]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/sched.h
Merge tag 'char-misc-5.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/mm_types_task.h>
31 #include <linux/task_io_accounting.h>
32 #include <linux/posix-timers.h>
33 #include <linux/rseq.h>
34
35 /* task_struct member predeclarations (sorted alphabetically): */
36 struct audit_context;
37 struct backing_dev_info;
38 struct bio_list;
39 struct blk_plug;
40 struct capture_control;
41 struct cfs_rq;
42 struct fs_struct;
43 struct futex_pi_state;
44 struct io_context;
45 struct mempolicy;
46 struct nameidata;
47 struct nsproxy;
48 struct perf_event_context;
49 struct pid_namespace;
50 struct pipe_inode_info;
51 struct rcu_node;
52 struct reclaim_state;
53 struct robust_list_head;
54 struct root_domain;
55 struct rq;
56 struct sched_attr;
57 struct sched_param;
58 struct seq_file;
59 struct sighand_struct;
60 struct signal_struct;
61 struct task_delay_info;
62 struct task_group;
63
64 /*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
74
75 /* Used in tsk->state: */
76 #define TASK_RUNNING 0x0000
77 #define TASK_INTERRUPTIBLE 0x0001
78 #define TASK_UNINTERRUPTIBLE 0x0002
79 #define __TASK_STOPPED 0x0004
80 #define __TASK_TRACED 0x0008
81 /* Used in tsk->exit_state: */
82 #define EXIT_DEAD 0x0010
83 #define EXIT_ZOMBIE 0x0020
84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85 /* Used in tsk->state again: */
86 #define TASK_PARKED 0x0040
87 #define TASK_DEAD 0x0080
88 #define TASK_WAKEKILL 0x0100
89 #define TASK_WAKING 0x0200
90 #define TASK_NOLOAD 0x0400
91 #define TASK_NEW 0x0800
92 #define TASK_STATE_MAX 0x1000
93
94 /* Convenience macros for the sake of set_current_state: */
95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101 /* Convenience macros for the sake of wake_up(): */
102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
103
104 /* get_task_state(): */
105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
109
110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
119
120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
122 /*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126 #define is_special_task_state(state) \
127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128
129 #define __set_current_state(state_value) \
130 do { \
131 WARN_ON_ONCE(is_special_task_state(state_value));\
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
135
136 #define set_current_state(state_value) \
137 do { \
138 WARN_ON_ONCE(is_special_task_state(state_value));\
139 current->task_state_change = _THIS_IP_; \
140 smp_store_mb(current->state, (state_value)); \
141 } while (0)
142
143 #define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
152 #else
153 /*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
158 * for (;;) {
159 * set_current_state(TASK_UNINTERRUPTIBLE);
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
175 *
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182 *
183 * However, with slightly different timing the wakeup TASK_RUNNING store can
184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
187 *
188 * Also see the comments of try_to_wake_up().
189 */
190 #define __set_current_state(state_value) \
191 current->state = (state_value)
192
193 #define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196 /*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202 #define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
210 #endif
211
212 /* Task command name length: */
213 #define TASK_COMM_LEN 16
214
215 extern void scheduler_tick(void);
216
217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219 extern long schedule_timeout(long timeout);
220 extern long schedule_timeout_interruptible(long timeout);
221 extern long schedule_timeout_killable(long timeout);
222 extern long schedule_timeout_uninterruptible(long timeout);
223 extern long schedule_timeout_idle(long timeout);
224 asmlinkage void schedule(void);
225 extern void schedule_preempt_disabled(void);
226 asmlinkage void preempt_schedule_irq(void);
227
228 extern int __must_check io_schedule_prepare(void);
229 extern void io_schedule_finish(int token);
230 extern long io_schedule_timeout(long timeout);
231 extern void io_schedule(void);
232
233 /**
234 * struct prev_cputime - snapshot of system and user cputime
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
237 * @lock: protects the above two fields
238 *
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
241 */
242 struct prev_cputime {
243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
247 #endif
248 };
249
250 enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
253 /* Task is idle */
254 VTIME_IDLE,
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
257 /* Task runs in userspace in a CPU with VTIME active: */
258 VTIME_USER,
259 /* Task runs as guests in a CPU with VTIME active: */
260 VTIME_GUEST,
261 };
262
263 struct vtime {
264 seqcount_t seqcount;
265 unsigned long long starttime;
266 enum vtime_state state;
267 unsigned int cpu;
268 u64 utime;
269 u64 stime;
270 u64 gtime;
271 };
272
273 /*
274 * Utilization clamp constraints.
275 * @UCLAMP_MIN: Minimum utilization
276 * @UCLAMP_MAX: Maximum utilization
277 * @UCLAMP_CNT: Utilization clamp constraints count
278 */
279 enum uclamp_id {
280 UCLAMP_MIN = 0,
281 UCLAMP_MAX,
282 UCLAMP_CNT
283 };
284
285 #ifdef CONFIG_SMP
286 extern struct root_domain def_root_domain;
287 extern struct mutex sched_domains_mutex;
288 #endif
289
290 struct sched_info {
291 #ifdef CONFIG_SCHED_INFO
292 /* Cumulative counters: */
293
294 /* # of times we have run on this CPU: */
295 unsigned long pcount;
296
297 /* Time spent waiting on a runqueue: */
298 unsigned long long run_delay;
299
300 /* Timestamps: */
301
302 /* When did we last run on a CPU? */
303 unsigned long long last_arrival;
304
305 /* When were we last queued to run? */
306 unsigned long long last_queued;
307
308 #endif /* CONFIG_SCHED_INFO */
309 };
310
311 /*
312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
313 * has a few: load, load_avg, util_avg, freq, and capacity.
314 *
315 * We define a basic fixed point arithmetic range, and then formalize
316 * all these metrics based on that basic range.
317 */
318 # define SCHED_FIXEDPOINT_SHIFT 10
319 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
320
321 /* Increase resolution of cpu_capacity calculations */
322 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
323 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324
325 struct load_weight {
326 unsigned long weight;
327 u32 inv_weight;
328 };
329
330 /**
331 * struct util_est - Estimation utilization of FAIR tasks
332 * @enqueued: instantaneous estimated utilization of a task/cpu
333 * @ewma: the Exponential Weighted Moving Average (EWMA)
334 * utilization of a task
335 *
336 * Support data structure to track an Exponential Weighted Moving Average
337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338 * average each time a task completes an activation. Sample's weight is chosen
339 * so that the EWMA will be relatively insensitive to transient changes to the
340 * task's workload.
341 *
342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
343 * - task: the task's util_avg at last task dequeue time
344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345 * Thus, the util_est.enqueued of a task represents the contribution on the
346 * estimated utilization of the CPU where that task is currently enqueued.
347 *
348 * Only for tasks we track a moving average of the past instantaneous
349 * estimated utilization. This allows to absorb sporadic drops in utilization
350 * of an otherwise almost periodic task.
351 */
352 struct util_est {
353 unsigned int enqueued;
354 unsigned int ewma;
355 #define UTIL_EST_WEIGHT_SHIFT 2
356 } __attribute__((__aligned__(sizeof(u64))));
357
358 /*
359 * The load/runnable/util_avg accumulates an infinite geometric series
360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
361 *
362 * [load_avg definition]
363 *
364 * load_avg = runnable% * scale_load_down(load)
365 *
366 * [runnable_avg definition]
367 *
368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
369 *
370 * [util_avg definition]
371 *
372 * util_avg = running% * SCHED_CAPACITY_SCALE
373 *
374 * where runnable% is the time ratio that a sched_entity is runnable and
375 * running% the time ratio that a sched_entity is running.
376 *
377 * For cfs_rq, they are the aggregated values of all runnable and blocked
378 * sched_entities.
379 *
380 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
382 * for computing those signals (see update_rq_clock_pelt())
383 *
384 * N.B., the above ratios (runnable% and running%) themselves are in the
385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
386 * to as large a range as necessary. This is for example reflected by
387 * util_avg's SCHED_CAPACITY_SCALE.
388 *
389 * [Overflow issue]
390 *
391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
392 * with the highest load (=88761), always runnable on a single cfs_rq,
393 * and should not overflow as the number already hits PID_MAX_LIMIT.
394 *
395 * For all other cases (including 32-bit kernels), struct load_weight's
396 * weight will overflow first before we do, because:
397 *
398 * Max(load_avg) <= Max(load.weight)
399 *
400 * Then it is the load_weight's responsibility to consider overflow
401 * issues.
402 */
403 struct sched_avg {
404 u64 last_update_time;
405 u64 load_sum;
406 u64 runnable_sum;
407 u32 util_sum;
408 u32 period_contrib;
409 unsigned long load_avg;
410 unsigned long runnable_avg;
411 unsigned long util_avg;
412 struct util_est util_est;
413 } ____cacheline_aligned;
414
415 struct sched_statistics {
416 #ifdef CONFIG_SCHEDSTATS
417 u64 wait_start;
418 u64 wait_max;
419 u64 wait_count;
420 u64 wait_sum;
421 u64 iowait_count;
422 u64 iowait_sum;
423
424 u64 sleep_start;
425 u64 sleep_max;
426 s64 sum_sleep_runtime;
427
428 u64 block_start;
429 u64 block_max;
430 u64 exec_max;
431 u64 slice_max;
432
433 u64 nr_migrations_cold;
434 u64 nr_failed_migrations_affine;
435 u64 nr_failed_migrations_running;
436 u64 nr_failed_migrations_hot;
437 u64 nr_forced_migrations;
438
439 u64 nr_wakeups;
440 u64 nr_wakeups_sync;
441 u64 nr_wakeups_migrate;
442 u64 nr_wakeups_local;
443 u64 nr_wakeups_remote;
444 u64 nr_wakeups_affine;
445 u64 nr_wakeups_affine_attempts;
446 u64 nr_wakeups_passive;
447 u64 nr_wakeups_idle;
448 #endif
449 };
450
451 struct sched_entity {
452 /* For load-balancing: */
453 struct load_weight load;
454 struct rb_node run_node;
455 struct list_head group_node;
456 unsigned int on_rq;
457
458 u64 exec_start;
459 u64 sum_exec_runtime;
460 u64 vruntime;
461 u64 prev_sum_exec_runtime;
462
463 u64 nr_migrations;
464
465 struct sched_statistics statistics;
466
467 #ifdef CONFIG_FAIR_GROUP_SCHED
468 int depth;
469 struct sched_entity *parent;
470 /* rq on which this entity is (to be) queued: */
471 struct cfs_rq *cfs_rq;
472 /* rq "owned" by this entity/group: */
473 struct cfs_rq *my_q;
474 /* cached value of my_q->h_nr_running */
475 unsigned long runnable_weight;
476 #endif
477
478 #ifdef CONFIG_SMP
479 /*
480 * Per entity load average tracking.
481 *
482 * Put into separate cache line so it does not
483 * collide with read-mostly values above.
484 */
485 struct sched_avg avg;
486 #endif
487 };
488
489 struct sched_rt_entity {
490 struct list_head run_list;
491 unsigned long timeout;
492 unsigned long watchdog_stamp;
493 unsigned int time_slice;
494 unsigned short on_rq;
495 unsigned short on_list;
496
497 struct sched_rt_entity *back;
498 #ifdef CONFIG_RT_GROUP_SCHED
499 struct sched_rt_entity *parent;
500 /* rq on which this entity is (to be) queued: */
501 struct rt_rq *rt_rq;
502 /* rq "owned" by this entity/group: */
503 struct rt_rq *my_q;
504 #endif
505 } __randomize_layout;
506
507 struct sched_dl_entity {
508 struct rb_node rb_node;
509
510 /*
511 * Original scheduling parameters. Copied here from sched_attr
512 * during sched_setattr(), they will remain the same until
513 * the next sched_setattr().
514 */
515 u64 dl_runtime; /* Maximum runtime for each instance */
516 u64 dl_deadline; /* Relative deadline of each instance */
517 u64 dl_period; /* Separation of two instances (period) */
518 u64 dl_bw; /* dl_runtime / dl_period */
519 u64 dl_density; /* dl_runtime / dl_deadline */
520
521 /*
522 * Actual scheduling parameters. Initialized with the values above,
523 * they are continuously updated during task execution. Note that
524 * the remaining runtime could be < 0 in case we are in overrun.
525 */
526 s64 runtime; /* Remaining runtime for this instance */
527 u64 deadline; /* Absolute deadline for this instance */
528 unsigned int flags; /* Specifying the scheduler behaviour */
529
530 /*
531 * Some bool flags:
532 *
533 * @dl_throttled tells if we exhausted the runtime. If so, the
534 * task has to wait for a replenishment to be performed at the
535 * next firing of dl_timer.
536 *
537 * @dl_boosted tells if we are boosted due to DI. If so we are
538 * outside bandwidth enforcement mechanism (but only until we
539 * exit the critical section);
540 *
541 * @dl_yielded tells if task gave up the CPU before consuming
542 * all its available runtime during the last job.
543 *
544 * @dl_non_contending tells if the task is inactive while still
545 * contributing to the active utilization. In other words, it
546 * indicates if the inactive timer has been armed and its handler
547 * has not been executed yet. This flag is useful to avoid race
548 * conditions between the inactive timer handler and the wakeup
549 * code.
550 *
551 * @dl_overrun tells if the task asked to be informed about runtime
552 * overruns.
553 */
554 unsigned int dl_throttled : 1;
555 unsigned int dl_boosted : 1;
556 unsigned int dl_yielded : 1;
557 unsigned int dl_non_contending : 1;
558 unsigned int dl_overrun : 1;
559
560 /*
561 * Bandwidth enforcement timer. Each -deadline task has its
562 * own bandwidth to be enforced, thus we need one timer per task.
563 */
564 struct hrtimer dl_timer;
565
566 /*
567 * Inactive timer, responsible for decreasing the active utilization
568 * at the "0-lag time". When a -deadline task blocks, it contributes
569 * to GRUB's active utilization until the "0-lag time", hence a
570 * timer is needed to decrease the active utilization at the correct
571 * time.
572 */
573 struct hrtimer inactive_timer;
574 };
575
576 #ifdef CONFIG_UCLAMP_TASK
577 /* Number of utilization clamp buckets (shorter alias) */
578 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
579
580 /*
581 * Utilization clamp for a scheduling entity
582 * @value: clamp value "assigned" to a se
583 * @bucket_id: bucket index corresponding to the "assigned" value
584 * @active: the se is currently refcounted in a rq's bucket
585 * @user_defined: the requested clamp value comes from user-space
586 *
587 * The bucket_id is the index of the clamp bucket matching the clamp value
588 * which is pre-computed and stored to avoid expensive integer divisions from
589 * the fast path.
590 *
591 * The active bit is set whenever a task has got an "effective" value assigned,
592 * which can be different from the clamp value "requested" from user-space.
593 * This allows to know a task is refcounted in the rq's bucket corresponding
594 * to the "effective" bucket_id.
595 *
596 * The user_defined bit is set whenever a task has got a task-specific clamp
597 * value requested from userspace, i.e. the system defaults apply to this task
598 * just as a restriction. This allows to relax default clamps when a less
599 * restrictive task-specific value has been requested, thus allowing to
600 * implement a "nice" semantic. For example, a task running with a 20%
601 * default boost can still drop its own boosting to 0%.
602 */
603 struct uclamp_se {
604 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
605 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
606 unsigned int active : 1;
607 unsigned int user_defined : 1;
608 };
609 #endif /* CONFIG_UCLAMP_TASK */
610
611 union rcu_special {
612 struct {
613 u8 blocked;
614 u8 need_qs;
615 u8 exp_hint; /* Hint for performance. */
616 u8 deferred_qs;
617 } b; /* Bits. */
618 u32 s; /* Set of bits. */
619 };
620
621 enum perf_event_task_context {
622 perf_invalid_context = -1,
623 perf_hw_context = 0,
624 perf_sw_context,
625 perf_nr_task_contexts,
626 };
627
628 struct wake_q_node {
629 struct wake_q_node *next;
630 };
631
632 struct task_struct {
633 #ifdef CONFIG_THREAD_INFO_IN_TASK
634 /*
635 * For reasons of header soup (see current_thread_info()), this
636 * must be the first element of task_struct.
637 */
638 struct thread_info thread_info;
639 #endif
640 /* -1 unrunnable, 0 runnable, >0 stopped: */
641 volatile long state;
642
643 /*
644 * This begins the randomizable portion of task_struct. Only
645 * scheduling-critical items should be added above here.
646 */
647 randomized_struct_fields_start
648
649 void *stack;
650 refcount_t usage;
651 /* Per task flags (PF_*), defined further below: */
652 unsigned int flags;
653 unsigned int ptrace;
654
655 #ifdef CONFIG_SMP
656 struct llist_node wake_entry;
657 int on_cpu;
658 #ifdef CONFIG_THREAD_INFO_IN_TASK
659 /* Current CPU: */
660 unsigned int cpu;
661 #endif
662 unsigned int wakee_flips;
663 unsigned long wakee_flip_decay_ts;
664 struct task_struct *last_wakee;
665
666 /*
667 * recent_used_cpu is initially set as the last CPU used by a task
668 * that wakes affine another task. Waker/wakee relationships can
669 * push tasks around a CPU where each wakeup moves to the next one.
670 * Tracking a recently used CPU allows a quick search for a recently
671 * used CPU that may be idle.
672 */
673 int recent_used_cpu;
674 int wake_cpu;
675 #endif
676 int on_rq;
677
678 int prio;
679 int static_prio;
680 int normal_prio;
681 unsigned int rt_priority;
682
683 const struct sched_class *sched_class;
684 struct sched_entity se;
685 struct sched_rt_entity rt;
686 #ifdef CONFIG_CGROUP_SCHED
687 struct task_group *sched_task_group;
688 #endif
689 struct sched_dl_entity dl;
690
691 #ifdef CONFIG_UCLAMP_TASK
692 /* Clamp values requested for a scheduling entity */
693 struct uclamp_se uclamp_req[UCLAMP_CNT];
694 /* Effective clamp values used for a scheduling entity */
695 struct uclamp_se uclamp[UCLAMP_CNT];
696 #endif
697
698 #ifdef CONFIG_PREEMPT_NOTIFIERS
699 /* List of struct preempt_notifier: */
700 struct hlist_head preempt_notifiers;
701 #endif
702
703 #ifdef CONFIG_BLK_DEV_IO_TRACE
704 unsigned int btrace_seq;
705 #endif
706
707 unsigned int policy;
708 int nr_cpus_allowed;
709 const cpumask_t *cpus_ptr;
710 cpumask_t cpus_mask;
711
712 #ifdef CONFIG_PREEMPT_RCU
713 int rcu_read_lock_nesting;
714 union rcu_special rcu_read_unlock_special;
715 struct list_head rcu_node_entry;
716 struct rcu_node *rcu_blocked_node;
717 #endif /* #ifdef CONFIG_PREEMPT_RCU */
718
719 #ifdef CONFIG_TASKS_RCU
720 unsigned long rcu_tasks_nvcsw;
721 u8 rcu_tasks_holdout;
722 u8 rcu_tasks_idx;
723 int rcu_tasks_idle_cpu;
724 struct list_head rcu_tasks_holdout_list;
725 #endif /* #ifdef CONFIG_TASKS_RCU */
726
727 struct sched_info sched_info;
728
729 struct list_head tasks;
730 #ifdef CONFIG_SMP
731 struct plist_node pushable_tasks;
732 struct rb_node pushable_dl_tasks;
733 #endif
734
735 struct mm_struct *mm;
736 struct mm_struct *active_mm;
737
738 /* Per-thread vma caching: */
739 struct vmacache vmacache;
740
741 #ifdef SPLIT_RSS_COUNTING
742 struct task_rss_stat rss_stat;
743 #endif
744 int exit_state;
745 int exit_code;
746 int exit_signal;
747 /* The signal sent when the parent dies: */
748 int pdeath_signal;
749 /* JOBCTL_*, siglock protected: */
750 unsigned long jobctl;
751
752 /* Used for emulating ABI behavior of previous Linux versions: */
753 unsigned int personality;
754
755 /* Scheduler bits, serialized by scheduler locks: */
756 unsigned sched_reset_on_fork:1;
757 unsigned sched_contributes_to_load:1;
758 unsigned sched_migrated:1;
759 unsigned sched_remote_wakeup:1;
760 #ifdef CONFIG_PSI
761 unsigned sched_psi_wake_requeue:1;
762 #endif
763
764 /* Force alignment to the next boundary: */
765 unsigned :0;
766
767 /* Unserialized, strictly 'current' */
768
769 /* Bit to tell LSMs we're in execve(): */
770 unsigned in_execve:1;
771 unsigned in_iowait:1;
772 #ifndef TIF_RESTORE_SIGMASK
773 unsigned restore_sigmask:1;
774 #endif
775 #ifdef CONFIG_MEMCG
776 unsigned in_user_fault:1;
777 #endif
778 #ifdef CONFIG_COMPAT_BRK
779 unsigned brk_randomized:1;
780 #endif
781 #ifdef CONFIG_CGROUPS
782 /* disallow userland-initiated cgroup migration */
783 unsigned no_cgroup_migration:1;
784 /* task is frozen/stopped (used by the cgroup freezer) */
785 unsigned frozen:1;
786 #endif
787 #ifdef CONFIG_BLK_CGROUP
788 unsigned use_memdelay:1;
789 #endif
790 #ifdef CONFIG_PSI
791 /* Stalled due to lack of memory */
792 unsigned in_memstall:1;
793 #endif
794
795 unsigned long atomic_flags; /* Flags requiring atomic access. */
796
797 struct restart_block restart_block;
798
799 pid_t pid;
800 pid_t tgid;
801
802 #ifdef CONFIG_STACKPROTECTOR
803 /* Canary value for the -fstack-protector GCC feature: */
804 unsigned long stack_canary;
805 #endif
806 /*
807 * Pointers to the (original) parent process, youngest child, younger sibling,
808 * older sibling, respectively. (p->father can be replaced with
809 * p->real_parent->pid)
810 */
811
812 /* Real parent process: */
813 struct task_struct __rcu *real_parent;
814
815 /* Recipient of SIGCHLD, wait4() reports: */
816 struct task_struct __rcu *parent;
817
818 /*
819 * Children/sibling form the list of natural children:
820 */
821 struct list_head children;
822 struct list_head sibling;
823 struct task_struct *group_leader;
824
825 /*
826 * 'ptraced' is the list of tasks this task is using ptrace() on.
827 *
828 * This includes both natural children and PTRACE_ATTACH targets.
829 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
830 */
831 struct list_head ptraced;
832 struct list_head ptrace_entry;
833
834 /* PID/PID hash table linkage. */
835 struct pid *thread_pid;
836 struct hlist_node pid_links[PIDTYPE_MAX];
837 struct list_head thread_group;
838 struct list_head thread_node;
839
840 struct completion *vfork_done;
841
842 /* CLONE_CHILD_SETTID: */
843 int __user *set_child_tid;
844
845 /* CLONE_CHILD_CLEARTID: */
846 int __user *clear_child_tid;
847
848 u64 utime;
849 u64 stime;
850 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
851 u64 utimescaled;
852 u64 stimescaled;
853 #endif
854 u64 gtime;
855 struct prev_cputime prev_cputime;
856 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
857 struct vtime vtime;
858 #endif
859
860 #ifdef CONFIG_NO_HZ_FULL
861 atomic_t tick_dep_mask;
862 #endif
863 /* Context switch counts: */
864 unsigned long nvcsw;
865 unsigned long nivcsw;
866
867 /* Monotonic time in nsecs: */
868 u64 start_time;
869
870 /* Boot based time in nsecs: */
871 u64 start_boottime;
872
873 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
874 unsigned long min_flt;
875 unsigned long maj_flt;
876
877 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
878 struct posix_cputimers posix_cputimers;
879
880 /* Process credentials: */
881
882 /* Tracer's credentials at attach: */
883 const struct cred __rcu *ptracer_cred;
884
885 /* Objective and real subjective task credentials (COW): */
886 const struct cred __rcu *real_cred;
887
888 /* Effective (overridable) subjective task credentials (COW): */
889 const struct cred __rcu *cred;
890
891 #ifdef CONFIG_KEYS
892 /* Cached requested key. */
893 struct key *cached_requested_key;
894 #endif
895
896 /*
897 * executable name, excluding path.
898 *
899 * - normally initialized setup_new_exec()
900 * - access it with [gs]et_task_comm()
901 * - lock it with task_lock()
902 */
903 char comm[TASK_COMM_LEN];
904
905 struct nameidata *nameidata;
906
907 #ifdef CONFIG_SYSVIPC
908 struct sysv_sem sysvsem;
909 struct sysv_shm sysvshm;
910 #endif
911 #ifdef CONFIG_DETECT_HUNG_TASK
912 unsigned long last_switch_count;
913 unsigned long last_switch_time;
914 #endif
915 /* Filesystem information: */
916 struct fs_struct *fs;
917
918 /* Open file information: */
919 struct files_struct *files;
920
921 /* Namespaces: */
922 struct nsproxy *nsproxy;
923
924 /* Signal handlers: */
925 struct signal_struct *signal;
926 struct sighand_struct __rcu *sighand;
927 sigset_t blocked;
928 sigset_t real_blocked;
929 /* Restored if set_restore_sigmask() was used: */
930 sigset_t saved_sigmask;
931 struct sigpending pending;
932 unsigned long sas_ss_sp;
933 size_t sas_ss_size;
934 unsigned int sas_ss_flags;
935
936 struct callback_head *task_works;
937
938 #ifdef CONFIG_AUDIT
939 #ifdef CONFIG_AUDITSYSCALL
940 struct audit_context *audit_context;
941 #endif
942 kuid_t loginuid;
943 unsigned int sessionid;
944 #endif
945 struct seccomp seccomp;
946
947 /* Thread group tracking: */
948 u64 parent_exec_id;
949 u64 self_exec_id;
950
951 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
952 spinlock_t alloc_lock;
953
954 /* Protection of the PI data structures: */
955 raw_spinlock_t pi_lock;
956
957 struct wake_q_node wake_q;
958
959 #ifdef CONFIG_RT_MUTEXES
960 /* PI waiters blocked on a rt_mutex held by this task: */
961 struct rb_root_cached pi_waiters;
962 /* Updated under owner's pi_lock and rq lock */
963 struct task_struct *pi_top_task;
964 /* Deadlock detection and priority inheritance handling: */
965 struct rt_mutex_waiter *pi_blocked_on;
966 #endif
967
968 #ifdef CONFIG_DEBUG_MUTEXES
969 /* Mutex deadlock detection: */
970 struct mutex_waiter *blocked_on;
971 #endif
972
973 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
974 int non_block_count;
975 #endif
976
977 #ifdef CONFIG_TRACE_IRQFLAGS
978 unsigned int irq_events;
979 unsigned int hardirq_threaded;
980 unsigned long hardirq_enable_ip;
981 unsigned long hardirq_disable_ip;
982 unsigned int hardirq_enable_event;
983 unsigned int hardirq_disable_event;
984 int hardirqs_enabled;
985 int hardirq_context;
986 unsigned long softirq_disable_ip;
987 unsigned long softirq_enable_ip;
988 unsigned int softirq_disable_event;
989 unsigned int softirq_enable_event;
990 int softirqs_enabled;
991 int softirq_context;
992 int irq_config;
993 #endif
994
995 #ifdef CONFIG_LOCKDEP
996 # define MAX_LOCK_DEPTH 48UL
997 u64 curr_chain_key;
998 int lockdep_depth;
999 unsigned int lockdep_recursion;
1000 struct held_lock held_locks[MAX_LOCK_DEPTH];
1001 #endif
1002
1003 #ifdef CONFIG_UBSAN
1004 unsigned int in_ubsan;
1005 #endif
1006
1007 /* Journalling filesystem info: */
1008 void *journal_info;
1009
1010 /* Stacked block device info: */
1011 struct bio_list *bio_list;
1012
1013 #ifdef CONFIG_BLOCK
1014 /* Stack plugging: */
1015 struct blk_plug *plug;
1016 #endif
1017
1018 /* VM state: */
1019 struct reclaim_state *reclaim_state;
1020
1021 struct backing_dev_info *backing_dev_info;
1022
1023 struct io_context *io_context;
1024
1025 #ifdef CONFIG_COMPACTION
1026 struct capture_control *capture_control;
1027 #endif
1028 /* Ptrace state: */
1029 unsigned long ptrace_message;
1030 kernel_siginfo_t *last_siginfo;
1031
1032 struct task_io_accounting ioac;
1033 #ifdef CONFIG_PSI
1034 /* Pressure stall state */
1035 unsigned int psi_flags;
1036 #endif
1037 #ifdef CONFIG_TASK_XACCT
1038 /* Accumulated RSS usage: */
1039 u64 acct_rss_mem1;
1040 /* Accumulated virtual memory usage: */
1041 u64 acct_vm_mem1;
1042 /* stime + utime since last update: */
1043 u64 acct_timexpd;
1044 #endif
1045 #ifdef CONFIG_CPUSETS
1046 /* Protected by ->alloc_lock: */
1047 nodemask_t mems_allowed;
1048 /* Seqence number to catch updates: */
1049 seqcount_t mems_allowed_seq;
1050 int cpuset_mem_spread_rotor;
1051 int cpuset_slab_spread_rotor;
1052 #endif
1053 #ifdef CONFIG_CGROUPS
1054 /* Control Group info protected by css_set_lock: */
1055 struct css_set __rcu *cgroups;
1056 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1057 struct list_head cg_list;
1058 #endif
1059 #ifdef CONFIG_X86_CPU_RESCTRL
1060 u32 closid;
1061 u32 rmid;
1062 #endif
1063 #ifdef CONFIG_FUTEX
1064 struct robust_list_head __user *robust_list;
1065 #ifdef CONFIG_COMPAT
1066 struct compat_robust_list_head __user *compat_robust_list;
1067 #endif
1068 struct list_head pi_state_list;
1069 struct futex_pi_state *pi_state_cache;
1070 struct mutex futex_exit_mutex;
1071 unsigned int futex_state;
1072 #endif
1073 #ifdef CONFIG_PERF_EVENTS
1074 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1075 struct mutex perf_event_mutex;
1076 struct list_head perf_event_list;
1077 #endif
1078 #ifdef CONFIG_DEBUG_PREEMPT
1079 unsigned long preempt_disable_ip;
1080 #endif
1081 #ifdef CONFIG_NUMA
1082 /* Protected by alloc_lock: */
1083 struct mempolicy *mempolicy;
1084 short il_prev;
1085 short pref_node_fork;
1086 #endif
1087 #ifdef CONFIG_NUMA_BALANCING
1088 int numa_scan_seq;
1089 unsigned int numa_scan_period;
1090 unsigned int numa_scan_period_max;
1091 int numa_preferred_nid;
1092 unsigned long numa_migrate_retry;
1093 /* Migration stamp: */
1094 u64 node_stamp;
1095 u64 last_task_numa_placement;
1096 u64 last_sum_exec_runtime;
1097 struct callback_head numa_work;
1098
1099 /*
1100 * This pointer is only modified for current in syscall and
1101 * pagefault context (and for tasks being destroyed), so it can be read
1102 * from any of the following contexts:
1103 * - RCU read-side critical section
1104 * - current->numa_group from everywhere
1105 * - task's runqueue locked, task not running
1106 */
1107 struct numa_group __rcu *numa_group;
1108
1109 /*
1110 * numa_faults is an array split into four regions:
1111 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1112 * in this precise order.
1113 *
1114 * faults_memory: Exponential decaying average of faults on a per-node
1115 * basis. Scheduling placement decisions are made based on these
1116 * counts. The values remain static for the duration of a PTE scan.
1117 * faults_cpu: Track the nodes the process was running on when a NUMA
1118 * hinting fault was incurred.
1119 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1120 * during the current scan window. When the scan completes, the counts
1121 * in faults_memory and faults_cpu decay and these values are copied.
1122 */
1123 unsigned long *numa_faults;
1124 unsigned long total_numa_faults;
1125
1126 /*
1127 * numa_faults_locality tracks if faults recorded during the last
1128 * scan window were remote/local or failed to migrate. The task scan
1129 * period is adapted based on the locality of the faults with different
1130 * weights depending on whether they were shared or private faults
1131 */
1132 unsigned long numa_faults_locality[3];
1133
1134 unsigned long numa_pages_migrated;
1135 #endif /* CONFIG_NUMA_BALANCING */
1136
1137 #ifdef CONFIG_RSEQ
1138 struct rseq __user *rseq;
1139 u32 rseq_sig;
1140 /*
1141 * RmW on rseq_event_mask must be performed atomically
1142 * with respect to preemption.
1143 */
1144 unsigned long rseq_event_mask;
1145 #endif
1146
1147 struct tlbflush_unmap_batch tlb_ubc;
1148
1149 union {
1150 refcount_t rcu_users;
1151 struct rcu_head rcu;
1152 };
1153
1154 /* Cache last used pipe for splice(): */
1155 struct pipe_inode_info *splice_pipe;
1156
1157 struct page_frag task_frag;
1158
1159 #ifdef CONFIG_TASK_DELAY_ACCT
1160 struct task_delay_info *delays;
1161 #endif
1162
1163 #ifdef CONFIG_FAULT_INJECTION
1164 int make_it_fail;
1165 unsigned int fail_nth;
1166 #endif
1167 /*
1168 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1169 * balance_dirty_pages() for a dirty throttling pause:
1170 */
1171 int nr_dirtied;
1172 int nr_dirtied_pause;
1173 /* Start of a write-and-pause period: */
1174 unsigned long dirty_paused_when;
1175
1176 #ifdef CONFIG_LATENCYTOP
1177 int latency_record_count;
1178 struct latency_record latency_record[LT_SAVECOUNT];
1179 #endif
1180 /*
1181 * Time slack values; these are used to round up poll() and
1182 * select() etc timeout values. These are in nanoseconds.
1183 */
1184 u64 timer_slack_ns;
1185 u64 default_timer_slack_ns;
1186
1187 #ifdef CONFIG_KASAN
1188 unsigned int kasan_depth;
1189 #endif
1190
1191 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1192 /* Index of current stored address in ret_stack: */
1193 int curr_ret_stack;
1194 int curr_ret_depth;
1195
1196 /* Stack of return addresses for return function tracing: */
1197 struct ftrace_ret_stack *ret_stack;
1198
1199 /* Timestamp for last schedule: */
1200 unsigned long long ftrace_timestamp;
1201
1202 /*
1203 * Number of functions that haven't been traced
1204 * because of depth overrun:
1205 */
1206 atomic_t trace_overrun;
1207
1208 /* Pause tracing: */
1209 atomic_t tracing_graph_pause;
1210 #endif
1211
1212 #ifdef CONFIG_TRACING
1213 /* State flags for use by tracers: */
1214 unsigned long trace;
1215
1216 /* Bitmask and counter of trace recursion: */
1217 unsigned long trace_recursion;
1218 #endif /* CONFIG_TRACING */
1219
1220 #ifdef CONFIG_KCOV
1221 /* See kernel/kcov.c for more details. */
1222
1223 /* Coverage collection mode enabled for this task (0 if disabled): */
1224 unsigned int kcov_mode;
1225
1226 /* Size of the kcov_area: */
1227 unsigned int kcov_size;
1228
1229 /* Buffer for coverage collection: */
1230 void *kcov_area;
1231
1232 /* KCOV descriptor wired with this task or NULL: */
1233 struct kcov *kcov;
1234
1235 /* KCOV common handle for remote coverage collection: */
1236 u64 kcov_handle;
1237
1238 /* KCOV sequence number: */
1239 int kcov_sequence;
1240 #endif
1241
1242 #ifdef CONFIG_MEMCG
1243 struct mem_cgroup *memcg_in_oom;
1244 gfp_t memcg_oom_gfp_mask;
1245 int memcg_oom_order;
1246
1247 /* Number of pages to reclaim on returning to userland: */
1248 unsigned int memcg_nr_pages_over_high;
1249
1250 /* Used by memcontrol for targeted memcg charge: */
1251 struct mem_cgroup *active_memcg;
1252 #endif
1253
1254 #ifdef CONFIG_BLK_CGROUP
1255 struct request_queue *throttle_queue;
1256 #endif
1257
1258 #ifdef CONFIG_UPROBES
1259 struct uprobe_task *utask;
1260 #endif
1261 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1262 unsigned int sequential_io;
1263 unsigned int sequential_io_avg;
1264 #endif
1265 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1266 unsigned long task_state_change;
1267 #endif
1268 int pagefault_disabled;
1269 #ifdef CONFIG_MMU
1270 struct task_struct *oom_reaper_list;
1271 #endif
1272 #ifdef CONFIG_VMAP_STACK
1273 struct vm_struct *stack_vm_area;
1274 #endif
1275 #ifdef CONFIG_THREAD_INFO_IN_TASK
1276 /* A live task holds one reference: */
1277 refcount_t stack_refcount;
1278 #endif
1279 #ifdef CONFIG_LIVEPATCH
1280 int patch_state;
1281 #endif
1282 #ifdef CONFIG_SECURITY
1283 /* Used by LSM modules for access restriction: */
1284 void *security;
1285 #endif
1286
1287 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1288 unsigned long lowest_stack;
1289 unsigned long prev_lowest_stack;
1290 #endif
1291
1292 /*
1293 * New fields for task_struct should be added above here, so that
1294 * they are included in the randomized portion of task_struct.
1295 */
1296 randomized_struct_fields_end
1297
1298 /* CPU-specific state of this task: */
1299 struct thread_struct thread;
1300
1301 /*
1302 * WARNING: on x86, 'thread_struct' contains a variable-sized
1303 * structure. It *MUST* be at the end of 'task_struct'.
1304 *
1305 * Do not put anything below here!
1306 */
1307 };
1308
1309 static inline struct pid *task_pid(struct task_struct *task)
1310 {
1311 return task->thread_pid;
1312 }
1313
1314 /*
1315 * the helpers to get the task's different pids as they are seen
1316 * from various namespaces
1317 *
1318 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1319 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1320 * current.
1321 * task_xid_nr_ns() : id seen from the ns specified;
1322 *
1323 * see also pid_nr() etc in include/linux/pid.h
1324 */
1325 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1326
1327 static inline pid_t task_pid_nr(struct task_struct *tsk)
1328 {
1329 return tsk->pid;
1330 }
1331
1332 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1333 {
1334 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1335 }
1336
1337 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1338 {
1339 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1340 }
1341
1342
1343 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1344 {
1345 return tsk->tgid;
1346 }
1347
1348 /**
1349 * pid_alive - check that a task structure is not stale
1350 * @p: Task structure to be checked.
1351 *
1352 * Test if a process is not yet dead (at most zombie state)
1353 * If pid_alive fails, then pointers within the task structure
1354 * can be stale and must not be dereferenced.
1355 *
1356 * Return: 1 if the process is alive. 0 otherwise.
1357 */
1358 static inline int pid_alive(const struct task_struct *p)
1359 {
1360 return p->thread_pid != NULL;
1361 }
1362
1363 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1364 {
1365 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1366 }
1367
1368 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1369 {
1370 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1371 }
1372
1373
1374 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1375 {
1376 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1377 }
1378
1379 static inline pid_t task_session_vnr(struct task_struct *tsk)
1380 {
1381 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1382 }
1383
1384 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1385 {
1386 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1387 }
1388
1389 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1390 {
1391 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1392 }
1393
1394 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1395 {
1396 pid_t pid = 0;
1397
1398 rcu_read_lock();
1399 if (pid_alive(tsk))
1400 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1401 rcu_read_unlock();
1402
1403 return pid;
1404 }
1405
1406 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1407 {
1408 return task_ppid_nr_ns(tsk, &init_pid_ns);
1409 }
1410
1411 /* Obsolete, do not use: */
1412 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1413 {
1414 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1415 }
1416
1417 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1418 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1419
1420 static inline unsigned int task_state_index(struct task_struct *tsk)
1421 {
1422 unsigned int tsk_state = READ_ONCE(tsk->state);
1423 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1424
1425 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1426
1427 if (tsk_state == TASK_IDLE)
1428 state = TASK_REPORT_IDLE;
1429
1430 return fls(state);
1431 }
1432
1433 static inline char task_index_to_char(unsigned int state)
1434 {
1435 static const char state_char[] = "RSDTtXZPI";
1436
1437 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1438
1439 return state_char[state];
1440 }
1441
1442 static inline char task_state_to_char(struct task_struct *tsk)
1443 {
1444 return task_index_to_char(task_state_index(tsk));
1445 }
1446
1447 /**
1448 * is_global_init - check if a task structure is init. Since init
1449 * is free to have sub-threads we need to check tgid.
1450 * @tsk: Task structure to be checked.
1451 *
1452 * Check if a task structure is the first user space task the kernel created.
1453 *
1454 * Return: 1 if the task structure is init. 0 otherwise.
1455 */
1456 static inline int is_global_init(struct task_struct *tsk)
1457 {
1458 return task_tgid_nr(tsk) == 1;
1459 }
1460
1461 extern struct pid *cad_pid;
1462
1463 /*
1464 * Per process flags
1465 */
1466 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1467 #define PF_EXITING 0x00000004 /* Getting shut down */
1468 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1469 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1470 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1471 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1472 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1473 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1474 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1475 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1476 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1477 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1478 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1479 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1480 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1481 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1482 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1483 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1484 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1485 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1486 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1487 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1488 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1489 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1490 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1491 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1492 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1493 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1494 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1495
1496 /*
1497 * Only the _current_ task can read/write to tsk->flags, but other
1498 * tasks can access tsk->flags in readonly mode for example
1499 * with tsk_used_math (like during threaded core dumping).
1500 * There is however an exception to this rule during ptrace
1501 * or during fork: the ptracer task is allowed to write to the
1502 * child->flags of its traced child (same goes for fork, the parent
1503 * can write to the child->flags), because we're guaranteed the
1504 * child is not running and in turn not changing child->flags
1505 * at the same time the parent does it.
1506 */
1507 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1508 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1509 #define clear_used_math() clear_stopped_child_used_math(current)
1510 #define set_used_math() set_stopped_child_used_math(current)
1511
1512 #define conditional_stopped_child_used_math(condition, child) \
1513 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1514
1515 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1516
1517 #define copy_to_stopped_child_used_math(child) \
1518 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1519
1520 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1521 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1522 #define used_math() tsk_used_math(current)
1523
1524 static inline bool is_percpu_thread(void)
1525 {
1526 #ifdef CONFIG_SMP
1527 return (current->flags & PF_NO_SETAFFINITY) &&
1528 (current->nr_cpus_allowed == 1);
1529 #else
1530 return true;
1531 #endif
1532 }
1533
1534 /* Per-process atomic flags. */
1535 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1536 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1537 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1538 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1539 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1540 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1541 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1542 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1543
1544 #define TASK_PFA_TEST(name, func) \
1545 static inline bool task_##func(struct task_struct *p) \
1546 { return test_bit(PFA_##name, &p->atomic_flags); }
1547
1548 #define TASK_PFA_SET(name, func) \
1549 static inline void task_set_##func(struct task_struct *p) \
1550 { set_bit(PFA_##name, &p->atomic_flags); }
1551
1552 #define TASK_PFA_CLEAR(name, func) \
1553 static inline void task_clear_##func(struct task_struct *p) \
1554 { clear_bit(PFA_##name, &p->atomic_flags); }
1555
1556 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1557 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1558
1559 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1560 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1561 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1562
1563 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1564 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1565 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1566
1567 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1568 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1569 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1570
1571 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1572 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1573 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1574
1575 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1576 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1577
1578 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1579 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1580 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1581
1582 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1583 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1584
1585 static inline void
1586 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1587 {
1588 current->flags &= ~flags;
1589 current->flags |= orig_flags & flags;
1590 }
1591
1592 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1593 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1594 #ifdef CONFIG_SMP
1595 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1596 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1597 #else
1598 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1599 {
1600 }
1601 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1602 {
1603 if (!cpumask_test_cpu(0, new_mask))
1604 return -EINVAL;
1605 return 0;
1606 }
1607 #endif
1608
1609 extern int yield_to(struct task_struct *p, bool preempt);
1610 extern void set_user_nice(struct task_struct *p, long nice);
1611 extern int task_prio(const struct task_struct *p);
1612
1613 /**
1614 * task_nice - return the nice value of a given task.
1615 * @p: the task in question.
1616 *
1617 * Return: The nice value [ -20 ... 0 ... 19 ].
1618 */
1619 static inline int task_nice(const struct task_struct *p)
1620 {
1621 return PRIO_TO_NICE((p)->static_prio);
1622 }
1623
1624 extern int can_nice(const struct task_struct *p, const int nice);
1625 extern int task_curr(const struct task_struct *p);
1626 extern int idle_cpu(int cpu);
1627 extern int available_idle_cpu(int cpu);
1628 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1629 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1630 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1631 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1632 extern struct task_struct *idle_task(int cpu);
1633
1634 /**
1635 * is_idle_task - is the specified task an idle task?
1636 * @p: the task in question.
1637 *
1638 * Return: 1 if @p is an idle task. 0 otherwise.
1639 */
1640 static inline bool is_idle_task(const struct task_struct *p)
1641 {
1642 return !!(p->flags & PF_IDLE);
1643 }
1644
1645 extern struct task_struct *curr_task(int cpu);
1646 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1647
1648 void yield(void);
1649
1650 union thread_union {
1651 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1652 struct task_struct task;
1653 #endif
1654 #ifndef CONFIG_THREAD_INFO_IN_TASK
1655 struct thread_info thread_info;
1656 #endif
1657 unsigned long stack[THREAD_SIZE/sizeof(long)];
1658 };
1659
1660 #ifndef CONFIG_THREAD_INFO_IN_TASK
1661 extern struct thread_info init_thread_info;
1662 #endif
1663
1664 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1665
1666 #ifdef CONFIG_THREAD_INFO_IN_TASK
1667 static inline struct thread_info *task_thread_info(struct task_struct *task)
1668 {
1669 return &task->thread_info;
1670 }
1671 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1672 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1673 #endif
1674
1675 /*
1676 * find a task by one of its numerical ids
1677 *
1678 * find_task_by_pid_ns():
1679 * finds a task by its pid in the specified namespace
1680 * find_task_by_vpid():
1681 * finds a task by its virtual pid
1682 *
1683 * see also find_vpid() etc in include/linux/pid.h
1684 */
1685
1686 extern struct task_struct *find_task_by_vpid(pid_t nr);
1687 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1688
1689 /*
1690 * find a task by its virtual pid and get the task struct
1691 */
1692 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1693
1694 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1695 extern int wake_up_process(struct task_struct *tsk);
1696 extern void wake_up_new_task(struct task_struct *tsk);
1697
1698 #ifdef CONFIG_SMP
1699 extern void kick_process(struct task_struct *tsk);
1700 #else
1701 static inline void kick_process(struct task_struct *tsk) { }
1702 #endif
1703
1704 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1705
1706 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1707 {
1708 __set_task_comm(tsk, from, false);
1709 }
1710
1711 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1712 #define get_task_comm(buf, tsk) ({ \
1713 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1714 __get_task_comm(buf, sizeof(buf), tsk); \
1715 })
1716
1717 #ifdef CONFIG_SMP
1718 void scheduler_ipi(void);
1719 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1720 #else
1721 static inline void scheduler_ipi(void) { }
1722 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1723 {
1724 return 1;
1725 }
1726 #endif
1727
1728 /*
1729 * Set thread flags in other task's structures.
1730 * See asm/thread_info.h for TIF_xxxx flags available:
1731 */
1732 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1733 {
1734 set_ti_thread_flag(task_thread_info(tsk), flag);
1735 }
1736
1737 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1738 {
1739 clear_ti_thread_flag(task_thread_info(tsk), flag);
1740 }
1741
1742 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1743 bool value)
1744 {
1745 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1746 }
1747
1748 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1749 {
1750 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1751 }
1752
1753 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1754 {
1755 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1756 }
1757
1758 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1759 {
1760 return test_ti_thread_flag(task_thread_info(tsk), flag);
1761 }
1762
1763 static inline void set_tsk_need_resched(struct task_struct *tsk)
1764 {
1765 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1766 }
1767
1768 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1769 {
1770 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1771 }
1772
1773 static inline int test_tsk_need_resched(struct task_struct *tsk)
1774 {
1775 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1776 }
1777
1778 /*
1779 * cond_resched() and cond_resched_lock(): latency reduction via
1780 * explicit rescheduling in places that are safe. The return
1781 * value indicates whether a reschedule was done in fact.
1782 * cond_resched_lock() will drop the spinlock before scheduling,
1783 */
1784 #ifndef CONFIG_PREEMPTION
1785 extern int _cond_resched(void);
1786 #else
1787 static inline int _cond_resched(void) { return 0; }
1788 #endif
1789
1790 #define cond_resched() ({ \
1791 ___might_sleep(__FILE__, __LINE__, 0); \
1792 _cond_resched(); \
1793 })
1794
1795 extern int __cond_resched_lock(spinlock_t *lock);
1796
1797 #define cond_resched_lock(lock) ({ \
1798 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1799 __cond_resched_lock(lock); \
1800 })
1801
1802 static inline void cond_resched_rcu(void)
1803 {
1804 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1805 rcu_read_unlock();
1806 cond_resched();
1807 rcu_read_lock();
1808 #endif
1809 }
1810
1811 /*
1812 * Does a critical section need to be broken due to another
1813 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1814 * but a general need for low latency)
1815 */
1816 static inline int spin_needbreak(spinlock_t *lock)
1817 {
1818 #ifdef CONFIG_PREEMPTION
1819 return spin_is_contended(lock);
1820 #else
1821 return 0;
1822 #endif
1823 }
1824
1825 static __always_inline bool need_resched(void)
1826 {
1827 return unlikely(tif_need_resched());
1828 }
1829
1830 /*
1831 * Wrappers for p->thread_info->cpu access. No-op on UP.
1832 */
1833 #ifdef CONFIG_SMP
1834
1835 static inline unsigned int task_cpu(const struct task_struct *p)
1836 {
1837 #ifdef CONFIG_THREAD_INFO_IN_TASK
1838 return READ_ONCE(p->cpu);
1839 #else
1840 return READ_ONCE(task_thread_info(p)->cpu);
1841 #endif
1842 }
1843
1844 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1845
1846 #else
1847
1848 static inline unsigned int task_cpu(const struct task_struct *p)
1849 {
1850 return 0;
1851 }
1852
1853 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1854 {
1855 }
1856
1857 #endif /* CONFIG_SMP */
1858
1859 /*
1860 * In order to reduce various lock holder preemption latencies provide an
1861 * interface to see if a vCPU is currently running or not.
1862 *
1863 * This allows us to terminate optimistic spin loops and block, analogous to
1864 * the native optimistic spin heuristic of testing if the lock owner task is
1865 * running or not.
1866 */
1867 #ifndef vcpu_is_preempted
1868 static inline bool vcpu_is_preempted(int cpu)
1869 {
1870 return false;
1871 }
1872 #endif
1873
1874 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1875 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1876
1877 #ifndef TASK_SIZE_OF
1878 #define TASK_SIZE_OF(tsk) TASK_SIZE
1879 #endif
1880
1881 #ifdef CONFIG_RSEQ
1882
1883 /*
1884 * Map the event mask on the user-space ABI enum rseq_cs_flags
1885 * for direct mask checks.
1886 */
1887 enum rseq_event_mask_bits {
1888 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1889 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1890 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1891 };
1892
1893 enum rseq_event_mask {
1894 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1895 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1896 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1897 };
1898
1899 static inline void rseq_set_notify_resume(struct task_struct *t)
1900 {
1901 if (t->rseq)
1902 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1903 }
1904
1905 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1906
1907 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1908 struct pt_regs *regs)
1909 {
1910 if (current->rseq)
1911 __rseq_handle_notify_resume(ksig, regs);
1912 }
1913
1914 static inline void rseq_signal_deliver(struct ksignal *ksig,
1915 struct pt_regs *regs)
1916 {
1917 preempt_disable();
1918 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1919 preempt_enable();
1920 rseq_handle_notify_resume(ksig, regs);
1921 }
1922
1923 /* rseq_preempt() requires preemption to be disabled. */
1924 static inline void rseq_preempt(struct task_struct *t)
1925 {
1926 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1927 rseq_set_notify_resume(t);
1928 }
1929
1930 /* rseq_migrate() requires preemption to be disabled. */
1931 static inline void rseq_migrate(struct task_struct *t)
1932 {
1933 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1934 rseq_set_notify_resume(t);
1935 }
1936
1937 /*
1938 * If parent process has a registered restartable sequences area, the
1939 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1940 */
1941 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1942 {
1943 if (clone_flags & CLONE_VM) {
1944 t->rseq = NULL;
1945 t->rseq_sig = 0;
1946 t->rseq_event_mask = 0;
1947 } else {
1948 t->rseq = current->rseq;
1949 t->rseq_sig = current->rseq_sig;
1950 t->rseq_event_mask = current->rseq_event_mask;
1951 }
1952 }
1953
1954 static inline void rseq_execve(struct task_struct *t)
1955 {
1956 t->rseq = NULL;
1957 t->rseq_sig = 0;
1958 t->rseq_event_mask = 0;
1959 }
1960
1961 #else
1962
1963 static inline void rseq_set_notify_resume(struct task_struct *t)
1964 {
1965 }
1966 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1967 struct pt_regs *regs)
1968 {
1969 }
1970 static inline void rseq_signal_deliver(struct ksignal *ksig,
1971 struct pt_regs *regs)
1972 {
1973 }
1974 static inline void rseq_preempt(struct task_struct *t)
1975 {
1976 }
1977 static inline void rseq_migrate(struct task_struct *t)
1978 {
1979 }
1980 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1981 {
1982 }
1983 static inline void rseq_execve(struct task_struct *t)
1984 {
1985 }
1986
1987 #endif
1988
1989 void __exit_umh(struct task_struct *tsk);
1990
1991 static inline void exit_umh(struct task_struct *tsk)
1992 {
1993 if (unlikely(tsk->flags & PF_UMH))
1994 __exit_umh(tsk);
1995 }
1996
1997 #ifdef CONFIG_DEBUG_RSEQ
1998
1999 void rseq_syscall(struct pt_regs *regs);
2000
2001 #else
2002
2003 static inline void rseq_syscall(struct pt_regs *regs)
2004 {
2005 }
2006
2007 #endif
2008
2009 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2010 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2011 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2012
2013 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2014 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2015 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2016
2017 int sched_trace_rq_cpu(struct rq *rq);
2018
2019 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2020
2021 #endif