]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
kernel/watchdog.c: add sysctl knob hardlockup_panic
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
181 #else
182 static inline void update_cpu_load_nohz(void) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 extern unsigned int hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
390 static inline void touch_softlockup_watchdog(void)
391 {
392 }
393 static inline void touch_softlockup_watchdog_sync(void)
394 {
395 }
396 static inline void touch_all_softlockup_watchdogs(void)
397 {
398 }
399 static inline void lockup_detector_init(void)
400 {
401 }
402 #endif
403
404 #ifdef CONFIG_DETECT_HUNG_TASK
405 void reset_hung_task_detector(void);
406 #else
407 static inline void reset_hung_task_detector(void)
408 {
409 }
410 #endif
411
412 /* Attach to any functions which should be ignored in wchan output. */
413 #define __sched __attribute__((__section__(".sched.text")))
414
415 /* Linker adds these: start and end of __sched functions */
416 extern char __sched_text_start[], __sched_text_end[];
417
418 /* Is this address in the __sched functions? */
419 extern int in_sched_functions(unsigned long addr);
420
421 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
422 extern signed long schedule_timeout(signed long timeout);
423 extern signed long schedule_timeout_interruptible(signed long timeout);
424 extern signed long schedule_timeout_killable(signed long timeout);
425 extern signed long schedule_timeout_uninterruptible(signed long timeout);
426 asmlinkage void schedule(void);
427 extern void schedule_preempt_disabled(void);
428
429 extern long io_schedule_timeout(long timeout);
430
431 static inline void io_schedule(void)
432 {
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
434 }
435
436 struct nsproxy;
437 struct user_namespace;
438
439 #ifdef CONFIG_MMU
440 extern void arch_pick_mmap_layout(struct mm_struct *mm);
441 extern unsigned long
442 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
443 unsigned long, unsigned long);
444 extern unsigned long
445 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
446 unsigned long len, unsigned long pgoff,
447 unsigned long flags);
448 #else
449 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
450 #endif
451
452 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453 #define SUID_DUMP_USER 1 /* Dump as user of process */
454 #define SUID_DUMP_ROOT 2 /* Dump as root */
455
456 /* mm flags */
457
458 /* for SUID_DUMP_* above */
459 #define MMF_DUMPABLE_BITS 2
460 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
461
462 extern void set_dumpable(struct mm_struct *mm, int value);
463 /*
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
467 * value.
468 */
469 static inline int __get_dumpable(unsigned long mm_flags)
470 {
471 return mm_flags & MMF_DUMPABLE_MASK;
472 }
473
474 static inline int get_dumpable(struct mm_struct *mm)
475 {
476 return __get_dumpable(mm->flags);
477 }
478
479 /* coredump filter bits */
480 #define MMF_DUMP_ANON_PRIVATE 2
481 #define MMF_DUMP_ANON_SHARED 3
482 #define MMF_DUMP_MAPPED_PRIVATE 4
483 #define MMF_DUMP_MAPPED_SHARED 5
484 #define MMF_DUMP_ELF_HEADERS 6
485 #define MMF_DUMP_HUGETLB_PRIVATE 7
486 #define MMF_DUMP_HUGETLB_SHARED 8
487
488 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
489 #define MMF_DUMP_FILTER_BITS 7
490 #define MMF_DUMP_FILTER_MASK \
491 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
492 #define MMF_DUMP_FILTER_DEFAULT \
493 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
494 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
495
496 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
497 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
498 #else
499 # define MMF_DUMP_MASK_DEFAULT_ELF 0
500 #endif
501 /* leave room for more dump flags */
502 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
503 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
504 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
505
506 #define MMF_HAS_UPROBES 19 /* has uprobes */
507 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
508
509 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
510
511 struct sighand_struct {
512 atomic_t count;
513 struct k_sigaction action[_NSIG];
514 spinlock_t siglock;
515 wait_queue_head_t signalfd_wqh;
516 };
517
518 struct pacct_struct {
519 int ac_flag;
520 long ac_exitcode;
521 unsigned long ac_mem;
522 cputime_t ac_utime, ac_stime;
523 unsigned long ac_minflt, ac_majflt;
524 };
525
526 struct cpu_itimer {
527 cputime_t expires;
528 cputime_t incr;
529 u32 error;
530 u32 incr_error;
531 };
532
533 /**
534 * struct prev_cputime - snaphsot of system and user cputime
535 * @utime: time spent in user mode
536 * @stime: time spent in system mode
537 * @lock: protects the above two fields
538 *
539 * Stores previous user/system time values such that we can guarantee
540 * monotonicity.
541 */
542 struct prev_cputime {
543 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
544 cputime_t utime;
545 cputime_t stime;
546 raw_spinlock_t lock;
547 #endif
548 };
549
550 static inline void prev_cputime_init(struct prev_cputime *prev)
551 {
552 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
553 prev->utime = prev->stime = 0;
554 raw_spin_lock_init(&prev->lock);
555 #endif
556 }
557
558 /**
559 * struct task_cputime - collected CPU time counts
560 * @utime: time spent in user mode, in &cputime_t units
561 * @stime: time spent in kernel mode, in &cputime_t units
562 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
563 *
564 * This structure groups together three kinds of CPU time that are tracked for
565 * threads and thread groups. Most things considering CPU time want to group
566 * these counts together and treat all three of them in parallel.
567 */
568 struct task_cputime {
569 cputime_t utime;
570 cputime_t stime;
571 unsigned long long sum_exec_runtime;
572 };
573
574 /* Alternate field names when used to cache expirations. */
575 #define virt_exp utime
576 #define prof_exp stime
577 #define sched_exp sum_exec_runtime
578
579 #define INIT_CPUTIME \
580 (struct task_cputime) { \
581 .utime = 0, \
582 .stime = 0, \
583 .sum_exec_runtime = 0, \
584 }
585
586 /*
587 * This is the atomic variant of task_cputime, which can be used for
588 * storing and updating task_cputime statistics without locking.
589 */
590 struct task_cputime_atomic {
591 atomic64_t utime;
592 atomic64_t stime;
593 atomic64_t sum_exec_runtime;
594 };
595
596 #define INIT_CPUTIME_ATOMIC \
597 (struct task_cputime_atomic) { \
598 .utime = ATOMIC64_INIT(0), \
599 .stime = ATOMIC64_INIT(0), \
600 .sum_exec_runtime = ATOMIC64_INIT(0), \
601 }
602
603 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
604
605 /*
606 * Disable preemption until the scheduler is running -- use an unconditional
607 * value so that it also works on !PREEMPT_COUNT kernels.
608 *
609 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
610 */
611 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
612
613 /*
614 * Initial preempt_count value; reflects the preempt_count schedule invariant
615 * which states that during context switches:
616 *
617 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
618 *
619 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
620 * Note: See finish_task_switch().
621 */
622 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
623
624 /**
625 * struct thread_group_cputimer - thread group interval timer counts
626 * @cputime_atomic: atomic thread group interval timers.
627 * @running: true when there are timers running and
628 * @cputime_atomic receives updates.
629 * @checking_timer: true when a thread in the group is in the
630 * process of checking for thread group timers.
631 *
632 * This structure contains the version of task_cputime, above, that is
633 * used for thread group CPU timer calculations.
634 */
635 struct thread_group_cputimer {
636 struct task_cputime_atomic cputime_atomic;
637 bool running;
638 bool checking_timer;
639 };
640
641 #include <linux/rwsem.h>
642 struct autogroup;
643
644 /*
645 * NOTE! "signal_struct" does not have its own
646 * locking, because a shared signal_struct always
647 * implies a shared sighand_struct, so locking
648 * sighand_struct is always a proper superset of
649 * the locking of signal_struct.
650 */
651 struct signal_struct {
652 atomic_t sigcnt;
653 atomic_t live;
654 int nr_threads;
655 struct list_head thread_head;
656
657 wait_queue_head_t wait_chldexit; /* for wait4() */
658
659 /* current thread group signal load-balancing target: */
660 struct task_struct *curr_target;
661
662 /* shared signal handling: */
663 struct sigpending shared_pending;
664
665 /* thread group exit support */
666 int group_exit_code;
667 /* overloaded:
668 * - notify group_exit_task when ->count is equal to notify_count
669 * - everyone except group_exit_task is stopped during signal delivery
670 * of fatal signals, group_exit_task processes the signal.
671 */
672 int notify_count;
673 struct task_struct *group_exit_task;
674
675 /* thread group stop support, overloads group_exit_code too */
676 int group_stop_count;
677 unsigned int flags; /* see SIGNAL_* flags below */
678
679 /*
680 * PR_SET_CHILD_SUBREAPER marks a process, like a service
681 * manager, to re-parent orphan (double-forking) child processes
682 * to this process instead of 'init'. The service manager is
683 * able to receive SIGCHLD signals and is able to investigate
684 * the process until it calls wait(). All children of this
685 * process will inherit a flag if they should look for a
686 * child_subreaper process at exit.
687 */
688 unsigned int is_child_subreaper:1;
689 unsigned int has_child_subreaper:1;
690
691 /* POSIX.1b Interval Timers */
692 int posix_timer_id;
693 struct list_head posix_timers;
694
695 /* ITIMER_REAL timer for the process */
696 struct hrtimer real_timer;
697 struct pid *leader_pid;
698 ktime_t it_real_incr;
699
700 /*
701 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
702 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
703 * values are defined to 0 and 1 respectively
704 */
705 struct cpu_itimer it[2];
706
707 /*
708 * Thread group totals for process CPU timers.
709 * See thread_group_cputimer(), et al, for details.
710 */
711 struct thread_group_cputimer cputimer;
712
713 /* Earliest-expiration cache. */
714 struct task_cputime cputime_expires;
715
716 struct list_head cpu_timers[3];
717
718 struct pid *tty_old_pgrp;
719
720 /* boolean value for session group leader */
721 int leader;
722
723 struct tty_struct *tty; /* NULL if no tty */
724
725 #ifdef CONFIG_SCHED_AUTOGROUP
726 struct autogroup *autogroup;
727 #endif
728 /*
729 * Cumulative resource counters for dead threads in the group,
730 * and for reaped dead child processes forked by this group.
731 * Live threads maintain their own counters and add to these
732 * in __exit_signal, except for the group leader.
733 */
734 seqlock_t stats_lock;
735 cputime_t utime, stime, cutime, cstime;
736 cputime_t gtime;
737 cputime_t cgtime;
738 struct prev_cputime prev_cputime;
739 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
740 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
741 unsigned long inblock, oublock, cinblock, coublock;
742 unsigned long maxrss, cmaxrss;
743 struct task_io_accounting ioac;
744
745 /*
746 * Cumulative ns of schedule CPU time fo dead threads in the
747 * group, not including a zombie group leader, (This only differs
748 * from jiffies_to_ns(utime + stime) if sched_clock uses something
749 * other than jiffies.)
750 */
751 unsigned long long sum_sched_runtime;
752
753 /*
754 * We don't bother to synchronize most readers of this at all,
755 * because there is no reader checking a limit that actually needs
756 * to get both rlim_cur and rlim_max atomically, and either one
757 * alone is a single word that can safely be read normally.
758 * getrlimit/setrlimit use task_lock(current->group_leader) to
759 * protect this instead of the siglock, because they really
760 * have no need to disable irqs.
761 */
762 struct rlimit rlim[RLIM_NLIMITS];
763
764 #ifdef CONFIG_BSD_PROCESS_ACCT
765 struct pacct_struct pacct; /* per-process accounting information */
766 #endif
767 #ifdef CONFIG_TASKSTATS
768 struct taskstats *stats;
769 #endif
770 #ifdef CONFIG_AUDIT
771 unsigned audit_tty;
772 unsigned audit_tty_log_passwd;
773 struct tty_audit_buf *tty_audit_buf;
774 #endif
775 #ifdef CONFIG_CGROUPS
776 /*
777 * group_rwsem prevents new tasks from entering the threadgroup and
778 * member tasks from exiting,a more specifically, setting of
779 * PF_EXITING. fork and exit paths are protected with this rwsem
780 * using threadgroup_change_begin/end(). Users which require
781 * threadgroup to remain stable should use threadgroup_[un]lock()
782 * which also takes care of exec path. Currently, cgroup is the
783 * only user.
784 */
785 struct rw_semaphore group_rwsem;
786 #endif
787
788 oom_flags_t oom_flags;
789 short oom_score_adj; /* OOM kill score adjustment */
790 short oom_score_adj_min; /* OOM kill score adjustment min value.
791 * Only settable by CAP_SYS_RESOURCE. */
792
793 struct mutex cred_guard_mutex; /* guard against foreign influences on
794 * credential calculations
795 * (notably. ptrace) */
796 };
797
798 /*
799 * Bits in flags field of signal_struct.
800 */
801 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
802 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
803 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
804 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
805 /*
806 * Pending notifications to parent.
807 */
808 #define SIGNAL_CLD_STOPPED 0x00000010
809 #define SIGNAL_CLD_CONTINUED 0x00000020
810 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
811
812 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
813
814 /* If true, all threads except ->group_exit_task have pending SIGKILL */
815 static inline int signal_group_exit(const struct signal_struct *sig)
816 {
817 return (sig->flags & SIGNAL_GROUP_EXIT) ||
818 (sig->group_exit_task != NULL);
819 }
820
821 /*
822 * Some day this will be a full-fledged user tracking system..
823 */
824 struct user_struct {
825 atomic_t __count; /* reference count */
826 atomic_t processes; /* How many processes does this user have? */
827 atomic_t sigpending; /* How many pending signals does this user have? */
828 #ifdef CONFIG_INOTIFY_USER
829 atomic_t inotify_watches; /* How many inotify watches does this user have? */
830 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
831 #endif
832 #ifdef CONFIG_FANOTIFY
833 atomic_t fanotify_listeners;
834 #endif
835 #ifdef CONFIG_EPOLL
836 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
837 #endif
838 #ifdef CONFIG_POSIX_MQUEUE
839 /* protected by mq_lock */
840 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
841 #endif
842 unsigned long locked_shm; /* How many pages of mlocked shm ? */
843
844 #ifdef CONFIG_KEYS
845 struct key *uid_keyring; /* UID specific keyring */
846 struct key *session_keyring; /* UID's default session keyring */
847 #endif
848
849 /* Hash table maintenance information */
850 struct hlist_node uidhash_node;
851 kuid_t uid;
852
853 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
854 atomic_long_t locked_vm;
855 #endif
856 };
857
858 extern int uids_sysfs_init(void);
859
860 extern struct user_struct *find_user(kuid_t);
861
862 extern struct user_struct root_user;
863 #define INIT_USER (&root_user)
864
865
866 struct backing_dev_info;
867 struct reclaim_state;
868
869 #ifdef CONFIG_SCHED_INFO
870 struct sched_info {
871 /* cumulative counters */
872 unsigned long pcount; /* # of times run on this cpu */
873 unsigned long long run_delay; /* time spent waiting on a runqueue */
874
875 /* timestamps */
876 unsigned long long last_arrival,/* when we last ran on a cpu */
877 last_queued; /* when we were last queued to run */
878 };
879 #endif /* CONFIG_SCHED_INFO */
880
881 #ifdef CONFIG_TASK_DELAY_ACCT
882 struct task_delay_info {
883 spinlock_t lock;
884 unsigned int flags; /* Private per-task flags */
885
886 /* For each stat XXX, add following, aligned appropriately
887 *
888 * struct timespec XXX_start, XXX_end;
889 * u64 XXX_delay;
890 * u32 XXX_count;
891 *
892 * Atomicity of updates to XXX_delay, XXX_count protected by
893 * single lock above (split into XXX_lock if contention is an issue).
894 */
895
896 /*
897 * XXX_count is incremented on every XXX operation, the delay
898 * associated with the operation is added to XXX_delay.
899 * XXX_delay contains the accumulated delay time in nanoseconds.
900 */
901 u64 blkio_start; /* Shared by blkio, swapin */
902 u64 blkio_delay; /* wait for sync block io completion */
903 u64 swapin_delay; /* wait for swapin block io completion */
904 u32 blkio_count; /* total count of the number of sync block */
905 /* io operations performed */
906 u32 swapin_count; /* total count of the number of swapin block */
907 /* io operations performed */
908
909 u64 freepages_start;
910 u64 freepages_delay; /* wait for memory reclaim */
911 u32 freepages_count; /* total count of memory reclaim */
912 };
913 #endif /* CONFIG_TASK_DELAY_ACCT */
914
915 static inline int sched_info_on(void)
916 {
917 #ifdef CONFIG_SCHEDSTATS
918 return 1;
919 #elif defined(CONFIG_TASK_DELAY_ACCT)
920 extern int delayacct_on;
921 return delayacct_on;
922 #else
923 return 0;
924 #endif
925 }
926
927 enum cpu_idle_type {
928 CPU_IDLE,
929 CPU_NOT_IDLE,
930 CPU_NEWLY_IDLE,
931 CPU_MAX_IDLE_TYPES
932 };
933
934 /*
935 * Increase resolution of cpu_capacity calculations
936 */
937 #define SCHED_CAPACITY_SHIFT 10
938 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
939
940 /*
941 * Wake-queues are lists of tasks with a pending wakeup, whose
942 * callers have already marked the task as woken internally,
943 * and can thus carry on. A common use case is being able to
944 * do the wakeups once the corresponding user lock as been
945 * released.
946 *
947 * We hold reference to each task in the list across the wakeup,
948 * thus guaranteeing that the memory is still valid by the time
949 * the actual wakeups are performed in wake_up_q().
950 *
951 * One per task suffices, because there's never a need for a task to be
952 * in two wake queues simultaneously; it is forbidden to abandon a task
953 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
954 * already in a wake queue, the wakeup will happen soon and the second
955 * waker can just skip it.
956 *
957 * The WAKE_Q macro declares and initializes the list head.
958 * wake_up_q() does NOT reinitialize the list; it's expected to be
959 * called near the end of a function, where the fact that the queue is
960 * not used again will be easy to see by inspection.
961 *
962 * Note that this can cause spurious wakeups. schedule() callers
963 * must ensure the call is done inside a loop, confirming that the
964 * wakeup condition has in fact occurred.
965 */
966 struct wake_q_node {
967 struct wake_q_node *next;
968 };
969
970 struct wake_q_head {
971 struct wake_q_node *first;
972 struct wake_q_node **lastp;
973 };
974
975 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
976
977 #define WAKE_Q(name) \
978 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
979
980 extern void wake_q_add(struct wake_q_head *head,
981 struct task_struct *task);
982 extern void wake_up_q(struct wake_q_head *head);
983
984 /*
985 * sched-domains (multiprocessor balancing) declarations:
986 */
987 #ifdef CONFIG_SMP
988 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
989 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
990 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
991 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
992 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
993 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
994 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
995 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
996 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
997 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
998 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
999 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1000 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1001 #define SD_NUMA 0x4000 /* cross-node balancing */
1002
1003 #ifdef CONFIG_SCHED_SMT
1004 static inline int cpu_smt_flags(void)
1005 {
1006 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1007 }
1008 #endif
1009
1010 #ifdef CONFIG_SCHED_MC
1011 static inline int cpu_core_flags(void)
1012 {
1013 return SD_SHARE_PKG_RESOURCES;
1014 }
1015 #endif
1016
1017 #ifdef CONFIG_NUMA
1018 static inline int cpu_numa_flags(void)
1019 {
1020 return SD_NUMA;
1021 }
1022 #endif
1023
1024 struct sched_domain_attr {
1025 int relax_domain_level;
1026 };
1027
1028 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1029 .relax_domain_level = -1, \
1030 }
1031
1032 extern int sched_domain_level_max;
1033
1034 struct sched_group;
1035
1036 struct sched_domain {
1037 /* These fields must be setup */
1038 struct sched_domain *parent; /* top domain must be null terminated */
1039 struct sched_domain *child; /* bottom domain must be null terminated */
1040 struct sched_group *groups; /* the balancing groups of the domain */
1041 unsigned long min_interval; /* Minimum balance interval ms */
1042 unsigned long max_interval; /* Maximum balance interval ms */
1043 unsigned int busy_factor; /* less balancing by factor if busy */
1044 unsigned int imbalance_pct; /* No balance until over watermark */
1045 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1046 unsigned int busy_idx;
1047 unsigned int idle_idx;
1048 unsigned int newidle_idx;
1049 unsigned int wake_idx;
1050 unsigned int forkexec_idx;
1051 unsigned int smt_gain;
1052
1053 int nohz_idle; /* NOHZ IDLE status */
1054 int flags; /* See SD_* */
1055 int level;
1056
1057 /* Runtime fields. */
1058 unsigned long last_balance; /* init to jiffies. units in jiffies */
1059 unsigned int balance_interval; /* initialise to 1. units in ms. */
1060 unsigned int nr_balance_failed; /* initialise to 0 */
1061
1062 /* idle_balance() stats */
1063 u64 max_newidle_lb_cost;
1064 unsigned long next_decay_max_lb_cost;
1065
1066 #ifdef CONFIG_SCHEDSTATS
1067 /* load_balance() stats */
1068 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1069 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1070 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1076
1077 /* Active load balancing */
1078 unsigned int alb_count;
1079 unsigned int alb_failed;
1080 unsigned int alb_pushed;
1081
1082 /* SD_BALANCE_EXEC stats */
1083 unsigned int sbe_count;
1084 unsigned int sbe_balanced;
1085 unsigned int sbe_pushed;
1086
1087 /* SD_BALANCE_FORK stats */
1088 unsigned int sbf_count;
1089 unsigned int sbf_balanced;
1090 unsigned int sbf_pushed;
1091
1092 /* try_to_wake_up() stats */
1093 unsigned int ttwu_wake_remote;
1094 unsigned int ttwu_move_affine;
1095 unsigned int ttwu_move_balance;
1096 #endif
1097 #ifdef CONFIG_SCHED_DEBUG
1098 char *name;
1099 #endif
1100 union {
1101 void *private; /* used during construction */
1102 struct rcu_head rcu; /* used during destruction */
1103 };
1104
1105 unsigned int span_weight;
1106 /*
1107 * Span of all CPUs in this domain.
1108 *
1109 * NOTE: this field is variable length. (Allocated dynamically
1110 * by attaching extra space to the end of the structure,
1111 * depending on how many CPUs the kernel has booted up with)
1112 */
1113 unsigned long span[0];
1114 };
1115
1116 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1117 {
1118 return to_cpumask(sd->span);
1119 }
1120
1121 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1122 struct sched_domain_attr *dattr_new);
1123
1124 /* Allocate an array of sched domains, for partition_sched_domains(). */
1125 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1126 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1127
1128 bool cpus_share_cache(int this_cpu, int that_cpu);
1129
1130 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1131 typedef int (*sched_domain_flags_f)(void);
1132
1133 #define SDTL_OVERLAP 0x01
1134
1135 struct sd_data {
1136 struct sched_domain **__percpu sd;
1137 struct sched_group **__percpu sg;
1138 struct sched_group_capacity **__percpu sgc;
1139 };
1140
1141 struct sched_domain_topology_level {
1142 sched_domain_mask_f mask;
1143 sched_domain_flags_f sd_flags;
1144 int flags;
1145 int numa_level;
1146 struct sd_data data;
1147 #ifdef CONFIG_SCHED_DEBUG
1148 char *name;
1149 #endif
1150 };
1151
1152 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1153 extern void wake_up_if_idle(int cpu);
1154
1155 #ifdef CONFIG_SCHED_DEBUG
1156 # define SD_INIT_NAME(type) .name = #type
1157 #else
1158 # define SD_INIT_NAME(type)
1159 #endif
1160
1161 #else /* CONFIG_SMP */
1162
1163 struct sched_domain_attr;
1164
1165 static inline void
1166 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1167 struct sched_domain_attr *dattr_new)
1168 {
1169 }
1170
1171 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1172 {
1173 return true;
1174 }
1175
1176 #endif /* !CONFIG_SMP */
1177
1178
1179 struct io_context; /* See blkdev.h */
1180
1181
1182 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1183 extern void prefetch_stack(struct task_struct *t);
1184 #else
1185 static inline void prefetch_stack(struct task_struct *t) { }
1186 #endif
1187
1188 struct audit_context; /* See audit.c */
1189 struct mempolicy;
1190 struct pipe_inode_info;
1191 struct uts_namespace;
1192
1193 struct load_weight {
1194 unsigned long weight;
1195 u32 inv_weight;
1196 };
1197
1198 /*
1199 * The load_avg/util_avg accumulates an infinite geometric series.
1200 * 1) load_avg factors frequency scaling into the amount of time that a
1201 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1202 * aggregated such weights of all runnable and blocked sched_entities.
1203 * 2) util_avg factors frequency and cpu scaling into the amount of time
1204 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1205 * For cfs_rq, it is the aggregated such times of all runnable and
1206 * blocked sched_entities.
1207 * The 64 bit load_sum can:
1208 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1209 * the highest weight (=88761) always runnable, we should not overflow
1210 * 2) for entity, support any load.weight always runnable
1211 */
1212 struct sched_avg {
1213 u64 last_update_time, load_sum;
1214 u32 util_sum, period_contrib;
1215 unsigned long load_avg, util_avg;
1216 };
1217
1218 #ifdef CONFIG_SCHEDSTATS
1219 struct sched_statistics {
1220 u64 wait_start;
1221 u64 wait_max;
1222 u64 wait_count;
1223 u64 wait_sum;
1224 u64 iowait_count;
1225 u64 iowait_sum;
1226
1227 u64 sleep_start;
1228 u64 sleep_max;
1229 s64 sum_sleep_runtime;
1230
1231 u64 block_start;
1232 u64 block_max;
1233 u64 exec_max;
1234 u64 slice_max;
1235
1236 u64 nr_migrations_cold;
1237 u64 nr_failed_migrations_affine;
1238 u64 nr_failed_migrations_running;
1239 u64 nr_failed_migrations_hot;
1240 u64 nr_forced_migrations;
1241
1242 u64 nr_wakeups;
1243 u64 nr_wakeups_sync;
1244 u64 nr_wakeups_migrate;
1245 u64 nr_wakeups_local;
1246 u64 nr_wakeups_remote;
1247 u64 nr_wakeups_affine;
1248 u64 nr_wakeups_affine_attempts;
1249 u64 nr_wakeups_passive;
1250 u64 nr_wakeups_idle;
1251 };
1252 #endif
1253
1254 struct sched_entity {
1255 struct load_weight load; /* for load-balancing */
1256 struct rb_node run_node;
1257 struct list_head group_node;
1258 unsigned int on_rq;
1259
1260 u64 exec_start;
1261 u64 sum_exec_runtime;
1262 u64 vruntime;
1263 u64 prev_sum_exec_runtime;
1264
1265 u64 nr_migrations;
1266
1267 #ifdef CONFIG_SCHEDSTATS
1268 struct sched_statistics statistics;
1269 #endif
1270
1271 #ifdef CONFIG_FAIR_GROUP_SCHED
1272 int depth;
1273 struct sched_entity *parent;
1274 /* rq on which this entity is (to be) queued: */
1275 struct cfs_rq *cfs_rq;
1276 /* rq "owned" by this entity/group: */
1277 struct cfs_rq *my_q;
1278 #endif
1279
1280 #ifdef CONFIG_SMP
1281 /* Per entity load average tracking */
1282 struct sched_avg avg;
1283 #endif
1284 };
1285
1286 struct sched_rt_entity {
1287 struct list_head run_list;
1288 unsigned long timeout;
1289 unsigned long watchdog_stamp;
1290 unsigned int time_slice;
1291
1292 struct sched_rt_entity *back;
1293 #ifdef CONFIG_RT_GROUP_SCHED
1294 struct sched_rt_entity *parent;
1295 /* rq on which this entity is (to be) queued: */
1296 struct rt_rq *rt_rq;
1297 /* rq "owned" by this entity/group: */
1298 struct rt_rq *my_q;
1299 #endif
1300 };
1301
1302 struct sched_dl_entity {
1303 struct rb_node rb_node;
1304
1305 /*
1306 * Original scheduling parameters. Copied here from sched_attr
1307 * during sched_setattr(), they will remain the same until
1308 * the next sched_setattr().
1309 */
1310 u64 dl_runtime; /* maximum runtime for each instance */
1311 u64 dl_deadline; /* relative deadline of each instance */
1312 u64 dl_period; /* separation of two instances (period) */
1313 u64 dl_bw; /* dl_runtime / dl_deadline */
1314
1315 /*
1316 * Actual scheduling parameters. Initialized with the values above,
1317 * they are continously updated during task execution. Note that
1318 * the remaining runtime could be < 0 in case we are in overrun.
1319 */
1320 s64 runtime; /* remaining runtime for this instance */
1321 u64 deadline; /* absolute deadline for this instance */
1322 unsigned int flags; /* specifying the scheduler behaviour */
1323
1324 /*
1325 * Some bool flags:
1326 *
1327 * @dl_throttled tells if we exhausted the runtime. If so, the
1328 * task has to wait for a replenishment to be performed at the
1329 * next firing of dl_timer.
1330 *
1331 * @dl_new tells if a new instance arrived. If so we must
1332 * start executing it with full runtime and reset its absolute
1333 * deadline;
1334 *
1335 * @dl_boosted tells if we are boosted due to DI. If so we are
1336 * outside bandwidth enforcement mechanism (but only until we
1337 * exit the critical section);
1338 *
1339 * @dl_yielded tells if task gave up the cpu before consuming
1340 * all its available runtime during the last job.
1341 */
1342 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1343
1344 /*
1345 * Bandwidth enforcement timer. Each -deadline task has its
1346 * own bandwidth to be enforced, thus we need one timer per task.
1347 */
1348 struct hrtimer dl_timer;
1349 };
1350
1351 union rcu_special {
1352 struct {
1353 u8 blocked;
1354 u8 need_qs;
1355 u8 exp_need_qs;
1356 u8 pad; /* Otherwise the compiler can store garbage here. */
1357 } b; /* Bits. */
1358 u32 s; /* Set of bits. */
1359 };
1360 struct rcu_node;
1361
1362 enum perf_event_task_context {
1363 perf_invalid_context = -1,
1364 perf_hw_context = 0,
1365 perf_sw_context,
1366 perf_nr_task_contexts,
1367 };
1368
1369 /* Track pages that require TLB flushes */
1370 struct tlbflush_unmap_batch {
1371 /*
1372 * Each bit set is a CPU that potentially has a TLB entry for one of
1373 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1374 */
1375 struct cpumask cpumask;
1376
1377 /* True if any bit in cpumask is set */
1378 bool flush_required;
1379
1380 /*
1381 * If true then the PTE was dirty when unmapped. The entry must be
1382 * flushed before IO is initiated or a stale TLB entry potentially
1383 * allows an update without redirtying the page.
1384 */
1385 bool writable;
1386 };
1387
1388 struct task_struct {
1389 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1390 void *stack;
1391 atomic_t usage;
1392 unsigned int flags; /* per process flags, defined below */
1393 unsigned int ptrace;
1394
1395 #ifdef CONFIG_SMP
1396 struct llist_node wake_entry;
1397 int on_cpu;
1398 unsigned int wakee_flips;
1399 unsigned long wakee_flip_decay_ts;
1400 struct task_struct *last_wakee;
1401
1402 int wake_cpu;
1403 #endif
1404 int on_rq;
1405
1406 int prio, static_prio, normal_prio;
1407 unsigned int rt_priority;
1408 const struct sched_class *sched_class;
1409 struct sched_entity se;
1410 struct sched_rt_entity rt;
1411 #ifdef CONFIG_CGROUP_SCHED
1412 struct task_group *sched_task_group;
1413 #endif
1414 struct sched_dl_entity dl;
1415
1416 #ifdef CONFIG_PREEMPT_NOTIFIERS
1417 /* list of struct preempt_notifier: */
1418 struct hlist_head preempt_notifiers;
1419 #endif
1420
1421 #ifdef CONFIG_BLK_DEV_IO_TRACE
1422 unsigned int btrace_seq;
1423 #endif
1424
1425 unsigned int policy;
1426 int nr_cpus_allowed;
1427 cpumask_t cpus_allowed;
1428
1429 #ifdef CONFIG_PREEMPT_RCU
1430 int rcu_read_lock_nesting;
1431 union rcu_special rcu_read_unlock_special;
1432 struct list_head rcu_node_entry;
1433 struct rcu_node *rcu_blocked_node;
1434 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1435 #ifdef CONFIG_TASKS_RCU
1436 unsigned long rcu_tasks_nvcsw;
1437 bool rcu_tasks_holdout;
1438 struct list_head rcu_tasks_holdout_list;
1439 int rcu_tasks_idle_cpu;
1440 #endif /* #ifdef CONFIG_TASKS_RCU */
1441
1442 #ifdef CONFIG_SCHED_INFO
1443 struct sched_info sched_info;
1444 #endif
1445
1446 struct list_head tasks;
1447 #ifdef CONFIG_SMP
1448 struct plist_node pushable_tasks;
1449 struct rb_node pushable_dl_tasks;
1450 #endif
1451
1452 struct mm_struct *mm, *active_mm;
1453 /* per-thread vma caching */
1454 u32 vmacache_seqnum;
1455 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1456 #if defined(SPLIT_RSS_COUNTING)
1457 struct task_rss_stat rss_stat;
1458 #endif
1459 /* task state */
1460 int exit_state;
1461 int exit_code, exit_signal;
1462 int pdeath_signal; /* The signal sent when the parent dies */
1463 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1464
1465 /* Used for emulating ABI behavior of previous Linux versions */
1466 unsigned int personality;
1467
1468 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1469 * execve */
1470 unsigned in_iowait:1;
1471
1472 /* Revert to default priority/policy when forking */
1473 unsigned sched_reset_on_fork:1;
1474 unsigned sched_contributes_to_load:1;
1475 unsigned sched_migrated:1;
1476
1477 #ifdef CONFIG_MEMCG_KMEM
1478 unsigned memcg_kmem_skip_account:1;
1479 #endif
1480 #ifdef CONFIG_COMPAT_BRK
1481 unsigned brk_randomized:1;
1482 #endif
1483
1484 unsigned long atomic_flags; /* Flags needing atomic access. */
1485
1486 struct restart_block restart_block;
1487
1488 pid_t pid;
1489 pid_t tgid;
1490
1491 #ifdef CONFIG_CC_STACKPROTECTOR
1492 /* Canary value for the -fstack-protector gcc feature */
1493 unsigned long stack_canary;
1494 #endif
1495 /*
1496 * pointers to (original) parent process, youngest child, younger sibling,
1497 * older sibling, respectively. (p->father can be replaced with
1498 * p->real_parent->pid)
1499 */
1500 struct task_struct __rcu *real_parent; /* real parent process */
1501 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1502 /*
1503 * children/sibling forms the list of my natural children
1504 */
1505 struct list_head children; /* list of my children */
1506 struct list_head sibling; /* linkage in my parent's children list */
1507 struct task_struct *group_leader; /* threadgroup leader */
1508
1509 /*
1510 * ptraced is the list of tasks this task is using ptrace on.
1511 * This includes both natural children and PTRACE_ATTACH targets.
1512 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1513 */
1514 struct list_head ptraced;
1515 struct list_head ptrace_entry;
1516
1517 /* PID/PID hash table linkage. */
1518 struct pid_link pids[PIDTYPE_MAX];
1519 struct list_head thread_group;
1520 struct list_head thread_node;
1521
1522 struct completion *vfork_done; /* for vfork() */
1523 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1524 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1525
1526 cputime_t utime, stime, utimescaled, stimescaled;
1527 cputime_t gtime;
1528 struct prev_cputime prev_cputime;
1529 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1530 seqlock_t vtime_seqlock;
1531 unsigned long long vtime_snap;
1532 enum {
1533 VTIME_SLEEPING = 0,
1534 VTIME_USER,
1535 VTIME_SYS,
1536 } vtime_snap_whence;
1537 #endif
1538 unsigned long nvcsw, nivcsw; /* context switch counts */
1539 u64 start_time; /* monotonic time in nsec */
1540 u64 real_start_time; /* boot based time in nsec */
1541 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1542 unsigned long min_flt, maj_flt;
1543
1544 struct task_cputime cputime_expires;
1545 struct list_head cpu_timers[3];
1546
1547 /* process credentials */
1548 const struct cred __rcu *real_cred; /* objective and real subjective task
1549 * credentials (COW) */
1550 const struct cred __rcu *cred; /* effective (overridable) subjective task
1551 * credentials (COW) */
1552 char comm[TASK_COMM_LEN]; /* executable name excluding path
1553 - access with [gs]et_task_comm (which lock
1554 it with task_lock())
1555 - initialized normally by setup_new_exec */
1556 /* file system info */
1557 struct nameidata *nameidata;
1558 #ifdef CONFIG_SYSVIPC
1559 /* ipc stuff */
1560 struct sysv_sem sysvsem;
1561 struct sysv_shm sysvshm;
1562 #endif
1563 #ifdef CONFIG_DETECT_HUNG_TASK
1564 /* hung task detection */
1565 unsigned long last_switch_count;
1566 #endif
1567 /* filesystem information */
1568 struct fs_struct *fs;
1569 /* open file information */
1570 struct files_struct *files;
1571 /* namespaces */
1572 struct nsproxy *nsproxy;
1573 /* signal handlers */
1574 struct signal_struct *signal;
1575 struct sighand_struct *sighand;
1576
1577 sigset_t blocked, real_blocked;
1578 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1579 struct sigpending pending;
1580
1581 unsigned long sas_ss_sp;
1582 size_t sas_ss_size;
1583 int (*notifier)(void *priv);
1584 void *notifier_data;
1585 sigset_t *notifier_mask;
1586 struct callback_head *task_works;
1587
1588 struct audit_context *audit_context;
1589 #ifdef CONFIG_AUDITSYSCALL
1590 kuid_t loginuid;
1591 unsigned int sessionid;
1592 #endif
1593 struct seccomp seccomp;
1594
1595 /* Thread group tracking */
1596 u32 parent_exec_id;
1597 u32 self_exec_id;
1598 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1599 * mempolicy */
1600 spinlock_t alloc_lock;
1601
1602 /* Protection of the PI data structures: */
1603 raw_spinlock_t pi_lock;
1604
1605 struct wake_q_node wake_q;
1606
1607 #ifdef CONFIG_RT_MUTEXES
1608 /* PI waiters blocked on a rt_mutex held by this task */
1609 struct rb_root pi_waiters;
1610 struct rb_node *pi_waiters_leftmost;
1611 /* Deadlock detection and priority inheritance handling */
1612 struct rt_mutex_waiter *pi_blocked_on;
1613 #endif
1614
1615 #ifdef CONFIG_DEBUG_MUTEXES
1616 /* mutex deadlock detection */
1617 struct mutex_waiter *blocked_on;
1618 #endif
1619 #ifdef CONFIG_TRACE_IRQFLAGS
1620 unsigned int irq_events;
1621 unsigned long hardirq_enable_ip;
1622 unsigned long hardirq_disable_ip;
1623 unsigned int hardirq_enable_event;
1624 unsigned int hardirq_disable_event;
1625 int hardirqs_enabled;
1626 int hardirq_context;
1627 unsigned long softirq_disable_ip;
1628 unsigned long softirq_enable_ip;
1629 unsigned int softirq_disable_event;
1630 unsigned int softirq_enable_event;
1631 int softirqs_enabled;
1632 int softirq_context;
1633 #endif
1634 #ifdef CONFIG_LOCKDEP
1635 # define MAX_LOCK_DEPTH 48UL
1636 u64 curr_chain_key;
1637 int lockdep_depth;
1638 unsigned int lockdep_recursion;
1639 struct held_lock held_locks[MAX_LOCK_DEPTH];
1640 gfp_t lockdep_reclaim_gfp;
1641 #endif
1642
1643 /* journalling filesystem info */
1644 void *journal_info;
1645
1646 /* stacked block device info */
1647 struct bio_list *bio_list;
1648
1649 #ifdef CONFIG_BLOCK
1650 /* stack plugging */
1651 struct blk_plug *plug;
1652 #endif
1653
1654 /* VM state */
1655 struct reclaim_state *reclaim_state;
1656
1657 struct backing_dev_info *backing_dev_info;
1658
1659 struct io_context *io_context;
1660
1661 unsigned long ptrace_message;
1662 siginfo_t *last_siginfo; /* For ptrace use. */
1663 struct task_io_accounting ioac;
1664 #if defined(CONFIG_TASK_XACCT)
1665 u64 acct_rss_mem1; /* accumulated rss usage */
1666 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1667 cputime_t acct_timexpd; /* stime + utime since last update */
1668 #endif
1669 #ifdef CONFIG_CPUSETS
1670 nodemask_t mems_allowed; /* Protected by alloc_lock */
1671 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1672 int cpuset_mem_spread_rotor;
1673 int cpuset_slab_spread_rotor;
1674 #endif
1675 #ifdef CONFIG_CGROUPS
1676 /* Control Group info protected by css_set_lock */
1677 struct css_set __rcu *cgroups;
1678 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1679 struct list_head cg_list;
1680 #endif
1681 #ifdef CONFIG_FUTEX
1682 struct robust_list_head __user *robust_list;
1683 #ifdef CONFIG_COMPAT
1684 struct compat_robust_list_head __user *compat_robust_list;
1685 #endif
1686 struct list_head pi_state_list;
1687 struct futex_pi_state *pi_state_cache;
1688 #endif
1689 #ifdef CONFIG_PERF_EVENTS
1690 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1691 struct mutex perf_event_mutex;
1692 struct list_head perf_event_list;
1693 #endif
1694 #ifdef CONFIG_DEBUG_PREEMPT
1695 unsigned long preempt_disable_ip;
1696 #endif
1697 #ifdef CONFIG_NUMA
1698 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1699 short il_next;
1700 short pref_node_fork;
1701 #endif
1702 #ifdef CONFIG_NUMA_BALANCING
1703 int numa_scan_seq;
1704 unsigned int numa_scan_period;
1705 unsigned int numa_scan_period_max;
1706 int numa_preferred_nid;
1707 unsigned long numa_migrate_retry;
1708 u64 node_stamp; /* migration stamp */
1709 u64 last_task_numa_placement;
1710 u64 last_sum_exec_runtime;
1711 struct callback_head numa_work;
1712
1713 struct list_head numa_entry;
1714 struct numa_group *numa_group;
1715
1716 /*
1717 * numa_faults is an array split into four regions:
1718 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1719 * in this precise order.
1720 *
1721 * faults_memory: Exponential decaying average of faults on a per-node
1722 * basis. Scheduling placement decisions are made based on these
1723 * counts. The values remain static for the duration of a PTE scan.
1724 * faults_cpu: Track the nodes the process was running on when a NUMA
1725 * hinting fault was incurred.
1726 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1727 * during the current scan window. When the scan completes, the counts
1728 * in faults_memory and faults_cpu decay and these values are copied.
1729 */
1730 unsigned long *numa_faults;
1731 unsigned long total_numa_faults;
1732
1733 /*
1734 * numa_faults_locality tracks if faults recorded during the last
1735 * scan window were remote/local or failed to migrate. The task scan
1736 * period is adapted based on the locality of the faults with different
1737 * weights depending on whether they were shared or private faults
1738 */
1739 unsigned long numa_faults_locality[3];
1740
1741 unsigned long numa_pages_migrated;
1742 #endif /* CONFIG_NUMA_BALANCING */
1743
1744 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1745 struct tlbflush_unmap_batch tlb_ubc;
1746 #endif
1747
1748 struct rcu_head rcu;
1749
1750 /*
1751 * cache last used pipe for splice
1752 */
1753 struct pipe_inode_info *splice_pipe;
1754
1755 struct page_frag task_frag;
1756
1757 #ifdef CONFIG_TASK_DELAY_ACCT
1758 struct task_delay_info *delays;
1759 #endif
1760 #ifdef CONFIG_FAULT_INJECTION
1761 int make_it_fail;
1762 #endif
1763 /*
1764 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1765 * balance_dirty_pages() for some dirty throttling pause
1766 */
1767 int nr_dirtied;
1768 int nr_dirtied_pause;
1769 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1770
1771 #ifdef CONFIG_LATENCYTOP
1772 int latency_record_count;
1773 struct latency_record latency_record[LT_SAVECOUNT];
1774 #endif
1775 /*
1776 * time slack values; these are used to round up poll() and
1777 * select() etc timeout values. These are in nanoseconds.
1778 */
1779 unsigned long timer_slack_ns;
1780 unsigned long default_timer_slack_ns;
1781
1782 #ifdef CONFIG_KASAN
1783 unsigned int kasan_depth;
1784 #endif
1785 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1786 /* Index of current stored address in ret_stack */
1787 int curr_ret_stack;
1788 /* Stack of return addresses for return function tracing */
1789 struct ftrace_ret_stack *ret_stack;
1790 /* time stamp for last schedule */
1791 unsigned long long ftrace_timestamp;
1792 /*
1793 * Number of functions that haven't been traced
1794 * because of depth overrun.
1795 */
1796 atomic_t trace_overrun;
1797 /* Pause for the tracing */
1798 atomic_t tracing_graph_pause;
1799 #endif
1800 #ifdef CONFIG_TRACING
1801 /* state flags for use by tracers */
1802 unsigned long trace;
1803 /* bitmask and counter of trace recursion */
1804 unsigned long trace_recursion;
1805 #endif /* CONFIG_TRACING */
1806 #ifdef CONFIG_MEMCG
1807 struct memcg_oom_info {
1808 struct mem_cgroup *memcg;
1809 gfp_t gfp_mask;
1810 int order;
1811 unsigned int may_oom:1;
1812 } memcg_oom;
1813 #endif
1814 #ifdef CONFIG_UPROBES
1815 struct uprobe_task *utask;
1816 #endif
1817 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1818 unsigned int sequential_io;
1819 unsigned int sequential_io_avg;
1820 #endif
1821 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1822 unsigned long task_state_change;
1823 #endif
1824 int pagefault_disabled;
1825 /* CPU-specific state of this task */
1826 struct thread_struct thread;
1827 /*
1828 * WARNING: on x86, 'thread_struct' contains a variable-sized
1829 * structure. It *MUST* be at the end of 'task_struct'.
1830 *
1831 * Do not put anything below here!
1832 */
1833 };
1834
1835 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1836 extern int arch_task_struct_size __read_mostly;
1837 #else
1838 # define arch_task_struct_size (sizeof(struct task_struct))
1839 #endif
1840
1841 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1842 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1843
1844 #define TNF_MIGRATED 0x01
1845 #define TNF_NO_GROUP 0x02
1846 #define TNF_SHARED 0x04
1847 #define TNF_FAULT_LOCAL 0x08
1848 #define TNF_MIGRATE_FAIL 0x10
1849
1850 #ifdef CONFIG_NUMA_BALANCING
1851 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1852 extern pid_t task_numa_group_id(struct task_struct *p);
1853 extern void set_numabalancing_state(bool enabled);
1854 extern void task_numa_free(struct task_struct *p);
1855 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1856 int src_nid, int dst_cpu);
1857 #else
1858 static inline void task_numa_fault(int last_node, int node, int pages,
1859 int flags)
1860 {
1861 }
1862 static inline pid_t task_numa_group_id(struct task_struct *p)
1863 {
1864 return 0;
1865 }
1866 static inline void set_numabalancing_state(bool enabled)
1867 {
1868 }
1869 static inline void task_numa_free(struct task_struct *p)
1870 {
1871 }
1872 static inline bool should_numa_migrate_memory(struct task_struct *p,
1873 struct page *page, int src_nid, int dst_cpu)
1874 {
1875 return true;
1876 }
1877 #endif
1878
1879 static inline struct pid *task_pid(struct task_struct *task)
1880 {
1881 return task->pids[PIDTYPE_PID].pid;
1882 }
1883
1884 static inline struct pid *task_tgid(struct task_struct *task)
1885 {
1886 return task->group_leader->pids[PIDTYPE_PID].pid;
1887 }
1888
1889 /*
1890 * Without tasklist or rcu lock it is not safe to dereference
1891 * the result of task_pgrp/task_session even if task == current,
1892 * we can race with another thread doing sys_setsid/sys_setpgid.
1893 */
1894 static inline struct pid *task_pgrp(struct task_struct *task)
1895 {
1896 return task->group_leader->pids[PIDTYPE_PGID].pid;
1897 }
1898
1899 static inline struct pid *task_session(struct task_struct *task)
1900 {
1901 return task->group_leader->pids[PIDTYPE_SID].pid;
1902 }
1903
1904 struct pid_namespace;
1905
1906 /*
1907 * the helpers to get the task's different pids as they are seen
1908 * from various namespaces
1909 *
1910 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1911 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1912 * current.
1913 * task_xid_nr_ns() : id seen from the ns specified;
1914 *
1915 * set_task_vxid() : assigns a virtual id to a task;
1916 *
1917 * see also pid_nr() etc in include/linux/pid.h
1918 */
1919 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1920 struct pid_namespace *ns);
1921
1922 static inline pid_t task_pid_nr(struct task_struct *tsk)
1923 {
1924 return tsk->pid;
1925 }
1926
1927 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1928 struct pid_namespace *ns)
1929 {
1930 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1931 }
1932
1933 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1934 {
1935 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1936 }
1937
1938
1939 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1940 {
1941 return tsk->tgid;
1942 }
1943
1944 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1945
1946 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1947 {
1948 return pid_vnr(task_tgid(tsk));
1949 }
1950
1951
1952 static inline int pid_alive(const struct task_struct *p);
1953 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1954 {
1955 pid_t pid = 0;
1956
1957 rcu_read_lock();
1958 if (pid_alive(tsk))
1959 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1960 rcu_read_unlock();
1961
1962 return pid;
1963 }
1964
1965 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1966 {
1967 return task_ppid_nr_ns(tsk, &init_pid_ns);
1968 }
1969
1970 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1971 struct pid_namespace *ns)
1972 {
1973 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1974 }
1975
1976 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1977 {
1978 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1979 }
1980
1981
1982 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1983 struct pid_namespace *ns)
1984 {
1985 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1986 }
1987
1988 static inline pid_t task_session_vnr(struct task_struct *tsk)
1989 {
1990 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1991 }
1992
1993 /* obsolete, do not use */
1994 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1995 {
1996 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1997 }
1998
1999 /**
2000 * pid_alive - check that a task structure is not stale
2001 * @p: Task structure to be checked.
2002 *
2003 * Test if a process is not yet dead (at most zombie state)
2004 * If pid_alive fails, then pointers within the task structure
2005 * can be stale and must not be dereferenced.
2006 *
2007 * Return: 1 if the process is alive. 0 otherwise.
2008 */
2009 static inline int pid_alive(const struct task_struct *p)
2010 {
2011 return p->pids[PIDTYPE_PID].pid != NULL;
2012 }
2013
2014 /**
2015 * is_global_init - check if a task structure is init
2016 * @tsk: Task structure to be checked.
2017 *
2018 * Check if a task structure is the first user space task the kernel created.
2019 *
2020 * Return: 1 if the task structure is init. 0 otherwise.
2021 */
2022 static inline int is_global_init(struct task_struct *tsk)
2023 {
2024 return tsk->pid == 1;
2025 }
2026
2027 extern struct pid *cad_pid;
2028
2029 extern void free_task(struct task_struct *tsk);
2030 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2031
2032 extern void __put_task_struct(struct task_struct *t);
2033
2034 static inline void put_task_struct(struct task_struct *t)
2035 {
2036 if (atomic_dec_and_test(&t->usage))
2037 __put_task_struct(t);
2038 }
2039
2040 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2041 extern void task_cputime(struct task_struct *t,
2042 cputime_t *utime, cputime_t *stime);
2043 extern void task_cputime_scaled(struct task_struct *t,
2044 cputime_t *utimescaled, cputime_t *stimescaled);
2045 extern cputime_t task_gtime(struct task_struct *t);
2046 #else
2047 static inline void task_cputime(struct task_struct *t,
2048 cputime_t *utime, cputime_t *stime)
2049 {
2050 if (utime)
2051 *utime = t->utime;
2052 if (stime)
2053 *stime = t->stime;
2054 }
2055
2056 static inline void task_cputime_scaled(struct task_struct *t,
2057 cputime_t *utimescaled,
2058 cputime_t *stimescaled)
2059 {
2060 if (utimescaled)
2061 *utimescaled = t->utimescaled;
2062 if (stimescaled)
2063 *stimescaled = t->stimescaled;
2064 }
2065
2066 static inline cputime_t task_gtime(struct task_struct *t)
2067 {
2068 return t->gtime;
2069 }
2070 #endif
2071 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2072 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2073
2074 /*
2075 * Per process flags
2076 */
2077 #define PF_EXITING 0x00000004 /* getting shut down */
2078 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2079 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2080 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2081 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2082 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2083 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2084 #define PF_DUMPCORE 0x00000200 /* dumped core */
2085 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2086 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2087 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2088 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2089 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2090 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2091 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2092 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2093 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2094 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2095 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2096 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2097 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2098 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2099 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2100 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2101 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2102 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2103 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2104
2105 /*
2106 * Only the _current_ task can read/write to tsk->flags, but other
2107 * tasks can access tsk->flags in readonly mode for example
2108 * with tsk_used_math (like during threaded core dumping).
2109 * There is however an exception to this rule during ptrace
2110 * or during fork: the ptracer task is allowed to write to the
2111 * child->flags of its traced child (same goes for fork, the parent
2112 * can write to the child->flags), because we're guaranteed the
2113 * child is not running and in turn not changing child->flags
2114 * at the same time the parent does it.
2115 */
2116 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2117 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2118 #define clear_used_math() clear_stopped_child_used_math(current)
2119 #define set_used_math() set_stopped_child_used_math(current)
2120 #define conditional_stopped_child_used_math(condition, child) \
2121 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2122 #define conditional_used_math(condition) \
2123 conditional_stopped_child_used_math(condition, current)
2124 #define copy_to_stopped_child_used_math(child) \
2125 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2126 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2127 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2128 #define used_math() tsk_used_math(current)
2129
2130 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2131 * __GFP_FS is also cleared as it implies __GFP_IO.
2132 */
2133 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2134 {
2135 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2136 flags &= ~(__GFP_IO | __GFP_FS);
2137 return flags;
2138 }
2139
2140 static inline unsigned int memalloc_noio_save(void)
2141 {
2142 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2143 current->flags |= PF_MEMALLOC_NOIO;
2144 return flags;
2145 }
2146
2147 static inline void memalloc_noio_restore(unsigned int flags)
2148 {
2149 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2150 }
2151
2152 /* Per-process atomic flags. */
2153 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2154 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2155 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2156
2157
2158 #define TASK_PFA_TEST(name, func) \
2159 static inline bool task_##func(struct task_struct *p) \
2160 { return test_bit(PFA_##name, &p->atomic_flags); }
2161 #define TASK_PFA_SET(name, func) \
2162 static inline void task_set_##func(struct task_struct *p) \
2163 { set_bit(PFA_##name, &p->atomic_flags); }
2164 #define TASK_PFA_CLEAR(name, func) \
2165 static inline void task_clear_##func(struct task_struct *p) \
2166 { clear_bit(PFA_##name, &p->atomic_flags); }
2167
2168 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2169 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2170
2171 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2172 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2173 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2174
2175 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2176 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2177 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2178
2179 /*
2180 * task->jobctl flags
2181 */
2182 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2183
2184 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2185 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2186 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2187 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2188 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2189 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2190 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2191
2192 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2193 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2194 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2195 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2196 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2197 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2198 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2199
2200 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2201 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2202
2203 extern bool task_set_jobctl_pending(struct task_struct *task,
2204 unsigned long mask);
2205 extern void task_clear_jobctl_trapping(struct task_struct *task);
2206 extern void task_clear_jobctl_pending(struct task_struct *task,
2207 unsigned long mask);
2208
2209 static inline void rcu_copy_process(struct task_struct *p)
2210 {
2211 #ifdef CONFIG_PREEMPT_RCU
2212 p->rcu_read_lock_nesting = 0;
2213 p->rcu_read_unlock_special.s = 0;
2214 p->rcu_blocked_node = NULL;
2215 INIT_LIST_HEAD(&p->rcu_node_entry);
2216 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2217 #ifdef CONFIG_TASKS_RCU
2218 p->rcu_tasks_holdout = false;
2219 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2220 p->rcu_tasks_idle_cpu = -1;
2221 #endif /* #ifdef CONFIG_TASKS_RCU */
2222 }
2223
2224 static inline void tsk_restore_flags(struct task_struct *task,
2225 unsigned long orig_flags, unsigned long flags)
2226 {
2227 task->flags &= ~flags;
2228 task->flags |= orig_flags & flags;
2229 }
2230
2231 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2232 const struct cpumask *trial);
2233 extern int task_can_attach(struct task_struct *p,
2234 const struct cpumask *cs_cpus_allowed);
2235 #ifdef CONFIG_SMP
2236 extern void do_set_cpus_allowed(struct task_struct *p,
2237 const struct cpumask *new_mask);
2238
2239 extern int set_cpus_allowed_ptr(struct task_struct *p,
2240 const struct cpumask *new_mask);
2241 #else
2242 static inline void do_set_cpus_allowed(struct task_struct *p,
2243 const struct cpumask *new_mask)
2244 {
2245 }
2246 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2247 const struct cpumask *new_mask)
2248 {
2249 if (!cpumask_test_cpu(0, new_mask))
2250 return -EINVAL;
2251 return 0;
2252 }
2253 #endif
2254
2255 #ifdef CONFIG_NO_HZ_COMMON
2256 void calc_load_enter_idle(void);
2257 void calc_load_exit_idle(void);
2258 #else
2259 static inline void calc_load_enter_idle(void) { }
2260 static inline void calc_load_exit_idle(void) { }
2261 #endif /* CONFIG_NO_HZ_COMMON */
2262
2263 /*
2264 * Do not use outside of architecture code which knows its limitations.
2265 *
2266 * sched_clock() has no promise of monotonicity or bounded drift between
2267 * CPUs, use (which you should not) requires disabling IRQs.
2268 *
2269 * Please use one of the three interfaces below.
2270 */
2271 extern unsigned long long notrace sched_clock(void);
2272 /*
2273 * See the comment in kernel/sched/clock.c
2274 */
2275 extern u64 cpu_clock(int cpu);
2276 extern u64 local_clock(void);
2277 extern u64 running_clock(void);
2278 extern u64 sched_clock_cpu(int cpu);
2279
2280
2281 extern void sched_clock_init(void);
2282
2283 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2284 static inline void sched_clock_tick(void)
2285 {
2286 }
2287
2288 static inline void sched_clock_idle_sleep_event(void)
2289 {
2290 }
2291
2292 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2293 {
2294 }
2295 #else
2296 /*
2297 * Architectures can set this to 1 if they have specified
2298 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2299 * but then during bootup it turns out that sched_clock()
2300 * is reliable after all:
2301 */
2302 extern int sched_clock_stable(void);
2303 extern void set_sched_clock_stable(void);
2304 extern void clear_sched_clock_stable(void);
2305
2306 extern void sched_clock_tick(void);
2307 extern void sched_clock_idle_sleep_event(void);
2308 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2309 #endif
2310
2311 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2312 /*
2313 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2314 * The reason for this explicit opt-in is not to have perf penalty with
2315 * slow sched_clocks.
2316 */
2317 extern void enable_sched_clock_irqtime(void);
2318 extern void disable_sched_clock_irqtime(void);
2319 #else
2320 static inline void enable_sched_clock_irqtime(void) {}
2321 static inline void disable_sched_clock_irqtime(void) {}
2322 #endif
2323
2324 extern unsigned long long
2325 task_sched_runtime(struct task_struct *task);
2326
2327 /* sched_exec is called by processes performing an exec */
2328 #ifdef CONFIG_SMP
2329 extern void sched_exec(void);
2330 #else
2331 #define sched_exec() {}
2332 #endif
2333
2334 extern void sched_clock_idle_sleep_event(void);
2335 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2336
2337 #ifdef CONFIG_HOTPLUG_CPU
2338 extern void idle_task_exit(void);
2339 #else
2340 static inline void idle_task_exit(void) {}
2341 #endif
2342
2343 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2344 extern void wake_up_nohz_cpu(int cpu);
2345 #else
2346 static inline void wake_up_nohz_cpu(int cpu) { }
2347 #endif
2348
2349 #ifdef CONFIG_NO_HZ_FULL
2350 extern bool sched_can_stop_tick(void);
2351 extern u64 scheduler_tick_max_deferment(void);
2352 #else
2353 static inline bool sched_can_stop_tick(void) { return false; }
2354 #endif
2355
2356 #ifdef CONFIG_SCHED_AUTOGROUP
2357 extern void sched_autogroup_create_attach(struct task_struct *p);
2358 extern void sched_autogroup_detach(struct task_struct *p);
2359 extern void sched_autogroup_fork(struct signal_struct *sig);
2360 extern void sched_autogroup_exit(struct signal_struct *sig);
2361 #ifdef CONFIG_PROC_FS
2362 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2363 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2364 #endif
2365 #else
2366 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2367 static inline void sched_autogroup_detach(struct task_struct *p) { }
2368 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2369 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2370 #endif
2371
2372 extern int yield_to(struct task_struct *p, bool preempt);
2373 extern void set_user_nice(struct task_struct *p, long nice);
2374 extern int task_prio(const struct task_struct *p);
2375 /**
2376 * task_nice - return the nice value of a given task.
2377 * @p: the task in question.
2378 *
2379 * Return: The nice value [ -20 ... 0 ... 19 ].
2380 */
2381 static inline int task_nice(const struct task_struct *p)
2382 {
2383 return PRIO_TO_NICE((p)->static_prio);
2384 }
2385 extern int can_nice(const struct task_struct *p, const int nice);
2386 extern int task_curr(const struct task_struct *p);
2387 extern int idle_cpu(int cpu);
2388 extern int sched_setscheduler(struct task_struct *, int,
2389 const struct sched_param *);
2390 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2391 const struct sched_param *);
2392 extern int sched_setattr(struct task_struct *,
2393 const struct sched_attr *);
2394 extern struct task_struct *idle_task(int cpu);
2395 /**
2396 * is_idle_task - is the specified task an idle task?
2397 * @p: the task in question.
2398 *
2399 * Return: 1 if @p is an idle task. 0 otherwise.
2400 */
2401 static inline bool is_idle_task(const struct task_struct *p)
2402 {
2403 return p->pid == 0;
2404 }
2405 extern struct task_struct *curr_task(int cpu);
2406 extern void set_curr_task(int cpu, struct task_struct *p);
2407
2408 void yield(void);
2409
2410 union thread_union {
2411 struct thread_info thread_info;
2412 unsigned long stack[THREAD_SIZE/sizeof(long)];
2413 };
2414
2415 #ifndef __HAVE_ARCH_KSTACK_END
2416 static inline int kstack_end(void *addr)
2417 {
2418 /* Reliable end of stack detection:
2419 * Some APM bios versions misalign the stack
2420 */
2421 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2422 }
2423 #endif
2424
2425 extern union thread_union init_thread_union;
2426 extern struct task_struct init_task;
2427
2428 extern struct mm_struct init_mm;
2429
2430 extern struct pid_namespace init_pid_ns;
2431
2432 /*
2433 * find a task by one of its numerical ids
2434 *
2435 * find_task_by_pid_ns():
2436 * finds a task by its pid in the specified namespace
2437 * find_task_by_vpid():
2438 * finds a task by its virtual pid
2439 *
2440 * see also find_vpid() etc in include/linux/pid.h
2441 */
2442
2443 extern struct task_struct *find_task_by_vpid(pid_t nr);
2444 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2445 struct pid_namespace *ns);
2446
2447 /* per-UID process charging. */
2448 extern struct user_struct * alloc_uid(kuid_t);
2449 static inline struct user_struct *get_uid(struct user_struct *u)
2450 {
2451 atomic_inc(&u->__count);
2452 return u;
2453 }
2454 extern void free_uid(struct user_struct *);
2455
2456 #include <asm/current.h>
2457
2458 extern void xtime_update(unsigned long ticks);
2459
2460 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2461 extern int wake_up_process(struct task_struct *tsk);
2462 extern void wake_up_new_task(struct task_struct *tsk);
2463 #ifdef CONFIG_SMP
2464 extern void kick_process(struct task_struct *tsk);
2465 #else
2466 static inline void kick_process(struct task_struct *tsk) { }
2467 #endif
2468 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2469 extern void sched_dead(struct task_struct *p);
2470
2471 extern void proc_caches_init(void);
2472 extern void flush_signals(struct task_struct *);
2473 extern void ignore_signals(struct task_struct *);
2474 extern void flush_signal_handlers(struct task_struct *, int force_default);
2475 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2476
2477 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2478 {
2479 unsigned long flags;
2480 int ret;
2481
2482 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2483 ret = dequeue_signal(tsk, mask, info);
2484 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2485
2486 return ret;
2487 }
2488
2489 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2490 sigset_t *mask);
2491 extern void unblock_all_signals(void);
2492 extern void release_task(struct task_struct * p);
2493 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2494 extern int force_sigsegv(int, struct task_struct *);
2495 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2496 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2497 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2498 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2499 const struct cred *, u32);
2500 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2501 extern int kill_pid(struct pid *pid, int sig, int priv);
2502 extern int kill_proc_info(int, struct siginfo *, pid_t);
2503 extern __must_check bool do_notify_parent(struct task_struct *, int);
2504 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2505 extern void force_sig(int, struct task_struct *);
2506 extern int send_sig(int, struct task_struct *, int);
2507 extern int zap_other_threads(struct task_struct *p);
2508 extern struct sigqueue *sigqueue_alloc(void);
2509 extern void sigqueue_free(struct sigqueue *);
2510 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2511 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2512
2513 static inline void restore_saved_sigmask(void)
2514 {
2515 if (test_and_clear_restore_sigmask())
2516 __set_current_blocked(&current->saved_sigmask);
2517 }
2518
2519 static inline sigset_t *sigmask_to_save(void)
2520 {
2521 sigset_t *res = &current->blocked;
2522 if (unlikely(test_restore_sigmask()))
2523 res = &current->saved_sigmask;
2524 return res;
2525 }
2526
2527 static inline int kill_cad_pid(int sig, int priv)
2528 {
2529 return kill_pid(cad_pid, sig, priv);
2530 }
2531
2532 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2533 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2534 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2535 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2536
2537 /*
2538 * True if we are on the alternate signal stack.
2539 */
2540 static inline int on_sig_stack(unsigned long sp)
2541 {
2542 #ifdef CONFIG_STACK_GROWSUP
2543 return sp >= current->sas_ss_sp &&
2544 sp - current->sas_ss_sp < current->sas_ss_size;
2545 #else
2546 return sp > current->sas_ss_sp &&
2547 sp - current->sas_ss_sp <= current->sas_ss_size;
2548 #endif
2549 }
2550
2551 static inline int sas_ss_flags(unsigned long sp)
2552 {
2553 if (!current->sas_ss_size)
2554 return SS_DISABLE;
2555
2556 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2557 }
2558
2559 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2560 {
2561 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2562 #ifdef CONFIG_STACK_GROWSUP
2563 return current->sas_ss_sp;
2564 #else
2565 return current->sas_ss_sp + current->sas_ss_size;
2566 #endif
2567 return sp;
2568 }
2569
2570 /*
2571 * Routines for handling mm_structs
2572 */
2573 extern struct mm_struct * mm_alloc(void);
2574
2575 /* mmdrop drops the mm and the page tables */
2576 extern void __mmdrop(struct mm_struct *);
2577 static inline void mmdrop(struct mm_struct * mm)
2578 {
2579 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2580 __mmdrop(mm);
2581 }
2582
2583 /* mmput gets rid of the mappings and all user-space */
2584 extern void mmput(struct mm_struct *);
2585 /* Grab a reference to a task's mm, if it is not already going away */
2586 extern struct mm_struct *get_task_mm(struct task_struct *task);
2587 /*
2588 * Grab a reference to a task's mm, if it is not already going away
2589 * and ptrace_may_access with the mode parameter passed to it
2590 * succeeds.
2591 */
2592 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2593 /* Remove the current tasks stale references to the old mm_struct */
2594 extern void mm_release(struct task_struct *, struct mm_struct *);
2595
2596 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2597 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2598 struct task_struct *, unsigned long);
2599 #else
2600 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2601 struct task_struct *);
2602
2603 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2604 * via pt_regs, so ignore the tls argument passed via C. */
2605 static inline int copy_thread_tls(
2606 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2607 struct task_struct *p, unsigned long tls)
2608 {
2609 return copy_thread(clone_flags, sp, arg, p);
2610 }
2611 #endif
2612 extern void flush_thread(void);
2613 extern void exit_thread(void);
2614
2615 extern void exit_files(struct task_struct *);
2616 extern void __cleanup_sighand(struct sighand_struct *);
2617
2618 extern void exit_itimers(struct signal_struct *);
2619 extern void flush_itimer_signals(void);
2620
2621 extern void do_group_exit(int);
2622
2623 extern int do_execve(struct filename *,
2624 const char __user * const __user *,
2625 const char __user * const __user *);
2626 extern int do_execveat(int, struct filename *,
2627 const char __user * const __user *,
2628 const char __user * const __user *,
2629 int);
2630 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2631 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2632 struct task_struct *fork_idle(int);
2633 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2634
2635 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2636 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2637 {
2638 __set_task_comm(tsk, from, false);
2639 }
2640 extern char *get_task_comm(char *to, struct task_struct *tsk);
2641
2642 #ifdef CONFIG_SMP
2643 void scheduler_ipi(void);
2644 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2645 #else
2646 static inline void scheduler_ipi(void) { }
2647 static inline unsigned long wait_task_inactive(struct task_struct *p,
2648 long match_state)
2649 {
2650 return 1;
2651 }
2652 #endif
2653
2654 #define tasklist_empty() \
2655 list_empty(&init_task.tasks)
2656
2657 #define next_task(p) \
2658 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2659
2660 #define for_each_process(p) \
2661 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2662
2663 extern bool current_is_single_threaded(void);
2664
2665 /*
2666 * Careful: do_each_thread/while_each_thread is a double loop so
2667 * 'break' will not work as expected - use goto instead.
2668 */
2669 #define do_each_thread(g, t) \
2670 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2671
2672 #define while_each_thread(g, t) \
2673 while ((t = next_thread(t)) != g)
2674
2675 #define __for_each_thread(signal, t) \
2676 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2677
2678 #define for_each_thread(p, t) \
2679 __for_each_thread((p)->signal, t)
2680
2681 /* Careful: this is a double loop, 'break' won't work as expected. */
2682 #define for_each_process_thread(p, t) \
2683 for_each_process(p) for_each_thread(p, t)
2684
2685 static inline int get_nr_threads(struct task_struct *tsk)
2686 {
2687 return tsk->signal->nr_threads;
2688 }
2689
2690 static inline bool thread_group_leader(struct task_struct *p)
2691 {
2692 return p->exit_signal >= 0;
2693 }
2694
2695 /* Do to the insanities of de_thread it is possible for a process
2696 * to have the pid of the thread group leader without actually being
2697 * the thread group leader. For iteration through the pids in proc
2698 * all we care about is that we have a task with the appropriate
2699 * pid, we don't actually care if we have the right task.
2700 */
2701 static inline bool has_group_leader_pid(struct task_struct *p)
2702 {
2703 return task_pid(p) == p->signal->leader_pid;
2704 }
2705
2706 static inline
2707 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2708 {
2709 return p1->signal == p2->signal;
2710 }
2711
2712 static inline struct task_struct *next_thread(const struct task_struct *p)
2713 {
2714 return list_entry_rcu(p->thread_group.next,
2715 struct task_struct, thread_group);
2716 }
2717
2718 static inline int thread_group_empty(struct task_struct *p)
2719 {
2720 return list_empty(&p->thread_group);
2721 }
2722
2723 #define delay_group_leader(p) \
2724 (thread_group_leader(p) && !thread_group_empty(p))
2725
2726 /*
2727 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2728 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2729 * pins the final release of task.io_context. Also protects ->cpuset and
2730 * ->cgroup.subsys[]. And ->vfork_done.
2731 *
2732 * Nests both inside and outside of read_lock(&tasklist_lock).
2733 * It must not be nested with write_lock_irq(&tasklist_lock),
2734 * neither inside nor outside.
2735 */
2736 static inline void task_lock(struct task_struct *p)
2737 {
2738 spin_lock(&p->alloc_lock);
2739 }
2740
2741 static inline void task_unlock(struct task_struct *p)
2742 {
2743 spin_unlock(&p->alloc_lock);
2744 }
2745
2746 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2747 unsigned long *flags);
2748
2749 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2750 unsigned long *flags)
2751 {
2752 struct sighand_struct *ret;
2753
2754 ret = __lock_task_sighand(tsk, flags);
2755 (void)__cond_lock(&tsk->sighand->siglock, ret);
2756 return ret;
2757 }
2758
2759 static inline void unlock_task_sighand(struct task_struct *tsk,
2760 unsigned long *flags)
2761 {
2762 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2763 }
2764
2765 /**
2766 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2767 * @tsk: task causing the changes
2768 *
2769 * All operations which modify a threadgroup - a new thread joining the
2770 * group, death of a member thread (the assertion of PF_EXITING) and
2771 * exec(2) dethreading the process and replacing the leader - are wrapped
2772 * by threadgroup_change_{begin|end}(). This is to provide a place which
2773 * subsystems needing threadgroup stability can hook into for
2774 * synchronization.
2775 */
2776 static inline void threadgroup_change_begin(struct task_struct *tsk)
2777 {
2778 might_sleep();
2779 cgroup_threadgroup_change_begin(tsk);
2780 }
2781
2782 /**
2783 * threadgroup_change_end - mark the end of changes to a threadgroup
2784 * @tsk: task causing the changes
2785 *
2786 * See threadgroup_change_begin().
2787 */
2788 static inline void threadgroup_change_end(struct task_struct *tsk)
2789 {
2790 cgroup_threadgroup_change_end(tsk);
2791 }
2792
2793 #ifndef __HAVE_THREAD_FUNCTIONS
2794
2795 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2796 #define task_stack_page(task) ((task)->stack)
2797
2798 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2799 {
2800 *task_thread_info(p) = *task_thread_info(org);
2801 task_thread_info(p)->task = p;
2802 }
2803
2804 /*
2805 * Return the address of the last usable long on the stack.
2806 *
2807 * When the stack grows down, this is just above the thread
2808 * info struct. Going any lower will corrupt the threadinfo.
2809 *
2810 * When the stack grows up, this is the highest address.
2811 * Beyond that position, we corrupt data on the next page.
2812 */
2813 static inline unsigned long *end_of_stack(struct task_struct *p)
2814 {
2815 #ifdef CONFIG_STACK_GROWSUP
2816 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2817 #else
2818 return (unsigned long *)(task_thread_info(p) + 1);
2819 #endif
2820 }
2821
2822 #endif
2823 #define task_stack_end_corrupted(task) \
2824 (*(end_of_stack(task)) != STACK_END_MAGIC)
2825
2826 static inline int object_is_on_stack(void *obj)
2827 {
2828 void *stack = task_stack_page(current);
2829
2830 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2831 }
2832
2833 extern void thread_info_cache_init(void);
2834
2835 #ifdef CONFIG_DEBUG_STACK_USAGE
2836 static inline unsigned long stack_not_used(struct task_struct *p)
2837 {
2838 unsigned long *n = end_of_stack(p);
2839
2840 do { /* Skip over canary */
2841 n++;
2842 } while (!*n);
2843
2844 return (unsigned long)n - (unsigned long)end_of_stack(p);
2845 }
2846 #endif
2847 extern void set_task_stack_end_magic(struct task_struct *tsk);
2848
2849 /* set thread flags in other task's structures
2850 * - see asm/thread_info.h for TIF_xxxx flags available
2851 */
2852 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2853 {
2854 set_ti_thread_flag(task_thread_info(tsk), flag);
2855 }
2856
2857 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2858 {
2859 clear_ti_thread_flag(task_thread_info(tsk), flag);
2860 }
2861
2862 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2863 {
2864 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2865 }
2866
2867 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2868 {
2869 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2870 }
2871
2872 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2873 {
2874 return test_ti_thread_flag(task_thread_info(tsk), flag);
2875 }
2876
2877 static inline void set_tsk_need_resched(struct task_struct *tsk)
2878 {
2879 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2880 }
2881
2882 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2883 {
2884 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2885 }
2886
2887 static inline int test_tsk_need_resched(struct task_struct *tsk)
2888 {
2889 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2890 }
2891
2892 static inline int restart_syscall(void)
2893 {
2894 set_tsk_thread_flag(current, TIF_SIGPENDING);
2895 return -ERESTARTNOINTR;
2896 }
2897
2898 static inline int signal_pending(struct task_struct *p)
2899 {
2900 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2901 }
2902
2903 static inline int __fatal_signal_pending(struct task_struct *p)
2904 {
2905 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2906 }
2907
2908 static inline int fatal_signal_pending(struct task_struct *p)
2909 {
2910 return signal_pending(p) && __fatal_signal_pending(p);
2911 }
2912
2913 static inline int signal_pending_state(long state, struct task_struct *p)
2914 {
2915 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2916 return 0;
2917 if (!signal_pending(p))
2918 return 0;
2919
2920 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2921 }
2922
2923 /*
2924 * cond_resched() and cond_resched_lock(): latency reduction via
2925 * explicit rescheduling in places that are safe. The return
2926 * value indicates whether a reschedule was done in fact.
2927 * cond_resched_lock() will drop the spinlock before scheduling,
2928 * cond_resched_softirq() will enable bhs before scheduling.
2929 */
2930 extern int _cond_resched(void);
2931
2932 #define cond_resched() ({ \
2933 ___might_sleep(__FILE__, __LINE__, 0); \
2934 _cond_resched(); \
2935 })
2936
2937 extern int __cond_resched_lock(spinlock_t *lock);
2938
2939 #define cond_resched_lock(lock) ({ \
2940 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2941 __cond_resched_lock(lock); \
2942 })
2943
2944 extern int __cond_resched_softirq(void);
2945
2946 #define cond_resched_softirq() ({ \
2947 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2948 __cond_resched_softirq(); \
2949 })
2950
2951 static inline void cond_resched_rcu(void)
2952 {
2953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2954 rcu_read_unlock();
2955 cond_resched();
2956 rcu_read_lock();
2957 #endif
2958 }
2959
2960 /*
2961 * Does a critical section need to be broken due to another
2962 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2963 * but a general need for low latency)
2964 */
2965 static inline int spin_needbreak(spinlock_t *lock)
2966 {
2967 #ifdef CONFIG_PREEMPT
2968 return spin_is_contended(lock);
2969 #else
2970 return 0;
2971 #endif
2972 }
2973
2974 /*
2975 * Idle thread specific functions to determine the need_resched
2976 * polling state.
2977 */
2978 #ifdef TIF_POLLING_NRFLAG
2979 static inline int tsk_is_polling(struct task_struct *p)
2980 {
2981 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2982 }
2983
2984 static inline void __current_set_polling(void)
2985 {
2986 set_thread_flag(TIF_POLLING_NRFLAG);
2987 }
2988
2989 static inline bool __must_check current_set_polling_and_test(void)
2990 {
2991 __current_set_polling();
2992
2993 /*
2994 * Polling state must be visible before we test NEED_RESCHED,
2995 * paired by resched_curr()
2996 */
2997 smp_mb__after_atomic();
2998
2999 return unlikely(tif_need_resched());
3000 }
3001
3002 static inline void __current_clr_polling(void)
3003 {
3004 clear_thread_flag(TIF_POLLING_NRFLAG);
3005 }
3006
3007 static inline bool __must_check current_clr_polling_and_test(void)
3008 {
3009 __current_clr_polling();
3010
3011 /*
3012 * Polling state must be visible before we test NEED_RESCHED,
3013 * paired by resched_curr()
3014 */
3015 smp_mb__after_atomic();
3016
3017 return unlikely(tif_need_resched());
3018 }
3019
3020 #else
3021 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3022 static inline void __current_set_polling(void) { }
3023 static inline void __current_clr_polling(void) { }
3024
3025 static inline bool __must_check current_set_polling_and_test(void)
3026 {
3027 return unlikely(tif_need_resched());
3028 }
3029 static inline bool __must_check current_clr_polling_and_test(void)
3030 {
3031 return unlikely(tif_need_resched());
3032 }
3033 #endif
3034
3035 static inline void current_clr_polling(void)
3036 {
3037 __current_clr_polling();
3038
3039 /*
3040 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3041 * Once the bit is cleared, we'll get IPIs with every new
3042 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3043 * fold.
3044 */
3045 smp_mb(); /* paired with resched_curr() */
3046
3047 preempt_fold_need_resched();
3048 }
3049
3050 static __always_inline bool need_resched(void)
3051 {
3052 return unlikely(tif_need_resched());
3053 }
3054
3055 /*
3056 * Thread group CPU time accounting.
3057 */
3058 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3059 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3060
3061 /*
3062 * Reevaluate whether the task has signals pending delivery.
3063 * Wake the task if so.
3064 * This is required every time the blocked sigset_t changes.
3065 * callers must hold sighand->siglock.
3066 */
3067 extern void recalc_sigpending_and_wake(struct task_struct *t);
3068 extern void recalc_sigpending(void);
3069
3070 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3071
3072 static inline void signal_wake_up(struct task_struct *t, bool resume)
3073 {
3074 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3075 }
3076 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3077 {
3078 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3079 }
3080
3081 /*
3082 * Wrappers for p->thread_info->cpu access. No-op on UP.
3083 */
3084 #ifdef CONFIG_SMP
3085
3086 static inline unsigned int task_cpu(const struct task_struct *p)
3087 {
3088 return task_thread_info(p)->cpu;
3089 }
3090
3091 static inline int task_node(const struct task_struct *p)
3092 {
3093 return cpu_to_node(task_cpu(p));
3094 }
3095
3096 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3097
3098 #else
3099
3100 static inline unsigned int task_cpu(const struct task_struct *p)
3101 {
3102 return 0;
3103 }
3104
3105 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3106 {
3107 }
3108
3109 #endif /* CONFIG_SMP */
3110
3111 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3112 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3113
3114 #ifdef CONFIG_CGROUP_SCHED
3115 extern struct task_group root_task_group;
3116 #endif /* CONFIG_CGROUP_SCHED */
3117
3118 extern int task_can_switch_user(struct user_struct *up,
3119 struct task_struct *tsk);
3120
3121 #ifdef CONFIG_TASK_XACCT
3122 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3123 {
3124 tsk->ioac.rchar += amt;
3125 }
3126
3127 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3128 {
3129 tsk->ioac.wchar += amt;
3130 }
3131
3132 static inline void inc_syscr(struct task_struct *tsk)
3133 {
3134 tsk->ioac.syscr++;
3135 }
3136
3137 static inline void inc_syscw(struct task_struct *tsk)
3138 {
3139 tsk->ioac.syscw++;
3140 }
3141 #else
3142 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3143 {
3144 }
3145
3146 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3147 {
3148 }
3149
3150 static inline void inc_syscr(struct task_struct *tsk)
3151 {
3152 }
3153
3154 static inline void inc_syscw(struct task_struct *tsk)
3155 {
3156 }
3157 #endif
3158
3159 #ifndef TASK_SIZE_OF
3160 #define TASK_SIZE_OF(tsk) TASK_SIZE
3161 #endif
3162
3163 #ifdef CONFIG_MEMCG
3164 extern void mm_update_next_owner(struct mm_struct *mm);
3165 #else
3166 static inline void mm_update_next_owner(struct mm_struct *mm)
3167 {
3168 }
3169 #endif /* CONFIG_MEMCG */
3170
3171 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3172 unsigned int limit)
3173 {
3174 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3175 }
3176
3177 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3178 unsigned int limit)
3179 {
3180 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3181 }
3182
3183 static inline unsigned long rlimit(unsigned int limit)
3184 {
3185 return task_rlimit(current, limit);
3186 }
3187
3188 static inline unsigned long rlimit_max(unsigned int limit)
3189 {
3190 return task_rlimit_max(current, limit);
3191 }
3192
3193 #endif