]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge branch 'for-2.6.34-rc1-batch2' into for-linus
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(void);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 extern void sched_init(void);
262 extern void sched_init_smp(void);
263 extern asmlinkage void schedule_tail(struct task_struct *prev);
264 extern void init_idle(struct task_struct *idle, int cpu);
265 extern void init_idle_bootup_task(struct task_struct *idle);
266
267 extern int runqueue_is_locked(int cpu);
268 extern void task_rq_unlock_wait(struct task_struct *p);
269
270 extern cpumask_var_t nohz_cpu_mask;
271 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
272 extern int select_nohz_load_balancer(int cpu);
273 extern int get_nohz_load_balancer(void);
274 #else
275 static inline int select_nohz_load_balancer(int cpu)
276 {
277 return 0;
278 }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_DETECT_SOFTLOCKUP
311 extern void softlockup_tick(void);
312 extern void touch_softlockup_watchdog(void);
313 extern void touch_softlockup_watchdog_sync(void);
314 extern void touch_all_softlockup_watchdogs(void);
315 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
316 void __user *buffer,
317 size_t *lenp, loff_t *ppos);
318 extern unsigned int softlockup_panic;
319 extern int softlockup_thresh;
320 #else
321 static inline void softlockup_tick(void)
322 {
323 }
324 static inline void touch_softlockup_watchdog(void)
325 {
326 }
327 static inline void touch_softlockup_watchdog_sync(void)
328 {
329 }
330 static inline void touch_all_softlockup_watchdogs(void)
331 {
332 }
333 #endif
334
335 #ifdef CONFIG_DETECT_HUNG_TASK
336 extern unsigned int sysctl_hung_task_panic;
337 extern unsigned long sysctl_hung_task_check_count;
338 extern unsigned long sysctl_hung_task_timeout_secs;
339 extern unsigned long sysctl_hung_task_warnings;
340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
341 void __user *buffer,
342 size_t *lenp, loff_t *ppos);
343 #endif
344
345 /* Attach to any functions which should be ignored in wchan output. */
346 #define __sched __attribute__((__section__(".sched.text")))
347
348 /* Linker adds these: start and end of __sched functions */
349 extern char __sched_text_start[], __sched_text_end[];
350
351 /* Is this address in the __sched functions? */
352 extern int in_sched_functions(unsigned long addr);
353
354 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
355 extern signed long schedule_timeout(signed long timeout);
356 extern signed long schedule_timeout_interruptible(signed long timeout);
357 extern signed long schedule_timeout_killable(signed long timeout);
358 extern signed long schedule_timeout_uninterruptible(signed long timeout);
359 asmlinkage void schedule(void);
360 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
361
362 struct nsproxy;
363 struct user_namespace;
364
365 /*
366 * Default maximum number of active map areas, this limits the number of vmas
367 * per mm struct. Users can overwrite this number by sysctl but there is a
368 * problem.
369 *
370 * When a program's coredump is generated as ELF format, a section is created
371 * per a vma. In ELF, the number of sections is represented in unsigned short.
372 * This means the number of sections should be smaller than 65535 at coredump.
373 * Because the kernel adds some informative sections to a image of program at
374 * generating coredump, we need some margin. The number of extra sections is
375 * 1-3 now and depends on arch. We use "5" as safe margin, here.
376 */
377 #define MAPCOUNT_ELF_CORE_MARGIN (5)
378 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
379
380 extern int sysctl_max_map_count;
381
382 #include <linux/aio.h>
383
384 #ifdef CONFIG_MMU
385 extern void arch_pick_mmap_layout(struct mm_struct *mm);
386 extern unsigned long
387 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
388 unsigned long, unsigned long);
389 extern unsigned long
390 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
391 unsigned long len, unsigned long pgoff,
392 unsigned long flags);
393 extern void arch_unmap_area(struct mm_struct *, unsigned long);
394 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
395 #else
396 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
397 #endif
398
399 #if USE_SPLIT_PTLOCKS
400 /*
401 * The mm counters are not protected by its page_table_lock,
402 * so must be incremented atomically.
403 */
404 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
405 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
406 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
407 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
408 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
409
410 #else /* !USE_SPLIT_PTLOCKS */
411 /*
412 * The mm counters are protected by its page_table_lock,
413 * so can be incremented directly.
414 */
415 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
416 #define get_mm_counter(mm, member) ((mm)->_##member)
417 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
418 #define inc_mm_counter(mm, member) (mm)->_##member++
419 #define dec_mm_counter(mm, member) (mm)->_##member--
420
421 #endif /* !USE_SPLIT_PTLOCKS */
422
423 #define get_mm_rss(mm) \
424 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
425 #define update_hiwater_rss(mm) do { \
426 unsigned long _rss = get_mm_rss(mm); \
427 if ((mm)->hiwater_rss < _rss) \
428 (mm)->hiwater_rss = _rss; \
429 } while (0)
430 #define update_hiwater_vm(mm) do { \
431 if ((mm)->hiwater_vm < (mm)->total_vm) \
432 (mm)->hiwater_vm = (mm)->total_vm; \
433 } while (0)
434
435 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
436 {
437 return max(mm->hiwater_rss, get_mm_rss(mm));
438 }
439
440 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
441 struct mm_struct *mm)
442 {
443 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
444
445 if (*maxrss < hiwater_rss)
446 *maxrss = hiwater_rss;
447 }
448
449 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
450 {
451 return max(mm->hiwater_vm, mm->total_vm);
452 }
453
454 extern void set_dumpable(struct mm_struct *mm, int value);
455 extern int get_dumpable(struct mm_struct *mm);
456
457 /* mm flags */
458 /* dumpable bits */
459 #define MMF_DUMPABLE 0 /* core dump is permitted */
460 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
461
462 #define MMF_DUMPABLE_BITS 2
463 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
464
465 /* coredump filter bits */
466 #define MMF_DUMP_ANON_PRIVATE 2
467 #define MMF_DUMP_ANON_SHARED 3
468 #define MMF_DUMP_MAPPED_PRIVATE 4
469 #define MMF_DUMP_MAPPED_SHARED 5
470 #define MMF_DUMP_ELF_HEADERS 6
471 #define MMF_DUMP_HUGETLB_PRIVATE 7
472 #define MMF_DUMP_HUGETLB_SHARED 8
473
474 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
475 #define MMF_DUMP_FILTER_BITS 7
476 #define MMF_DUMP_FILTER_MASK \
477 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
478 #define MMF_DUMP_FILTER_DEFAULT \
479 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
480 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
481
482 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
483 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
484 #else
485 # define MMF_DUMP_MASK_DEFAULT_ELF 0
486 #endif
487 /* leave room for more dump flags */
488 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
489
490 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
491
492 struct sighand_struct {
493 atomic_t count;
494 struct k_sigaction action[_NSIG];
495 spinlock_t siglock;
496 wait_queue_head_t signalfd_wqh;
497 };
498
499 struct pacct_struct {
500 int ac_flag;
501 long ac_exitcode;
502 unsigned long ac_mem;
503 cputime_t ac_utime, ac_stime;
504 unsigned long ac_minflt, ac_majflt;
505 };
506
507 struct cpu_itimer {
508 cputime_t expires;
509 cputime_t incr;
510 u32 error;
511 u32 incr_error;
512 };
513
514 /**
515 * struct task_cputime - collected CPU time counts
516 * @utime: time spent in user mode, in &cputime_t units
517 * @stime: time spent in kernel mode, in &cputime_t units
518 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
519 *
520 * This structure groups together three kinds of CPU time that are
521 * tracked for threads and thread groups. Most things considering
522 * CPU time want to group these counts together and treat all three
523 * of them in parallel.
524 */
525 struct task_cputime {
526 cputime_t utime;
527 cputime_t stime;
528 unsigned long long sum_exec_runtime;
529 };
530 /* Alternate field names when used to cache expirations. */
531 #define prof_exp stime
532 #define virt_exp utime
533 #define sched_exp sum_exec_runtime
534
535 #define INIT_CPUTIME \
536 (struct task_cputime) { \
537 .utime = cputime_zero, \
538 .stime = cputime_zero, \
539 .sum_exec_runtime = 0, \
540 }
541
542 /*
543 * Disable preemption until the scheduler is running.
544 * Reset by start_kernel()->sched_init()->init_idle().
545 *
546 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
547 * before the scheduler is active -- see should_resched().
548 */
549 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
550
551 /**
552 * struct thread_group_cputimer - thread group interval timer counts
553 * @cputime: thread group interval timers.
554 * @running: non-zero when there are timers running and
555 * @cputime receives updates.
556 * @lock: lock for fields in this struct.
557 *
558 * This structure contains the version of task_cputime, above, that is
559 * used for thread group CPU timer calculations.
560 */
561 struct thread_group_cputimer {
562 struct task_cputime cputime;
563 int running;
564 spinlock_t lock;
565 };
566
567 /*
568 * NOTE! "signal_struct" does not have it's own
569 * locking, because a shared signal_struct always
570 * implies a shared sighand_struct, so locking
571 * sighand_struct is always a proper superset of
572 * the locking of signal_struct.
573 */
574 struct signal_struct {
575 atomic_t count;
576 atomic_t live;
577
578 wait_queue_head_t wait_chldexit; /* for wait4() */
579
580 /* current thread group signal load-balancing target: */
581 struct task_struct *curr_target;
582
583 /* shared signal handling: */
584 struct sigpending shared_pending;
585
586 /* thread group exit support */
587 int group_exit_code;
588 /* overloaded:
589 * - notify group_exit_task when ->count is equal to notify_count
590 * - everyone except group_exit_task is stopped during signal delivery
591 * of fatal signals, group_exit_task processes the signal.
592 */
593 int notify_count;
594 struct task_struct *group_exit_task;
595
596 /* thread group stop support, overloads group_exit_code too */
597 int group_stop_count;
598 unsigned int flags; /* see SIGNAL_* flags below */
599
600 /* POSIX.1b Interval Timers */
601 struct list_head posix_timers;
602
603 /* ITIMER_REAL timer for the process */
604 struct hrtimer real_timer;
605 struct pid *leader_pid;
606 ktime_t it_real_incr;
607
608 /*
609 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
610 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
611 * values are defined to 0 and 1 respectively
612 */
613 struct cpu_itimer it[2];
614
615 /*
616 * Thread group totals for process CPU timers.
617 * See thread_group_cputimer(), et al, for details.
618 */
619 struct thread_group_cputimer cputimer;
620
621 /* Earliest-expiration cache. */
622 struct task_cputime cputime_expires;
623
624 struct list_head cpu_timers[3];
625
626 struct pid *tty_old_pgrp;
627
628 /* boolean value for session group leader */
629 int leader;
630
631 struct tty_struct *tty; /* NULL if no tty */
632
633 /*
634 * Cumulative resource counters for dead threads in the group,
635 * and for reaped dead child processes forked by this group.
636 * Live threads maintain their own counters and add to these
637 * in __exit_signal, except for the group leader.
638 */
639 cputime_t utime, stime, cutime, cstime;
640 cputime_t gtime;
641 cputime_t cgtime;
642 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
643 cputime_t prev_utime, prev_stime;
644 #endif
645 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
646 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
647 unsigned long inblock, oublock, cinblock, coublock;
648 unsigned long maxrss, cmaxrss;
649 struct task_io_accounting ioac;
650
651 /*
652 * Cumulative ns of schedule CPU time fo dead threads in the
653 * group, not including a zombie group leader, (This only differs
654 * from jiffies_to_ns(utime + stime) if sched_clock uses something
655 * other than jiffies.)
656 */
657 unsigned long long sum_sched_runtime;
658
659 /*
660 * We don't bother to synchronize most readers of this at all,
661 * because there is no reader checking a limit that actually needs
662 * to get both rlim_cur and rlim_max atomically, and either one
663 * alone is a single word that can safely be read normally.
664 * getrlimit/setrlimit use task_lock(current->group_leader) to
665 * protect this instead of the siglock, because they really
666 * have no need to disable irqs.
667 */
668 struct rlimit rlim[RLIM_NLIMITS];
669
670 #ifdef CONFIG_BSD_PROCESS_ACCT
671 struct pacct_struct pacct; /* per-process accounting information */
672 #endif
673 #ifdef CONFIG_TASKSTATS
674 struct taskstats *stats;
675 #endif
676 #ifdef CONFIG_AUDIT
677 unsigned audit_tty;
678 struct tty_audit_buf *tty_audit_buf;
679 #endif
680
681 int oom_adj; /* OOM kill score adjustment (bit shift) */
682 };
683
684 /* Context switch must be unlocked if interrupts are to be enabled */
685 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
686 # define __ARCH_WANT_UNLOCKED_CTXSW
687 #endif
688
689 /*
690 * Bits in flags field of signal_struct.
691 */
692 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
693 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
694 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
695 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
696 /*
697 * Pending notifications to parent.
698 */
699 #define SIGNAL_CLD_STOPPED 0x00000010
700 #define SIGNAL_CLD_CONTINUED 0x00000020
701 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
702
703 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
704
705 /* If true, all threads except ->group_exit_task have pending SIGKILL */
706 static inline int signal_group_exit(const struct signal_struct *sig)
707 {
708 return (sig->flags & SIGNAL_GROUP_EXIT) ||
709 (sig->group_exit_task != NULL);
710 }
711
712 /*
713 * Some day this will be a full-fledged user tracking system..
714 */
715 struct user_struct {
716 atomic_t __count; /* reference count */
717 atomic_t processes; /* How many processes does this user have? */
718 atomic_t files; /* How many open files does this user have? */
719 atomic_t sigpending; /* How many pending signals does this user have? */
720 #ifdef CONFIG_INOTIFY_USER
721 atomic_t inotify_watches; /* How many inotify watches does this user have? */
722 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
723 #endif
724 #ifdef CONFIG_EPOLL
725 atomic_t epoll_watches; /* The number of file descriptors currently watched */
726 #endif
727 #ifdef CONFIG_POSIX_MQUEUE
728 /* protected by mq_lock */
729 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
730 #endif
731 unsigned long locked_shm; /* How many pages of mlocked shm ? */
732
733 #ifdef CONFIG_KEYS
734 struct key *uid_keyring; /* UID specific keyring */
735 struct key *session_keyring; /* UID's default session keyring */
736 #endif
737
738 /* Hash table maintenance information */
739 struct hlist_node uidhash_node;
740 uid_t uid;
741 struct user_namespace *user_ns;
742
743 #ifdef CONFIG_PERF_EVENTS
744 atomic_long_t locked_vm;
745 #endif
746 };
747
748 extern int uids_sysfs_init(void);
749
750 extern struct user_struct *find_user(uid_t);
751
752 extern struct user_struct root_user;
753 #define INIT_USER (&root_user)
754
755
756 struct backing_dev_info;
757 struct reclaim_state;
758
759 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
760 struct sched_info {
761 /* cumulative counters */
762 unsigned long pcount; /* # of times run on this cpu */
763 unsigned long long run_delay; /* time spent waiting on a runqueue */
764
765 /* timestamps */
766 unsigned long long last_arrival,/* when we last ran on a cpu */
767 last_queued; /* when we were last queued to run */
768 #ifdef CONFIG_SCHEDSTATS
769 /* BKL stats */
770 unsigned int bkl_count;
771 #endif
772 };
773 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
774
775 #ifdef CONFIG_TASK_DELAY_ACCT
776 struct task_delay_info {
777 spinlock_t lock;
778 unsigned int flags; /* Private per-task flags */
779
780 /* For each stat XXX, add following, aligned appropriately
781 *
782 * struct timespec XXX_start, XXX_end;
783 * u64 XXX_delay;
784 * u32 XXX_count;
785 *
786 * Atomicity of updates to XXX_delay, XXX_count protected by
787 * single lock above (split into XXX_lock if contention is an issue).
788 */
789
790 /*
791 * XXX_count is incremented on every XXX operation, the delay
792 * associated with the operation is added to XXX_delay.
793 * XXX_delay contains the accumulated delay time in nanoseconds.
794 */
795 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
796 u64 blkio_delay; /* wait for sync block io completion */
797 u64 swapin_delay; /* wait for swapin block io completion */
798 u32 blkio_count; /* total count of the number of sync block */
799 /* io operations performed */
800 u32 swapin_count; /* total count of the number of swapin block */
801 /* io operations performed */
802
803 struct timespec freepages_start, freepages_end;
804 u64 freepages_delay; /* wait for memory reclaim */
805 u32 freepages_count; /* total count of memory reclaim */
806 };
807 #endif /* CONFIG_TASK_DELAY_ACCT */
808
809 static inline int sched_info_on(void)
810 {
811 #ifdef CONFIG_SCHEDSTATS
812 return 1;
813 #elif defined(CONFIG_TASK_DELAY_ACCT)
814 extern int delayacct_on;
815 return delayacct_on;
816 #else
817 return 0;
818 #endif
819 }
820
821 enum cpu_idle_type {
822 CPU_IDLE,
823 CPU_NOT_IDLE,
824 CPU_NEWLY_IDLE,
825 CPU_MAX_IDLE_TYPES
826 };
827
828 /*
829 * sched-domains (multiprocessor balancing) declarations:
830 */
831
832 /*
833 * Increase resolution of nice-level calculations:
834 */
835 #define SCHED_LOAD_SHIFT 10
836 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
837
838 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
839
840 #ifdef CONFIG_SMP
841 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
842 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
843 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
844 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
845 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
846 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
847 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
848 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
849 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
850 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
851 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
852
853 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
854
855 enum powersavings_balance_level {
856 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
857 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
858 * first for long running threads
859 */
860 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
861 * cpu package for power savings
862 */
863 MAX_POWERSAVINGS_BALANCE_LEVELS
864 };
865
866 extern int sched_mc_power_savings, sched_smt_power_savings;
867
868 static inline int sd_balance_for_mc_power(void)
869 {
870 if (sched_smt_power_savings)
871 return SD_POWERSAVINGS_BALANCE;
872
873 if (!sched_mc_power_savings)
874 return SD_PREFER_SIBLING;
875
876 return 0;
877 }
878
879 static inline int sd_balance_for_package_power(void)
880 {
881 if (sched_mc_power_savings | sched_smt_power_savings)
882 return SD_POWERSAVINGS_BALANCE;
883
884 return SD_PREFER_SIBLING;
885 }
886
887 /*
888 * Optimise SD flags for power savings:
889 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
890 * Keep default SD flags if sched_{smt,mc}_power_saving=0
891 */
892
893 static inline int sd_power_saving_flags(void)
894 {
895 if (sched_mc_power_savings | sched_smt_power_savings)
896 return SD_BALANCE_NEWIDLE;
897
898 return 0;
899 }
900
901 struct sched_group {
902 struct sched_group *next; /* Must be a circular list */
903
904 /*
905 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
906 * single CPU.
907 */
908 unsigned int cpu_power;
909
910 /*
911 * The CPUs this group covers.
912 *
913 * NOTE: this field is variable length. (Allocated dynamically
914 * by attaching extra space to the end of the structure,
915 * depending on how many CPUs the kernel has booted up with)
916 *
917 * It is also be embedded into static data structures at build
918 * time. (See 'struct static_sched_group' in kernel/sched.c)
919 */
920 unsigned long cpumask[0];
921 };
922
923 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
924 {
925 return to_cpumask(sg->cpumask);
926 }
927
928 enum sched_domain_level {
929 SD_LV_NONE = 0,
930 SD_LV_SIBLING,
931 SD_LV_MC,
932 SD_LV_CPU,
933 SD_LV_NODE,
934 SD_LV_ALLNODES,
935 SD_LV_MAX
936 };
937
938 struct sched_domain_attr {
939 int relax_domain_level;
940 };
941
942 #define SD_ATTR_INIT (struct sched_domain_attr) { \
943 .relax_domain_level = -1, \
944 }
945
946 struct sched_domain {
947 /* These fields must be setup */
948 struct sched_domain *parent; /* top domain must be null terminated */
949 struct sched_domain *child; /* bottom domain must be null terminated */
950 struct sched_group *groups; /* the balancing groups of the domain */
951 unsigned long min_interval; /* Minimum balance interval ms */
952 unsigned long max_interval; /* Maximum balance interval ms */
953 unsigned int busy_factor; /* less balancing by factor if busy */
954 unsigned int imbalance_pct; /* No balance until over watermark */
955 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
956 unsigned int busy_idx;
957 unsigned int idle_idx;
958 unsigned int newidle_idx;
959 unsigned int wake_idx;
960 unsigned int forkexec_idx;
961 unsigned int smt_gain;
962 int flags; /* See SD_* */
963 enum sched_domain_level level;
964
965 /* Runtime fields. */
966 unsigned long last_balance; /* init to jiffies. units in jiffies */
967 unsigned int balance_interval; /* initialise to 1. units in ms. */
968 unsigned int nr_balance_failed; /* initialise to 0 */
969
970 u64 last_update;
971
972 #ifdef CONFIG_SCHEDSTATS
973 /* load_balance() stats */
974 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
975 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
976 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
977 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
978 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
979 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
980 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
981 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
982
983 /* Active load balancing */
984 unsigned int alb_count;
985 unsigned int alb_failed;
986 unsigned int alb_pushed;
987
988 /* SD_BALANCE_EXEC stats */
989 unsigned int sbe_count;
990 unsigned int sbe_balanced;
991 unsigned int sbe_pushed;
992
993 /* SD_BALANCE_FORK stats */
994 unsigned int sbf_count;
995 unsigned int sbf_balanced;
996 unsigned int sbf_pushed;
997
998 /* try_to_wake_up() stats */
999 unsigned int ttwu_wake_remote;
1000 unsigned int ttwu_move_affine;
1001 unsigned int ttwu_move_balance;
1002 #endif
1003 #ifdef CONFIG_SCHED_DEBUG
1004 char *name;
1005 #endif
1006
1007 /*
1008 * Span of all CPUs in this domain.
1009 *
1010 * NOTE: this field is variable length. (Allocated dynamically
1011 * by attaching extra space to the end of the structure,
1012 * depending on how many CPUs the kernel has booted up with)
1013 *
1014 * It is also be embedded into static data structures at build
1015 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1016 */
1017 unsigned long span[0];
1018 };
1019
1020 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1021 {
1022 return to_cpumask(sd->span);
1023 }
1024
1025 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1026 struct sched_domain_attr *dattr_new);
1027
1028 /* Allocate an array of sched domains, for partition_sched_domains(). */
1029 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1030 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1031
1032 /* Test a flag in parent sched domain */
1033 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1034 {
1035 if (sd->parent && (sd->parent->flags & flag))
1036 return 1;
1037
1038 return 0;
1039 }
1040
1041 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1042 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1043
1044 #else /* CONFIG_SMP */
1045
1046 struct sched_domain_attr;
1047
1048 static inline void
1049 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1050 struct sched_domain_attr *dattr_new)
1051 {
1052 }
1053 #endif /* !CONFIG_SMP */
1054
1055
1056 struct io_context; /* See blkdev.h */
1057
1058
1059 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1060 extern void prefetch_stack(struct task_struct *t);
1061 #else
1062 static inline void prefetch_stack(struct task_struct *t) { }
1063 #endif
1064
1065 struct audit_context; /* See audit.c */
1066 struct mempolicy;
1067 struct pipe_inode_info;
1068 struct uts_namespace;
1069
1070 struct rq;
1071 struct sched_domain;
1072
1073 /*
1074 * wake flags
1075 */
1076 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1077 #define WF_FORK 0x02 /* child wakeup after fork */
1078
1079 struct sched_class {
1080 const struct sched_class *next;
1081
1082 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup,
1083 bool head);
1084 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1085 void (*yield_task) (struct rq *rq);
1086
1087 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1088
1089 struct task_struct * (*pick_next_task) (struct rq *rq);
1090 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1091
1092 #ifdef CONFIG_SMP
1093 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1094
1095 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1096 void (*post_schedule) (struct rq *this_rq);
1097 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1098 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1099
1100 void (*set_cpus_allowed)(struct task_struct *p,
1101 const struct cpumask *newmask);
1102
1103 void (*rq_online)(struct rq *rq);
1104 void (*rq_offline)(struct rq *rq);
1105 #endif
1106
1107 void (*set_curr_task) (struct rq *rq);
1108 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1109 void (*task_fork) (struct task_struct *p);
1110
1111 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1112 int running);
1113 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1114 int running);
1115 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1116 int oldprio, int running);
1117
1118 unsigned int (*get_rr_interval) (struct rq *rq,
1119 struct task_struct *task);
1120
1121 #ifdef CONFIG_FAIR_GROUP_SCHED
1122 void (*moved_group) (struct task_struct *p, int on_rq);
1123 #endif
1124 };
1125
1126 struct load_weight {
1127 unsigned long weight, inv_weight;
1128 };
1129
1130 /*
1131 * CFS stats for a schedulable entity (task, task-group etc)
1132 *
1133 * Current field usage histogram:
1134 *
1135 * 4 se->block_start
1136 * 4 se->run_node
1137 * 4 se->sleep_start
1138 * 6 se->load.weight
1139 */
1140 struct sched_entity {
1141 struct load_weight load; /* for load-balancing */
1142 struct rb_node run_node;
1143 struct list_head group_node;
1144 unsigned int on_rq;
1145
1146 u64 exec_start;
1147 u64 sum_exec_runtime;
1148 u64 vruntime;
1149 u64 prev_sum_exec_runtime;
1150
1151 u64 last_wakeup;
1152 u64 avg_overlap;
1153
1154 u64 nr_migrations;
1155
1156 u64 start_runtime;
1157 u64 avg_wakeup;
1158
1159 #ifdef CONFIG_SCHEDSTATS
1160 u64 wait_start;
1161 u64 wait_max;
1162 u64 wait_count;
1163 u64 wait_sum;
1164 u64 iowait_count;
1165 u64 iowait_sum;
1166
1167 u64 sleep_start;
1168 u64 sleep_max;
1169 s64 sum_sleep_runtime;
1170
1171 u64 block_start;
1172 u64 block_max;
1173 u64 exec_max;
1174 u64 slice_max;
1175
1176 u64 nr_migrations_cold;
1177 u64 nr_failed_migrations_affine;
1178 u64 nr_failed_migrations_running;
1179 u64 nr_failed_migrations_hot;
1180 u64 nr_forced_migrations;
1181
1182 u64 nr_wakeups;
1183 u64 nr_wakeups_sync;
1184 u64 nr_wakeups_migrate;
1185 u64 nr_wakeups_local;
1186 u64 nr_wakeups_remote;
1187 u64 nr_wakeups_affine;
1188 u64 nr_wakeups_affine_attempts;
1189 u64 nr_wakeups_passive;
1190 u64 nr_wakeups_idle;
1191 #endif
1192
1193 #ifdef CONFIG_FAIR_GROUP_SCHED
1194 struct sched_entity *parent;
1195 /* rq on which this entity is (to be) queued: */
1196 struct cfs_rq *cfs_rq;
1197 /* rq "owned" by this entity/group: */
1198 struct cfs_rq *my_q;
1199 #endif
1200 };
1201
1202 struct sched_rt_entity {
1203 struct list_head run_list;
1204 unsigned long timeout;
1205 unsigned int time_slice;
1206 int nr_cpus_allowed;
1207
1208 struct sched_rt_entity *back;
1209 #ifdef CONFIG_RT_GROUP_SCHED
1210 struct sched_rt_entity *parent;
1211 /* rq on which this entity is (to be) queued: */
1212 struct rt_rq *rt_rq;
1213 /* rq "owned" by this entity/group: */
1214 struct rt_rq *my_q;
1215 #endif
1216 };
1217
1218 struct rcu_node;
1219
1220 struct task_struct {
1221 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1222 void *stack;
1223 atomic_t usage;
1224 unsigned int flags; /* per process flags, defined below */
1225 unsigned int ptrace;
1226
1227 int lock_depth; /* BKL lock depth */
1228
1229 #ifdef CONFIG_SMP
1230 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1231 int oncpu;
1232 #endif
1233 #endif
1234
1235 int prio, static_prio, normal_prio;
1236 unsigned int rt_priority;
1237 const struct sched_class *sched_class;
1238 struct sched_entity se;
1239 struct sched_rt_entity rt;
1240
1241 #ifdef CONFIG_PREEMPT_NOTIFIERS
1242 /* list of struct preempt_notifier: */
1243 struct hlist_head preempt_notifiers;
1244 #endif
1245
1246 /*
1247 * fpu_counter contains the number of consecutive context switches
1248 * that the FPU is used. If this is over a threshold, the lazy fpu
1249 * saving becomes unlazy to save the trap. This is an unsigned char
1250 * so that after 256 times the counter wraps and the behavior turns
1251 * lazy again; this to deal with bursty apps that only use FPU for
1252 * a short time
1253 */
1254 unsigned char fpu_counter;
1255 #ifdef CONFIG_BLK_DEV_IO_TRACE
1256 unsigned int btrace_seq;
1257 #endif
1258
1259 unsigned int policy;
1260 cpumask_t cpus_allowed;
1261
1262 #ifdef CONFIG_TREE_PREEMPT_RCU
1263 int rcu_read_lock_nesting;
1264 char rcu_read_unlock_special;
1265 struct rcu_node *rcu_blocked_node;
1266 struct list_head rcu_node_entry;
1267 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1268
1269 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1270 struct sched_info sched_info;
1271 #endif
1272
1273 struct list_head tasks;
1274 struct plist_node pushable_tasks;
1275
1276 struct mm_struct *mm, *active_mm;
1277
1278 /* task state */
1279 int exit_state;
1280 int exit_code, exit_signal;
1281 int pdeath_signal; /* The signal sent when the parent dies */
1282 /* ??? */
1283 unsigned int personality;
1284 unsigned did_exec:1;
1285 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1286 * execve */
1287 unsigned in_iowait:1;
1288
1289
1290 /* Revert to default priority/policy when forking */
1291 unsigned sched_reset_on_fork:1;
1292
1293 pid_t pid;
1294 pid_t tgid;
1295
1296 #ifdef CONFIG_CC_STACKPROTECTOR
1297 /* Canary value for the -fstack-protector gcc feature */
1298 unsigned long stack_canary;
1299 #endif
1300
1301 /*
1302 * pointers to (original) parent process, youngest child, younger sibling,
1303 * older sibling, respectively. (p->father can be replaced with
1304 * p->real_parent->pid)
1305 */
1306 struct task_struct *real_parent; /* real parent process */
1307 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1308 /*
1309 * children/sibling forms the list of my natural children
1310 */
1311 struct list_head children; /* list of my children */
1312 struct list_head sibling; /* linkage in my parent's children list */
1313 struct task_struct *group_leader; /* threadgroup leader */
1314
1315 /*
1316 * ptraced is the list of tasks this task is using ptrace on.
1317 * This includes both natural children and PTRACE_ATTACH targets.
1318 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1319 */
1320 struct list_head ptraced;
1321 struct list_head ptrace_entry;
1322
1323 /*
1324 * This is the tracer handle for the ptrace BTS extension.
1325 * This field actually belongs to the ptracer task.
1326 */
1327 struct bts_context *bts;
1328
1329 /* PID/PID hash table linkage. */
1330 struct pid_link pids[PIDTYPE_MAX];
1331 struct list_head thread_group;
1332
1333 struct completion *vfork_done; /* for vfork() */
1334 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1335 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1336
1337 cputime_t utime, stime, utimescaled, stimescaled;
1338 cputime_t gtime;
1339 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1340 cputime_t prev_utime, prev_stime;
1341 #endif
1342 unsigned long nvcsw, nivcsw; /* context switch counts */
1343 struct timespec start_time; /* monotonic time */
1344 struct timespec real_start_time; /* boot based time */
1345 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1346 unsigned long min_flt, maj_flt;
1347
1348 struct task_cputime cputime_expires;
1349 struct list_head cpu_timers[3];
1350
1351 /* process credentials */
1352 const struct cred *real_cred; /* objective and real subjective task
1353 * credentials (COW) */
1354 const struct cred *cred; /* effective (overridable) subjective task
1355 * credentials (COW) */
1356 struct mutex cred_guard_mutex; /* guard against foreign influences on
1357 * credential calculations
1358 * (notably. ptrace) */
1359 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1360
1361 char comm[TASK_COMM_LEN]; /* executable name excluding path
1362 - access with [gs]et_task_comm (which lock
1363 it with task_lock())
1364 - initialized normally by setup_new_exec */
1365 /* file system info */
1366 int link_count, total_link_count;
1367 #ifdef CONFIG_SYSVIPC
1368 /* ipc stuff */
1369 struct sysv_sem sysvsem;
1370 #endif
1371 #ifdef CONFIG_DETECT_HUNG_TASK
1372 /* hung task detection */
1373 unsigned long last_switch_count;
1374 #endif
1375 /* CPU-specific state of this task */
1376 struct thread_struct thread;
1377 /* filesystem information */
1378 struct fs_struct *fs;
1379 /* open file information */
1380 struct files_struct *files;
1381 /* namespaces */
1382 struct nsproxy *nsproxy;
1383 /* signal handlers */
1384 struct signal_struct *signal;
1385 struct sighand_struct *sighand;
1386
1387 sigset_t blocked, real_blocked;
1388 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1389 struct sigpending pending;
1390
1391 unsigned long sas_ss_sp;
1392 size_t sas_ss_size;
1393 int (*notifier)(void *priv);
1394 void *notifier_data;
1395 sigset_t *notifier_mask;
1396 struct audit_context *audit_context;
1397 #ifdef CONFIG_AUDITSYSCALL
1398 uid_t loginuid;
1399 unsigned int sessionid;
1400 #endif
1401 seccomp_t seccomp;
1402
1403 /* Thread group tracking */
1404 u32 parent_exec_id;
1405 u32 self_exec_id;
1406 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1407 * mempolicy */
1408 spinlock_t alloc_lock;
1409
1410 #ifdef CONFIG_GENERIC_HARDIRQS
1411 /* IRQ handler threads */
1412 struct irqaction *irqaction;
1413 #endif
1414
1415 /* Protection of the PI data structures: */
1416 raw_spinlock_t pi_lock;
1417
1418 #ifdef CONFIG_RT_MUTEXES
1419 /* PI waiters blocked on a rt_mutex held by this task */
1420 struct plist_head pi_waiters;
1421 /* Deadlock detection and priority inheritance handling */
1422 struct rt_mutex_waiter *pi_blocked_on;
1423 #endif
1424
1425 #ifdef CONFIG_DEBUG_MUTEXES
1426 /* mutex deadlock detection */
1427 struct mutex_waiter *blocked_on;
1428 #endif
1429 #ifdef CONFIG_TRACE_IRQFLAGS
1430 unsigned int irq_events;
1431 unsigned long hardirq_enable_ip;
1432 unsigned long hardirq_disable_ip;
1433 unsigned int hardirq_enable_event;
1434 unsigned int hardirq_disable_event;
1435 int hardirqs_enabled;
1436 int hardirq_context;
1437 unsigned long softirq_disable_ip;
1438 unsigned long softirq_enable_ip;
1439 unsigned int softirq_disable_event;
1440 unsigned int softirq_enable_event;
1441 int softirqs_enabled;
1442 int softirq_context;
1443 #endif
1444 #ifdef CONFIG_LOCKDEP
1445 # define MAX_LOCK_DEPTH 48UL
1446 u64 curr_chain_key;
1447 int lockdep_depth;
1448 unsigned int lockdep_recursion;
1449 struct held_lock held_locks[MAX_LOCK_DEPTH];
1450 gfp_t lockdep_reclaim_gfp;
1451 #endif
1452
1453 /* journalling filesystem info */
1454 void *journal_info;
1455
1456 /* stacked block device info */
1457 struct bio_list *bio_list;
1458
1459 /* VM state */
1460 struct reclaim_state *reclaim_state;
1461
1462 struct backing_dev_info *backing_dev_info;
1463
1464 struct io_context *io_context;
1465
1466 unsigned long ptrace_message;
1467 siginfo_t *last_siginfo; /* For ptrace use. */
1468 struct task_io_accounting ioac;
1469 #if defined(CONFIG_TASK_XACCT)
1470 u64 acct_rss_mem1; /* accumulated rss usage */
1471 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1472 cputime_t acct_timexpd; /* stime + utime since last update */
1473 #endif
1474 #ifdef CONFIG_CPUSETS
1475 nodemask_t mems_allowed; /* Protected by alloc_lock */
1476 int cpuset_mem_spread_rotor;
1477 #endif
1478 #ifdef CONFIG_CGROUPS
1479 /* Control Group info protected by css_set_lock */
1480 struct css_set *cgroups;
1481 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1482 struct list_head cg_list;
1483 #endif
1484 #ifdef CONFIG_FUTEX
1485 struct robust_list_head __user *robust_list;
1486 #ifdef CONFIG_COMPAT
1487 struct compat_robust_list_head __user *compat_robust_list;
1488 #endif
1489 struct list_head pi_state_list;
1490 struct futex_pi_state *pi_state_cache;
1491 #endif
1492 #ifdef CONFIG_PERF_EVENTS
1493 struct perf_event_context *perf_event_ctxp;
1494 struct mutex perf_event_mutex;
1495 struct list_head perf_event_list;
1496 #endif
1497 #ifdef CONFIG_NUMA
1498 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1499 short il_next;
1500 #endif
1501 atomic_t fs_excl; /* holding fs exclusive resources */
1502 struct rcu_head rcu;
1503
1504 /*
1505 * cache last used pipe for splice
1506 */
1507 struct pipe_inode_info *splice_pipe;
1508 #ifdef CONFIG_TASK_DELAY_ACCT
1509 struct task_delay_info *delays;
1510 #endif
1511 #ifdef CONFIG_FAULT_INJECTION
1512 int make_it_fail;
1513 #endif
1514 struct prop_local_single dirties;
1515 #ifdef CONFIG_LATENCYTOP
1516 int latency_record_count;
1517 struct latency_record latency_record[LT_SAVECOUNT];
1518 #endif
1519 /*
1520 * time slack values; these are used to round up poll() and
1521 * select() etc timeout values. These are in nanoseconds.
1522 */
1523 unsigned long timer_slack_ns;
1524 unsigned long default_timer_slack_ns;
1525
1526 struct list_head *scm_work_list;
1527 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1528 /* Index of current stored adress in ret_stack */
1529 int curr_ret_stack;
1530 /* Stack of return addresses for return function tracing */
1531 struct ftrace_ret_stack *ret_stack;
1532 /* time stamp for last schedule */
1533 unsigned long long ftrace_timestamp;
1534 /*
1535 * Number of functions that haven't been traced
1536 * because of depth overrun.
1537 */
1538 atomic_t trace_overrun;
1539 /* Pause for the tracing */
1540 atomic_t tracing_graph_pause;
1541 #endif
1542 #ifdef CONFIG_TRACING
1543 /* state flags for use by tracers */
1544 unsigned long trace;
1545 /* bitmask of trace recursion */
1546 unsigned long trace_recursion;
1547 #endif /* CONFIG_TRACING */
1548 unsigned long stack_start;
1549 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1550 struct memcg_batch_info {
1551 int do_batch; /* incremented when batch uncharge started */
1552 struct mem_cgroup *memcg; /* target memcg of uncharge */
1553 unsigned long bytes; /* uncharged usage */
1554 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1555 } memcg_batch;
1556 #endif
1557 };
1558
1559 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1560 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1561
1562 /*
1563 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1564 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1565 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1566 * values are inverted: lower p->prio value means higher priority.
1567 *
1568 * The MAX_USER_RT_PRIO value allows the actual maximum
1569 * RT priority to be separate from the value exported to
1570 * user-space. This allows kernel threads to set their
1571 * priority to a value higher than any user task. Note:
1572 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1573 */
1574
1575 #define MAX_USER_RT_PRIO 100
1576 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1577
1578 #define MAX_PRIO (MAX_RT_PRIO + 40)
1579 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1580
1581 static inline int rt_prio(int prio)
1582 {
1583 if (unlikely(prio < MAX_RT_PRIO))
1584 return 1;
1585 return 0;
1586 }
1587
1588 static inline int rt_task(struct task_struct *p)
1589 {
1590 return rt_prio(p->prio);
1591 }
1592
1593 static inline struct pid *task_pid(struct task_struct *task)
1594 {
1595 return task->pids[PIDTYPE_PID].pid;
1596 }
1597
1598 static inline struct pid *task_tgid(struct task_struct *task)
1599 {
1600 return task->group_leader->pids[PIDTYPE_PID].pid;
1601 }
1602
1603 /*
1604 * Without tasklist or rcu lock it is not safe to dereference
1605 * the result of task_pgrp/task_session even if task == current,
1606 * we can race with another thread doing sys_setsid/sys_setpgid.
1607 */
1608 static inline struct pid *task_pgrp(struct task_struct *task)
1609 {
1610 return task->group_leader->pids[PIDTYPE_PGID].pid;
1611 }
1612
1613 static inline struct pid *task_session(struct task_struct *task)
1614 {
1615 return task->group_leader->pids[PIDTYPE_SID].pid;
1616 }
1617
1618 struct pid_namespace;
1619
1620 /*
1621 * the helpers to get the task's different pids as they are seen
1622 * from various namespaces
1623 *
1624 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1625 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1626 * current.
1627 * task_xid_nr_ns() : id seen from the ns specified;
1628 *
1629 * set_task_vxid() : assigns a virtual id to a task;
1630 *
1631 * see also pid_nr() etc in include/linux/pid.h
1632 */
1633 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1634 struct pid_namespace *ns);
1635
1636 static inline pid_t task_pid_nr(struct task_struct *tsk)
1637 {
1638 return tsk->pid;
1639 }
1640
1641 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1642 struct pid_namespace *ns)
1643 {
1644 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1645 }
1646
1647 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1648 {
1649 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1650 }
1651
1652
1653 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1654 {
1655 return tsk->tgid;
1656 }
1657
1658 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1659
1660 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1661 {
1662 return pid_vnr(task_tgid(tsk));
1663 }
1664
1665
1666 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1667 struct pid_namespace *ns)
1668 {
1669 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1670 }
1671
1672 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1673 {
1674 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1675 }
1676
1677
1678 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1679 struct pid_namespace *ns)
1680 {
1681 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1682 }
1683
1684 static inline pid_t task_session_vnr(struct task_struct *tsk)
1685 {
1686 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1687 }
1688
1689 /* obsolete, do not use */
1690 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1691 {
1692 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1693 }
1694
1695 /**
1696 * pid_alive - check that a task structure is not stale
1697 * @p: Task structure to be checked.
1698 *
1699 * Test if a process is not yet dead (at most zombie state)
1700 * If pid_alive fails, then pointers within the task structure
1701 * can be stale and must not be dereferenced.
1702 */
1703 static inline int pid_alive(struct task_struct *p)
1704 {
1705 return p->pids[PIDTYPE_PID].pid != NULL;
1706 }
1707
1708 /**
1709 * is_global_init - check if a task structure is init
1710 * @tsk: Task structure to be checked.
1711 *
1712 * Check if a task structure is the first user space task the kernel created.
1713 */
1714 static inline int is_global_init(struct task_struct *tsk)
1715 {
1716 return tsk->pid == 1;
1717 }
1718
1719 /*
1720 * is_container_init:
1721 * check whether in the task is init in its own pid namespace.
1722 */
1723 extern int is_container_init(struct task_struct *tsk);
1724
1725 extern struct pid *cad_pid;
1726
1727 extern void free_task(struct task_struct *tsk);
1728 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1729
1730 extern void __put_task_struct(struct task_struct *t);
1731
1732 static inline void put_task_struct(struct task_struct *t)
1733 {
1734 if (atomic_dec_and_test(&t->usage))
1735 __put_task_struct(t);
1736 }
1737
1738 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1739 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1740
1741 /*
1742 * Per process flags
1743 */
1744 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1745 /* Not implemented yet, only for 486*/
1746 #define PF_STARTING 0x00000002 /* being created */
1747 #define PF_EXITING 0x00000004 /* getting shut down */
1748 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1749 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1750 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1751 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1752 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1753 #define PF_DUMPCORE 0x00000200 /* dumped core */
1754 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1755 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1756 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1757 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1758 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1759 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1760 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1761 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1762 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1763 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1764 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1765 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1766 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1767 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1768 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1769 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1770 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1771 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1772 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1773 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1774 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1775 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1776
1777 /*
1778 * Only the _current_ task can read/write to tsk->flags, but other
1779 * tasks can access tsk->flags in readonly mode for example
1780 * with tsk_used_math (like during threaded core dumping).
1781 * There is however an exception to this rule during ptrace
1782 * or during fork: the ptracer task is allowed to write to the
1783 * child->flags of its traced child (same goes for fork, the parent
1784 * can write to the child->flags), because we're guaranteed the
1785 * child is not running and in turn not changing child->flags
1786 * at the same time the parent does it.
1787 */
1788 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1789 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1790 #define clear_used_math() clear_stopped_child_used_math(current)
1791 #define set_used_math() set_stopped_child_used_math(current)
1792 #define conditional_stopped_child_used_math(condition, child) \
1793 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1794 #define conditional_used_math(condition) \
1795 conditional_stopped_child_used_math(condition, current)
1796 #define copy_to_stopped_child_used_math(child) \
1797 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1798 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1799 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1800 #define used_math() tsk_used_math(current)
1801
1802 #ifdef CONFIG_TREE_PREEMPT_RCU
1803
1804 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1805 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1806
1807 static inline void rcu_copy_process(struct task_struct *p)
1808 {
1809 p->rcu_read_lock_nesting = 0;
1810 p->rcu_read_unlock_special = 0;
1811 p->rcu_blocked_node = NULL;
1812 INIT_LIST_HEAD(&p->rcu_node_entry);
1813 }
1814
1815 #else
1816
1817 static inline void rcu_copy_process(struct task_struct *p)
1818 {
1819 }
1820
1821 #endif
1822
1823 #ifdef CONFIG_SMP
1824 extern int set_cpus_allowed_ptr(struct task_struct *p,
1825 const struct cpumask *new_mask);
1826 #else
1827 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1828 const struct cpumask *new_mask)
1829 {
1830 if (!cpumask_test_cpu(0, new_mask))
1831 return -EINVAL;
1832 return 0;
1833 }
1834 #endif
1835
1836 #ifndef CONFIG_CPUMASK_OFFSTACK
1837 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1838 {
1839 return set_cpus_allowed_ptr(p, &new_mask);
1840 }
1841 #endif
1842
1843 /*
1844 * Architectures can set this to 1 if they have specified
1845 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1846 * but then during bootup it turns out that sched_clock()
1847 * is reliable after all:
1848 */
1849 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1850 extern int sched_clock_stable;
1851 #endif
1852
1853 /* ftrace calls sched_clock() directly */
1854 extern unsigned long long notrace sched_clock(void);
1855
1856 extern void sched_clock_init(void);
1857 extern u64 sched_clock_cpu(int cpu);
1858
1859 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1860 static inline void sched_clock_tick(void)
1861 {
1862 }
1863
1864 static inline void sched_clock_idle_sleep_event(void)
1865 {
1866 }
1867
1868 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1869 {
1870 }
1871 #else
1872 extern void sched_clock_tick(void);
1873 extern void sched_clock_idle_sleep_event(void);
1874 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1875 #endif
1876
1877 /*
1878 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1879 * clock constructed from sched_clock():
1880 */
1881 extern unsigned long long cpu_clock(int cpu);
1882
1883 extern unsigned long long
1884 task_sched_runtime(struct task_struct *task);
1885 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1886
1887 /* sched_exec is called by processes performing an exec */
1888 #ifdef CONFIG_SMP
1889 extern void sched_exec(void);
1890 #else
1891 #define sched_exec() {}
1892 #endif
1893
1894 extern void sched_clock_idle_sleep_event(void);
1895 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1896
1897 #ifdef CONFIG_HOTPLUG_CPU
1898 extern void idle_task_exit(void);
1899 #else
1900 static inline void idle_task_exit(void) {}
1901 #endif
1902
1903 extern void sched_idle_next(void);
1904
1905 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1906 extern void wake_up_idle_cpu(int cpu);
1907 #else
1908 static inline void wake_up_idle_cpu(int cpu) { }
1909 #endif
1910
1911 extern unsigned int sysctl_sched_latency;
1912 extern unsigned int sysctl_sched_min_granularity;
1913 extern unsigned int sysctl_sched_wakeup_granularity;
1914 extern unsigned int sysctl_sched_shares_ratelimit;
1915 extern unsigned int sysctl_sched_shares_thresh;
1916 extern unsigned int sysctl_sched_child_runs_first;
1917
1918 enum sched_tunable_scaling {
1919 SCHED_TUNABLESCALING_NONE,
1920 SCHED_TUNABLESCALING_LOG,
1921 SCHED_TUNABLESCALING_LINEAR,
1922 SCHED_TUNABLESCALING_END,
1923 };
1924 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1925
1926 #ifdef CONFIG_SCHED_DEBUG
1927 extern unsigned int sysctl_sched_migration_cost;
1928 extern unsigned int sysctl_sched_nr_migrate;
1929 extern unsigned int sysctl_sched_time_avg;
1930 extern unsigned int sysctl_timer_migration;
1931
1932 int sched_proc_update_handler(struct ctl_table *table, int write,
1933 void __user *buffer, size_t *length,
1934 loff_t *ppos);
1935 #endif
1936 #ifdef CONFIG_SCHED_DEBUG
1937 static inline unsigned int get_sysctl_timer_migration(void)
1938 {
1939 return sysctl_timer_migration;
1940 }
1941 #else
1942 static inline unsigned int get_sysctl_timer_migration(void)
1943 {
1944 return 1;
1945 }
1946 #endif
1947 extern unsigned int sysctl_sched_rt_period;
1948 extern int sysctl_sched_rt_runtime;
1949
1950 int sched_rt_handler(struct ctl_table *table, int write,
1951 void __user *buffer, size_t *lenp,
1952 loff_t *ppos);
1953
1954 extern unsigned int sysctl_sched_compat_yield;
1955
1956 #ifdef CONFIG_RT_MUTEXES
1957 extern int rt_mutex_getprio(struct task_struct *p);
1958 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1959 extern void rt_mutex_adjust_pi(struct task_struct *p);
1960 #else
1961 static inline int rt_mutex_getprio(struct task_struct *p)
1962 {
1963 return p->normal_prio;
1964 }
1965 # define rt_mutex_adjust_pi(p) do { } while (0)
1966 #endif
1967
1968 extern void set_user_nice(struct task_struct *p, long nice);
1969 extern int task_prio(const struct task_struct *p);
1970 extern int task_nice(const struct task_struct *p);
1971 extern int can_nice(const struct task_struct *p, const int nice);
1972 extern int task_curr(const struct task_struct *p);
1973 extern int idle_cpu(int cpu);
1974 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1975 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1976 struct sched_param *);
1977 extern struct task_struct *idle_task(int cpu);
1978 extern struct task_struct *curr_task(int cpu);
1979 extern void set_curr_task(int cpu, struct task_struct *p);
1980
1981 void yield(void);
1982
1983 /*
1984 * The default (Linux) execution domain.
1985 */
1986 extern struct exec_domain default_exec_domain;
1987
1988 union thread_union {
1989 struct thread_info thread_info;
1990 unsigned long stack[THREAD_SIZE/sizeof(long)];
1991 };
1992
1993 #ifndef __HAVE_ARCH_KSTACK_END
1994 static inline int kstack_end(void *addr)
1995 {
1996 /* Reliable end of stack detection:
1997 * Some APM bios versions misalign the stack
1998 */
1999 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2000 }
2001 #endif
2002
2003 extern union thread_union init_thread_union;
2004 extern struct task_struct init_task;
2005
2006 extern struct mm_struct init_mm;
2007
2008 extern struct pid_namespace init_pid_ns;
2009
2010 /*
2011 * find a task by one of its numerical ids
2012 *
2013 * find_task_by_pid_ns():
2014 * finds a task by its pid in the specified namespace
2015 * find_task_by_vpid():
2016 * finds a task by its virtual pid
2017 *
2018 * see also find_vpid() etc in include/linux/pid.h
2019 */
2020
2021 extern struct task_struct *find_task_by_vpid(pid_t nr);
2022 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2023 struct pid_namespace *ns);
2024
2025 extern void __set_special_pids(struct pid *pid);
2026
2027 /* per-UID process charging. */
2028 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2029 static inline struct user_struct *get_uid(struct user_struct *u)
2030 {
2031 atomic_inc(&u->__count);
2032 return u;
2033 }
2034 extern void free_uid(struct user_struct *);
2035 extern void release_uids(struct user_namespace *ns);
2036
2037 #include <asm/current.h>
2038
2039 extern void do_timer(unsigned long ticks);
2040
2041 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2042 extern int wake_up_process(struct task_struct *tsk);
2043 extern void wake_up_new_task(struct task_struct *tsk,
2044 unsigned long clone_flags);
2045 #ifdef CONFIG_SMP
2046 extern void kick_process(struct task_struct *tsk);
2047 #else
2048 static inline void kick_process(struct task_struct *tsk) { }
2049 #endif
2050 extern void sched_fork(struct task_struct *p, int clone_flags);
2051 extern void sched_dead(struct task_struct *p);
2052
2053 extern void proc_caches_init(void);
2054 extern void flush_signals(struct task_struct *);
2055 extern void __flush_signals(struct task_struct *);
2056 extern void ignore_signals(struct task_struct *);
2057 extern void flush_signal_handlers(struct task_struct *, int force_default);
2058 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2059
2060 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2061 {
2062 unsigned long flags;
2063 int ret;
2064
2065 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2066 ret = dequeue_signal(tsk, mask, info);
2067 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2068
2069 return ret;
2070 }
2071
2072 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2073 sigset_t *mask);
2074 extern void unblock_all_signals(void);
2075 extern void release_task(struct task_struct * p);
2076 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2077 extern int force_sigsegv(int, struct task_struct *);
2078 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2079 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2080 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2081 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2082 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2083 extern int kill_pid(struct pid *pid, int sig, int priv);
2084 extern int kill_proc_info(int, struct siginfo *, pid_t);
2085 extern int do_notify_parent(struct task_struct *, int);
2086 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2087 extern void force_sig(int, struct task_struct *);
2088 extern int send_sig(int, struct task_struct *, int);
2089 extern void zap_other_threads(struct task_struct *p);
2090 extern struct sigqueue *sigqueue_alloc(void);
2091 extern void sigqueue_free(struct sigqueue *);
2092 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2093 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2094 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2095
2096 static inline int kill_cad_pid(int sig, int priv)
2097 {
2098 return kill_pid(cad_pid, sig, priv);
2099 }
2100
2101 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2102 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2103 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2104 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2105
2106 /*
2107 * True if we are on the alternate signal stack.
2108 */
2109 static inline int on_sig_stack(unsigned long sp)
2110 {
2111 #ifdef CONFIG_STACK_GROWSUP
2112 return sp >= current->sas_ss_sp &&
2113 sp - current->sas_ss_sp < current->sas_ss_size;
2114 #else
2115 return sp > current->sas_ss_sp &&
2116 sp - current->sas_ss_sp <= current->sas_ss_size;
2117 #endif
2118 }
2119
2120 static inline int sas_ss_flags(unsigned long sp)
2121 {
2122 return (current->sas_ss_size == 0 ? SS_DISABLE
2123 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2124 }
2125
2126 /*
2127 * Routines for handling mm_structs
2128 */
2129 extern struct mm_struct * mm_alloc(void);
2130
2131 /* mmdrop drops the mm and the page tables */
2132 extern void __mmdrop(struct mm_struct *);
2133 static inline void mmdrop(struct mm_struct * mm)
2134 {
2135 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2136 __mmdrop(mm);
2137 }
2138
2139 /* mmput gets rid of the mappings and all user-space */
2140 extern void mmput(struct mm_struct *);
2141 /* Grab a reference to a task's mm, if it is not already going away */
2142 extern struct mm_struct *get_task_mm(struct task_struct *task);
2143 /* Remove the current tasks stale references to the old mm_struct */
2144 extern void mm_release(struct task_struct *, struct mm_struct *);
2145 /* Allocate a new mm structure and copy contents from tsk->mm */
2146 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2147
2148 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2149 struct task_struct *, struct pt_regs *);
2150 extern void flush_thread(void);
2151 extern void exit_thread(void);
2152
2153 extern void exit_files(struct task_struct *);
2154 extern void __cleanup_signal(struct signal_struct *);
2155 extern void __cleanup_sighand(struct sighand_struct *);
2156
2157 extern void exit_itimers(struct signal_struct *);
2158 extern void flush_itimer_signals(void);
2159
2160 extern NORET_TYPE void do_group_exit(int);
2161
2162 extern void daemonize(const char *, ...);
2163 extern int allow_signal(int);
2164 extern int disallow_signal(int);
2165
2166 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2167 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2168 struct task_struct *fork_idle(int);
2169
2170 extern void set_task_comm(struct task_struct *tsk, char *from);
2171 extern char *get_task_comm(char *to, struct task_struct *tsk);
2172
2173 #ifdef CONFIG_SMP
2174 extern void wait_task_context_switch(struct task_struct *p);
2175 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2176 #else
2177 static inline void wait_task_context_switch(struct task_struct *p) {}
2178 static inline unsigned long wait_task_inactive(struct task_struct *p,
2179 long match_state)
2180 {
2181 return 1;
2182 }
2183 #endif
2184
2185 #define next_task(p) \
2186 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2187
2188 #define for_each_process(p) \
2189 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2190
2191 extern bool current_is_single_threaded(void);
2192
2193 /*
2194 * Careful: do_each_thread/while_each_thread is a double loop so
2195 * 'break' will not work as expected - use goto instead.
2196 */
2197 #define do_each_thread(g, t) \
2198 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2199
2200 #define while_each_thread(g, t) \
2201 while ((t = next_thread(t)) != g)
2202
2203 /* de_thread depends on thread_group_leader not being a pid based check */
2204 #define thread_group_leader(p) (p == p->group_leader)
2205
2206 /* Do to the insanities of de_thread it is possible for a process
2207 * to have the pid of the thread group leader without actually being
2208 * the thread group leader. For iteration through the pids in proc
2209 * all we care about is that we have a task with the appropriate
2210 * pid, we don't actually care if we have the right task.
2211 */
2212 static inline int has_group_leader_pid(struct task_struct *p)
2213 {
2214 return p->pid == p->tgid;
2215 }
2216
2217 static inline
2218 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2219 {
2220 return p1->tgid == p2->tgid;
2221 }
2222
2223 static inline struct task_struct *next_thread(const struct task_struct *p)
2224 {
2225 return list_entry_rcu(p->thread_group.next,
2226 struct task_struct, thread_group);
2227 }
2228
2229 static inline int thread_group_empty(struct task_struct *p)
2230 {
2231 return list_empty(&p->thread_group);
2232 }
2233
2234 #define delay_group_leader(p) \
2235 (thread_group_leader(p) && !thread_group_empty(p))
2236
2237 static inline int task_detached(struct task_struct *p)
2238 {
2239 return p->exit_signal == -1;
2240 }
2241
2242 /*
2243 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2244 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2245 * pins the final release of task.io_context. Also protects ->cpuset and
2246 * ->cgroup.subsys[].
2247 *
2248 * Nests both inside and outside of read_lock(&tasklist_lock).
2249 * It must not be nested with write_lock_irq(&tasklist_lock),
2250 * neither inside nor outside.
2251 */
2252 static inline void task_lock(struct task_struct *p)
2253 {
2254 spin_lock(&p->alloc_lock);
2255 }
2256
2257 static inline void task_unlock(struct task_struct *p)
2258 {
2259 spin_unlock(&p->alloc_lock);
2260 }
2261
2262 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2263 unsigned long *flags);
2264
2265 static inline void unlock_task_sighand(struct task_struct *tsk,
2266 unsigned long *flags)
2267 {
2268 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2269 }
2270
2271 #ifndef __HAVE_THREAD_FUNCTIONS
2272
2273 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2274 #define task_stack_page(task) ((task)->stack)
2275
2276 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2277 {
2278 *task_thread_info(p) = *task_thread_info(org);
2279 task_thread_info(p)->task = p;
2280 }
2281
2282 static inline unsigned long *end_of_stack(struct task_struct *p)
2283 {
2284 return (unsigned long *)(task_thread_info(p) + 1);
2285 }
2286
2287 #endif
2288
2289 static inline int object_is_on_stack(void *obj)
2290 {
2291 void *stack = task_stack_page(current);
2292
2293 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2294 }
2295
2296 extern void thread_info_cache_init(void);
2297
2298 #ifdef CONFIG_DEBUG_STACK_USAGE
2299 static inline unsigned long stack_not_used(struct task_struct *p)
2300 {
2301 unsigned long *n = end_of_stack(p);
2302
2303 do { /* Skip over canary */
2304 n++;
2305 } while (!*n);
2306
2307 return (unsigned long)n - (unsigned long)end_of_stack(p);
2308 }
2309 #endif
2310
2311 /* set thread flags in other task's structures
2312 * - see asm/thread_info.h for TIF_xxxx flags available
2313 */
2314 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2315 {
2316 set_ti_thread_flag(task_thread_info(tsk), flag);
2317 }
2318
2319 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2320 {
2321 clear_ti_thread_flag(task_thread_info(tsk), flag);
2322 }
2323
2324 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2325 {
2326 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2327 }
2328
2329 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2330 {
2331 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2332 }
2333
2334 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2335 {
2336 return test_ti_thread_flag(task_thread_info(tsk), flag);
2337 }
2338
2339 static inline void set_tsk_need_resched(struct task_struct *tsk)
2340 {
2341 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2342 }
2343
2344 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2345 {
2346 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2347 }
2348
2349 static inline int test_tsk_need_resched(struct task_struct *tsk)
2350 {
2351 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2352 }
2353
2354 static inline int restart_syscall(void)
2355 {
2356 set_tsk_thread_flag(current, TIF_SIGPENDING);
2357 return -ERESTARTNOINTR;
2358 }
2359
2360 static inline int signal_pending(struct task_struct *p)
2361 {
2362 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2363 }
2364
2365 static inline int __fatal_signal_pending(struct task_struct *p)
2366 {
2367 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2368 }
2369
2370 static inline int fatal_signal_pending(struct task_struct *p)
2371 {
2372 return signal_pending(p) && __fatal_signal_pending(p);
2373 }
2374
2375 static inline int signal_pending_state(long state, struct task_struct *p)
2376 {
2377 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2378 return 0;
2379 if (!signal_pending(p))
2380 return 0;
2381
2382 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2383 }
2384
2385 static inline int need_resched(void)
2386 {
2387 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2388 }
2389
2390 /*
2391 * cond_resched() and cond_resched_lock(): latency reduction via
2392 * explicit rescheduling in places that are safe. The return
2393 * value indicates whether a reschedule was done in fact.
2394 * cond_resched_lock() will drop the spinlock before scheduling,
2395 * cond_resched_softirq() will enable bhs before scheduling.
2396 */
2397 extern int _cond_resched(void);
2398
2399 #define cond_resched() ({ \
2400 __might_sleep(__FILE__, __LINE__, 0); \
2401 _cond_resched(); \
2402 })
2403
2404 extern int __cond_resched_lock(spinlock_t *lock);
2405
2406 #ifdef CONFIG_PREEMPT
2407 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2408 #else
2409 #define PREEMPT_LOCK_OFFSET 0
2410 #endif
2411
2412 #define cond_resched_lock(lock) ({ \
2413 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2414 __cond_resched_lock(lock); \
2415 })
2416
2417 extern int __cond_resched_softirq(void);
2418
2419 #define cond_resched_softirq() ({ \
2420 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2421 __cond_resched_softirq(); \
2422 })
2423
2424 /*
2425 * Does a critical section need to be broken due to another
2426 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2427 * but a general need for low latency)
2428 */
2429 static inline int spin_needbreak(spinlock_t *lock)
2430 {
2431 #ifdef CONFIG_PREEMPT
2432 return spin_is_contended(lock);
2433 #else
2434 return 0;
2435 #endif
2436 }
2437
2438 /*
2439 * Thread group CPU time accounting.
2440 */
2441 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2442 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2443
2444 static inline void thread_group_cputime_init(struct signal_struct *sig)
2445 {
2446 sig->cputimer.cputime = INIT_CPUTIME;
2447 spin_lock_init(&sig->cputimer.lock);
2448 sig->cputimer.running = 0;
2449 }
2450
2451 static inline void thread_group_cputime_free(struct signal_struct *sig)
2452 {
2453 }
2454
2455 /*
2456 * Reevaluate whether the task has signals pending delivery.
2457 * Wake the task if so.
2458 * This is required every time the blocked sigset_t changes.
2459 * callers must hold sighand->siglock.
2460 */
2461 extern void recalc_sigpending_and_wake(struct task_struct *t);
2462 extern void recalc_sigpending(void);
2463
2464 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2465
2466 /*
2467 * Wrappers for p->thread_info->cpu access. No-op on UP.
2468 */
2469 #ifdef CONFIG_SMP
2470
2471 static inline unsigned int task_cpu(const struct task_struct *p)
2472 {
2473 return task_thread_info(p)->cpu;
2474 }
2475
2476 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2477
2478 #else
2479
2480 static inline unsigned int task_cpu(const struct task_struct *p)
2481 {
2482 return 0;
2483 }
2484
2485 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2486 {
2487 }
2488
2489 #endif /* CONFIG_SMP */
2490
2491 #ifdef CONFIG_TRACING
2492 extern void
2493 __trace_special(void *__tr, void *__data,
2494 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2495 #else
2496 static inline void
2497 __trace_special(void *__tr, void *__data,
2498 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2499 {
2500 }
2501 #endif
2502
2503 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2504 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2505
2506 extern void normalize_rt_tasks(void);
2507
2508 #ifdef CONFIG_CGROUP_SCHED
2509
2510 extern struct task_group init_task_group;
2511
2512 extern struct task_group *sched_create_group(struct task_group *parent);
2513 extern void sched_destroy_group(struct task_group *tg);
2514 extern void sched_move_task(struct task_struct *tsk);
2515 #ifdef CONFIG_FAIR_GROUP_SCHED
2516 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2517 extern unsigned long sched_group_shares(struct task_group *tg);
2518 #endif
2519 #ifdef CONFIG_RT_GROUP_SCHED
2520 extern int sched_group_set_rt_runtime(struct task_group *tg,
2521 long rt_runtime_us);
2522 extern long sched_group_rt_runtime(struct task_group *tg);
2523 extern int sched_group_set_rt_period(struct task_group *tg,
2524 long rt_period_us);
2525 extern long sched_group_rt_period(struct task_group *tg);
2526 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2527 #endif
2528 #endif
2529
2530 extern int task_can_switch_user(struct user_struct *up,
2531 struct task_struct *tsk);
2532
2533 #ifdef CONFIG_TASK_XACCT
2534 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2535 {
2536 tsk->ioac.rchar += amt;
2537 }
2538
2539 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2540 {
2541 tsk->ioac.wchar += amt;
2542 }
2543
2544 static inline void inc_syscr(struct task_struct *tsk)
2545 {
2546 tsk->ioac.syscr++;
2547 }
2548
2549 static inline void inc_syscw(struct task_struct *tsk)
2550 {
2551 tsk->ioac.syscw++;
2552 }
2553 #else
2554 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2555 {
2556 }
2557
2558 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2559 {
2560 }
2561
2562 static inline void inc_syscr(struct task_struct *tsk)
2563 {
2564 }
2565
2566 static inline void inc_syscw(struct task_struct *tsk)
2567 {
2568 }
2569 #endif
2570
2571 #ifndef TASK_SIZE_OF
2572 #define TASK_SIZE_OF(tsk) TASK_SIZE
2573 #endif
2574
2575 /*
2576 * Call the function if the target task is executing on a CPU right now:
2577 */
2578 extern void task_oncpu_function_call(struct task_struct *p,
2579 void (*func) (void *info), void *info);
2580
2581
2582 #ifdef CONFIG_MM_OWNER
2583 extern void mm_update_next_owner(struct mm_struct *mm);
2584 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2585 #else
2586 static inline void mm_update_next_owner(struct mm_struct *mm)
2587 {
2588 }
2589
2590 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2591 {
2592 }
2593 #endif /* CONFIG_MM_OWNER */
2594
2595 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2596 unsigned int limit)
2597 {
2598 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2599 }
2600
2601 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2602 unsigned int limit)
2603 {
2604 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2605 }
2606
2607 static inline unsigned long rlimit(unsigned int limit)
2608 {
2609 return task_rlimit(current, limit);
2610 }
2611
2612 static inline unsigned long rlimit_max(unsigned int limit)
2613 {
2614 return task_rlimit_max(current, limit);
2615 }
2616
2617 #endif /* __KERNEL__ */
2618
2619 #endif