef CONFIG_USER_SCHED
2457 extern struct task_group root_task_group;
2458 extern void set_tg_uid(struct user_struct *user);
2459 #endif
2460
2461 extern struct task_group *sched_create_group(struct task_group *parent);
2462 extern void sched_destroy_group(struct task_group *tg);
2463 extern void sched_move_task(struct task_struct *tsk);
2464 #ifdef CONFIG_FAIR_GROUP_SCHED
2465 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2466 extern unsigned long sched_group_shares(struct task_group *tg);
2467 #endif
2468 #ifdef CONFIG_RT_GROUP_SCHED
2469 extern int sched_group_set_rt_runtime(struct task_group *tg,
2470 long rt_runtime_us);
2471 extern long sched_group_rt_runtime(struct task_group *tg);
2472 extern int sched_group_set_rt_period(struct task_group *tg,
2473 long rt_period_us);
2474 extern long sched_group_rt_period(struct task_group *tg);
2475 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2476 #endif
2477 #endif
2478
2479 extern int task_can_switch_user(struct user_struct *up,
2480 struct task_struct *tsk);
2481
2482 #ifdef CONFIG_TASK_XACCT
2483 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2484 {
2485 tsk->ioac.rchar += amt;
2486 }
2487
2488 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2489 {
2490 tsk->ioac.wchar += amt;
2491 }
2492
2493 static inline void inc_syscr(struct task_struct *tsk)
2494 {
2495 tsk->ioac.syscr++;
2496 }
2497
2498 static inline void inc_syscw(struct task_struct *tsk)
2499 {
2500 tsk->ioac.syscw++;
2501 }
2502 #else
2503 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2504 {
2505 }
2506
2507 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2508 {
2509 }
2510
2511 static inline void inc_syscr(struct task_struct *tsk)
2512 {
2513 }
2514
2515 static inline void inc_syscw(struct task_struct *tsk)
2516 {
2517 }
2518 #endif
2519
2520 #ifndef TASK_SIZE_OF
2521 #define TASK_SIZE_OF(tsk) TASK_SIZE
2522 #endif
2523
2524 /*
2525 * Call the function if the target task is executing on a CPU right now:
2526 */
2527 extern void task_oncpu_function_call(struct task_struct *p,
2528 void (*func) (void *info), void *info);
2529
2530
2531 #ifdef CONFIG_MM_OWNER
2532 extern void mm_update_next_owner(struct mm_struct *mm);
2533 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2534 #else
2535 static inline void mm_update_next_owner(struct mm_struct *mm)
2536 {
2537 }
2538
2539 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2540 {
2541 }
2542 #endif /* CONFIG_MM_OWNER */
2543
2544 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2545
2546 #endif /* __KERNEL__ */
2547
2548 #endif