]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched: Track the runnable average on a per-task entity basis
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54
55 #include <asm/processor.h>
56
57 struct exec_domain;
58 struct futex_pi_state;
59 struct robust_list_head;
60 struct bio_list;
61 struct fs_struct;
62 struct perf_event_context;
63 struct blk_plug;
64
65 /*
66 * List of flags we want to share for kernel threads,
67 * if only because they are not used by them anyway.
68 */
69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
70
71 /*
72 * These are the constant used to fake the fixed-point load-average
73 * counting. Some notes:
74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
75 * a load-average precision of 10 bits integer + 11 bits fractional
76 * - if you want to count load-averages more often, you need more
77 * precision, or rounding will get you. With 2-second counting freq,
78 * the EXP_n values would be 1981, 2034 and 2043 if still using only
79 * 11 bit fractions.
80 */
81 extern unsigned long avenrun[]; /* Load averages */
82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
83
84 #define FSHIFT 11 /* nr of bits of precision */
85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
88 #define EXP_5 2014 /* 1/exp(5sec/5min) */
89 #define EXP_15 2037 /* 1/exp(5sec/15min) */
90
91 #define CALC_LOAD(load,exp,n) \
92 load *= exp; \
93 load += n*(FIXED_1-exp); \
94 load >>= FSHIFT;
95
96 extern unsigned long total_forks;
97 extern int nr_threads;
98 DECLARE_PER_CPU(unsigned long, process_counts);
99 extern int nr_processes(void);
100 extern unsigned long nr_running(void);
101 extern unsigned long nr_uninterruptible(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 extern unsigned long get_parent_ip(unsigned long addr);
111
112 struct seq_file;
113 struct cfs_rq;
114 struct task_group;
115 #ifdef CONFIG_SCHED_DEBUG
116 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
117 extern void proc_sched_set_task(struct task_struct *p);
118 extern void
119 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
120 #else
121 static inline void
122 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
123 {
124 }
125 static inline void proc_sched_set_task(struct task_struct *p)
126 {
127 }
128 static inline void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
130 {
131 }
132 #endif
133
134 /*
135 * Task state bitmask. NOTE! These bits are also
136 * encoded in fs/proc/array.c: get_task_state().
137 *
138 * We have two separate sets of flags: task->state
139 * is about runnability, while task->exit_state are
140 * about the task exiting. Confusing, but this way
141 * modifying one set can't modify the other one by
142 * mistake.
143 */
144 #define TASK_RUNNING 0
145 #define TASK_INTERRUPTIBLE 1
146 #define TASK_UNINTERRUPTIBLE 2
147 #define __TASK_STOPPED 4
148 #define __TASK_TRACED 8
149 /* in tsk->exit_state */
150 #define EXIT_ZOMBIE 16
151 #define EXIT_DEAD 32
152 /* in tsk->state again */
153 #define TASK_DEAD 64
154 #define TASK_WAKEKILL 128
155 #define TASK_WAKING 256
156 #define TASK_STATE_MAX 512
157
158 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
159
160 extern char ___assert_task_state[1 - 2*!!(
161 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
162
163 /* Convenience macros for the sake of set_task_state */
164 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
165 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
166 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
167
168 /* Convenience macros for the sake of wake_up */
169 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
170 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
171
172 /* get_task_state() */
173 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
174 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
175 __TASK_TRACED)
176
177 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
178 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
179 #define task_is_dead(task) ((task)->exit_state != 0)
180 #define task_is_stopped_or_traced(task) \
181 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
182 #define task_contributes_to_load(task) \
183 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
184 (task->flags & PF_FROZEN) == 0)
185
186 #define __set_task_state(tsk, state_value) \
187 do { (tsk)->state = (state_value); } while (0)
188 #define set_task_state(tsk, state_value) \
189 set_mb((tsk)->state, (state_value))
190
191 /*
192 * set_current_state() includes a barrier so that the write of current->state
193 * is correctly serialised wrt the caller's subsequent test of whether to
194 * actually sleep:
195 *
196 * set_current_state(TASK_UNINTERRUPTIBLE);
197 * if (do_i_need_to_sleep())
198 * schedule();
199 *
200 * If the caller does not need such serialisation then use __set_current_state()
201 */
202 #define __set_current_state(state_value) \
203 do { current->state = (state_value); } while (0)
204 #define set_current_state(state_value) \
205 set_mb(current->state, (state_value))
206
207 /* Task command name length */
208 #define TASK_COMM_LEN 16
209
210 #include <linux/spinlock.h>
211
212 /*
213 * This serializes "schedule()" and also protects
214 * the run-queue from deletions/modifications (but
215 * _adding_ to the beginning of the run-queue has
216 * a separate lock).
217 */
218 extern rwlock_t tasklist_lock;
219 extern spinlock_t mmlist_lock;
220
221 struct task_struct;
222
223 #ifdef CONFIG_PROVE_RCU
224 extern int lockdep_tasklist_lock_is_held(void);
225 #endif /* #ifdef CONFIG_PROVE_RCU */
226
227 extern void sched_init(void);
228 extern void sched_init_smp(void);
229 extern asmlinkage void schedule_tail(struct task_struct *prev);
230 extern void init_idle(struct task_struct *idle, int cpu);
231 extern void init_idle_bootup_task(struct task_struct *idle);
232
233 extern int runqueue_is_locked(int cpu);
234
235 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
236 extern void nohz_balance_enter_idle(int cpu);
237 extern void set_cpu_sd_state_idle(void);
238 extern int get_nohz_timer_target(void);
239 #else
240 static inline void nohz_balance_enter_idle(int cpu) { }
241 static inline void set_cpu_sd_state_idle(void) { }
242 #endif
243
244 /*
245 * Only dump TASK_* tasks. (0 for all tasks)
246 */
247 extern void show_state_filter(unsigned long state_filter);
248
249 static inline void show_state(void)
250 {
251 show_state_filter(0);
252 }
253
254 extern void show_regs(struct pt_regs *);
255
256 /*
257 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
258 * task), SP is the stack pointer of the first frame that should be shown in the back
259 * trace (or NULL if the entire call-chain of the task should be shown).
260 */
261 extern void show_stack(struct task_struct *task, unsigned long *sp);
262
263 void io_schedule(void);
264 long io_schedule_timeout(long timeout);
265
266 extern void cpu_init (void);
267 extern void trap_init(void);
268 extern void update_process_times(int user);
269 extern void scheduler_tick(void);
270
271 extern void sched_show_task(struct task_struct *p);
272
273 #ifdef CONFIG_LOCKUP_DETECTOR
274 extern void touch_softlockup_watchdog(void);
275 extern void touch_softlockup_watchdog_sync(void);
276 extern void touch_all_softlockup_watchdogs(void);
277 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
278 void __user *buffer,
279 size_t *lenp, loff_t *ppos);
280 extern unsigned int softlockup_panic;
281 void lockup_detector_init(void);
282 #else
283 static inline void touch_softlockup_watchdog(void)
284 {
285 }
286 static inline void touch_softlockup_watchdog_sync(void)
287 {
288 }
289 static inline void touch_all_softlockup_watchdogs(void)
290 {
291 }
292 static inline void lockup_detector_init(void)
293 {
294 }
295 #endif
296
297 #ifdef CONFIG_DETECT_HUNG_TASK
298 extern unsigned int sysctl_hung_task_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
303 void __user *buffer,
304 size_t *lenp, loff_t *ppos);
305 #else
306 /* Avoid need for ifdefs elsewhere in the code */
307 enum { sysctl_hung_task_timeout_secs = 0 };
308 #endif
309
310 /* Attach to any functions which should be ignored in wchan output. */
311 #define __sched __attribute__((__section__(".sched.text")))
312
313 /* Linker adds these: start and end of __sched functions */
314 extern char __sched_text_start[], __sched_text_end[];
315
316 /* Is this address in the __sched functions? */
317 extern int in_sched_functions(unsigned long addr);
318
319 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
320 extern signed long schedule_timeout(signed long timeout);
321 extern signed long schedule_timeout_interruptible(signed long timeout);
322 extern signed long schedule_timeout_killable(signed long timeout);
323 extern signed long schedule_timeout_uninterruptible(signed long timeout);
324 asmlinkage void schedule(void);
325 extern void schedule_preempt_disabled(void);
326 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
327
328 struct nsproxy;
329 struct user_namespace;
330
331 /*
332 * Default maximum number of active map areas, this limits the number of vmas
333 * per mm struct. Users can overwrite this number by sysctl but there is a
334 * problem.
335 *
336 * When a program's coredump is generated as ELF format, a section is created
337 * per a vma. In ELF, the number of sections is represented in unsigned short.
338 * This means the number of sections should be smaller than 65535 at coredump.
339 * Because the kernel adds some informative sections to a image of program at
340 * generating coredump, we need some margin. The number of extra sections is
341 * 1-3 now and depends on arch. We use "5" as safe margin, here.
342 */
343 #define MAPCOUNT_ELF_CORE_MARGIN (5)
344 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
345
346 extern int sysctl_max_map_count;
347
348 #include <linux/aio.h>
349
350 #ifdef CONFIG_MMU
351 extern void arch_pick_mmap_layout(struct mm_struct *mm);
352 extern unsigned long
353 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
354 unsigned long, unsigned long);
355 extern unsigned long
356 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
357 unsigned long len, unsigned long pgoff,
358 unsigned long flags);
359 extern void arch_unmap_area(struct mm_struct *, unsigned long);
360 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
361 #else
362 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
363 #endif
364
365
366 extern void set_dumpable(struct mm_struct *mm, int value);
367 extern int get_dumpable(struct mm_struct *mm);
368
369 /* get/set_dumpable() values */
370 #define SUID_DUMPABLE_DISABLED 0
371 #define SUID_DUMPABLE_ENABLED 1
372 #define SUID_DUMPABLE_SAFE 2
373
374 /* mm flags */
375 /* dumpable bits */
376 #define MMF_DUMPABLE 0 /* core dump is permitted */
377 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
378
379 #define MMF_DUMPABLE_BITS 2
380 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
381
382 /* coredump filter bits */
383 #define MMF_DUMP_ANON_PRIVATE 2
384 #define MMF_DUMP_ANON_SHARED 3
385 #define MMF_DUMP_MAPPED_PRIVATE 4
386 #define MMF_DUMP_MAPPED_SHARED 5
387 #define MMF_DUMP_ELF_HEADERS 6
388 #define MMF_DUMP_HUGETLB_PRIVATE 7
389 #define MMF_DUMP_HUGETLB_SHARED 8
390
391 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
392 #define MMF_DUMP_FILTER_BITS 7
393 #define MMF_DUMP_FILTER_MASK \
394 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
395 #define MMF_DUMP_FILTER_DEFAULT \
396 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
397 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
398
399 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
400 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
401 #else
402 # define MMF_DUMP_MASK_DEFAULT_ELF 0
403 #endif
404 /* leave room for more dump flags */
405 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
406 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
407 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
408
409 #define MMF_HAS_UPROBES 19 /* has uprobes */
410 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
411
412 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
413
414 struct sighand_struct {
415 atomic_t count;
416 struct k_sigaction action[_NSIG];
417 spinlock_t siglock;
418 wait_queue_head_t signalfd_wqh;
419 };
420
421 struct pacct_struct {
422 int ac_flag;
423 long ac_exitcode;
424 unsigned long ac_mem;
425 cputime_t ac_utime, ac_stime;
426 unsigned long ac_minflt, ac_majflt;
427 };
428
429 struct cpu_itimer {
430 cputime_t expires;
431 cputime_t incr;
432 u32 error;
433 u32 incr_error;
434 };
435
436 /**
437 * struct task_cputime - collected CPU time counts
438 * @utime: time spent in user mode, in &cputime_t units
439 * @stime: time spent in kernel mode, in &cputime_t units
440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
441 *
442 * This structure groups together three kinds of CPU time that are
443 * tracked for threads and thread groups. Most things considering
444 * CPU time want to group these counts together and treat all three
445 * of them in parallel.
446 */
447 struct task_cputime {
448 cputime_t utime;
449 cputime_t stime;
450 unsigned long long sum_exec_runtime;
451 };
452 /* Alternate field names when used to cache expirations. */
453 #define prof_exp stime
454 #define virt_exp utime
455 #define sched_exp sum_exec_runtime
456
457 #define INIT_CPUTIME \
458 (struct task_cputime) { \
459 .utime = 0, \
460 .stime = 0, \
461 .sum_exec_runtime = 0, \
462 }
463
464 /*
465 * Disable preemption until the scheduler is running.
466 * Reset by start_kernel()->sched_init()->init_idle().
467 *
468 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
469 * before the scheduler is active -- see should_resched().
470 */
471 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
472
473 /**
474 * struct thread_group_cputimer - thread group interval timer counts
475 * @cputime: thread group interval timers.
476 * @running: non-zero when there are timers running and
477 * @cputime receives updates.
478 * @lock: lock for fields in this struct.
479 *
480 * This structure contains the version of task_cputime, above, that is
481 * used for thread group CPU timer calculations.
482 */
483 struct thread_group_cputimer {
484 struct task_cputime cputime;
485 int running;
486 raw_spinlock_t lock;
487 };
488
489 #include <linux/rwsem.h>
490 struct autogroup;
491
492 /*
493 * NOTE! "signal_struct" does not have its own
494 * locking, because a shared signal_struct always
495 * implies a shared sighand_struct, so locking
496 * sighand_struct is always a proper superset of
497 * the locking of signal_struct.
498 */
499 struct signal_struct {
500 atomic_t sigcnt;
501 atomic_t live;
502 int nr_threads;
503
504 wait_queue_head_t wait_chldexit; /* for wait4() */
505
506 /* current thread group signal load-balancing target: */
507 struct task_struct *curr_target;
508
509 /* shared signal handling: */
510 struct sigpending shared_pending;
511
512 /* thread group exit support */
513 int group_exit_code;
514 /* overloaded:
515 * - notify group_exit_task when ->count is equal to notify_count
516 * - everyone except group_exit_task is stopped during signal delivery
517 * of fatal signals, group_exit_task processes the signal.
518 */
519 int notify_count;
520 struct task_struct *group_exit_task;
521
522 /* thread group stop support, overloads group_exit_code too */
523 int group_stop_count;
524 unsigned int flags; /* see SIGNAL_* flags below */
525
526 /*
527 * PR_SET_CHILD_SUBREAPER marks a process, like a service
528 * manager, to re-parent orphan (double-forking) child processes
529 * to this process instead of 'init'. The service manager is
530 * able to receive SIGCHLD signals and is able to investigate
531 * the process until it calls wait(). All children of this
532 * process will inherit a flag if they should look for a
533 * child_subreaper process at exit.
534 */
535 unsigned int is_child_subreaper:1;
536 unsigned int has_child_subreaper:1;
537
538 /* POSIX.1b Interval Timers */
539 struct list_head posix_timers;
540
541 /* ITIMER_REAL timer for the process */
542 struct hrtimer real_timer;
543 struct pid *leader_pid;
544 ktime_t it_real_incr;
545
546 /*
547 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
548 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
549 * values are defined to 0 and 1 respectively
550 */
551 struct cpu_itimer it[2];
552
553 /*
554 * Thread group totals for process CPU timers.
555 * See thread_group_cputimer(), et al, for details.
556 */
557 struct thread_group_cputimer cputimer;
558
559 /* Earliest-expiration cache. */
560 struct task_cputime cputime_expires;
561
562 struct list_head cpu_timers[3];
563
564 struct pid *tty_old_pgrp;
565
566 /* boolean value for session group leader */
567 int leader;
568
569 struct tty_struct *tty; /* NULL if no tty */
570
571 #ifdef CONFIG_SCHED_AUTOGROUP
572 struct autogroup *autogroup;
573 #endif
574 /*
575 * Cumulative resource counters for dead threads in the group,
576 * and for reaped dead child processes forked by this group.
577 * Live threads maintain their own counters and add to these
578 * in __exit_signal, except for the group leader.
579 */
580 cputime_t utime, stime, cutime, cstime;
581 cputime_t gtime;
582 cputime_t cgtime;
583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
584 cputime_t prev_utime, prev_stime;
585 #endif
586 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
587 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
588 unsigned long inblock, oublock, cinblock, coublock;
589 unsigned long maxrss, cmaxrss;
590 struct task_io_accounting ioac;
591
592 /*
593 * Cumulative ns of schedule CPU time fo dead threads in the
594 * group, not including a zombie group leader, (This only differs
595 * from jiffies_to_ns(utime + stime) if sched_clock uses something
596 * other than jiffies.)
597 */
598 unsigned long long sum_sched_runtime;
599
600 /*
601 * We don't bother to synchronize most readers of this at all,
602 * because there is no reader checking a limit that actually needs
603 * to get both rlim_cur and rlim_max atomically, and either one
604 * alone is a single word that can safely be read normally.
605 * getrlimit/setrlimit use task_lock(current->group_leader) to
606 * protect this instead of the siglock, because they really
607 * have no need to disable irqs.
608 */
609 struct rlimit rlim[RLIM_NLIMITS];
610
611 #ifdef CONFIG_BSD_PROCESS_ACCT
612 struct pacct_struct pacct; /* per-process accounting information */
613 #endif
614 #ifdef CONFIG_TASKSTATS
615 struct taskstats *stats;
616 #endif
617 #ifdef CONFIG_AUDIT
618 unsigned audit_tty;
619 struct tty_audit_buf *tty_audit_buf;
620 #endif
621 #ifdef CONFIG_CGROUPS
622 /*
623 * group_rwsem prevents new tasks from entering the threadgroup and
624 * member tasks from exiting,a more specifically, setting of
625 * PF_EXITING. fork and exit paths are protected with this rwsem
626 * using threadgroup_change_begin/end(). Users which require
627 * threadgroup to remain stable should use threadgroup_[un]lock()
628 * which also takes care of exec path. Currently, cgroup is the
629 * only user.
630 */
631 struct rw_semaphore group_rwsem;
632 #endif
633
634 int oom_score_adj; /* OOM kill score adjustment */
635 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
636 * Only settable by CAP_SYS_RESOURCE. */
637
638 struct mutex cred_guard_mutex; /* guard against foreign influences on
639 * credential calculations
640 * (notably. ptrace) */
641 };
642
643 /*
644 * Bits in flags field of signal_struct.
645 */
646 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
647 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
648 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
649 /*
650 * Pending notifications to parent.
651 */
652 #define SIGNAL_CLD_STOPPED 0x00000010
653 #define SIGNAL_CLD_CONTINUED 0x00000020
654 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
655
656 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
657
658 /* If true, all threads except ->group_exit_task have pending SIGKILL */
659 static inline int signal_group_exit(const struct signal_struct *sig)
660 {
661 return (sig->flags & SIGNAL_GROUP_EXIT) ||
662 (sig->group_exit_task != NULL);
663 }
664
665 /*
666 * Some day this will be a full-fledged user tracking system..
667 */
668 struct user_struct {
669 atomic_t __count; /* reference count */
670 atomic_t processes; /* How many processes does this user have? */
671 atomic_t files; /* How many open files does this user have? */
672 atomic_t sigpending; /* How many pending signals does this user have? */
673 #ifdef CONFIG_INOTIFY_USER
674 atomic_t inotify_watches; /* How many inotify watches does this user have? */
675 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
676 #endif
677 #ifdef CONFIG_FANOTIFY
678 atomic_t fanotify_listeners;
679 #endif
680 #ifdef CONFIG_EPOLL
681 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
682 #endif
683 #ifdef CONFIG_POSIX_MQUEUE
684 /* protected by mq_lock */
685 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
686 #endif
687 unsigned long locked_shm; /* How many pages of mlocked shm ? */
688
689 #ifdef CONFIG_KEYS
690 struct key *uid_keyring; /* UID specific keyring */
691 struct key *session_keyring; /* UID's default session keyring */
692 #endif
693
694 /* Hash table maintenance information */
695 struct hlist_node uidhash_node;
696 kuid_t uid;
697
698 #ifdef CONFIG_PERF_EVENTS
699 atomic_long_t locked_vm;
700 #endif
701 };
702
703 extern int uids_sysfs_init(void);
704
705 extern struct user_struct *find_user(kuid_t);
706
707 extern struct user_struct root_user;
708 #define INIT_USER (&root_user)
709
710
711 struct backing_dev_info;
712 struct reclaim_state;
713
714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715 struct sched_info {
716 /* cumulative counters */
717 unsigned long pcount; /* # of times run on this cpu */
718 unsigned long long run_delay; /* time spent waiting on a runqueue */
719
720 /* timestamps */
721 unsigned long long last_arrival,/* when we last ran on a cpu */
722 last_queued; /* when we were last queued to run */
723 };
724 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
725
726 #ifdef CONFIG_TASK_DELAY_ACCT
727 struct task_delay_info {
728 spinlock_t lock;
729 unsigned int flags; /* Private per-task flags */
730
731 /* For each stat XXX, add following, aligned appropriately
732 *
733 * struct timespec XXX_start, XXX_end;
734 * u64 XXX_delay;
735 * u32 XXX_count;
736 *
737 * Atomicity of updates to XXX_delay, XXX_count protected by
738 * single lock above (split into XXX_lock if contention is an issue).
739 */
740
741 /*
742 * XXX_count is incremented on every XXX operation, the delay
743 * associated with the operation is added to XXX_delay.
744 * XXX_delay contains the accumulated delay time in nanoseconds.
745 */
746 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
747 u64 blkio_delay; /* wait for sync block io completion */
748 u64 swapin_delay; /* wait for swapin block io completion */
749 u32 blkio_count; /* total count of the number of sync block */
750 /* io operations performed */
751 u32 swapin_count; /* total count of the number of swapin block */
752 /* io operations performed */
753
754 struct timespec freepages_start, freepages_end;
755 u64 freepages_delay; /* wait for memory reclaim */
756 u32 freepages_count; /* total count of memory reclaim */
757 };
758 #endif /* CONFIG_TASK_DELAY_ACCT */
759
760 static inline int sched_info_on(void)
761 {
762 #ifdef CONFIG_SCHEDSTATS
763 return 1;
764 #elif defined(CONFIG_TASK_DELAY_ACCT)
765 extern int delayacct_on;
766 return delayacct_on;
767 #else
768 return 0;
769 #endif
770 }
771
772 enum cpu_idle_type {
773 CPU_IDLE,
774 CPU_NOT_IDLE,
775 CPU_NEWLY_IDLE,
776 CPU_MAX_IDLE_TYPES
777 };
778
779 /*
780 * Increase resolution of nice-level calculations for 64-bit architectures.
781 * The extra resolution improves shares distribution and load balancing of
782 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
783 * hierarchies, especially on larger systems. This is not a user-visible change
784 * and does not change the user-interface for setting shares/weights.
785 *
786 * We increase resolution only if we have enough bits to allow this increased
787 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
788 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
789 * increased costs.
790 */
791 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
792 # define SCHED_LOAD_RESOLUTION 10
793 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
794 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
795 #else
796 # define SCHED_LOAD_RESOLUTION 0
797 # define scale_load(w) (w)
798 # define scale_load_down(w) (w)
799 #endif
800
801 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
803
804 /*
805 * Increase resolution of cpu_power calculations
806 */
807 #define SCHED_POWER_SHIFT 10
808 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
809
810 /*
811 * sched-domains (multiprocessor balancing) declarations:
812 */
813 #ifdef CONFIG_SMP
814 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
815 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
816 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
817 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
818 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
819 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
820 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
821 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
822 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
823 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
824 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
825 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
826
827 extern int __weak arch_sd_sibiling_asym_packing(void);
828
829 struct sched_group_power {
830 atomic_t ref;
831 /*
832 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
833 * single CPU.
834 */
835 unsigned int power, power_orig;
836 unsigned long next_update;
837 /*
838 * Number of busy cpus in this group.
839 */
840 atomic_t nr_busy_cpus;
841
842 unsigned long cpumask[0]; /* iteration mask */
843 };
844
845 struct sched_group {
846 struct sched_group *next; /* Must be a circular list */
847 atomic_t ref;
848
849 unsigned int group_weight;
850 struct sched_group_power *sgp;
851
852 /*
853 * The CPUs this group covers.
854 *
855 * NOTE: this field is variable length. (Allocated dynamically
856 * by attaching extra space to the end of the structure,
857 * depending on how many CPUs the kernel has booted up with)
858 */
859 unsigned long cpumask[0];
860 };
861
862 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
863 {
864 return to_cpumask(sg->cpumask);
865 }
866
867 /*
868 * cpumask masking which cpus in the group are allowed to iterate up the domain
869 * tree.
870 */
871 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
872 {
873 return to_cpumask(sg->sgp->cpumask);
874 }
875
876 /**
877 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
878 * @group: The group whose first cpu is to be returned.
879 */
880 static inline unsigned int group_first_cpu(struct sched_group *group)
881 {
882 return cpumask_first(sched_group_cpus(group));
883 }
884
885 struct sched_domain_attr {
886 int relax_domain_level;
887 };
888
889 #define SD_ATTR_INIT (struct sched_domain_attr) { \
890 .relax_domain_level = -1, \
891 }
892
893 extern int sched_domain_level_max;
894
895 struct sched_domain {
896 /* These fields must be setup */
897 struct sched_domain *parent; /* top domain must be null terminated */
898 struct sched_domain *child; /* bottom domain must be null terminated */
899 struct sched_group *groups; /* the balancing groups of the domain */
900 unsigned long min_interval; /* Minimum balance interval ms */
901 unsigned long max_interval; /* Maximum balance interval ms */
902 unsigned int busy_factor; /* less balancing by factor if busy */
903 unsigned int imbalance_pct; /* No balance until over watermark */
904 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
905 unsigned int busy_idx;
906 unsigned int idle_idx;
907 unsigned int newidle_idx;
908 unsigned int wake_idx;
909 unsigned int forkexec_idx;
910 unsigned int smt_gain;
911 int flags; /* See SD_* */
912 int level;
913
914 /* Runtime fields. */
915 unsigned long last_balance; /* init to jiffies. units in jiffies */
916 unsigned int balance_interval; /* initialise to 1. units in ms. */
917 unsigned int nr_balance_failed; /* initialise to 0 */
918
919 u64 last_update;
920
921 #ifdef CONFIG_SCHEDSTATS
922 /* load_balance() stats */
923 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
924 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
931
932 /* Active load balancing */
933 unsigned int alb_count;
934 unsigned int alb_failed;
935 unsigned int alb_pushed;
936
937 /* SD_BALANCE_EXEC stats */
938 unsigned int sbe_count;
939 unsigned int sbe_balanced;
940 unsigned int sbe_pushed;
941
942 /* SD_BALANCE_FORK stats */
943 unsigned int sbf_count;
944 unsigned int sbf_balanced;
945 unsigned int sbf_pushed;
946
947 /* try_to_wake_up() stats */
948 unsigned int ttwu_wake_remote;
949 unsigned int ttwu_move_affine;
950 unsigned int ttwu_move_balance;
951 #endif
952 #ifdef CONFIG_SCHED_DEBUG
953 char *name;
954 #endif
955 union {
956 void *private; /* used during construction */
957 struct rcu_head rcu; /* used during destruction */
958 };
959
960 unsigned int span_weight;
961 /*
962 * Span of all CPUs in this domain.
963 *
964 * NOTE: this field is variable length. (Allocated dynamically
965 * by attaching extra space to the end of the structure,
966 * depending on how many CPUs the kernel has booted up with)
967 */
968 unsigned long span[0];
969 };
970
971 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
972 {
973 return to_cpumask(sd->span);
974 }
975
976 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
977 struct sched_domain_attr *dattr_new);
978
979 /* Allocate an array of sched domains, for partition_sched_domains(). */
980 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
981 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
982
983 /* Test a flag in parent sched domain */
984 static inline int test_sd_parent(struct sched_domain *sd, int flag)
985 {
986 if (sd->parent && (sd->parent->flags & flag))
987 return 1;
988
989 return 0;
990 }
991
992 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
993 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
994
995 bool cpus_share_cache(int this_cpu, int that_cpu);
996
997 #else /* CONFIG_SMP */
998
999 struct sched_domain_attr;
1000
1001 static inline void
1002 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1003 struct sched_domain_attr *dattr_new)
1004 {
1005 }
1006
1007 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1008 {
1009 return true;
1010 }
1011
1012 #endif /* !CONFIG_SMP */
1013
1014
1015 struct io_context; /* See blkdev.h */
1016
1017
1018 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1019 extern void prefetch_stack(struct task_struct *t);
1020 #else
1021 static inline void prefetch_stack(struct task_struct *t) { }
1022 #endif
1023
1024 struct audit_context; /* See audit.c */
1025 struct mempolicy;
1026 struct pipe_inode_info;
1027 struct uts_namespace;
1028
1029 struct rq;
1030 struct sched_domain;
1031
1032 /*
1033 * wake flags
1034 */
1035 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1036 #define WF_FORK 0x02 /* child wakeup after fork */
1037 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1038
1039 #define ENQUEUE_WAKEUP 1
1040 #define ENQUEUE_HEAD 2
1041 #ifdef CONFIG_SMP
1042 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1043 #else
1044 #define ENQUEUE_WAKING 0
1045 #endif
1046
1047 #define DEQUEUE_SLEEP 1
1048
1049 struct sched_class {
1050 const struct sched_class *next;
1051
1052 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1053 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1054 void (*yield_task) (struct rq *rq);
1055 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1056
1057 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1058
1059 struct task_struct * (*pick_next_task) (struct rq *rq);
1060 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1061
1062 #ifdef CONFIG_SMP
1063 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1064
1065 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1066 void (*post_schedule) (struct rq *this_rq);
1067 void (*task_waking) (struct task_struct *task);
1068 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1069
1070 void (*set_cpus_allowed)(struct task_struct *p,
1071 const struct cpumask *newmask);
1072
1073 void (*rq_online)(struct rq *rq);
1074 void (*rq_offline)(struct rq *rq);
1075 #endif
1076
1077 void (*set_curr_task) (struct rq *rq);
1078 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1079 void (*task_fork) (struct task_struct *p);
1080
1081 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1082 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1083 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1084 int oldprio);
1085
1086 unsigned int (*get_rr_interval) (struct rq *rq,
1087 struct task_struct *task);
1088
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090 void (*task_move_group) (struct task_struct *p, int on_rq);
1091 #endif
1092 };
1093
1094 struct load_weight {
1095 unsigned long weight, inv_weight;
1096 };
1097
1098 struct sched_avg {
1099 /*
1100 * These sums represent an infinite geometric series and so are bound
1101 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1102 * choices of y < 1-2^(-32)*1024.
1103 */
1104 u32 runnable_avg_sum, runnable_avg_period;
1105 u64 last_runnable_update;
1106 };
1107
1108 #ifdef CONFIG_SCHEDSTATS
1109 struct sched_statistics {
1110 u64 wait_start;
1111 u64 wait_max;
1112 u64 wait_count;
1113 u64 wait_sum;
1114 u64 iowait_count;
1115 u64 iowait_sum;
1116
1117 u64 sleep_start;
1118 u64 sleep_max;
1119 s64 sum_sleep_runtime;
1120
1121 u64 block_start;
1122 u64 block_max;
1123 u64 exec_max;
1124 u64 slice_max;
1125
1126 u64 nr_migrations_cold;
1127 u64 nr_failed_migrations_affine;
1128 u64 nr_failed_migrations_running;
1129 u64 nr_failed_migrations_hot;
1130 u64 nr_forced_migrations;
1131
1132 u64 nr_wakeups;
1133 u64 nr_wakeups_sync;
1134 u64 nr_wakeups_migrate;
1135 u64 nr_wakeups_local;
1136 u64 nr_wakeups_remote;
1137 u64 nr_wakeups_affine;
1138 u64 nr_wakeups_affine_attempts;
1139 u64 nr_wakeups_passive;
1140 u64 nr_wakeups_idle;
1141 };
1142 #endif
1143
1144 struct sched_entity {
1145 struct load_weight load; /* for load-balancing */
1146 struct rb_node run_node;
1147 struct list_head group_node;
1148 unsigned int on_rq;
1149
1150 u64 exec_start;
1151 u64 sum_exec_runtime;
1152 u64 vruntime;
1153 u64 prev_sum_exec_runtime;
1154
1155 u64 nr_migrations;
1156
1157 #ifdef CONFIG_SCHEDSTATS
1158 struct sched_statistics statistics;
1159 #endif
1160
1161 #ifdef CONFIG_FAIR_GROUP_SCHED
1162 struct sched_entity *parent;
1163 /* rq on which this entity is (to be) queued: */
1164 struct cfs_rq *cfs_rq;
1165 /* rq "owned" by this entity/group: */
1166 struct cfs_rq *my_q;
1167 #endif
1168 #ifdef CONFIG_SMP
1169 struct sched_avg avg;
1170 #endif
1171 };
1172
1173 struct sched_rt_entity {
1174 struct list_head run_list;
1175 unsigned long timeout;
1176 unsigned int time_slice;
1177
1178 struct sched_rt_entity *back;
1179 #ifdef CONFIG_RT_GROUP_SCHED
1180 struct sched_rt_entity *parent;
1181 /* rq on which this entity is (to be) queued: */
1182 struct rt_rq *rt_rq;
1183 /* rq "owned" by this entity/group: */
1184 struct rt_rq *my_q;
1185 #endif
1186 };
1187
1188 /*
1189 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1190 * Timeslices get refilled after they expire.
1191 */
1192 #define RR_TIMESLICE (100 * HZ / 1000)
1193
1194 struct rcu_node;
1195
1196 enum perf_event_task_context {
1197 perf_invalid_context = -1,
1198 perf_hw_context = 0,
1199 perf_sw_context,
1200 perf_nr_task_contexts,
1201 };
1202
1203 struct task_struct {
1204 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1205 void *stack;
1206 atomic_t usage;
1207 unsigned int flags; /* per process flags, defined below */
1208 unsigned int ptrace;
1209
1210 #ifdef CONFIG_SMP
1211 struct llist_node wake_entry;
1212 int on_cpu;
1213 #endif
1214 int on_rq;
1215
1216 int prio, static_prio, normal_prio;
1217 unsigned int rt_priority;
1218 const struct sched_class *sched_class;
1219 struct sched_entity se;
1220 struct sched_rt_entity rt;
1221 #ifdef CONFIG_CGROUP_SCHED
1222 struct task_group *sched_task_group;
1223 #endif
1224
1225 #ifdef CONFIG_PREEMPT_NOTIFIERS
1226 /* list of struct preempt_notifier: */
1227 struct hlist_head preempt_notifiers;
1228 #endif
1229
1230 /*
1231 * fpu_counter contains the number of consecutive context switches
1232 * that the FPU is used. If this is over a threshold, the lazy fpu
1233 * saving becomes unlazy to save the trap. This is an unsigned char
1234 * so that after 256 times the counter wraps and the behavior turns
1235 * lazy again; this to deal with bursty apps that only use FPU for
1236 * a short time
1237 */
1238 unsigned char fpu_counter;
1239 #ifdef CONFIG_BLK_DEV_IO_TRACE
1240 unsigned int btrace_seq;
1241 #endif
1242
1243 unsigned int policy;
1244 int nr_cpus_allowed;
1245 cpumask_t cpus_allowed;
1246
1247 #ifdef CONFIG_PREEMPT_RCU
1248 int rcu_read_lock_nesting;
1249 char rcu_read_unlock_special;
1250 struct list_head rcu_node_entry;
1251 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1252 #ifdef CONFIG_TREE_PREEMPT_RCU
1253 struct rcu_node *rcu_blocked_node;
1254 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1255 #ifdef CONFIG_RCU_BOOST
1256 struct rt_mutex *rcu_boost_mutex;
1257 #endif /* #ifdef CONFIG_RCU_BOOST */
1258
1259 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1260 struct sched_info sched_info;
1261 #endif
1262
1263 struct list_head tasks;
1264 #ifdef CONFIG_SMP
1265 struct plist_node pushable_tasks;
1266 #endif
1267
1268 struct mm_struct *mm, *active_mm;
1269 #ifdef CONFIG_COMPAT_BRK
1270 unsigned brk_randomized:1;
1271 #endif
1272 #if defined(SPLIT_RSS_COUNTING)
1273 struct task_rss_stat rss_stat;
1274 #endif
1275 /* task state */
1276 int exit_state;
1277 int exit_code, exit_signal;
1278 int pdeath_signal; /* The signal sent when the parent dies */
1279 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1280 /* ??? */
1281 unsigned int personality;
1282 unsigned did_exec:1;
1283 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1284 * execve */
1285 unsigned in_iowait:1;
1286
1287 /* task may not gain privileges */
1288 unsigned no_new_privs:1;
1289
1290 /* Revert to default priority/policy when forking */
1291 unsigned sched_reset_on_fork:1;
1292 unsigned sched_contributes_to_load:1;
1293
1294 pid_t pid;
1295 pid_t tgid;
1296
1297 #ifdef CONFIG_CC_STACKPROTECTOR
1298 /* Canary value for the -fstack-protector gcc feature */
1299 unsigned long stack_canary;
1300 #endif
1301 /*
1302 * pointers to (original) parent process, youngest child, younger sibling,
1303 * older sibling, respectively. (p->father can be replaced with
1304 * p->real_parent->pid)
1305 */
1306 struct task_struct __rcu *real_parent; /* real parent process */
1307 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1308 /*
1309 * children/sibling forms the list of my natural children
1310 */
1311 struct list_head children; /* list of my children */
1312 struct list_head sibling; /* linkage in my parent's children list */
1313 struct task_struct *group_leader; /* threadgroup leader */
1314
1315 /*
1316 * ptraced is the list of tasks this task is using ptrace on.
1317 * This includes both natural children and PTRACE_ATTACH targets.
1318 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1319 */
1320 struct list_head ptraced;
1321 struct list_head ptrace_entry;
1322
1323 /* PID/PID hash table linkage. */
1324 struct pid_link pids[PIDTYPE_MAX];
1325 struct list_head thread_group;
1326
1327 struct completion *vfork_done; /* for vfork() */
1328 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1329 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1330
1331 cputime_t utime, stime, utimescaled, stimescaled;
1332 cputime_t gtime;
1333 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1334 cputime_t prev_utime, prev_stime;
1335 #endif
1336 unsigned long nvcsw, nivcsw; /* context switch counts */
1337 struct timespec start_time; /* monotonic time */
1338 struct timespec real_start_time; /* boot based time */
1339 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1340 unsigned long min_flt, maj_flt;
1341
1342 struct task_cputime cputime_expires;
1343 struct list_head cpu_timers[3];
1344
1345 /* process credentials */
1346 const struct cred __rcu *real_cred; /* objective and real subjective task
1347 * credentials (COW) */
1348 const struct cred __rcu *cred; /* effective (overridable) subjective task
1349 * credentials (COW) */
1350 char comm[TASK_COMM_LEN]; /* executable name excluding path
1351 - access with [gs]et_task_comm (which lock
1352 it with task_lock())
1353 - initialized normally by setup_new_exec */
1354 /* file system info */
1355 int link_count, total_link_count;
1356 #ifdef CONFIG_SYSVIPC
1357 /* ipc stuff */
1358 struct sysv_sem sysvsem;
1359 #endif
1360 #ifdef CONFIG_DETECT_HUNG_TASK
1361 /* hung task detection */
1362 unsigned long last_switch_count;
1363 #endif
1364 /* CPU-specific state of this task */
1365 struct thread_struct thread;
1366 /* filesystem information */
1367 struct fs_struct *fs;
1368 /* open file information */
1369 struct files_struct *files;
1370 /* namespaces */
1371 struct nsproxy *nsproxy;
1372 /* signal handlers */
1373 struct signal_struct *signal;
1374 struct sighand_struct *sighand;
1375
1376 sigset_t blocked, real_blocked;
1377 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1378 struct sigpending pending;
1379
1380 unsigned long sas_ss_sp;
1381 size_t sas_ss_size;
1382 int (*notifier)(void *priv);
1383 void *notifier_data;
1384 sigset_t *notifier_mask;
1385 struct callback_head *task_works;
1386
1387 struct audit_context *audit_context;
1388 #ifdef CONFIG_AUDITSYSCALL
1389 kuid_t loginuid;
1390 unsigned int sessionid;
1391 #endif
1392 struct seccomp seccomp;
1393
1394 /* Thread group tracking */
1395 u32 parent_exec_id;
1396 u32 self_exec_id;
1397 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1398 * mempolicy */
1399 spinlock_t alloc_lock;
1400
1401 /* Protection of the PI data structures: */
1402 raw_spinlock_t pi_lock;
1403
1404 #ifdef CONFIG_RT_MUTEXES
1405 /* PI waiters blocked on a rt_mutex held by this task */
1406 struct plist_head pi_waiters;
1407 /* Deadlock detection and priority inheritance handling */
1408 struct rt_mutex_waiter *pi_blocked_on;
1409 #endif
1410
1411 #ifdef CONFIG_DEBUG_MUTEXES
1412 /* mutex deadlock detection */
1413 struct mutex_waiter *blocked_on;
1414 #endif
1415 #ifdef CONFIG_TRACE_IRQFLAGS
1416 unsigned int irq_events;
1417 unsigned long hardirq_enable_ip;
1418 unsigned long hardirq_disable_ip;
1419 unsigned int hardirq_enable_event;
1420 unsigned int hardirq_disable_event;
1421 int hardirqs_enabled;
1422 int hardirq_context;
1423 unsigned long softirq_disable_ip;
1424 unsigned long softirq_enable_ip;
1425 unsigned int softirq_disable_event;
1426 unsigned int softirq_enable_event;
1427 int softirqs_enabled;
1428 int softirq_context;
1429 #endif
1430 #ifdef CONFIG_LOCKDEP
1431 # define MAX_LOCK_DEPTH 48UL
1432 u64 curr_chain_key;
1433 int lockdep_depth;
1434 unsigned int lockdep_recursion;
1435 struct held_lock held_locks[MAX_LOCK_DEPTH];
1436 gfp_t lockdep_reclaim_gfp;
1437 #endif
1438
1439 /* journalling filesystem info */
1440 void *journal_info;
1441
1442 /* stacked block device info */
1443 struct bio_list *bio_list;
1444
1445 #ifdef CONFIG_BLOCK
1446 /* stack plugging */
1447 struct blk_plug *plug;
1448 #endif
1449
1450 /* VM state */
1451 struct reclaim_state *reclaim_state;
1452
1453 struct backing_dev_info *backing_dev_info;
1454
1455 struct io_context *io_context;
1456
1457 unsigned long ptrace_message;
1458 siginfo_t *last_siginfo; /* For ptrace use. */
1459 struct task_io_accounting ioac;
1460 #if defined(CONFIG_TASK_XACCT)
1461 u64 acct_rss_mem1; /* accumulated rss usage */
1462 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1463 cputime_t acct_timexpd; /* stime + utime since last update */
1464 #endif
1465 #ifdef CONFIG_CPUSETS
1466 nodemask_t mems_allowed; /* Protected by alloc_lock */
1467 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1468 int cpuset_mem_spread_rotor;
1469 int cpuset_slab_spread_rotor;
1470 #endif
1471 #ifdef CONFIG_CGROUPS
1472 /* Control Group info protected by css_set_lock */
1473 struct css_set __rcu *cgroups;
1474 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1475 struct list_head cg_list;
1476 #endif
1477 #ifdef CONFIG_FUTEX
1478 struct robust_list_head __user *robust_list;
1479 #ifdef CONFIG_COMPAT
1480 struct compat_robust_list_head __user *compat_robust_list;
1481 #endif
1482 struct list_head pi_state_list;
1483 struct futex_pi_state *pi_state_cache;
1484 #endif
1485 #ifdef CONFIG_PERF_EVENTS
1486 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1487 struct mutex perf_event_mutex;
1488 struct list_head perf_event_list;
1489 #endif
1490 #ifdef CONFIG_NUMA
1491 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1492 short il_next;
1493 short pref_node_fork;
1494 #endif
1495 struct rcu_head rcu;
1496
1497 /*
1498 * cache last used pipe for splice
1499 */
1500 struct pipe_inode_info *splice_pipe;
1501
1502 struct page_frag task_frag;
1503
1504 #ifdef CONFIG_TASK_DELAY_ACCT
1505 struct task_delay_info *delays;
1506 #endif
1507 #ifdef CONFIG_FAULT_INJECTION
1508 int make_it_fail;
1509 #endif
1510 /*
1511 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1512 * balance_dirty_pages() for some dirty throttling pause
1513 */
1514 int nr_dirtied;
1515 int nr_dirtied_pause;
1516 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1517
1518 #ifdef CONFIG_LATENCYTOP
1519 int latency_record_count;
1520 struct latency_record latency_record[LT_SAVECOUNT];
1521 #endif
1522 /*
1523 * time slack values; these are used to round up poll() and
1524 * select() etc timeout values. These are in nanoseconds.
1525 */
1526 unsigned long timer_slack_ns;
1527 unsigned long default_timer_slack_ns;
1528
1529 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1530 /* Index of current stored address in ret_stack */
1531 int curr_ret_stack;
1532 /* Stack of return addresses for return function tracing */
1533 struct ftrace_ret_stack *ret_stack;
1534 /* time stamp for last schedule */
1535 unsigned long long ftrace_timestamp;
1536 /*
1537 * Number of functions that haven't been traced
1538 * because of depth overrun.
1539 */
1540 atomic_t trace_overrun;
1541 /* Pause for the tracing */
1542 atomic_t tracing_graph_pause;
1543 #endif
1544 #ifdef CONFIG_TRACING
1545 /* state flags for use by tracers */
1546 unsigned long trace;
1547 /* bitmask and counter of trace recursion */
1548 unsigned long trace_recursion;
1549 #endif /* CONFIG_TRACING */
1550 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1551 struct memcg_batch_info {
1552 int do_batch; /* incremented when batch uncharge started */
1553 struct mem_cgroup *memcg; /* target memcg of uncharge */
1554 unsigned long nr_pages; /* uncharged usage */
1555 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1556 } memcg_batch;
1557 #endif
1558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1559 atomic_t ptrace_bp_refcnt;
1560 #endif
1561 #ifdef CONFIG_UPROBES
1562 struct uprobe_task *utask;
1563 #endif
1564 };
1565
1566 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1567 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1568
1569 /*
1570 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1571 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1572 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1573 * values are inverted: lower p->prio value means higher priority.
1574 *
1575 * The MAX_USER_RT_PRIO value allows the actual maximum
1576 * RT priority to be separate from the value exported to
1577 * user-space. This allows kernel threads to set their
1578 * priority to a value higher than any user task. Note:
1579 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1580 */
1581
1582 #define MAX_USER_RT_PRIO 100
1583 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1584
1585 #define MAX_PRIO (MAX_RT_PRIO + 40)
1586 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1587
1588 static inline int rt_prio(int prio)
1589 {
1590 if (unlikely(prio < MAX_RT_PRIO))
1591 return 1;
1592 return 0;
1593 }
1594
1595 static inline int rt_task(struct task_struct *p)
1596 {
1597 return rt_prio(p->prio);
1598 }
1599
1600 static inline struct pid *task_pid(struct task_struct *task)
1601 {
1602 return task->pids[PIDTYPE_PID].pid;
1603 }
1604
1605 static inline struct pid *task_tgid(struct task_struct *task)
1606 {
1607 return task->group_leader->pids[PIDTYPE_PID].pid;
1608 }
1609
1610 /*
1611 * Without tasklist or rcu lock it is not safe to dereference
1612 * the result of task_pgrp/task_session even if task == current,
1613 * we can race with another thread doing sys_setsid/sys_setpgid.
1614 */
1615 static inline struct pid *task_pgrp(struct task_struct *task)
1616 {
1617 return task->group_leader->pids[PIDTYPE_PGID].pid;
1618 }
1619
1620 static inline struct pid *task_session(struct task_struct *task)
1621 {
1622 return task->group_leader->pids[PIDTYPE_SID].pid;
1623 }
1624
1625 struct pid_namespace;
1626
1627 /*
1628 * the helpers to get the task's different pids as they are seen
1629 * from various namespaces
1630 *
1631 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1632 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1633 * current.
1634 * task_xid_nr_ns() : id seen from the ns specified;
1635 *
1636 * set_task_vxid() : assigns a virtual id to a task;
1637 *
1638 * see also pid_nr() etc in include/linux/pid.h
1639 */
1640 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1641 struct pid_namespace *ns);
1642
1643 static inline pid_t task_pid_nr(struct task_struct *tsk)
1644 {
1645 return tsk->pid;
1646 }
1647
1648 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1649 struct pid_namespace *ns)
1650 {
1651 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1652 }
1653
1654 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1655 {
1656 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1657 }
1658
1659
1660 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1661 {
1662 return tsk->tgid;
1663 }
1664
1665 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1666
1667 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1668 {
1669 return pid_vnr(task_tgid(tsk));
1670 }
1671
1672
1673 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1674 struct pid_namespace *ns)
1675 {
1676 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1677 }
1678
1679 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1680 {
1681 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1682 }
1683
1684
1685 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1686 struct pid_namespace *ns)
1687 {
1688 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1689 }
1690
1691 static inline pid_t task_session_vnr(struct task_struct *tsk)
1692 {
1693 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1694 }
1695
1696 /* obsolete, do not use */
1697 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1698 {
1699 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1700 }
1701
1702 /**
1703 * pid_alive - check that a task structure is not stale
1704 * @p: Task structure to be checked.
1705 *
1706 * Test if a process is not yet dead (at most zombie state)
1707 * If pid_alive fails, then pointers within the task structure
1708 * can be stale and must not be dereferenced.
1709 */
1710 static inline int pid_alive(struct task_struct *p)
1711 {
1712 return p->pids[PIDTYPE_PID].pid != NULL;
1713 }
1714
1715 /**
1716 * is_global_init - check if a task structure is init
1717 * @tsk: Task structure to be checked.
1718 *
1719 * Check if a task structure is the first user space task the kernel created.
1720 */
1721 static inline int is_global_init(struct task_struct *tsk)
1722 {
1723 return tsk->pid == 1;
1724 }
1725
1726 /*
1727 * is_container_init:
1728 * check whether in the task is init in its own pid namespace.
1729 */
1730 extern int is_container_init(struct task_struct *tsk);
1731
1732 extern struct pid *cad_pid;
1733
1734 extern void free_task(struct task_struct *tsk);
1735 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1736
1737 extern void __put_task_struct(struct task_struct *t);
1738
1739 static inline void put_task_struct(struct task_struct *t)
1740 {
1741 if (atomic_dec_and_test(&t->usage))
1742 __put_task_struct(t);
1743 }
1744
1745 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1746 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1747
1748 /*
1749 * Per process flags
1750 */
1751 #define PF_EXITING 0x00000004 /* getting shut down */
1752 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1753 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1754 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1755 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1756 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1757 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1758 #define PF_DUMPCORE 0x00000200 /* dumped core */
1759 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1760 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1761 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1762 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1763 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1764 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1765 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1766 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1767 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1768 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1769 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1770 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1771 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1772 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1773 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1774 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1775 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1776 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1777 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1778
1779 /*
1780 * Only the _current_ task can read/write to tsk->flags, but other
1781 * tasks can access tsk->flags in readonly mode for example
1782 * with tsk_used_math (like during threaded core dumping).
1783 * There is however an exception to this rule during ptrace
1784 * or during fork: the ptracer task is allowed to write to the
1785 * child->flags of its traced child (same goes for fork, the parent
1786 * can write to the child->flags), because we're guaranteed the
1787 * child is not running and in turn not changing child->flags
1788 * at the same time the parent does it.
1789 */
1790 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1791 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1792 #define clear_used_math() clear_stopped_child_used_math(current)
1793 #define set_used_math() set_stopped_child_used_math(current)
1794 #define conditional_stopped_child_used_math(condition, child) \
1795 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1796 #define conditional_used_math(condition) \
1797 conditional_stopped_child_used_math(condition, current)
1798 #define copy_to_stopped_child_used_math(child) \
1799 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1800 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1801 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1802 #define used_math() tsk_used_math(current)
1803
1804 /*
1805 * task->jobctl flags
1806 */
1807 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1808
1809 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1810 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1811 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1812 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1813 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1814 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1815 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1816
1817 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1818 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1819 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1820 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1821 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1822 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1823 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1824
1825 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1826 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1827
1828 extern bool task_set_jobctl_pending(struct task_struct *task,
1829 unsigned int mask);
1830 extern void task_clear_jobctl_trapping(struct task_struct *task);
1831 extern void task_clear_jobctl_pending(struct task_struct *task,
1832 unsigned int mask);
1833
1834 #ifdef CONFIG_PREEMPT_RCU
1835
1836 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1837 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1838
1839 static inline void rcu_copy_process(struct task_struct *p)
1840 {
1841 p->rcu_read_lock_nesting = 0;
1842 p->rcu_read_unlock_special = 0;
1843 #ifdef CONFIG_TREE_PREEMPT_RCU
1844 p->rcu_blocked_node = NULL;
1845 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1846 #ifdef CONFIG_RCU_BOOST
1847 p->rcu_boost_mutex = NULL;
1848 #endif /* #ifdef CONFIG_RCU_BOOST */
1849 INIT_LIST_HEAD(&p->rcu_node_entry);
1850 }
1851
1852 #else
1853
1854 static inline void rcu_copy_process(struct task_struct *p)
1855 {
1856 }
1857
1858 #endif
1859
1860 static inline void rcu_switch(struct task_struct *prev,
1861 struct task_struct *next)
1862 {
1863 #ifdef CONFIG_RCU_USER_QS
1864 rcu_user_hooks_switch(prev, next);
1865 #endif
1866 }
1867
1868 static inline void tsk_restore_flags(struct task_struct *task,
1869 unsigned long orig_flags, unsigned long flags)
1870 {
1871 task->flags &= ~flags;
1872 task->flags |= orig_flags & flags;
1873 }
1874
1875 #ifdef CONFIG_SMP
1876 extern void do_set_cpus_allowed(struct task_struct *p,
1877 const struct cpumask *new_mask);
1878
1879 extern int set_cpus_allowed_ptr(struct task_struct *p,
1880 const struct cpumask *new_mask);
1881 #else
1882 static inline void do_set_cpus_allowed(struct task_struct *p,
1883 const struct cpumask *new_mask)
1884 {
1885 }
1886 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1887 const struct cpumask *new_mask)
1888 {
1889 if (!cpumask_test_cpu(0, new_mask))
1890 return -EINVAL;
1891 return 0;
1892 }
1893 #endif
1894
1895 #ifdef CONFIG_NO_HZ
1896 void calc_load_enter_idle(void);
1897 void calc_load_exit_idle(void);
1898 #else
1899 static inline void calc_load_enter_idle(void) { }
1900 static inline void calc_load_exit_idle(void) { }
1901 #endif /* CONFIG_NO_HZ */
1902
1903 #ifndef CONFIG_CPUMASK_OFFSTACK
1904 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1905 {
1906 return set_cpus_allowed_ptr(p, &new_mask);
1907 }
1908 #endif
1909
1910 /*
1911 * Do not use outside of architecture code which knows its limitations.
1912 *
1913 * sched_clock() has no promise of monotonicity or bounded drift between
1914 * CPUs, use (which you should not) requires disabling IRQs.
1915 *
1916 * Please use one of the three interfaces below.
1917 */
1918 extern unsigned long long notrace sched_clock(void);
1919 /*
1920 * See the comment in kernel/sched/clock.c
1921 */
1922 extern u64 cpu_clock(int cpu);
1923 extern u64 local_clock(void);
1924 extern u64 sched_clock_cpu(int cpu);
1925
1926
1927 extern void sched_clock_init(void);
1928
1929 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1930 static inline void sched_clock_tick(void)
1931 {
1932 }
1933
1934 static inline void sched_clock_idle_sleep_event(void)
1935 {
1936 }
1937
1938 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1939 {
1940 }
1941 #else
1942 /*
1943 * Architectures can set this to 1 if they have specified
1944 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1945 * but then during bootup it turns out that sched_clock()
1946 * is reliable after all:
1947 */
1948 extern int sched_clock_stable;
1949
1950 extern void sched_clock_tick(void);
1951 extern void sched_clock_idle_sleep_event(void);
1952 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1953 #endif
1954
1955 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1956 /*
1957 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1958 * The reason for this explicit opt-in is not to have perf penalty with
1959 * slow sched_clocks.
1960 */
1961 extern void enable_sched_clock_irqtime(void);
1962 extern void disable_sched_clock_irqtime(void);
1963 #else
1964 static inline void enable_sched_clock_irqtime(void) {}
1965 static inline void disable_sched_clock_irqtime(void) {}
1966 #endif
1967
1968 extern unsigned long long
1969 task_sched_runtime(struct task_struct *task);
1970
1971 /* sched_exec is called by processes performing an exec */
1972 #ifdef CONFIG_SMP
1973 extern void sched_exec(void);
1974 #else
1975 #define sched_exec() {}
1976 #endif
1977
1978 extern void sched_clock_idle_sleep_event(void);
1979 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1980
1981 #ifdef CONFIG_HOTPLUG_CPU
1982 extern void idle_task_exit(void);
1983 #else
1984 static inline void idle_task_exit(void) {}
1985 #endif
1986
1987 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1988 extern void wake_up_idle_cpu(int cpu);
1989 #else
1990 static inline void wake_up_idle_cpu(int cpu) { }
1991 #endif
1992
1993 extern unsigned int sysctl_sched_latency;
1994 extern unsigned int sysctl_sched_min_granularity;
1995 extern unsigned int sysctl_sched_wakeup_granularity;
1996 extern unsigned int sysctl_sched_child_runs_first;
1997
1998 enum sched_tunable_scaling {
1999 SCHED_TUNABLESCALING_NONE,
2000 SCHED_TUNABLESCALING_LOG,
2001 SCHED_TUNABLESCALING_LINEAR,
2002 SCHED_TUNABLESCALING_END,
2003 };
2004 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2005
2006 #ifdef CONFIG_SCHED_DEBUG
2007 extern unsigned int sysctl_sched_migration_cost;
2008 extern unsigned int sysctl_sched_nr_migrate;
2009 extern unsigned int sysctl_sched_time_avg;
2010 extern unsigned int sysctl_timer_migration;
2011 extern unsigned int sysctl_sched_shares_window;
2012
2013 int sched_proc_update_handler(struct ctl_table *table, int write,
2014 void __user *buffer, size_t *length,
2015 loff_t *ppos);
2016 #endif
2017 #ifdef CONFIG_SCHED_DEBUG
2018 static inline unsigned int get_sysctl_timer_migration(void)
2019 {
2020 return sysctl_timer_migration;
2021 }
2022 #else
2023 static inline unsigned int get_sysctl_timer_migration(void)
2024 {
2025 return 1;
2026 }
2027 #endif
2028 extern unsigned int sysctl_sched_rt_period;
2029 extern int sysctl_sched_rt_runtime;
2030
2031 int sched_rt_handler(struct ctl_table *table, int write,
2032 void __user *buffer, size_t *lenp,
2033 loff_t *ppos);
2034
2035 #ifdef CONFIG_SCHED_AUTOGROUP
2036 extern unsigned int sysctl_sched_autogroup_enabled;
2037
2038 extern void sched_autogroup_create_attach(struct task_struct *p);
2039 extern void sched_autogroup_detach(struct task_struct *p);
2040 extern void sched_autogroup_fork(struct signal_struct *sig);
2041 extern void sched_autogroup_exit(struct signal_struct *sig);
2042 #ifdef CONFIG_PROC_FS
2043 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2044 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2045 #endif
2046 #else
2047 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2048 static inline void sched_autogroup_detach(struct task_struct *p) { }
2049 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2050 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2051 #endif
2052
2053 #ifdef CONFIG_CFS_BANDWIDTH
2054 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2055 #endif
2056
2057 #ifdef CONFIG_RT_MUTEXES
2058 extern int rt_mutex_getprio(struct task_struct *p);
2059 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2060 extern void rt_mutex_adjust_pi(struct task_struct *p);
2061 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2062 {
2063 return tsk->pi_blocked_on != NULL;
2064 }
2065 #else
2066 static inline int rt_mutex_getprio(struct task_struct *p)
2067 {
2068 return p->normal_prio;
2069 }
2070 # define rt_mutex_adjust_pi(p) do { } while (0)
2071 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2072 {
2073 return false;
2074 }
2075 #endif
2076
2077 extern bool yield_to(struct task_struct *p, bool preempt);
2078 extern void set_user_nice(struct task_struct *p, long nice);
2079 extern int task_prio(const struct task_struct *p);
2080 extern int task_nice(const struct task_struct *p);
2081 extern int can_nice(const struct task_struct *p, const int nice);
2082 extern int task_curr(const struct task_struct *p);
2083 extern int idle_cpu(int cpu);
2084 extern int sched_setscheduler(struct task_struct *, int,
2085 const struct sched_param *);
2086 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2087 const struct sched_param *);
2088 extern struct task_struct *idle_task(int cpu);
2089 /**
2090 * is_idle_task - is the specified task an idle task?
2091 * @p: the task in question.
2092 */
2093 static inline bool is_idle_task(const struct task_struct *p)
2094 {
2095 return p->pid == 0;
2096 }
2097 extern struct task_struct *curr_task(int cpu);
2098 extern void set_curr_task(int cpu, struct task_struct *p);
2099
2100 void yield(void);
2101
2102 /*
2103 * The default (Linux) execution domain.
2104 */
2105 extern struct exec_domain default_exec_domain;
2106
2107 union thread_union {
2108 struct thread_info thread_info;
2109 unsigned long stack[THREAD_SIZE/sizeof(long)];
2110 };
2111
2112 #ifndef __HAVE_ARCH_KSTACK_END
2113 static inline int kstack_end(void *addr)
2114 {
2115 /* Reliable end of stack detection:
2116 * Some APM bios versions misalign the stack
2117 */
2118 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2119 }
2120 #endif
2121
2122 extern union thread_union init_thread_union;
2123 extern struct task_struct init_task;
2124
2125 extern struct mm_struct init_mm;
2126
2127 extern struct pid_namespace init_pid_ns;
2128
2129 /*
2130 * find a task by one of its numerical ids
2131 *
2132 * find_task_by_pid_ns():
2133 * finds a task by its pid in the specified namespace
2134 * find_task_by_vpid():
2135 * finds a task by its virtual pid
2136 *
2137 * see also find_vpid() etc in include/linux/pid.h
2138 */
2139
2140 extern struct task_struct *find_task_by_vpid(pid_t nr);
2141 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2142 struct pid_namespace *ns);
2143
2144 extern void __set_special_pids(struct pid *pid);
2145
2146 /* per-UID process charging. */
2147 extern struct user_struct * alloc_uid(kuid_t);
2148 static inline struct user_struct *get_uid(struct user_struct *u)
2149 {
2150 atomic_inc(&u->__count);
2151 return u;
2152 }
2153 extern void free_uid(struct user_struct *);
2154
2155 #include <asm/current.h>
2156
2157 extern void xtime_update(unsigned long ticks);
2158
2159 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2160 extern int wake_up_process(struct task_struct *tsk);
2161 extern void wake_up_new_task(struct task_struct *tsk);
2162 #ifdef CONFIG_SMP
2163 extern void kick_process(struct task_struct *tsk);
2164 #else
2165 static inline void kick_process(struct task_struct *tsk) { }
2166 #endif
2167 extern void sched_fork(struct task_struct *p);
2168 extern void sched_dead(struct task_struct *p);
2169
2170 extern void proc_caches_init(void);
2171 extern void flush_signals(struct task_struct *);
2172 extern void __flush_signals(struct task_struct *);
2173 extern void ignore_signals(struct task_struct *);
2174 extern void flush_signal_handlers(struct task_struct *, int force_default);
2175 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2176
2177 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2178 {
2179 unsigned long flags;
2180 int ret;
2181
2182 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2183 ret = dequeue_signal(tsk, mask, info);
2184 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2185
2186 return ret;
2187 }
2188
2189 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2190 sigset_t *mask);
2191 extern void unblock_all_signals(void);
2192 extern void release_task(struct task_struct * p);
2193 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2194 extern int force_sigsegv(int, struct task_struct *);
2195 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2196 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2197 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2198 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2199 const struct cred *, u32);
2200 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2201 extern int kill_pid(struct pid *pid, int sig, int priv);
2202 extern int kill_proc_info(int, struct siginfo *, pid_t);
2203 extern __must_check bool do_notify_parent(struct task_struct *, int);
2204 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2205 extern void force_sig(int, struct task_struct *);
2206 extern int send_sig(int, struct task_struct *, int);
2207 extern int zap_other_threads(struct task_struct *p);
2208 extern struct sigqueue *sigqueue_alloc(void);
2209 extern void sigqueue_free(struct sigqueue *);
2210 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2211 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2212 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2213
2214 static inline void restore_saved_sigmask(void)
2215 {
2216 if (test_and_clear_restore_sigmask())
2217 __set_current_blocked(&current->saved_sigmask);
2218 }
2219
2220 static inline sigset_t *sigmask_to_save(void)
2221 {
2222 sigset_t *res = &current->blocked;
2223 if (unlikely(test_restore_sigmask()))
2224 res = &current->saved_sigmask;
2225 return res;
2226 }
2227
2228 static inline int kill_cad_pid(int sig, int priv)
2229 {
2230 return kill_pid(cad_pid, sig, priv);
2231 }
2232
2233 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2234 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2235 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2236 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2237
2238 /*
2239 * True if we are on the alternate signal stack.
2240 */
2241 static inline int on_sig_stack(unsigned long sp)
2242 {
2243 #ifdef CONFIG_STACK_GROWSUP
2244 return sp >= current->sas_ss_sp &&
2245 sp - current->sas_ss_sp < current->sas_ss_size;
2246 #else
2247 return sp > current->sas_ss_sp &&
2248 sp - current->sas_ss_sp <= current->sas_ss_size;
2249 #endif
2250 }
2251
2252 static inline int sas_ss_flags(unsigned long sp)
2253 {
2254 return (current->sas_ss_size == 0 ? SS_DISABLE
2255 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2256 }
2257
2258 /*
2259 * Routines for handling mm_structs
2260 */
2261 extern struct mm_struct * mm_alloc(void);
2262
2263 /* mmdrop drops the mm and the page tables */
2264 extern void __mmdrop(struct mm_struct *);
2265 static inline void mmdrop(struct mm_struct * mm)
2266 {
2267 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2268 __mmdrop(mm);
2269 }
2270
2271 /* mmput gets rid of the mappings and all user-space */
2272 extern void mmput(struct mm_struct *);
2273 /* Grab a reference to a task's mm, if it is not already going away */
2274 extern struct mm_struct *get_task_mm(struct task_struct *task);
2275 /*
2276 * Grab a reference to a task's mm, if it is not already going away
2277 * and ptrace_may_access with the mode parameter passed to it
2278 * succeeds.
2279 */
2280 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2281 /* Remove the current tasks stale references to the old mm_struct */
2282 extern void mm_release(struct task_struct *, struct mm_struct *);
2283 /* Allocate a new mm structure and copy contents from tsk->mm */
2284 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2285
2286 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2287 struct task_struct *, struct pt_regs *);
2288 extern void flush_thread(void);
2289 extern void exit_thread(void);
2290
2291 extern void exit_files(struct task_struct *);
2292 extern void __cleanup_sighand(struct sighand_struct *);
2293
2294 extern void exit_itimers(struct signal_struct *);
2295 extern void flush_itimer_signals(void);
2296
2297 extern void do_group_exit(int);
2298
2299 extern void daemonize(const char *, ...);
2300 extern int allow_signal(int);
2301 extern int disallow_signal(int);
2302
2303 extern int do_execve(const char *,
2304 const char __user * const __user *,
2305 const char __user * const __user *, struct pt_regs *);
2306 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2307 struct task_struct *fork_idle(int);
2308 #ifdef CONFIG_GENERIC_KERNEL_THREAD
2309 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2310 #endif
2311
2312 extern void set_task_comm(struct task_struct *tsk, char *from);
2313 extern char *get_task_comm(char *to, struct task_struct *tsk);
2314
2315 #ifdef CONFIG_SMP
2316 void scheduler_ipi(void);
2317 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2318 #else
2319 static inline void scheduler_ipi(void) { }
2320 static inline unsigned long wait_task_inactive(struct task_struct *p,
2321 long match_state)
2322 {
2323 return 1;
2324 }
2325 #endif
2326
2327 #define next_task(p) \
2328 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2329
2330 #define for_each_process(p) \
2331 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2332
2333 extern bool current_is_single_threaded(void);
2334
2335 /*
2336 * Careful: do_each_thread/while_each_thread is a double loop so
2337 * 'break' will not work as expected - use goto instead.
2338 */
2339 #define do_each_thread(g, t) \
2340 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2341
2342 #define while_each_thread(g, t) \
2343 while ((t = next_thread(t)) != g)
2344
2345 static inline int get_nr_threads(struct task_struct *tsk)
2346 {
2347 return tsk->signal->nr_threads;
2348 }
2349
2350 static inline bool thread_group_leader(struct task_struct *p)
2351 {
2352 return p->exit_signal >= 0;
2353 }
2354
2355 /* Do to the insanities of de_thread it is possible for a process
2356 * to have the pid of the thread group leader without actually being
2357 * the thread group leader. For iteration through the pids in proc
2358 * all we care about is that we have a task with the appropriate
2359 * pid, we don't actually care if we have the right task.
2360 */
2361 static inline int has_group_leader_pid(struct task_struct *p)
2362 {
2363 return p->pid == p->tgid;
2364 }
2365
2366 static inline
2367 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2368 {
2369 return p1->tgid == p2->tgid;
2370 }
2371
2372 static inline struct task_struct *next_thread(const struct task_struct *p)
2373 {
2374 return list_entry_rcu(p->thread_group.next,
2375 struct task_struct, thread_group);
2376 }
2377
2378 static inline int thread_group_empty(struct task_struct *p)
2379 {
2380 return list_empty(&p->thread_group);
2381 }
2382
2383 #define delay_group_leader(p) \
2384 (thread_group_leader(p) && !thread_group_empty(p))
2385
2386 /*
2387 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2388 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2389 * pins the final release of task.io_context. Also protects ->cpuset and
2390 * ->cgroup.subsys[]. And ->vfork_done.
2391 *
2392 * Nests both inside and outside of read_lock(&tasklist_lock).
2393 * It must not be nested with write_lock_irq(&tasklist_lock),
2394 * neither inside nor outside.
2395 */
2396 static inline void task_lock(struct task_struct *p)
2397 {
2398 spin_lock(&p->alloc_lock);
2399 }
2400
2401 static inline void task_unlock(struct task_struct *p)
2402 {
2403 spin_unlock(&p->alloc_lock);
2404 }
2405
2406 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2407 unsigned long *flags);
2408
2409 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2410 unsigned long *flags)
2411 {
2412 struct sighand_struct *ret;
2413
2414 ret = __lock_task_sighand(tsk, flags);
2415 (void)__cond_lock(&tsk->sighand->siglock, ret);
2416 return ret;
2417 }
2418
2419 static inline void unlock_task_sighand(struct task_struct *tsk,
2420 unsigned long *flags)
2421 {
2422 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2423 }
2424
2425 #ifdef CONFIG_CGROUPS
2426 static inline void threadgroup_change_begin(struct task_struct *tsk)
2427 {
2428 down_read(&tsk->signal->group_rwsem);
2429 }
2430 static inline void threadgroup_change_end(struct task_struct *tsk)
2431 {
2432 up_read(&tsk->signal->group_rwsem);
2433 }
2434
2435 /**
2436 * threadgroup_lock - lock threadgroup
2437 * @tsk: member task of the threadgroup to lock
2438 *
2439 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2440 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2441 * perform exec. This is useful for cases where the threadgroup needs to
2442 * stay stable across blockable operations.
2443 *
2444 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2445 * synchronization. While held, no new task will be added to threadgroup
2446 * and no existing live task will have its PF_EXITING set.
2447 *
2448 * During exec, a task goes and puts its thread group through unusual
2449 * changes. After de-threading, exclusive access is assumed to resources
2450 * which are usually shared by tasks in the same group - e.g. sighand may
2451 * be replaced with a new one. Also, the exec'ing task takes over group
2452 * leader role including its pid. Exclude these changes while locked by
2453 * grabbing cred_guard_mutex which is used to synchronize exec path.
2454 */
2455 static inline void threadgroup_lock(struct task_struct *tsk)
2456 {
2457 /*
2458 * exec uses exit for de-threading nesting group_rwsem inside
2459 * cred_guard_mutex. Grab cred_guard_mutex first.
2460 */
2461 mutex_lock(&tsk->signal->cred_guard_mutex);
2462 down_write(&tsk->signal->group_rwsem);
2463 }
2464
2465 /**
2466 * threadgroup_unlock - unlock threadgroup
2467 * @tsk: member task of the threadgroup to unlock
2468 *
2469 * Reverse threadgroup_lock().
2470 */
2471 static inline void threadgroup_unlock(struct task_struct *tsk)
2472 {
2473 up_write(&tsk->signal->group_rwsem);
2474 mutex_unlock(&tsk->signal->cred_guard_mutex);
2475 }
2476 #else
2477 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2478 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2479 static inline void threadgroup_lock(struct task_struct *tsk) {}
2480 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2481 #endif
2482
2483 #ifndef __HAVE_THREAD_FUNCTIONS
2484
2485 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2486 #define task_stack_page(task) ((task)->stack)
2487
2488 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2489 {
2490 *task_thread_info(p) = *task_thread_info(org);
2491 task_thread_info(p)->task = p;
2492 }
2493
2494 static inline unsigned long *end_of_stack(struct task_struct *p)
2495 {
2496 return (unsigned long *)(task_thread_info(p) + 1);
2497 }
2498
2499 #endif
2500
2501 static inline int object_is_on_stack(void *obj)
2502 {
2503 void *stack = task_stack_page(current);
2504
2505 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2506 }
2507
2508 extern void thread_info_cache_init(void);
2509
2510 #ifdef CONFIG_DEBUG_STACK_USAGE
2511 static inline unsigned long stack_not_used(struct task_struct *p)
2512 {
2513 unsigned long *n = end_of_stack(p);
2514
2515 do { /* Skip over canary */
2516 n++;
2517 } while (!*n);
2518
2519 return (unsigned long)n - (unsigned long)end_of_stack(p);
2520 }
2521 #endif
2522
2523 /* set thread flags in other task's structures
2524 * - see asm/thread_info.h for TIF_xxxx flags available
2525 */
2526 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2527 {
2528 set_ti_thread_flag(task_thread_info(tsk), flag);
2529 }
2530
2531 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2532 {
2533 clear_ti_thread_flag(task_thread_info(tsk), flag);
2534 }
2535
2536 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2537 {
2538 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2539 }
2540
2541 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2542 {
2543 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2544 }
2545
2546 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2547 {
2548 return test_ti_thread_flag(task_thread_info(tsk), flag);
2549 }
2550
2551 static inline void set_tsk_need_resched(struct task_struct *tsk)
2552 {
2553 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2554 }
2555
2556 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2557 {
2558 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2559 }
2560
2561 static inline int test_tsk_need_resched(struct task_struct *tsk)
2562 {
2563 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2564 }
2565
2566 static inline int restart_syscall(void)
2567 {
2568 set_tsk_thread_flag(current, TIF_SIGPENDING);
2569 return -ERESTARTNOINTR;
2570 }
2571
2572 static inline int signal_pending(struct task_struct *p)
2573 {
2574 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2575 }
2576
2577 static inline int __fatal_signal_pending(struct task_struct *p)
2578 {
2579 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2580 }
2581
2582 static inline int fatal_signal_pending(struct task_struct *p)
2583 {
2584 return signal_pending(p) && __fatal_signal_pending(p);
2585 }
2586
2587 static inline int signal_pending_state(long state, struct task_struct *p)
2588 {
2589 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2590 return 0;
2591 if (!signal_pending(p))
2592 return 0;
2593
2594 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2595 }
2596
2597 static inline int need_resched(void)
2598 {
2599 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2600 }
2601
2602 /*
2603 * cond_resched() and cond_resched_lock(): latency reduction via
2604 * explicit rescheduling in places that are safe. The return
2605 * value indicates whether a reschedule was done in fact.
2606 * cond_resched_lock() will drop the spinlock before scheduling,
2607 * cond_resched_softirq() will enable bhs before scheduling.
2608 */
2609 extern int _cond_resched(void);
2610
2611 #define cond_resched() ({ \
2612 __might_sleep(__FILE__, __LINE__, 0); \
2613 _cond_resched(); \
2614 })
2615
2616 extern int __cond_resched_lock(spinlock_t *lock);
2617
2618 #ifdef CONFIG_PREEMPT_COUNT
2619 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2620 #else
2621 #define PREEMPT_LOCK_OFFSET 0
2622 #endif
2623
2624 #define cond_resched_lock(lock) ({ \
2625 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2626 __cond_resched_lock(lock); \
2627 })
2628
2629 extern int __cond_resched_softirq(void);
2630
2631 #define cond_resched_softirq() ({ \
2632 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2633 __cond_resched_softirq(); \
2634 })
2635
2636 /*
2637 * Does a critical section need to be broken due to another
2638 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2639 * but a general need for low latency)
2640 */
2641 static inline int spin_needbreak(spinlock_t *lock)
2642 {
2643 #ifdef CONFIG_PREEMPT
2644 return spin_is_contended(lock);
2645 #else
2646 return 0;
2647 #endif
2648 }
2649
2650 /*
2651 * Thread group CPU time accounting.
2652 */
2653 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2654 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2655
2656 static inline void thread_group_cputime_init(struct signal_struct *sig)
2657 {
2658 raw_spin_lock_init(&sig->cputimer.lock);
2659 }
2660
2661 /*
2662 * Reevaluate whether the task has signals pending delivery.
2663 * Wake the task if so.
2664 * This is required every time the blocked sigset_t changes.
2665 * callers must hold sighand->siglock.
2666 */
2667 extern void recalc_sigpending_and_wake(struct task_struct *t);
2668 extern void recalc_sigpending(void);
2669
2670 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2671
2672 /*
2673 * Wrappers for p->thread_info->cpu access. No-op on UP.
2674 */
2675 #ifdef CONFIG_SMP
2676
2677 static inline unsigned int task_cpu(const struct task_struct *p)
2678 {
2679 return task_thread_info(p)->cpu;
2680 }
2681
2682 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2683
2684 #else
2685
2686 static inline unsigned int task_cpu(const struct task_struct *p)
2687 {
2688 return 0;
2689 }
2690
2691 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2692 {
2693 }
2694
2695 #endif /* CONFIG_SMP */
2696
2697 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2698 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2699
2700 extern void normalize_rt_tasks(void);
2701
2702 #ifdef CONFIG_CGROUP_SCHED
2703
2704 extern struct task_group root_task_group;
2705
2706 extern struct task_group *sched_create_group(struct task_group *parent);
2707 extern void sched_destroy_group(struct task_group *tg);
2708 extern void sched_move_task(struct task_struct *tsk);
2709 #ifdef CONFIG_FAIR_GROUP_SCHED
2710 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2711 extern unsigned long sched_group_shares(struct task_group *tg);
2712 #endif
2713 #ifdef CONFIG_RT_GROUP_SCHED
2714 extern int sched_group_set_rt_runtime(struct task_group *tg,
2715 long rt_runtime_us);
2716 extern long sched_group_rt_runtime(struct task_group *tg);
2717 extern int sched_group_set_rt_period(struct task_group *tg,
2718 long rt_period_us);
2719 extern long sched_group_rt_period(struct task_group *tg);
2720 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2721 #endif
2722 #endif /* CONFIG_CGROUP_SCHED */
2723
2724 extern int task_can_switch_user(struct user_struct *up,
2725 struct task_struct *tsk);
2726
2727 #ifdef CONFIG_TASK_XACCT
2728 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2729 {
2730 tsk->ioac.rchar += amt;
2731 }
2732
2733 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2734 {
2735 tsk->ioac.wchar += amt;
2736 }
2737
2738 static inline void inc_syscr(struct task_struct *tsk)
2739 {
2740 tsk->ioac.syscr++;
2741 }
2742
2743 static inline void inc_syscw(struct task_struct *tsk)
2744 {
2745 tsk->ioac.syscw++;
2746 }
2747 #else
2748 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2749 {
2750 }
2751
2752 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2753 {
2754 }
2755
2756 static inline void inc_syscr(struct task_struct *tsk)
2757 {
2758 }
2759
2760 static inline void inc_syscw(struct task_struct *tsk)
2761 {
2762 }
2763 #endif
2764
2765 #ifndef TASK_SIZE_OF
2766 #define TASK_SIZE_OF(tsk) TASK_SIZE
2767 #endif
2768
2769 #ifdef CONFIG_MM_OWNER
2770 extern void mm_update_next_owner(struct mm_struct *mm);
2771 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2772 #else
2773 static inline void mm_update_next_owner(struct mm_struct *mm)
2774 {
2775 }
2776
2777 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2778 {
2779 }
2780 #endif /* CONFIG_MM_OWNER */
2781
2782 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2783 unsigned int limit)
2784 {
2785 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2786 }
2787
2788 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2789 unsigned int limit)
2790 {
2791 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2792 }
2793
2794 static inline unsigned long rlimit(unsigned int limit)
2795 {
2796 return task_rlimit(current, limit);
2797 }
2798
2799 static inline unsigned long rlimit_max(unsigned int limit)
2800 {
2801 return task_rlimit_max(current, limit);
2802 }
2803
2804 #endif