]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
futex: Replace PF_EXITPIDONE with a state
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56
57 /*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
67
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
86
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 /*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120 #define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122
123 #define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130 #define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137 #define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
146 #else
147 /*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * Where wake_up_state() (and all other wakeup primitives) imply enough
171 * barriers to order the store of the variable against wakeup.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184 #define __set_current_state(state_value) \
185 current->state = (state_value)
186
187 #define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190 /*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196 #define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
204 #endif
205
206 /* Task command name length: */
207 #define TASK_COMM_LEN 16
208
209 extern void scheduler_tick(void);
210
211 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213 extern long schedule_timeout(long timeout);
214 extern long schedule_timeout_interruptible(long timeout);
215 extern long schedule_timeout_killable(long timeout);
216 extern long schedule_timeout_uninterruptible(long timeout);
217 extern long schedule_timeout_idle(long timeout);
218 asmlinkage void schedule(void);
219 extern void schedule_preempt_disabled(void);
220
221 extern int __must_check io_schedule_prepare(void);
222 extern void io_schedule_finish(int token);
223 extern long io_schedule_timeout(long timeout);
224 extern void io_schedule(void);
225
226 /**
227 * struct prev_cputime - snapshot of system and user cputime
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
230 * @lock: protects the above two fields
231 *
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
234 */
235 struct prev_cputime {
236 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
240 #endif
241 };
242
243 /**
244 * struct task_cputime - collected CPU time counts
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
248 *
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
252 */
253 struct task_cputime {
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
257 };
258
259 /* Alternate field names when used on cache expirations: */
260 #define virt_exp utime
261 #define prof_exp stime
262 #define sched_exp sum_exec_runtime
263
264 enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271 };
272
273 struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
277 u64 utime;
278 u64 stime;
279 u64 gtime;
280 };
281
282 struct sched_info {
283 #ifdef CONFIG_SCHED_INFO
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
299
300 #endif /* CONFIG_SCHED_INFO */
301 };
302
303 /*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
310 # define SCHED_FIXEDPOINT_SHIFT 10
311 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
312
313 struct load_weight {
314 unsigned long weight;
315 u32 inv_weight;
316 };
317
318 /*
319 * The load_avg/util_avg accumulates an infinite geometric series
320 * (see __update_load_avg() in kernel/sched/fair.c).
321 *
322 * [load_avg definition]
323 *
324 * load_avg = runnable% * scale_load_down(load)
325 *
326 * where runnable% is the time ratio that a sched_entity is runnable.
327 * For cfs_rq, it is the aggregated load_avg of all runnable and
328 * blocked sched_entities.
329 *
330 * load_avg may also take frequency scaling into account:
331 *
332 * load_avg = runnable% * scale_load_down(load) * freq%
333 *
334 * where freq% is the CPU frequency normalized to the highest frequency.
335 *
336 * [util_avg definition]
337 *
338 * util_avg = running% * SCHED_CAPACITY_SCALE
339 *
340 * where running% is the time ratio that a sched_entity is running on
341 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
342 * and blocked sched_entities.
343 *
344 * util_avg may also factor frequency scaling and CPU capacity scaling:
345 *
346 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
347 *
348 * where freq% is the same as above, and capacity% is the CPU capacity
349 * normalized to the greatest capacity (due to uarch differences, etc).
350 *
351 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
352 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
353 * we therefore scale them to as large a range as necessary. This is for
354 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
355 *
356 * [Overflow issue]
357 *
358 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
359 * with the highest load (=88761), always runnable on a single cfs_rq,
360 * and should not overflow as the number already hits PID_MAX_LIMIT.
361 *
362 * For all other cases (including 32-bit kernels), struct load_weight's
363 * weight will overflow first before we do, because:
364 *
365 * Max(load_avg) <= Max(load.weight)
366 *
367 * Then it is the load_weight's responsibility to consider overflow
368 * issues.
369 */
370 struct sched_avg {
371 u64 last_update_time;
372 u64 load_sum;
373 u64 runnable_load_sum;
374 u32 util_sum;
375 u32 period_contrib;
376 unsigned long load_avg;
377 unsigned long runnable_load_avg;
378 unsigned long util_avg;
379 };
380
381 struct sched_statistics {
382 #ifdef CONFIG_SCHEDSTATS
383 u64 wait_start;
384 u64 wait_max;
385 u64 wait_count;
386 u64 wait_sum;
387 u64 iowait_count;
388 u64 iowait_sum;
389
390 u64 sleep_start;
391 u64 sleep_max;
392 s64 sum_sleep_runtime;
393
394 u64 block_start;
395 u64 block_max;
396 u64 exec_max;
397 u64 slice_max;
398
399 u64 nr_migrations_cold;
400 u64 nr_failed_migrations_affine;
401 u64 nr_failed_migrations_running;
402 u64 nr_failed_migrations_hot;
403 u64 nr_forced_migrations;
404
405 u64 nr_wakeups;
406 u64 nr_wakeups_sync;
407 u64 nr_wakeups_migrate;
408 u64 nr_wakeups_local;
409 u64 nr_wakeups_remote;
410 u64 nr_wakeups_affine;
411 u64 nr_wakeups_affine_attempts;
412 u64 nr_wakeups_passive;
413 u64 nr_wakeups_idle;
414 #endif
415 };
416
417 struct sched_entity {
418 /* For load-balancing: */
419 struct load_weight load;
420 unsigned long runnable_weight;
421 struct rb_node run_node;
422 struct list_head group_node;
423 unsigned int on_rq;
424
425 u64 exec_start;
426 u64 sum_exec_runtime;
427 u64 vruntime;
428 u64 prev_sum_exec_runtime;
429
430 u64 nr_migrations;
431
432 struct sched_statistics statistics;
433
434 #ifdef CONFIG_FAIR_GROUP_SCHED
435 int depth;
436 struct sched_entity *parent;
437 /* rq on which this entity is (to be) queued: */
438 struct cfs_rq *cfs_rq;
439 /* rq "owned" by this entity/group: */
440 struct cfs_rq *my_q;
441 #endif
442
443 #ifdef CONFIG_SMP
444 /*
445 * Per entity load average tracking.
446 *
447 * Put into separate cache line so it does not
448 * collide with read-mostly values above.
449 */
450 struct sched_avg avg ____cacheline_aligned_in_smp;
451 #endif
452 };
453
454 struct sched_rt_entity {
455 struct list_head run_list;
456 unsigned long timeout;
457 unsigned long watchdog_stamp;
458 unsigned int time_slice;
459 unsigned short on_rq;
460 unsigned short on_list;
461
462 struct sched_rt_entity *back;
463 #ifdef CONFIG_RT_GROUP_SCHED
464 struct sched_rt_entity *parent;
465 /* rq on which this entity is (to be) queued: */
466 struct rt_rq *rt_rq;
467 /* rq "owned" by this entity/group: */
468 struct rt_rq *my_q;
469 #endif
470 } __randomize_layout;
471
472 struct sched_dl_entity {
473 struct rb_node rb_node;
474
475 /*
476 * Original scheduling parameters. Copied here from sched_attr
477 * during sched_setattr(), they will remain the same until
478 * the next sched_setattr().
479 */
480 u64 dl_runtime; /* Maximum runtime for each instance */
481 u64 dl_deadline; /* Relative deadline of each instance */
482 u64 dl_period; /* Separation of two instances (period) */
483 u64 dl_bw; /* dl_runtime / dl_period */
484 u64 dl_density; /* dl_runtime / dl_deadline */
485
486 /*
487 * Actual scheduling parameters. Initialized with the values above,
488 * they are continously updated during task execution. Note that
489 * the remaining runtime could be < 0 in case we are in overrun.
490 */
491 s64 runtime; /* Remaining runtime for this instance */
492 u64 deadline; /* Absolute deadline for this instance */
493 unsigned int flags; /* Specifying the scheduler behaviour */
494
495 /*
496 * Some bool flags:
497 *
498 * @dl_throttled tells if we exhausted the runtime. If so, the
499 * task has to wait for a replenishment to be performed at the
500 * next firing of dl_timer.
501 *
502 * @dl_boosted tells if we are boosted due to DI. If so we are
503 * outside bandwidth enforcement mechanism (but only until we
504 * exit the critical section);
505 *
506 * @dl_yielded tells if task gave up the CPU before consuming
507 * all its available runtime during the last job.
508 *
509 * @dl_non_contending tells if the task is inactive while still
510 * contributing to the active utilization. In other words, it
511 * indicates if the inactive timer has been armed and its handler
512 * has not been executed yet. This flag is useful to avoid race
513 * conditions between the inactive timer handler and the wakeup
514 * code.
515 */
516 unsigned int dl_throttled : 1;
517 unsigned int dl_boosted : 1;
518 unsigned int dl_yielded : 1;
519 unsigned int dl_non_contending : 1;
520
521 /*
522 * Bandwidth enforcement timer. Each -deadline task has its
523 * own bandwidth to be enforced, thus we need one timer per task.
524 */
525 struct hrtimer dl_timer;
526
527 /*
528 * Inactive timer, responsible for decreasing the active utilization
529 * at the "0-lag time". When a -deadline task blocks, it contributes
530 * to GRUB's active utilization until the "0-lag time", hence a
531 * timer is needed to decrease the active utilization at the correct
532 * time.
533 */
534 struct hrtimer inactive_timer;
535 };
536
537 union rcu_special {
538 struct {
539 u8 blocked;
540 u8 need_qs;
541 u8 exp_need_qs;
542
543 /* Otherwise the compiler can store garbage here: */
544 u8 pad;
545 } b; /* Bits. */
546 u32 s; /* Set of bits. */
547 };
548
549 enum perf_event_task_context {
550 perf_invalid_context = -1,
551 perf_hw_context = 0,
552 perf_sw_context,
553 perf_nr_task_contexts,
554 };
555
556 struct wake_q_node {
557 struct wake_q_node *next;
558 };
559
560 struct task_struct {
561 #ifdef CONFIG_THREAD_INFO_IN_TASK
562 /*
563 * For reasons of header soup (see current_thread_info()), this
564 * must be the first element of task_struct.
565 */
566 struct thread_info thread_info;
567 #endif
568 /* -1 unrunnable, 0 runnable, >0 stopped: */
569 volatile long state;
570
571 /*
572 * This begins the randomizable portion of task_struct. Only
573 * scheduling-critical items should be added above here.
574 */
575 randomized_struct_fields_start
576
577 void *stack;
578 atomic_t usage;
579 /* Per task flags (PF_*), defined further below: */
580 unsigned int flags;
581 unsigned int ptrace;
582
583 #ifdef CONFIG_SMP
584 struct llist_node wake_entry;
585 int on_cpu;
586 #ifdef CONFIG_THREAD_INFO_IN_TASK
587 /* Current CPU: */
588 unsigned int cpu;
589 #endif
590 unsigned int wakee_flips;
591 unsigned long wakee_flip_decay_ts;
592 struct task_struct *last_wakee;
593
594 int wake_cpu;
595 #endif
596 int on_rq;
597
598 int prio;
599 int static_prio;
600 int normal_prio;
601 unsigned int rt_priority;
602
603 const struct sched_class *sched_class;
604 struct sched_entity se;
605 struct sched_rt_entity rt;
606 #ifdef CONFIG_CGROUP_SCHED
607 struct task_group *sched_task_group;
608 #endif
609 struct sched_dl_entity dl;
610
611 #ifdef CONFIG_PREEMPT_NOTIFIERS
612 /* List of struct preempt_notifier: */
613 struct hlist_head preempt_notifiers;
614 #endif
615
616 #ifdef CONFIG_BLK_DEV_IO_TRACE
617 unsigned int btrace_seq;
618 #endif
619
620 unsigned int policy;
621 int nr_cpus_allowed;
622 cpumask_t cpus_allowed;
623
624 #ifdef CONFIG_PREEMPT_RCU
625 int rcu_read_lock_nesting;
626 union rcu_special rcu_read_unlock_special;
627 struct list_head rcu_node_entry;
628 struct rcu_node *rcu_blocked_node;
629 #endif /* #ifdef CONFIG_PREEMPT_RCU */
630
631 #ifdef CONFIG_TASKS_RCU
632 unsigned long rcu_tasks_nvcsw;
633 u8 rcu_tasks_holdout;
634 u8 rcu_tasks_idx;
635 int rcu_tasks_idle_cpu;
636 struct list_head rcu_tasks_holdout_list;
637 #endif /* #ifdef CONFIG_TASKS_RCU */
638
639 struct sched_info sched_info;
640
641 struct list_head tasks;
642 #ifdef CONFIG_SMP
643 struct plist_node pushable_tasks;
644 struct rb_node pushable_dl_tasks;
645 #endif
646
647 struct mm_struct *mm;
648 struct mm_struct *active_mm;
649
650 /* Per-thread vma caching: */
651 struct vmacache vmacache;
652
653 #ifdef SPLIT_RSS_COUNTING
654 struct task_rss_stat rss_stat;
655 #endif
656 int exit_state;
657 int exit_code;
658 int exit_signal;
659 /* The signal sent when the parent dies: */
660 int pdeath_signal;
661 /* JOBCTL_*, siglock protected: */
662 unsigned long jobctl;
663
664 /* Used for emulating ABI behavior of previous Linux versions: */
665 unsigned int personality;
666
667 /* Scheduler bits, serialized by scheduler locks: */
668 unsigned sched_reset_on_fork:1;
669 unsigned sched_contributes_to_load:1;
670 unsigned sched_migrated:1;
671 unsigned sched_remote_wakeup:1;
672 /* Force alignment to the next boundary: */
673 unsigned :0;
674
675 /* Unserialized, strictly 'current' */
676
677 /* Bit to tell LSMs we're in execve(): */
678 unsigned in_execve:1;
679 unsigned in_iowait:1;
680 #ifndef TIF_RESTORE_SIGMASK
681 unsigned restore_sigmask:1;
682 #endif
683 #ifdef CONFIG_MEMCG
684 unsigned memcg_may_oom:1;
685 #ifndef CONFIG_SLOB
686 unsigned memcg_kmem_skip_account:1;
687 #endif
688 #endif
689 #ifdef CONFIG_COMPAT_BRK
690 unsigned brk_randomized:1;
691 #endif
692 #ifdef CONFIG_CGROUPS
693 /* disallow userland-initiated cgroup migration */
694 unsigned no_cgroup_migration:1;
695 #endif
696
697 unsigned long atomic_flags; /* Flags requiring atomic access. */
698
699 struct restart_block restart_block;
700
701 pid_t pid;
702 pid_t tgid;
703
704 #ifdef CONFIG_CC_STACKPROTECTOR
705 /* Canary value for the -fstack-protector GCC feature: */
706 unsigned long stack_canary;
707 #endif
708 /*
709 * Pointers to the (original) parent process, youngest child, younger sibling,
710 * older sibling, respectively. (p->father can be replaced with
711 * p->real_parent->pid)
712 */
713
714 /* Real parent process: */
715 struct task_struct __rcu *real_parent;
716
717 /* Recipient of SIGCHLD, wait4() reports: */
718 struct task_struct __rcu *parent;
719
720 /*
721 * Children/sibling form the list of natural children:
722 */
723 struct list_head children;
724 struct list_head sibling;
725 struct task_struct *group_leader;
726
727 /*
728 * 'ptraced' is the list of tasks this task is using ptrace() on.
729 *
730 * This includes both natural children and PTRACE_ATTACH targets.
731 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
732 */
733 struct list_head ptraced;
734 struct list_head ptrace_entry;
735
736 /* PID/PID hash table linkage. */
737 struct pid_link pids[PIDTYPE_MAX];
738 struct list_head thread_group;
739 struct list_head thread_node;
740
741 struct completion *vfork_done;
742
743 /* CLONE_CHILD_SETTID: */
744 int __user *set_child_tid;
745
746 /* CLONE_CHILD_CLEARTID: */
747 int __user *clear_child_tid;
748
749 u64 utime;
750 u64 stime;
751 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
752 u64 utimescaled;
753 u64 stimescaled;
754 #endif
755 u64 gtime;
756 struct prev_cputime prev_cputime;
757 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
758 struct vtime vtime;
759 #endif
760
761 #ifdef CONFIG_NO_HZ_FULL
762 atomic_t tick_dep_mask;
763 #endif
764 /* Context switch counts: */
765 unsigned long nvcsw;
766 unsigned long nivcsw;
767
768 /* Monotonic time in nsecs: */
769 u64 start_time;
770
771 /* Boot based time in nsecs: */
772 u64 real_start_time;
773
774 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
775 unsigned long min_flt;
776 unsigned long maj_flt;
777
778 #ifdef CONFIG_POSIX_TIMERS
779 struct task_cputime cputime_expires;
780 struct list_head cpu_timers[3];
781 #endif
782
783 /* Process credentials: */
784
785 /* Tracer's credentials at attach: */
786 const struct cred __rcu *ptracer_cred;
787
788 /* Objective and real subjective task credentials (COW): */
789 const struct cred __rcu *real_cred;
790
791 /* Effective (overridable) subjective task credentials (COW): */
792 const struct cred __rcu *cred;
793
794 /*
795 * executable name, excluding path.
796 *
797 * - normally initialized setup_new_exec()
798 * - access it with [gs]et_task_comm()
799 * - lock it with task_lock()
800 */
801 char comm[TASK_COMM_LEN];
802
803 struct nameidata *nameidata;
804
805 #ifdef CONFIG_SYSVIPC
806 struct sysv_sem sysvsem;
807 struct sysv_shm sysvshm;
808 #endif
809 #ifdef CONFIG_DETECT_HUNG_TASK
810 unsigned long last_switch_count;
811 #endif
812 /* Filesystem information: */
813 struct fs_struct *fs;
814
815 /* Open file information: */
816 struct files_struct *files;
817
818 /* Namespaces: */
819 struct nsproxy *nsproxy;
820
821 /* Signal handlers: */
822 struct signal_struct *signal;
823 struct sighand_struct *sighand;
824 sigset_t blocked;
825 sigset_t real_blocked;
826 /* Restored if set_restore_sigmask() was used: */
827 sigset_t saved_sigmask;
828 struct sigpending pending;
829 unsigned long sas_ss_sp;
830 size_t sas_ss_size;
831 unsigned int sas_ss_flags;
832
833 struct callback_head *task_works;
834
835 struct audit_context *audit_context;
836 #ifdef CONFIG_AUDITSYSCALL
837 kuid_t loginuid;
838 unsigned int sessionid;
839 #endif
840 struct seccomp seccomp;
841
842 /* Thread group tracking: */
843 u32 parent_exec_id;
844 u32 self_exec_id;
845
846 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
847 spinlock_t alloc_lock;
848
849 /* Protection of the PI data structures: */
850 raw_spinlock_t pi_lock;
851
852 struct wake_q_node wake_q;
853
854 #ifdef CONFIG_RT_MUTEXES
855 /* PI waiters blocked on a rt_mutex held by this task: */
856 struct rb_root_cached pi_waiters;
857 /* Updated under owner's pi_lock and rq lock */
858 struct task_struct *pi_top_task;
859 /* Deadlock detection and priority inheritance handling: */
860 struct rt_mutex_waiter *pi_blocked_on;
861 #endif
862
863 #ifdef CONFIG_DEBUG_MUTEXES
864 /* Mutex deadlock detection: */
865 struct mutex_waiter *blocked_on;
866 #endif
867
868 #ifdef CONFIG_TRACE_IRQFLAGS
869 unsigned int irq_events;
870 unsigned long hardirq_enable_ip;
871 unsigned long hardirq_disable_ip;
872 unsigned int hardirq_enable_event;
873 unsigned int hardirq_disable_event;
874 int hardirqs_enabled;
875 int hardirq_context;
876 unsigned long softirq_disable_ip;
877 unsigned long softirq_enable_ip;
878 unsigned int softirq_disable_event;
879 unsigned int softirq_enable_event;
880 int softirqs_enabled;
881 int softirq_context;
882 #endif
883
884 #ifdef CONFIG_LOCKDEP
885 # define MAX_LOCK_DEPTH 48UL
886 u64 curr_chain_key;
887 int lockdep_depth;
888 unsigned int lockdep_recursion;
889 struct held_lock held_locks[MAX_LOCK_DEPTH];
890 #endif
891
892 #ifdef CONFIG_UBSAN
893 unsigned int in_ubsan;
894 #endif
895
896 /* Journalling filesystem info: */
897 void *journal_info;
898
899 /* Stacked block device info: */
900 struct bio_list *bio_list;
901
902 #ifdef CONFIG_BLOCK
903 /* Stack plugging: */
904 struct blk_plug *plug;
905 #endif
906
907 /* VM state: */
908 struct reclaim_state *reclaim_state;
909
910 struct backing_dev_info *backing_dev_info;
911
912 struct io_context *io_context;
913
914 /* Ptrace state: */
915 unsigned long ptrace_message;
916 siginfo_t *last_siginfo;
917
918 struct task_io_accounting ioac;
919 #ifdef CONFIG_TASK_XACCT
920 /* Accumulated RSS usage: */
921 u64 acct_rss_mem1;
922 /* Accumulated virtual memory usage: */
923 u64 acct_vm_mem1;
924 /* stime + utime since last update: */
925 u64 acct_timexpd;
926 #endif
927 #ifdef CONFIG_CPUSETS
928 /* Protected by ->alloc_lock: */
929 nodemask_t mems_allowed;
930 /* Seqence number to catch updates: */
931 seqcount_t mems_allowed_seq;
932 int cpuset_mem_spread_rotor;
933 int cpuset_slab_spread_rotor;
934 #endif
935 #ifdef CONFIG_CGROUPS
936 /* Control Group info protected by css_set_lock: */
937 struct css_set __rcu *cgroups;
938 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
939 struct list_head cg_list;
940 #endif
941 #ifdef CONFIG_INTEL_RDT
942 u32 closid;
943 u32 rmid;
944 #endif
945 #ifdef CONFIG_FUTEX
946 struct robust_list_head __user *robust_list;
947 #ifdef CONFIG_COMPAT
948 struct compat_robust_list_head __user *compat_robust_list;
949 #endif
950 struct list_head pi_state_list;
951 struct futex_pi_state *pi_state_cache;
952 unsigned int futex_state;
953 #endif
954 #ifdef CONFIG_PERF_EVENTS
955 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
956 struct mutex perf_event_mutex;
957 struct list_head perf_event_list;
958 #endif
959 #ifdef CONFIG_DEBUG_PREEMPT
960 unsigned long preempt_disable_ip;
961 #endif
962 #ifdef CONFIG_NUMA
963 /* Protected by alloc_lock: */
964 struct mempolicy *mempolicy;
965 short il_prev;
966 short pref_node_fork;
967 #endif
968 #ifdef CONFIG_NUMA_BALANCING
969 int numa_scan_seq;
970 unsigned int numa_scan_period;
971 unsigned int numa_scan_period_max;
972 int numa_preferred_nid;
973 unsigned long numa_migrate_retry;
974 /* Migration stamp: */
975 u64 node_stamp;
976 u64 last_task_numa_placement;
977 u64 last_sum_exec_runtime;
978 struct callback_head numa_work;
979
980 struct list_head numa_entry;
981 struct numa_group *numa_group;
982
983 /*
984 * numa_faults is an array split into four regions:
985 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
986 * in this precise order.
987 *
988 * faults_memory: Exponential decaying average of faults on a per-node
989 * basis. Scheduling placement decisions are made based on these
990 * counts. The values remain static for the duration of a PTE scan.
991 * faults_cpu: Track the nodes the process was running on when a NUMA
992 * hinting fault was incurred.
993 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
994 * during the current scan window. When the scan completes, the counts
995 * in faults_memory and faults_cpu decay and these values are copied.
996 */
997 unsigned long *numa_faults;
998 unsigned long total_numa_faults;
999
1000 /*
1001 * numa_faults_locality tracks if faults recorded during the last
1002 * scan window were remote/local or failed to migrate. The task scan
1003 * period is adapted based on the locality of the faults with different
1004 * weights depending on whether they were shared or private faults
1005 */
1006 unsigned long numa_faults_locality[3];
1007
1008 unsigned long numa_pages_migrated;
1009 #endif /* CONFIG_NUMA_BALANCING */
1010
1011 struct tlbflush_unmap_batch tlb_ubc;
1012
1013 struct rcu_head rcu;
1014
1015 /* Cache last used pipe for splice(): */
1016 struct pipe_inode_info *splice_pipe;
1017
1018 struct page_frag task_frag;
1019
1020 #ifdef CONFIG_TASK_DELAY_ACCT
1021 struct task_delay_info *delays;
1022 #endif
1023
1024 #ifdef CONFIG_FAULT_INJECTION
1025 int make_it_fail;
1026 unsigned int fail_nth;
1027 #endif
1028 /*
1029 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1030 * balance_dirty_pages() for a dirty throttling pause:
1031 */
1032 int nr_dirtied;
1033 int nr_dirtied_pause;
1034 /* Start of a write-and-pause period: */
1035 unsigned long dirty_paused_when;
1036
1037 #ifdef CONFIG_LATENCYTOP
1038 int latency_record_count;
1039 struct latency_record latency_record[LT_SAVECOUNT];
1040 #endif
1041 /*
1042 * Time slack values; these are used to round up poll() and
1043 * select() etc timeout values. These are in nanoseconds.
1044 */
1045 u64 timer_slack_ns;
1046 u64 default_timer_slack_ns;
1047
1048 #ifdef CONFIG_KASAN
1049 unsigned int kasan_depth;
1050 #endif
1051
1052 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1053 /* Index of current stored address in ret_stack: */
1054 int curr_ret_stack;
1055 int curr_ret_depth;
1056
1057 /* Stack of return addresses for return function tracing: */
1058 struct ftrace_ret_stack *ret_stack;
1059
1060 /* Timestamp for last schedule: */
1061 unsigned long long ftrace_timestamp;
1062
1063 /*
1064 * Number of functions that haven't been traced
1065 * because of depth overrun:
1066 */
1067 atomic_t trace_overrun;
1068
1069 /* Pause tracing: */
1070 atomic_t tracing_graph_pause;
1071 #endif
1072
1073 #ifdef CONFIG_TRACING
1074 /* State flags for use by tracers: */
1075 unsigned long trace;
1076
1077 /* Bitmask and counter of trace recursion: */
1078 unsigned long trace_recursion;
1079 #endif /* CONFIG_TRACING */
1080
1081 #ifdef CONFIG_KCOV
1082 /* Coverage collection mode enabled for this task (0 if disabled): */
1083 enum kcov_mode kcov_mode;
1084
1085 /* Size of the kcov_area: */
1086 unsigned int kcov_size;
1087
1088 /* Buffer for coverage collection: */
1089 void *kcov_area;
1090
1091 /* KCOV descriptor wired with this task or NULL: */
1092 struct kcov *kcov;
1093 #endif
1094
1095 #ifdef CONFIG_MEMCG
1096 struct mem_cgroup *memcg_in_oom;
1097 gfp_t memcg_oom_gfp_mask;
1098 int memcg_oom_order;
1099
1100 /* Number of pages to reclaim on returning to userland: */
1101 unsigned int memcg_nr_pages_over_high;
1102 #endif
1103
1104 #ifdef CONFIG_UPROBES
1105 struct uprobe_task *utask;
1106 #endif
1107 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1108 unsigned int sequential_io;
1109 unsigned int sequential_io_avg;
1110 #endif
1111 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1112 unsigned long task_state_change;
1113 #endif
1114 int pagefault_disabled;
1115 #ifdef CONFIG_MMU
1116 struct task_struct *oom_reaper_list;
1117 #endif
1118 #ifdef CONFIG_VMAP_STACK
1119 struct vm_struct *stack_vm_area;
1120 #endif
1121 #ifdef CONFIG_THREAD_INFO_IN_TASK
1122 /* A live task holds one reference: */
1123 atomic_t stack_refcount;
1124 #endif
1125 #ifdef CONFIG_LIVEPATCH
1126 int patch_state;
1127 #endif
1128 #ifdef CONFIG_SECURITY
1129 /* Used by LSM modules for access restriction: */
1130 void *security;
1131 #endif
1132
1133 /*
1134 * New fields for task_struct should be added above here, so that
1135 * they are included in the randomized portion of task_struct.
1136 */
1137 randomized_struct_fields_end
1138
1139 /* CPU-specific state of this task: */
1140 struct thread_struct thread;
1141
1142 /*
1143 * WARNING: on x86, 'thread_struct' contains a variable-sized
1144 * structure. It *MUST* be at the end of 'task_struct'.
1145 *
1146 * Do not put anything below here!
1147 */
1148 };
1149
1150 static inline struct pid *task_pid(struct task_struct *task)
1151 {
1152 return task->pids[PIDTYPE_PID].pid;
1153 }
1154
1155 static inline struct pid *task_tgid(struct task_struct *task)
1156 {
1157 return task->group_leader->pids[PIDTYPE_PID].pid;
1158 }
1159
1160 /*
1161 * Without tasklist or RCU lock it is not safe to dereference
1162 * the result of task_pgrp/task_session even if task == current,
1163 * we can race with another thread doing sys_setsid/sys_setpgid.
1164 */
1165 static inline struct pid *task_pgrp(struct task_struct *task)
1166 {
1167 return task->group_leader->pids[PIDTYPE_PGID].pid;
1168 }
1169
1170 static inline struct pid *task_session(struct task_struct *task)
1171 {
1172 return task->group_leader->pids[PIDTYPE_SID].pid;
1173 }
1174
1175 /*
1176 * the helpers to get the task's different pids as they are seen
1177 * from various namespaces
1178 *
1179 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1180 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1181 * current.
1182 * task_xid_nr_ns() : id seen from the ns specified;
1183 *
1184 * see also pid_nr() etc in include/linux/pid.h
1185 */
1186 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1187
1188 static inline pid_t task_pid_nr(struct task_struct *tsk)
1189 {
1190 return tsk->pid;
1191 }
1192
1193 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1194 {
1195 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1196 }
1197
1198 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1199 {
1200 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1201 }
1202
1203
1204 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1205 {
1206 return tsk->tgid;
1207 }
1208
1209 /**
1210 * pid_alive - check that a task structure is not stale
1211 * @p: Task structure to be checked.
1212 *
1213 * Test if a process is not yet dead (at most zombie state)
1214 * If pid_alive fails, then pointers within the task structure
1215 * can be stale and must not be dereferenced.
1216 *
1217 * Return: 1 if the process is alive. 0 otherwise.
1218 */
1219 static inline int pid_alive(const struct task_struct *p)
1220 {
1221 return p->pids[PIDTYPE_PID].pid != NULL;
1222 }
1223
1224 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1225 {
1226 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1227 }
1228
1229 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1230 {
1231 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1232 }
1233
1234
1235 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1236 {
1237 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1238 }
1239
1240 static inline pid_t task_session_vnr(struct task_struct *tsk)
1241 {
1242 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1243 }
1244
1245 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1246 {
1247 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1248 }
1249
1250 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1251 {
1252 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1253 }
1254
1255 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1256 {
1257 pid_t pid = 0;
1258
1259 rcu_read_lock();
1260 if (pid_alive(tsk))
1261 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1262 rcu_read_unlock();
1263
1264 return pid;
1265 }
1266
1267 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1268 {
1269 return task_ppid_nr_ns(tsk, &init_pid_ns);
1270 }
1271
1272 /* Obsolete, do not use: */
1273 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1274 {
1275 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1276 }
1277
1278 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1279 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1280
1281 static inline unsigned int task_state_index(struct task_struct *tsk)
1282 {
1283 unsigned int tsk_state = READ_ONCE(tsk->state);
1284 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1285
1286 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1287
1288 if (tsk_state == TASK_IDLE)
1289 state = TASK_REPORT_IDLE;
1290
1291 return fls(state);
1292 }
1293
1294 static inline char task_index_to_char(unsigned int state)
1295 {
1296 static const char state_char[] = "RSDTtXZPI";
1297
1298 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1299
1300 return state_char[state];
1301 }
1302
1303 static inline char task_state_to_char(struct task_struct *tsk)
1304 {
1305 return task_index_to_char(task_state_index(tsk));
1306 }
1307
1308 /**
1309 * is_global_init - check if a task structure is init. Since init
1310 * is free to have sub-threads we need to check tgid.
1311 * @tsk: Task structure to be checked.
1312 *
1313 * Check if a task structure is the first user space task the kernel created.
1314 *
1315 * Return: 1 if the task structure is init. 0 otherwise.
1316 */
1317 static inline int is_global_init(struct task_struct *tsk)
1318 {
1319 return task_tgid_nr(tsk) == 1;
1320 }
1321
1322 extern struct pid *cad_pid;
1323
1324 /*
1325 * Per process flags
1326 */
1327 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1328 #define PF_EXITING 0x00000004 /* Getting shut down */
1329 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1330 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1331 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1332 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1333 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1334 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1335 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1336 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1337 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1338 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1339 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1340 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1341 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1342 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1343 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1344 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1345 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1346 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1347 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1348 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1349 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1350 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1351 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1352 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1353 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1354
1355 /*
1356 * Only the _current_ task can read/write to tsk->flags, but other
1357 * tasks can access tsk->flags in readonly mode for example
1358 * with tsk_used_math (like during threaded core dumping).
1359 * There is however an exception to this rule during ptrace
1360 * or during fork: the ptracer task is allowed to write to the
1361 * child->flags of its traced child (same goes for fork, the parent
1362 * can write to the child->flags), because we're guaranteed the
1363 * child is not running and in turn not changing child->flags
1364 * at the same time the parent does it.
1365 */
1366 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1367 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1368 #define clear_used_math() clear_stopped_child_used_math(current)
1369 #define set_used_math() set_stopped_child_used_math(current)
1370
1371 #define conditional_stopped_child_used_math(condition, child) \
1372 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1373
1374 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1375
1376 #define copy_to_stopped_child_used_math(child) \
1377 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1378
1379 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1380 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1381 #define used_math() tsk_used_math(current)
1382
1383 static inline bool is_percpu_thread(void)
1384 {
1385 #ifdef CONFIG_SMP
1386 return (current->flags & PF_NO_SETAFFINITY) &&
1387 (current->nr_cpus_allowed == 1);
1388 #else
1389 return true;
1390 #endif
1391 }
1392
1393 /* Per-process atomic flags. */
1394 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1395 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1396 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1397 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1398 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1399 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1400 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1401
1402 #define TASK_PFA_TEST(name, func) \
1403 static inline bool task_##func(struct task_struct *p) \
1404 { return test_bit(PFA_##name, &p->atomic_flags); }
1405
1406 #define TASK_PFA_SET(name, func) \
1407 static inline void task_set_##func(struct task_struct *p) \
1408 { set_bit(PFA_##name, &p->atomic_flags); }
1409
1410 #define TASK_PFA_CLEAR(name, func) \
1411 static inline void task_clear_##func(struct task_struct *p) \
1412 { clear_bit(PFA_##name, &p->atomic_flags); }
1413
1414 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1415 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1416
1417 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1418 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1419 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1420
1421 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1422 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1423 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1424
1425 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1426 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1427 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1428
1429 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1430 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1431
1432 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1433 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1434 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1435
1436 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1437 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1438
1439 static inline void
1440 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1441 {
1442 current->flags &= ~flags;
1443 current->flags |= orig_flags & flags;
1444 }
1445
1446 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1447 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1448 #ifdef CONFIG_SMP
1449 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1450 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1451 #else
1452 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1453 {
1454 }
1455 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1456 {
1457 if (!cpumask_test_cpu(0, new_mask))
1458 return -EINVAL;
1459 return 0;
1460 }
1461 #endif
1462
1463 #ifndef cpu_relax_yield
1464 #define cpu_relax_yield() cpu_relax()
1465 #endif
1466
1467 extern int yield_to(struct task_struct *p, bool preempt);
1468 extern void set_user_nice(struct task_struct *p, long nice);
1469 extern int task_prio(const struct task_struct *p);
1470
1471 /**
1472 * task_nice - return the nice value of a given task.
1473 * @p: the task in question.
1474 *
1475 * Return: The nice value [ -20 ... 0 ... 19 ].
1476 */
1477 static inline int task_nice(const struct task_struct *p)
1478 {
1479 return PRIO_TO_NICE((p)->static_prio);
1480 }
1481
1482 extern int can_nice(const struct task_struct *p, const int nice);
1483 extern int task_curr(const struct task_struct *p);
1484 extern int idle_cpu(int cpu);
1485 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1486 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1487 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1488 extern struct task_struct *idle_task(int cpu);
1489
1490 /**
1491 * is_idle_task - is the specified task an idle task?
1492 * @p: the task in question.
1493 *
1494 * Return: 1 if @p is an idle task. 0 otherwise.
1495 */
1496 static inline bool is_idle_task(const struct task_struct *p)
1497 {
1498 return !!(p->flags & PF_IDLE);
1499 }
1500
1501 extern struct task_struct *curr_task(int cpu);
1502 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1503
1504 void yield(void);
1505
1506 union thread_union {
1507 #ifndef CONFIG_THREAD_INFO_IN_TASK
1508 struct thread_info thread_info;
1509 #endif
1510 unsigned long stack[THREAD_SIZE/sizeof(long)];
1511 };
1512
1513 #ifdef CONFIG_THREAD_INFO_IN_TASK
1514 static inline struct thread_info *task_thread_info(struct task_struct *task)
1515 {
1516 return &task->thread_info;
1517 }
1518 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1519 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1520 #endif
1521
1522 /*
1523 * find a task by one of its numerical ids
1524 *
1525 * find_task_by_pid_ns():
1526 * finds a task by its pid in the specified namespace
1527 * find_task_by_vpid():
1528 * finds a task by its virtual pid
1529 *
1530 * see also find_vpid() etc in include/linux/pid.h
1531 */
1532
1533 extern struct task_struct *find_task_by_vpid(pid_t nr);
1534 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1535
1536 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1537 extern int wake_up_process(struct task_struct *tsk);
1538 extern void wake_up_new_task(struct task_struct *tsk);
1539
1540 #ifdef CONFIG_SMP
1541 extern void kick_process(struct task_struct *tsk);
1542 #else
1543 static inline void kick_process(struct task_struct *tsk) { }
1544 #endif
1545
1546 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1547
1548 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1549 {
1550 __set_task_comm(tsk, from, false);
1551 }
1552
1553 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1554 #define get_task_comm(buf, tsk) ({ \
1555 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1556 __get_task_comm(buf, sizeof(buf), tsk); \
1557 })
1558
1559 #ifdef CONFIG_SMP
1560 void scheduler_ipi(void);
1561 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1562 #else
1563 static inline void scheduler_ipi(void) { }
1564 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1565 {
1566 return 1;
1567 }
1568 #endif
1569
1570 /*
1571 * Set thread flags in other task's structures.
1572 * See asm/thread_info.h for TIF_xxxx flags available:
1573 */
1574 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1575 {
1576 set_ti_thread_flag(task_thread_info(tsk), flag);
1577 }
1578
1579 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1580 {
1581 clear_ti_thread_flag(task_thread_info(tsk), flag);
1582 }
1583
1584 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1585 {
1586 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1587 }
1588
1589 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1590 {
1591 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1592 }
1593
1594 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1595 {
1596 return test_ti_thread_flag(task_thread_info(tsk), flag);
1597 }
1598
1599 static inline void set_tsk_need_resched(struct task_struct *tsk)
1600 {
1601 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1602 }
1603
1604 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1605 {
1606 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1607 }
1608
1609 static inline int test_tsk_need_resched(struct task_struct *tsk)
1610 {
1611 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1612 }
1613
1614 /*
1615 * cond_resched() and cond_resched_lock(): latency reduction via
1616 * explicit rescheduling in places that are safe. The return
1617 * value indicates whether a reschedule was done in fact.
1618 * cond_resched_lock() will drop the spinlock before scheduling,
1619 * cond_resched_softirq() will enable bhs before scheduling.
1620 */
1621 #ifndef CONFIG_PREEMPT
1622 extern int _cond_resched(void);
1623 #else
1624 static inline int _cond_resched(void) { return 0; }
1625 #endif
1626
1627 #define cond_resched() ({ \
1628 ___might_sleep(__FILE__, __LINE__, 0); \
1629 _cond_resched(); \
1630 })
1631
1632 extern int __cond_resched_lock(spinlock_t *lock);
1633
1634 #define cond_resched_lock(lock) ({ \
1635 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1636 __cond_resched_lock(lock); \
1637 })
1638
1639 extern int __cond_resched_softirq(void);
1640
1641 #define cond_resched_softirq() ({ \
1642 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1643 __cond_resched_softirq(); \
1644 })
1645
1646 static inline void cond_resched_rcu(void)
1647 {
1648 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1649 rcu_read_unlock();
1650 cond_resched();
1651 rcu_read_lock();
1652 #endif
1653 }
1654
1655 /*
1656 * Does a critical section need to be broken due to another
1657 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1658 * but a general need for low latency)
1659 */
1660 static inline int spin_needbreak(spinlock_t *lock)
1661 {
1662 #ifdef CONFIG_PREEMPT
1663 return spin_is_contended(lock);
1664 #else
1665 return 0;
1666 #endif
1667 }
1668
1669 static __always_inline bool need_resched(void)
1670 {
1671 return unlikely(tif_need_resched());
1672 }
1673
1674 /*
1675 * Wrappers for p->thread_info->cpu access. No-op on UP.
1676 */
1677 #ifdef CONFIG_SMP
1678
1679 static inline unsigned int task_cpu(const struct task_struct *p)
1680 {
1681 #ifdef CONFIG_THREAD_INFO_IN_TASK
1682 return READ_ONCE(p->cpu);
1683 #else
1684 return READ_ONCE(task_thread_info(p)->cpu);
1685 #endif
1686 }
1687
1688 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1689
1690 #else
1691
1692 static inline unsigned int task_cpu(const struct task_struct *p)
1693 {
1694 return 0;
1695 }
1696
1697 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1698 {
1699 }
1700
1701 #endif /* CONFIG_SMP */
1702
1703 /*
1704 * In order to reduce various lock holder preemption latencies provide an
1705 * interface to see if a vCPU is currently running or not.
1706 *
1707 * This allows us to terminate optimistic spin loops and block, analogous to
1708 * the native optimistic spin heuristic of testing if the lock owner task is
1709 * running or not.
1710 */
1711 #ifndef vcpu_is_preempted
1712 # define vcpu_is_preempted(cpu) false
1713 #endif
1714
1715 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1716 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1717
1718 #ifndef TASK_SIZE_OF
1719 #define TASK_SIZE_OF(tsk) TASK_SIZE
1720 #endif
1721
1722 #endif