]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * Define 'struct task_struct' and provide the main scheduler
6 * APIs (schedule(), wakeup variants, etc.)
7 */
8
9 #include <uapi/linux/sched.h>
10
11 #include <asm/current.h>
12
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55
56 /*
57 * Task state bitmask. NOTE! These bits are also
58 * encoded in fs/proc/array.c: get_task_state().
59 *
60 * We have two separate sets of flags: task->state
61 * is about runnability, while task->exit_state are
62 * about the task exiting. Confusing, but this way
63 * modifying one set can't modify the other one by
64 * mistake.
65 */
66
67 /* Used in tsk->state: */
68 #define TASK_RUNNING 0
69 #define TASK_INTERRUPTIBLE 1
70 #define TASK_UNINTERRUPTIBLE 2
71 #define __TASK_STOPPED 4
72 #define __TASK_TRACED 8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD 16
75 #define EXIT_ZOMBIE 32
76 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD 64
79 #define TASK_WAKEKILL 128
80 #define TASK_WAKING 256
81 #define TASK_PARKED 512
82 #define TASK_NOLOAD 1024
83 #define TASK_NEW 2048
84 #define TASK_STATE_MAX 4096
85
86 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
87
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98
99 /* get_task_state(): */
100 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 #define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121 #define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
124 smp_store_mb(current->state, (state_value)); \
125 } while (0)
126
127 #else
128 /*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
133 * for (;;) {
134 * set_current_state(TASK_UNINTERRUPTIBLE);
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157 *
158 * This is obviously fine, since they both store the exact same value.
159 *
160 * Also see the comments of try_to_wake_up().
161 */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value) smp_store_mb(current->state, (state_value))
164 #endif
165
166 /* Task command name length: */
167 #define TASK_COMM_LEN 16
168
169 extern cpumask_var_t cpu_isolated_map;
170
171 extern void scheduler_tick(void);
172
173 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
174
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187
188 /**
189 * struct prev_cputime - snaphsot of system and user cputime
190 * @utime: time spent in user mode
191 * @stime: time spent in system mode
192 * @lock: protects the above two fields
193 *
194 * Stores previous user/system time values such that we can guarantee
195 * monotonicity.
196 */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 u64 utime;
200 u64 stime;
201 raw_spinlock_t lock;
202 #endif
203 };
204
205 /**
206 * struct task_cputime - collected CPU time counts
207 * @utime: time spent in user mode, in nanoseconds
208 * @stime: time spent in kernel mode, in nanoseconds
209 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
210 *
211 * This structure groups together three kinds of CPU time that are tracked for
212 * threads and thread groups. Most things considering CPU time want to group
213 * these counts together and treat all three of them in parallel.
214 */
215 struct task_cputime {
216 u64 utime;
217 u64 stime;
218 unsigned long long sum_exec_runtime;
219 };
220
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp utime
223 #define prof_exp stime
224 #define sched_exp sum_exec_runtime
225
226 struct sched_info {
227 #ifdef CONFIG_SCHED_INFO
228 /* Cumulative counters: */
229
230 /* # of times we have run on this CPU: */
231 unsigned long pcount;
232
233 /* Time spent waiting on a runqueue: */
234 unsigned long long run_delay;
235
236 /* Timestamps: */
237
238 /* When did we last run on a CPU? */
239 unsigned long long last_arrival;
240
241 /* When were we last queued to run? */
242 unsigned long long last_queued;
243
244 #endif /* CONFIG_SCHED_INFO */
245 };
246
247 /*
248 * Integer metrics need fixed point arithmetic, e.g., sched/fair
249 * has a few: load, load_avg, util_avg, freq, and capacity.
250 *
251 * We define a basic fixed point arithmetic range, and then formalize
252 * all these metrics based on that basic range.
253 */
254 # define SCHED_FIXEDPOINT_SHIFT 10
255 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
256
257 struct load_weight {
258 unsigned long weight;
259 u32 inv_weight;
260 };
261
262 /*
263 * The load_avg/util_avg accumulates an infinite geometric series
264 * (see __update_load_avg() in kernel/sched/fair.c).
265 *
266 * [load_avg definition]
267 *
268 * load_avg = runnable% * scale_load_down(load)
269 *
270 * where runnable% is the time ratio that a sched_entity is runnable.
271 * For cfs_rq, it is the aggregated load_avg of all runnable and
272 * blocked sched_entities.
273 *
274 * load_avg may also take frequency scaling into account:
275 *
276 * load_avg = runnable% * scale_load_down(load) * freq%
277 *
278 * where freq% is the CPU frequency normalized to the highest frequency.
279 *
280 * [util_avg definition]
281 *
282 * util_avg = running% * SCHED_CAPACITY_SCALE
283 *
284 * where running% is the time ratio that a sched_entity is running on
285 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
286 * and blocked sched_entities.
287 *
288 * util_avg may also factor frequency scaling and CPU capacity scaling:
289 *
290 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
291 *
292 * where freq% is the same as above, and capacity% is the CPU capacity
293 * normalized to the greatest capacity (due to uarch differences, etc).
294 *
295 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
296 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
297 * we therefore scale them to as large a range as necessary. This is for
298 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
299 *
300 * [Overflow issue]
301 *
302 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
303 * with the highest load (=88761), always runnable on a single cfs_rq,
304 * and should not overflow as the number already hits PID_MAX_LIMIT.
305 *
306 * For all other cases (including 32-bit kernels), struct load_weight's
307 * weight will overflow first before we do, because:
308 *
309 * Max(load_avg) <= Max(load.weight)
310 *
311 * Then it is the load_weight's responsibility to consider overflow
312 * issues.
313 */
314 struct sched_avg {
315 u64 last_update_time;
316 u64 load_sum;
317 u32 util_sum;
318 u32 period_contrib;
319 unsigned long load_avg;
320 unsigned long util_avg;
321 };
322
323 struct sched_statistics {
324 #ifdef CONFIG_SCHEDSTATS
325 u64 wait_start;
326 u64 wait_max;
327 u64 wait_count;
328 u64 wait_sum;
329 u64 iowait_count;
330 u64 iowait_sum;
331
332 u64 sleep_start;
333 u64 sleep_max;
334 s64 sum_sleep_runtime;
335
336 u64 block_start;
337 u64 block_max;
338 u64 exec_max;
339 u64 slice_max;
340
341 u64 nr_migrations_cold;
342 u64 nr_failed_migrations_affine;
343 u64 nr_failed_migrations_running;
344 u64 nr_failed_migrations_hot;
345 u64 nr_forced_migrations;
346
347 u64 nr_wakeups;
348 u64 nr_wakeups_sync;
349 u64 nr_wakeups_migrate;
350 u64 nr_wakeups_local;
351 u64 nr_wakeups_remote;
352 u64 nr_wakeups_affine;
353 u64 nr_wakeups_affine_attempts;
354 u64 nr_wakeups_passive;
355 u64 nr_wakeups_idle;
356 #endif
357 };
358
359 struct sched_entity {
360 /* For load-balancing: */
361 struct load_weight load;
362 struct rb_node run_node;
363 struct list_head group_node;
364 unsigned int on_rq;
365
366 u64 exec_start;
367 u64 sum_exec_runtime;
368 u64 vruntime;
369 u64 prev_sum_exec_runtime;
370
371 u64 nr_migrations;
372
373 struct sched_statistics statistics;
374
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 int depth;
377 struct sched_entity *parent;
378 /* rq on which this entity is (to be) queued: */
379 struct cfs_rq *cfs_rq;
380 /* rq "owned" by this entity/group: */
381 struct cfs_rq *my_q;
382 #endif
383
384 #ifdef CONFIG_SMP
385 /*
386 * Per entity load average tracking.
387 *
388 * Put into separate cache line so it does not
389 * collide with read-mostly values above.
390 */
391 struct sched_avg avg ____cacheline_aligned_in_smp;
392 #endif
393 };
394
395 struct sched_rt_entity {
396 struct list_head run_list;
397 unsigned long timeout;
398 unsigned long watchdog_stamp;
399 unsigned int time_slice;
400 unsigned short on_rq;
401 unsigned short on_list;
402
403 struct sched_rt_entity *back;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 struct sched_rt_entity *parent;
406 /* rq on which this entity is (to be) queued: */
407 struct rt_rq *rt_rq;
408 /* rq "owned" by this entity/group: */
409 struct rt_rq *my_q;
410 #endif
411 };
412
413 struct sched_dl_entity {
414 struct rb_node rb_node;
415
416 /*
417 * Original scheduling parameters. Copied here from sched_attr
418 * during sched_setattr(), they will remain the same until
419 * the next sched_setattr().
420 */
421 u64 dl_runtime; /* Maximum runtime for each instance */
422 u64 dl_deadline; /* Relative deadline of each instance */
423 u64 dl_period; /* Separation of two instances (period) */
424 u64 dl_bw; /* dl_runtime / dl_deadline */
425
426 /*
427 * Actual scheduling parameters. Initialized with the values above,
428 * they are continously updated during task execution. Note that
429 * the remaining runtime could be < 0 in case we are in overrun.
430 */
431 s64 runtime; /* Remaining runtime for this instance */
432 u64 deadline; /* Absolute deadline for this instance */
433 unsigned int flags; /* Specifying the scheduler behaviour */
434
435 /*
436 * Some bool flags:
437 *
438 * @dl_throttled tells if we exhausted the runtime. If so, the
439 * task has to wait for a replenishment to be performed at the
440 * next firing of dl_timer.
441 *
442 * @dl_boosted tells if we are boosted due to DI. If so we are
443 * outside bandwidth enforcement mechanism (but only until we
444 * exit the critical section);
445 *
446 * @dl_yielded tells if task gave up the CPU before consuming
447 * all its available runtime during the last job.
448 */
449 int dl_throttled;
450 int dl_boosted;
451 int dl_yielded;
452
453 /*
454 * Bandwidth enforcement timer. Each -deadline task has its
455 * own bandwidth to be enforced, thus we need one timer per task.
456 */
457 struct hrtimer dl_timer;
458 };
459
460 union rcu_special {
461 struct {
462 u8 blocked;
463 u8 need_qs;
464 u8 exp_need_qs;
465
466 /* Otherwise the compiler can store garbage here: */
467 u8 pad;
468 } b; /* Bits. */
469 u32 s; /* Set of bits. */
470 };
471
472 enum perf_event_task_context {
473 perf_invalid_context = -1,
474 perf_hw_context = 0,
475 perf_sw_context,
476 perf_nr_task_contexts,
477 };
478
479 struct wake_q_node {
480 struct wake_q_node *next;
481 };
482
483 struct task_struct {
484 #ifdef CONFIG_THREAD_INFO_IN_TASK
485 /*
486 * For reasons of header soup (see current_thread_info()), this
487 * must be the first element of task_struct.
488 */
489 struct thread_info thread_info;
490 #endif
491 /* -1 unrunnable, 0 runnable, >0 stopped: */
492 volatile long state;
493 void *stack;
494 atomic_t usage;
495 /* Per task flags (PF_*), defined further below: */
496 unsigned int flags;
497 unsigned int ptrace;
498
499 #ifdef CONFIG_SMP
500 struct llist_node wake_entry;
501 int on_cpu;
502 #ifdef CONFIG_THREAD_INFO_IN_TASK
503 /* Current CPU: */
504 unsigned int cpu;
505 #endif
506 unsigned int wakee_flips;
507 unsigned long wakee_flip_decay_ts;
508 struct task_struct *last_wakee;
509
510 int wake_cpu;
511 #endif
512 int on_rq;
513
514 int prio;
515 int static_prio;
516 int normal_prio;
517 unsigned int rt_priority;
518
519 const struct sched_class *sched_class;
520 struct sched_entity se;
521 struct sched_rt_entity rt;
522 #ifdef CONFIG_CGROUP_SCHED
523 struct task_group *sched_task_group;
524 #endif
525 struct sched_dl_entity dl;
526
527 #ifdef CONFIG_PREEMPT_NOTIFIERS
528 /* List of struct preempt_notifier: */
529 struct hlist_head preempt_notifiers;
530 #endif
531
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 unsigned int btrace_seq;
534 #endif
535
536 unsigned int policy;
537 int nr_cpus_allowed;
538 cpumask_t cpus_allowed;
539
540 #ifdef CONFIG_PREEMPT_RCU
541 int rcu_read_lock_nesting;
542 union rcu_special rcu_read_unlock_special;
543 struct list_head rcu_node_entry;
544 struct rcu_node *rcu_blocked_node;
545 #endif /* #ifdef CONFIG_PREEMPT_RCU */
546
547 #ifdef CONFIG_TASKS_RCU
548 unsigned long rcu_tasks_nvcsw;
549 bool rcu_tasks_holdout;
550 struct list_head rcu_tasks_holdout_list;
551 int rcu_tasks_idle_cpu;
552 #endif /* #ifdef CONFIG_TASKS_RCU */
553
554 struct sched_info sched_info;
555
556 struct list_head tasks;
557 #ifdef CONFIG_SMP
558 struct plist_node pushable_tasks;
559 struct rb_node pushable_dl_tasks;
560 #endif
561
562 struct mm_struct *mm;
563 struct mm_struct *active_mm;
564
565 /* Per-thread vma caching: */
566 struct vmacache vmacache;
567
568 #ifdef SPLIT_RSS_COUNTING
569 struct task_rss_stat rss_stat;
570 #endif
571 int exit_state;
572 int exit_code;
573 int exit_signal;
574 /* The signal sent when the parent dies: */
575 int pdeath_signal;
576 /* JOBCTL_*, siglock protected: */
577 unsigned long jobctl;
578
579 /* Used for emulating ABI behavior of previous Linux versions: */
580 unsigned int personality;
581
582 /* Scheduler bits, serialized by scheduler locks: */
583 unsigned sched_reset_on_fork:1;
584 unsigned sched_contributes_to_load:1;
585 unsigned sched_migrated:1;
586 unsigned sched_remote_wakeup:1;
587 /* Force alignment to the next boundary: */
588 unsigned :0;
589
590 /* Unserialized, strictly 'current' */
591
592 /* Bit to tell LSMs we're in execve(): */
593 unsigned in_execve:1;
594 unsigned in_iowait:1;
595 #ifndef TIF_RESTORE_SIGMASK
596 unsigned restore_sigmask:1;
597 #endif
598 #ifdef CONFIG_MEMCG
599 unsigned memcg_may_oom:1;
600 #ifndef CONFIG_SLOB
601 unsigned memcg_kmem_skip_account:1;
602 #endif
603 #endif
604 #ifdef CONFIG_COMPAT_BRK
605 unsigned brk_randomized:1;
606 #endif
607 #ifdef CONFIG_CGROUPS
608 /* disallow userland-initiated cgroup migration */
609 unsigned no_cgroup_migration:1;
610 #endif
611
612 unsigned long atomic_flags; /* Flags requiring atomic access. */
613
614 struct restart_block restart_block;
615
616 pid_t pid;
617 pid_t tgid;
618
619 #ifdef CONFIG_CC_STACKPROTECTOR
620 /* Canary value for the -fstack-protector GCC feature: */
621 unsigned long stack_canary;
622 #endif
623 /*
624 * Pointers to the (original) parent process, youngest child, younger sibling,
625 * older sibling, respectively. (p->father can be replaced with
626 * p->real_parent->pid)
627 */
628
629 /* Real parent process: */
630 struct task_struct __rcu *real_parent;
631
632 /* Recipient of SIGCHLD, wait4() reports: */
633 struct task_struct __rcu *parent;
634
635 /*
636 * Children/sibling form the list of natural children:
637 */
638 struct list_head children;
639 struct list_head sibling;
640 struct task_struct *group_leader;
641
642 /*
643 * 'ptraced' is the list of tasks this task is using ptrace() on.
644 *
645 * This includes both natural children and PTRACE_ATTACH targets.
646 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
647 */
648 struct list_head ptraced;
649 struct list_head ptrace_entry;
650
651 /* PID/PID hash table linkage. */
652 struct pid_link pids[PIDTYPE_MAX];
653 struct list_head thread_group;
654 struct list_head thread_node;
655
656 struct completion *vfork_done;
657
658 /* CLONE_CHILD_SETTID: */
659 int __user *set_child_tid;
660
661 /* CLONE_CHILD_CLEARTID: */
662 int __user *clear_child_tid;
663
664 u64 utime;
665 u64 stime;
666 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
667 u64 utimescaled;
668 u64 stimescaled;
669 #endif
670 u64 gtime;
671 struct prev_cputime prev_cputime;
672 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
673 seqcount_t vtime_seqcount;
674 unsigned long long vtime_snap;
675 enum {
676 /* Task is sleeping or running in a CPU with VTIME inactive: */
677 VTIME_INACTIVE = 0,
678 /* Task runs in userspace in a CPU with VTIME active: */
679 VTIME_USER,
680 /* Task runs in kernelspace in a CPU with VTIME active: */
681 VTIME_SYS,
682 } vtime_snap_whence;
683 #endif
684
685 #ifdef CONFIG_NO_HZ_FULL
686 atomic_t tick_dep_mask;
687 #endif
688 /* Context switch counts: */
689 unsigned long nvcsw;
690 unsigned long nivcsw;
691
692 /* Monotonic time in nsecs: */
693 u64 start_time;
694
695 /* Boot based time in nsecs: */
696 u64 real_start_time;
697
698 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
699 unsigned long min_flt;
700 unsigned long maj_flt;
701
702 #ifdef CONFIG_POSIX_TIMERS
703 struct task_cputime cputime_expires;
704 struct list_head cpu_timers[3];
705 #endif
706
707 /* Process credentials: */
708
709 /* Tracer's credentials at attach: */
710 const struct cred __rcu *ptracer_cred;
711
712 /* Objective and real subjective task credentials (COW): */
713 const struct cred __rcu *real_cred;
714
715 /* Effective (overridable) subjective task credentials (COW): */
716 const struct cred __rcu *cred;
717
718 /*
719 * executable name, excluding path.
720 *
721 * - normally initialized setup_new_exec()
722 * - access it with [gs]et_task_comm()
723 * - lock it with task_lock()
724 */
725 char comm[TASK_COMM_LEN];
726
727 struct nameidata *nameidata;
728
729 #ifdef CONFIG_SYSVIPC
730 struct sysv_sem sysvsem;
731 struct sysv_shm sysvshm;
732 #endif
733 #ifdef CONFIG_DETECT_HUNG_TASK
734 unsigned long last_switch_count;
735 #endif
736 /* Filesystem information: */
737 struct fs_struct *fs;
738
739 /* Open file information: */
740 struct files_struct *files;
741
742 /* Namespaces: */
743 struct nsproxy *nsproxy;
744
745 /* Signal handlers: */
746 struct signal_struct *signal;
747 struct sighand_struct *sighand;
748 sigset_t blocked;
749 sigset_t real_blocked;
750 /* Restored if set_restore_sigmask() was used: */
751 sigset_t saved_sigmask;
752 struct sigpending pending;
753 unsigned long sas_ss_sp;
754 size_t sas_ss_size;
755 unsigned int sas_ss_flags;
756
757 struct callback_head *task_works;
758
759 struct audit_context *audit_context;
760 #ifdef CONFIG_AUDITSYSCALL
761 kuid_t loginuid;
762 unsigned int sessionid;
763 #endif
764 struct seccomp seccomp;
765
766 /* Thread group tracking: */
767 u32 parent_exec_id;
768 u32 self_exec_id;
769
770 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
771 spinlock_t alloc_lock;
772
773 /* Protection of the PI data structures: */
774 raw_spinlock_t pi_lock;
775
776 struct wake_q_node wake_q;
777
778 #ifdef CONFIG_RT_MUTEXES
779 /* PI waiters blocked on a rt_mutex held by this task: */
780 struct rb_root pi_waiters;
781 struct rb_node *pi_waiters_leftmost;
782 /* Updated under owner's pi_lock and rq lock */
783 struct task_struct *pi_top_task;
784 /* Deadlock detection and priority inheritance handling: */
785 struct rt_mutex_waiter *pi_blocked_on;
786 #endif
787
788 #ifdef CONFIG_DEBUG_MUTEXES
789 /* Mutex deadlock detection: */
790 struct mutex_waiter *blocked_on;
791 #endif
792
793 #ifdef CONFIG_TRACE_IRQFLAGS
794 unsigned int irq_events;
795 unsigned long hardirq_enable_ip;
796 unsigned long hardirq_disable_ip;
797 unsigned int hardirq_enable_event;
798 unsigned int hardirq_disable_event;
799 int hardirqs_enabled;
800 int hardirq_context;
801 unsigned long softirq_disable_ip;
802 unsigned long softirq_enable_ip;
803 unsigned int softirq_disable_event;
804 unsigned int softirq_enable_event;
805 int softirqs_enabled;
806 int softirq_context;
807 #endif
808
809 #ifdef CONFIG_LOCKDEP
810 # define MAX_LOCK_DEPTH 48UL
811 u64 curr_chain_key;
812 int lockdep_depth;
813 unsigned int lockdep_recursion;
814 struct held_lock held_locks[MAX_LOCK_DEPTH];
815 gfp_t lockdep_reclaim_gfp;
816 #endif
817
818 #ifdef CONFIG_UBSAN
819 unsigned int in_ubsan;
820 #endif
821
822 /* Journalling filesystem info: */
823 void *journal_info;
824
825 /* Stacked block device info: */
826 struct bio_list *bio_list;
827
828 #ifdef CONFIG_BLOCK
829 /* Stack plugging: */
830 struct blk_plug *plug;
831 #endif
832
833 /* VM state: */
834 struct reclaim_state *reclaim_state;
835
836 struct backing_dev_info *backing_dev_info;
837
838 struct io_context *io_context;
839
840 /* Ptrace state: */
841 unsigned long ptrace_message;
842 siginfo_t *last_siginfo;
843
844 struct task_io_accounting ioac;
845 #ifdef CONFIG_TASK_XACCT
846 /* Accumulated RSS usage: */
847 u64 acct_rss_mem1;
848 /* Accumulated virtual memory usage: */
849 u64 acct_vm_mem1;
850 /* stime + utime since last update: */
851 u64 acct_timexpd;
852 #endif
853 #ifdef CONFIG_CPUSETS
854 /* Protected by ->alloc_lock: */
855 nodemask_t mems_allowed;
856 /* Seqence number to catch updates: */
857 seqcount_t mems_allowed_seq;
858 int cpuset_mem_spread_rotor;
859 int cpuset_slab_spread_rotor;
860 #endif
861 #ifdef CONFIG_CGROUPS
862 /* Control Group info protected by css_set_lock: */
863 struct css_set __rcu *cgroups;
864 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
865 struct list_head cg_list;
866 #endif
867 #ifdef CONFIG_INTEL_RDT_A
868 int closid;
869 #endif
870 #ifdef CONFIG_FUTEX
871 struct robust_list_head __user *robust_list;
872 #ifdef CONFIG_COMPAT
873 struct compat_robust_list_head __user *compat_robust_list;
874 #endif
875 struct list_head pi_state_list;
876 struct futex_pi_state *pi_state_cache;
877 #endif
878 #ifdef CONFIG_PERF_EVENTS
879 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
880 struct mutex perf_event_mutex;
881 struct list_head perf_event_list;
882 #endif
883 #ifdef CONFIG_DEBUG_PREEMPT
884 unsigned long preempt_disable_ip;
885 #endif
886 #ifdef CONFIG_NUMA
887 /* Protected by alloc_lock: */
888 struct mempolicy *mempolicy;
889 short il_next;
890 short pref_node_fork;
891 #endif
892 #ifdef CONFIG_NUMA_BALANCING
893 int numa_scan_seq;
894 unsigned int numa_scan_period;
895 unsigned int numa_scan_period_max;
896 int numa_preferred_nid;
897 unsigned long numa_migrate_retry;
898 /* Migration stamp: */
899 u64 node_stamp;
900 u64 last_task_numa_placement;
901 u64 last_sum_exec_runtime;
902 struct callback_head numa_work;
903
904 struct list_head numa_entry;
905 struct numa_group *numa_group;
906
907 /*
908 * numa_faults is an array split into four regions:
909 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
910 * in this precise order.
911 *
912 * faults_memory: Exponential decaying average of faults on a per-node
913 * basis. Scheduling placement decisions are made based on these
914 * counts. The values remain static for the duration of a PTE scan.
915 * faults_cpu: Track the nodes the process was running on when a NUMA
916 * hinting fault was incurred.
917 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
918 * during the current scan window. When the scan completes, the counts
919 * in faults_memory and faults_cpu decay and these values are copied.
920 */
921 unsigned long *numa_faults;
922 unsigned long total_numa_faults;
923
924 /*
925 * numa_faults_locality tracks if faults recorded during the last
926 * scan window were remote/local or failed to migrate. The task scan
927 * period is adapted based on the locality of the faults with different
928 * weights depending on whether they were shared or private faults
929 */
930 unsigned long numa_faults_locality[3];
931
932 unsigned long numa_pages_migrated;
933 #endif /* CONFIG_NUMA_BALANCING */
934
935 struct tlbflush_unmap_batch tlb_ubc;
936
937 struct rcu_head rcu;
938
939 /* Cache last used pipe for splice(): */
940 struct pipe_inode_info *splice_pipe;
941
942 struct page_frag task_frag;
943
944 #ifdef CONFIG_TASK_DELAY_ACCT
945 struct task_delay_info *delays;
946 #endif
947
948 #ifdef CONFIG_FAULT_INJECTION
949 int make_it_fail;
950 #endif
951 /*
952 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
953 * balance_dirty_pages() for a dirty throttling pause:
954 */
955 int nr_dirtied;
956 int nr_dirtied_pause;
957 /* Start of a write-and-pause period: */
958 unsigned long dirty_paused_when;
959
960 #ifdef CONFIG_LATENCYTOP
961 int latency_record_count;
962 struct latency_record latency_record[LT_SAVECOUNT];
963 #endif
964 /*
965 * Time slack values; these are used to round up poll() and
966 * select() etc timeout values. These are in nanoseconds.
967 */
968 u64 timer_slack_ns;
969 u64 default_timer_slack_ns;
970
971 #ifdef CONFIG_KASAN
972 unsigned int kasan_depth;
973 #endif
974
975 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
976 /* Index of current stored address in ret_stack: */
977 int curr_ret_stack;
978
979 /* Stack of return addresses for return function tracing: */
980 struct ftrace_ret_stack *ret_stack;
981
982 /* Timestamp for last schedule: */
983 unsigned long long ftrace_timestamp;
984
985 /*
986 * Number of functions that haven't been traced
987 * because of depth overrun:
988 */
989 atomic_t trace_overrun;
990
991 /* Pause tracing: */
992 atomic_t tracing_graph_pause;
993 #endif
994
995 #ifdef CONFIG_TRACING
996 /* State flags for use by tracers: */
997 unsigned long trace;
998
999 /* Bitmask and counter of trace recursion: */
1000 unsigned long trace_recursion;
1001 #endif /* CONFIG_TRACING */
1002
1003 #ifdef CONFIG_KCOV
1004 /* Coverage collection mode enabled for this task (0 if disabled): */
1005 enum kcov_mode kcov_mode;
1006
1007 /* Size of the kcov_area: */
1008 unsigned int kcov_size;
1009
1010 /* Buffer for coverage collection: */
1011 void *kcov_area;
1012
1013 /* KCOV descriptor wired with this task or NULL: */
1014 struct kcov *kcov;
1015 #endif
1016
1017 #ifdef CONFIG_MEMCG
1018 struct mem_cgroup *memcg_in_oom;
1019 gfp_t memcg_oom_gfp_mask;
1020 int memcg_oom_order;
1021
1022 /* Number of pages to reclaim on returning to userland: */
1023 unsigned int memcg_nr_pages_over_high;
1024 #endif
1025
1026 #ifdef CONFIG_UPROBES
1027 struct uprobe_task *utask;
1028 #endif
1029 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1030 unsigned int sequential_io;
1031 unsigned int sequential_io_avg;
1032 #endif
1033 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1034 unsigned long task_state_change;
1035 #endif
1036 int pagefault_disabled;
1037 #ifdef CONFIG_MMU
1038 struct task_struct *oom_reaper_list;
1039 #endif
1040 #ifdef CONFIG_VMAP_STACK
1041 struct vm_struct *stack_vm_area;
1042 #endif
1043 #ifdef CONFIG_THREAD_INFO_IN_TASK
1044 /* A live task holds one reference: */
1045 atomic_t stack_refcount;
1046 #endif
1047 #ifdef CONFIG_LIVEPATCH
1048 int patch_state;
1049 #endif
1050 /* CPU-specific state of this task: */
1051 struct thread_struct thread;
1052
1053 /*
1054 * WARNING: on x86, 'thread_struct' contains a variable-sized
1055 * structure. It *MUST* be at the end of 'task_struct'.
1056 *
1057 * Do not put anything below here!
1058 */
1059 };
1060
1061 static inline struct pid *task_pid(struct task_struct *task)
1062 {
1063 return task->pids[PIDTYPE_PID].pid;
1064 }
1065
1066 static inline struct pid *task_tgid(struct task_struct *task)
1067 {
1068 return task->group_leader->pids[PIDTYPE_PID].pid;
1069 }
1070
1071 /*
1072 * Without tasklist or RCU lock it is not safe to dereference
1073 * the result of task_pgrp/task_session even if task == current,
1074 * we can race with another thread doing sys_setsid/sys_setpgid.
1075 */
1076 static inline struct pid *task_pgrp(struct task_struct *task)
1077 {
1078 return task->group_leader->pids[PIDTYPE_PGID].pid;
1079 }
1080
1081 static inline struct pid *task_session(struct task_struct *task)
1082 {
1083 return task->group_leader->pids[PIDTYPE_SID].pid;
1084 }
1085
1086 /*
1087 * the helpers to get the task's different pids as they are seen
1088 * from various namespaces
1089 *
1090 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1091 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1092 * current.
1093 * task_xid_nr_ns() : id seen from the ns specified;
1094 *
1095 * set_task_vxid() : assigns a virtual id to a task;
1096 *
1097 * see also pid_nr() etc in include/linux/pid.h
1098 */
1099 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1100
1101 static inline pid_t task_pid_nr(struct task_struct *tsk)
1102 {
1103 return tsk->pid;
1104 }
1105
1106 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1107 {
1108 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1109 }
1110
1111 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1112 {
1113 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1114 }
1115
1116
1117 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1118 {
1119 return tsk->tgid;
1120 }
1121
1122 extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1123
1124 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1125 {
1126 return pid_vnr(task_tgid(tsk));
1127 }
1128
1129 /**
1130 * pid_alive - check that a task structure is not stale
1131 * @p: Task structure to be checked.
1132 *
1133 * Test if a process is not yet dead (at most zombie state)
1134 * If pid_alive fails, then pointers within the task structure
1135 * can be stale and must not be dereferenced.
1136 *
1137 * Return: 1 if the process is alive. 0 otherwise.
1138 */
1139 static inline int pid_alive(const struct task_struct *p)
1140 {
1141 return p->pids[PIDTYPE_PID].pid != NULL;
1142 }
1143
1144 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1145 {
1146 pid_t pid = 0;
1147
1148 rcu_read_lock();
1149 if (pid_alive(tsk))
1150 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1151 rcu_read_unlock();
1152
1153 return pid;
1154 }
1155
1156 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1157 {
1158 return task_ppid_nr_ns(tsk, &init_pid_ns);
1159 }
1160
1161 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1162 {
1163 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1164 }
1165
1166 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1167 {
1168 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1169 }
1170
1171
1172 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1173 {
1174 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1175 }
1176
1177 static inline pid_t task_session_vnr(struct task_struct *tsk)
1178 {
1179 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1180 }
1181
1182 /* Obsolete, do not use: */
1183 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1184 {
1185 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1186 }
1187
1188 /**
1189 * is_global_init - check if a task structure is init. Since init
1190 * is free to have sub-threads we need to check tgid.
1191 * @tsk: Task structure to be checked.
1192 *
1193 * Check if a task structure is the first user space task the kernel created.
1194 *
1195 * Return: 1 if the task structure is init. 0 otherwise.
1196 */
1197 static inline int is_global_init(struct task_struct *tsk)
1198 {
1199 return task_tgid_nr(tsk) == 1;
1200 }
1201
1202 extern struct pid *cad_pid;
1203
1204 /*
1205 * Per process flags
1206 */
1207 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1208 #define PF_EXITING 0x00000004 /* Getting shut down */
1209 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1210 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1211 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1212 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1213 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1214 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1215 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1216 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1217 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1218 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1219 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1220 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1221 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1222 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1223 #define PF_FSTRANS 0x00020000 /* Inside a filesystem transaction */
1224 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1225 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1226 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1227 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1228 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1229 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1230 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1231 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1232 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1233 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1234 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1235
1236 /*
1237 * Only the _current_ task can read/write to tsk->flags, but other
1238 * tasks can access tsk->flags in readonly mode for example
1239 * with tsk_used_math (like during threaded core dumping).
1240 * There is however an exception to this rule during ptrace
1241 * or during fork: the ptracer task is allowed to write to the
1242 * child->flags of its traced child (same goes for fork, the parent
1243 * can write to the child->flags), because we're guaranteed the
1244 * child is not running and in turn not changing child->flags
1245 * at the same time the parent does it.
1246 */
1247 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1248 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1249 #define clear_used_math() clear_stopped_child_used_math(current)
1250 #define set_used_math() set_stopped_child_used_math(current)
1251
1252 #define conditional_stopped_child_used_math(condition, child) \
1253 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1254
1255 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1256
1257 #define copy_to_stopped_child_used_math(child) \
1258 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1259
1260 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1261 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1262 #define used_math() tsk_used_math(current)
1263
1264 /* Per-process atomic flags. */
1265 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1266 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1267 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1268 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
1269
1270
1271 #define TASK_PFA_TEST(name, func) \
1272 static inline bool task_##func(struct task_struct *p) \
1273 { return test_bit(PFA_##name, &p->atomic_flags); }
1274
1275 #define TASK_PFA_SET(name, func) \
1276 static inline void task_set_##func(struct task_struct *p) \
1277 { set_bit(PFA_##name, &p->atomic_flags); }
1278
1279 #define TASK_PFA_CLEAR(name, func) \
1280 static inline void task_clear_##func(struct task_struct *p) \
1281 { clear_bit(PFA_##name, &p->atomic_flags); }
1282
1283 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1284 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1285
1286 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1287 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1288 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1289
1290 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1291 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1292 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1293
1294 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
1295 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
1296
1297 static inline void
1298 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1299 {
1300 current->flags &= ~flags;
1301 current->flags |= orig_flags & flags;
1302 }
1303
1304 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1305 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1306 #ifdef CONFIG_SMP
1307 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1308 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1309 #else
1310 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1311 {
1312 }
1313 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1314 {
1315 if (!cpumask_test_cpu(0, new_mask))
1316 return -EINVAL;
1317 return 0;
1318 }
1319 #endif
1320
1321 #ifndef cpu_relax_yield
1322 #define cpu_relax_yield() cpu_relax()
1323 #endif
1324
1325 extern int yield_to(struct task_struct *p, bool preempt);
1326 extern void set_user_nice(struct task_struct *p, long nice);
1327 extern int task_prio(const struct task_struct *p);
1328
1329 /**
1330 * task_nice - return the nice value of a given task.
1331 * @p: the task in question.
1332 *
1333 * Return: The nice value [ -20 ... 0 ... 19 ].
1334 */
1335 static inline int task_nice(const struct task_struct *p)
1336 {
1337 return PRIO_TO_NICE((p)->static_prio);
1338 }
1339
1340 extern int can_nice(const struct task_struct *p, const int nice);
1341 extern int task_curr(const struct task_struct *p);
1342 extern int idle_cpu(int cpu);
1343 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1344 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1345 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1346 extern struct task_struct *idle_task(int cpu);
1347
1348 /**
1349 * is_idle_task - is the specified task an idle task?
1350 * @p: the task in question.
1351 *
1352 * Return: 1 if @p is an idle task. 0 otherwise.
1353 */
1354 static inline bool is_idle_task(const struct task_struct *p)
1355 {
1356 return !!(p->flags & PF_IDLE);
1357 }
1358
1359 extern struct task_struct *curr_task(int cpu);
1360 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1361
1362 void yield(void);
1363
1364 union thread_union {
1365 #ifndef CONFIG_THREAD_INFO_IN_TASK
1366 struct thread_info thread_info;
1367 #endif
1368 unsigned long stack[THREAD_SIZE/sizeof(long)];
1369 };
1370
1371 #ifdef CONFIG_THREAD_INFO_IN_TASK
1372 static inline struct thread_info *task_thread_info(struct task_struct *task)
1373 {
1374 return &task->thread_info;
1375 }
1376 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1377 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1378 #endif
1379
1380 /*
1381 * find a task by one of its numerical ids
1382 *
1383 * find_task_by_pid_ns():
1384 * finds a task by its pid in the specified namespace
1385 * find_task_by_vpid():
1386 * finds a task by its virtual pid
1387 *
1388 * see also find_vpid() etc in include/linux/pid.h
1389 */
1390
1391 extern struct task_struct *find_task_by_vpid(pid_t nr);
1392 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1393
1394 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1395 extern int wake_up_process(struct task_struct *tsk);
1396 extern void wake_up_new_task(struct task_struct *tsk);
1397
1398 #ifdef CONFIG_SMP
1399 extern void kick_process(struct task_struct *tsk);
1400 #else
1401 static inline void kick_process(struct task_struct *tsk) { }
1402 #endif
1403
1404 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1405
1406 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1407 {
1408 __set_task_comm(tsk, from, false);
1409 }
1410
1411 extern char *get_task_comm(char *to, struct task_struct *tsk);
1412
1413 #ifdef CONFIG_SMP
1414 void scheduler_ipi(void);
1415 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1416 #else
1417 static inline void scheduler_ipi(void) { }
1418 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1419 {
1420 return 1;
1421 }
1422 #endif
1423
1424 /*
1425 * Set thread flags in other task's structures.
1426 * See asm/thread_info.h for TIF_xxxx flags available:
1427 */
1428 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1429 {
1430 set_ti_thread_flag(task_thread_info(tsk), flag);
1431 }
1432
1433 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1434 {
1435 clear_ti_thread_flag(task_thread_info(tsk), flag);
1436 }
1437
1438 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1439 {
1440 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1441 }
1442
1443 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1444 {
1445 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1446 }
1447
1448 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1449 {
1450 return test_ti_thread_flag(task_thread_info(tsk), flag);
1451 }
1452
1453 static inline void set_tsk_need_resched(struct task_struct *tsk)
1454 {
1455 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1456 }
1457
1458 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1459 {
1460 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1461 }
1462
1463 static inline int test_tsk_need_resched(struct task_struct *tsk)
1464 {
1465 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1466 }
1467
1468 /*
1469 * cond_resched() and cond_resched_lock(): latency reduction via
1470 * explicit rescheduling in places that are safe. The return
1471 * value indicates whether a reschedule was done in fact.
1472 * cond_resched_lock() will drop the spinlock before scheduling,
1473 * cond_resched_softirq() will enable bhs before scheduling.
1474 */
1475 #ifndef CONFIG_PREEMPT
1476 extern int _cond_resched(void);
1477 #else
1478 static inline int _cond_resched(void) { return 0; }
1479 #endif
1480
1481 #define cond_resched() ({ \
1482 ___might_sleep(__FILE__, __LINE__, 0); \
1483 _cond_resched(); \
1484 })
1485
1486 extern int __cond_resched_lock(spinlock_t *lock);
1487
1488 #define cond_resched_lock(lock) ({ \
1489 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1490 __cond_resched_lock(lock); \
1491 })
1492
1493 extern int __cond_resched_softirq(void);
1494
1495 #define cond_resched_softirq() ({ \
1496 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1497 __cond_resched_softirq(); \
1498 })
1499
1500 static inline void cond_resched_rcu(void)
1501 {
1502 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1503 rcu_read_unlock();
1504 cond_resched();
1505 rcu_read_lock();
1506 #endif
1507 }
1508
1509 /*
1510 * Does a critical section need to be broken due to another
1511 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1512 * but a general need for low latency)
1513 */
1514 static inline int spin_needbreak(spinlock_t *lock)
1515 {
1516 #ifdef CONFIG_PREEMPT
1517 return spin_is_contended(lock);
1518 #else
1519 return 0;
1520 #endif
1521 }
1522
1523 static __always_inline bool need_resched(void)
1524 {
1525 return unlikely(tif_need_resched());
1526 }
1527
1528 /*
1529 * Wrappers for p->thread_info->cpu access. No-op on UP.
1530 */
1531 #ifdef CONFIG_SMP
1532
1533 static inline unsigned int task_cpu(const struct task_struct *p)
1534 {
1535 #ifdef CONFIG_THREAD_INFO_IN_TASK
1536 return p->cpu;
1537 #else
1538 return task_thread_info(p)->cpu;
1539 #endif
1540 }
1541
1542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1543
1544 #else
1545
1546 static inline unsigned int task_cpu(const struct task_struct *p)
1547 {
1548 return 0;
1549 }
1550
1551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1552 {
1553 }
1554
1555 #endif /* CONFIG_SMP */
1556
1557 /*
1558 * In order to reduce various lock holder preemption latencies provide an
1559 * interface to see if a vCPU is currently running or not.
1560 *
1561 * This allows us to terminate optimistic spin loops and block, analogous to
1562 * the native optimistic spin heuristic of testing if the lock owner task is
1563 * running or not.
1564 */
1565 #ifndef vcpu_is_preempted
1566 # define vcpu_is_preempted(cpu) false
1567 #endif
1568
1569 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1570 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1571
1572 #ifndef TASK_SIZE_OF
1573 #define TASK_SIZE_OF(tsk) TASK_SIZE
1574 #endif
1575
1576 #endif