]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61
62 #include <asm/processor.h>
63
64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66 /*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
109 */
110 struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126 };
127
128 struct exec_domain;
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136
137 #define VMACACHE_BITS 2
138 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
139 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
140
141 /*
142 * These are the constant used to fake the fixed-point load-average
143 * counting. Some notes:
144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
145 * a load-average precision of 10 bits integer + 11 bits fractional
146 * - if you want to count load-averages more often, you need more
147 * precision, or rounding will get you. With 2-second counting freq,
148 * the EXP_n values would be 1981, 2034 and 2043 if still using only
149 * 11 bit fractions.
150 */
151 extern unsigned long avenrun[]; /* Load averages */
152 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
153
154 #define FSHIFT 11 /* nr of bits of precision */
155 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
156 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
157 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
158 #define EXP_5 2014 /* 1/exp(5sec/5min) */
159 #define EXP_15 2037 /* 1/exp(5sec/15min) */
160
161 #define CALC_LOAD(load,exp,n) \
162 load *= exp; \
163 load += n*(FIXED_1-exp); \
164 load >>= FSHIFT;
165
166 extern unsigned long total_forks;
167 extern int nr_threads;
168 DECLARE_PER_CPU(unsigned long, process_counts);
169 extern int nr_processes(void);
170 extern unsigned long nr_running(void);
171 extern bool single_task_running(void);
172 extern unsigned long nr_iowait(void);
173 extern unsigned long nr_iowait_cpu(int cpu);
174 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
175
176 extern void calc_global_load(unsigned long ticks);
177 extern void update_cpu_load_nohz(void);
178
179 extern unsigned long get_parent_ip(unsigned long addr);
180
181 extern void dump_cpu_task(int cpu);
182
183 struct seq_file;
184 struct cfs_rq;
185 struct task_group;
186 #ifdef CONFIG_SCHED_DEBUG
187 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
188 extern void proc_sched_set_task(struct task_struct *p);
189 extern void
190 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
191 #endif
192
193 /*
194 * Task state bitmask. NOTE! These bits are also
195 * encoded in fs/proc/array.c: get_task_state().
196 *
197 * We have two separate sets of flags: task->state
198 * is about runnability, while task->exit_state are
199 * about the task exiting. Confusing, but this way
200 * modifying one set can't modify the other one by
201 * mistake.
202 */
203 #define TASK_RUNNING 0
204 #define TASK_INTERRUPTIBLE 1
205 #define TASK_UNINTERRUPTIBLE 2
206 #define __TASK_STOPPED 4
207 #define __TASK_TRACED 8
208 /* in tsk->exit_state */
209 #define EXIT_DEAD 16
210 #define EXIT_ZOMBIE 32
211 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
212 /* in tsk->state again */
213 #define TASK_DEAD 64
214 #define TASK_WAKEKILL 128
215 #define TASK_WAKING 256
216 #define TASK_PARKED 512
217 #define TASK_STATE_MAX 1024
218
219 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
220
221 extern char ___assert_task_state[1 - 2*!!(
222 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
223
224 /* Convenience macros for the sake of set_task_state */
225 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
226 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
227 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
228
229 /* Convenience macros for the sake of wake_up */
230 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
231 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
232
233 /* get_task_state() */
234 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
235 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
236 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
237
238 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
239 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
240 #define task_is_stopped_or_traced(task) \
241 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
242 #define task_contributes_to_load(task) \
243 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
244 (task->flags & PF_FROZEN) == 0)
245
246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
247
248 #define __set_task_state(tsk, state_value) \
249 do { \
250 (tsk)->task_state_change = _THIS_IP_; \
251 (tsk)->state = (state_value); \
252 } while (0)
253 #define set_task_state(tsk, state_value) \
254 do { \
255 (tsk)->task_state_change = _THIS_IP_; \
256 set_mb((tsk)->state, (state_value)); \
257 } while (0)
258
259 /*
260 * set_current_state() includes a barrier so that the write of current->state
261 * is correctly serialised wrt the caller's subsequent test of whether to
262 * actually sleep:
263 *
264 * set_current_state(TASK_UNINTERRUPTIBLE);
265 * if (do_i_need_to_sleep())
266 * schedule();
267 *
268 * If the caller does not need such serialisation then use __set_current_state()
269 */
270 #define __set_current_state(state_value) \
271 do { \
272 current->task_state_change = _THIS_IP_; \
273 current->state = (state_value); \
274 } while (0)
275 #define set_current_state(state_value) \
276 do { \
277 current->task_state_change = _THIS_IP_; \
278 set_mb(current->state, (state_value)); \
279 } while (0)
280
281 #else
282
283 #define __set_task_state(tsk, state_value) \
284 do { (tsk)->state = (state_value); } while (0)
285 #define set_task_state(tsk, state_value) \
286 set_mb((tsk)->state, (state_value))
287
288 /*
289 * set_current_state() includes a barrier so that the write of current->state
290 * is correctly serialised wrt the caller's subsequent test of whether to
291 * actually sleep:
292 *
293 * set_current_state(TASK_UNINTERRUPTIBLE);
294 * if (do_i_need_to_sleep())
295 * schedule();
296 *
297 * If the caller does not need such serialisation then use __set_current_state()
298 */
299 #define __set_current_state(state_value) \
300 do { current->state = (state_value); } while (0)
301 #define set_current_state(state_value) \
302 set_mb(current->state, (state_value))
303
304 #endif
305
306 /* Task command name length */
307 #define TASK_COMM_LEN 16
308
309 #include <linux/spinlock.h>
310
311 /*
312 * This serializes "schedule()" and also protects
313 * the run-queue from deletions/modifications (but
314 * _adding_ to the beginning of the run-queue has
315 * a separate lock).
316 */
317 extern rwlock_t tasklist_lock;
318 extern spinlock_t mmlist_lock;
319
320 struct task_struct;
321
322 #ifdef CONFIG_PROVE_RCU
323 extern int lockdep_tasklist_lock_is_held(void);
324 #endif /* #ifdef CONFIG_PROVE_RCU */
325
326 extern void sched_init(void);
327 extern void sched_init_smp(void);
328 extern asmlinkage void schedule_tail(struct task_struct *prev);
329 extern void init_idle(struct task_struct *idle, int cpu);
330 extern void init_idle_bootup_task(struct task_struct *idle);
331
332 extern int runqueue_is_locked(int cpu);
333
334 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
335 extern void nohz_balance_enter_idle(int cpu);
336 extern void set_cpu_sd_state_idle(void);
337 extern int get_nohz_timer_target(int pinned);
338 #else
339 static inline void nohz_balance_enter_idle(int cpu) { }
340 static inline void set_cpu_sd_state_idle(void) { }
341 static inline int get_nohz_timer_target(int pinned)
342 {
343 return smp_processor_id();
344 }
345 #endif
346
347 /*
348 * Only dump TASK_* tasks. (0 for all tasks)
349 */
350 extern void show_state_filter(unsigned long state_filter);
351
352 static inline void show_state(void)
353 {
354 show_state_filter(0);
355 }
356
357 extern void show_regs(struct pt_regs *);
358
359 /*
360 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
361 * task), SP is the stack pointer of the first frame that should be shown in the back
362 * trace (or NULL if the entire call-chain of the task should be shown).
363 */
364 extern void show_stack(struct task_struct *task, unsigned long *sp);
365
366 void io_schedule(void);
367 long io_schedule_timeout(long timeout);
368
369 extern void cpu_init (void);
370 extern void trap_init(void);
371 extern void update_process_times(int user);
372 extern void scheduler_tick(void);
373
374 extern void sched_show_task(struct task_struct *p);
375
376 #ifdef CONFIG_LOCKUP_DETECTOR
377 extern void touch_softlockup_watchdog(void);
378 extern void touch_softlockup_watchdog_sync(void);
379 extern void touch_all_softlockup_watchdogs(void);
380 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
381 void __user *buffer,
382 size_t *lenp, loff_t *ppos);
383 extern unsigned int softlockup_panic;
384 void lockup_detector_init(void);
385 #else
386 static inline void touch_softlockup_watchdog(void)
387 {
388 }
389 static inline void touch_softlockup_watchdog_sync(void)
390 {
391 }
392 static inline void touch_all_softlockup_watchdogs(void)
393 {
394 }
395 static inline void lockup_detector_init(void)
396 {
397 }
398 #endif
399
400 #ifdef CONFIG_DETECT_HUNG_TASK
401 void reset_hung_task_detector(void);
402 #else
403 static inline void reset_hung_task_detector(void)
404 {
405 }
406 #endif
407
408 /* Attach to any functions which should be ignored in wchan output. */
409 #define __sched __attribute__((__section__(".sched.text")))
410
411 /* Linker adds these: start and end of __sched functions */
412 extern char __sched_text_start[], __sched_text_end[];
413
414 /* Is this address in the __sched functions? */
415 extern int in_sched_functions(unsigned long addr);
416
417 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
418 extern signed long schedule_timeout(signed long timeout);
419 extern signed long schedule_timeout_interruptible(signed long timeout);
420 extern signed long schedule_timeout_killable(signed long timeout);
421 extern signed long schedule_timeout_uninterruptible(signed long timeout);
422 asmlinkage void schedule(void);
423 extern void schedule_preempt_disabled(void);
424
425 struct nsproxy;
426 struct user_namespace;
427
428 #ifdef CONFIG_MMU
429 extern void arch_pick_mmap_layout(struct mm_struct *mm);
430 extern unsigned long
431 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
432 unsigned long, unsigned long);
433 extern unsigned long
434 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
435 unsigned long len, unsigned long pgoff,
436 unsigned long flags);
437 #else
438 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
439 #endif
440
441 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
442 #define SUID_DUMP_USER 1 /* Dump as user of process */
443 #define SUID_DUMP_ROOT 2 /* Dump as root */
444
445 /* mm flags */
446
447 /* for SUID_DUMP_* above */
448 #define MMF_DUMPABLE_BITS 2
449 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
450
451 extern void set_dumpable(struct mm_struct *mm, int value);
452 /*
453 * This returns the actual value of the suid_dumpable flag. For things
454 * that are using this for checking for privilege transitions, it must
455 * test against SUID_DUMP_USER rather than treating it as a boolean
456 * value.
457 */
458 static inline int __get_dumpable(unsigned long mm_flags)
459 {
460 return mm_flags & MMF_DUMPABLE_MASK;
461 }
462
463 static inline int get_dumpable(struct mm_struct *mm)
464 {
465 return __get_dumpable(mm->flags);
466 }
467
468 /* coredump filter bits */
469 #define MMF_DUMP_ANON_PRIVATE 2
470 #define MMF_DUMP_ANON_SHARED 3
471 #define MMF_DUMP_MAPPED_PRIVATE 4
472 #define MMF_DUMP_MAPPED_SHARED 5
473 #define MMF_DUMP_ELF_HEADERS 6
474 #define MMF_DUMP_HUGETLB_PRIVATE 7
475 #define MMF_DUMP_HUGETLB_SHARED 8
476
477 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
478 #define MMF_DUMP_FILTER_BITS 7
479 #define MMF_DUMP_FILTER_MASK \
480 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
481 #define MMF_DUMP_FILTER_DEFAULT \
482 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
483 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
484
485 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
486 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
487 #else
488 # define MMF_DUMP_MASK_DEFAULT_ELF 0
489 #endif
490 /* leave room for more dump flags */
491 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
492 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
493 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
494
495 #define MMF_HAS_UPROBES 19 /* has uprobes */
496 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
497
498 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
499
500 struct sighand_struct {
501 atomic_t count;
502 struct k_sigaction action[_NSIG];
503 spinlock_t siglock;
504 wait_queue_head_t signalfd_wqh;
505 };
506
507 struct pacct_struct {
508 int ac_flag;
509 long ac_exitcode;
510 unsigned long ac_mem;
511 cputime_t ac_utime, ac_stime;
512 unsigned long ac_minflt, ac_majflt;
513 };
514
515 struct cpu_itimer {
516 cputime_t expires;
517 cputime_t incr;
518 u32 error;
519 u32 incr_error;
520 };
521
522 /**
523 * struct cputime - snaphsot of system and user cputime
524 * @utime: time spent in user mode
525 * @stime: time spent in system mode
526 *
527 * Gathers a generic snapshot of user and system time.
528 */
529 struct cputime {
530 cputime_t utime;
531 cputime_t stime;
532 };
533
534 /**
535 * struct task_cputime - collected CPU time counts
536 * @utime: time spent in user mode, in &cputime_t units
537 * @stime: time spent in kernel mode, in &cputime_t units
538 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
539 *
540 * This is an extension of struct cputime that includes the total runtime
541 * spent by the task from the scheduler point of view.
542 *
543 * As a result, this structure groups together three kinds of CPU time
544 * that are tracked for threads and thread groups. Most things considering
545 * CPU time want to group these counts together and treat all three
546 * of them in parallel.
547 */
548 struct task_cputime {
549 cputime_t utime;
550 cputime_t stime;
551 unsigned long long sum_exec_runtime;
552 };
553 /* Alternate field names when used to cache expirations. */
554 #define prof_exp stime
555 #define virt_exp utime
556 #define sched_exp sum_exec_runtime
557
558 #define INIT_CPUTIME \
559 (struct task_cputime) { \
560 .utime = 0, \
561 .stime = 0, \
562 .sum_exec_runtime = 0, \
563 }
564
565 #ifdef CONFIG_PREEMPT_COUNT
566 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
567 #else
568 #define PREEMPT_DISABLED PREEMPT_ENABLED
569 #endif
570
571 /*
572 * Disable preemption until the scheduler is running.
573 * Reset by start_kernel()->sched_init()->init_idle().
574 *
575 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
576 * before the scheduler is active -- see should_resched().
577 */
578 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
579
580 /**
581 * struct thread_group_cputimer - thread group interval timer counts
582 * @cputime: thread group interval timers.
583 * @running: non-zero when there are timers running and
584 * @cputime receives updates.
585 * @lock: lock for fields in this struct.
586 *
587 * This structure contains the version of task_cputime, above, that is
588 * used for thread group CPU timer calculations.
589 */
590 struct thread_group_cputimer {
591 struct task_cputime cputime;
592 int running;
593 raw_spinlock_t lock;
594 };
595
596 #include <linux/rwsem.h>
597 struct autogroup;
598
599 /*
600 * NOTE! "signal_struct" does not have its own
601 * locking, because a shared signal_struct always
602 * implies a shared sighand_struct, so locking
603 * sighand_struct is always a proper superset of
604 * the locking of signal_struct.
605 */
606 struct signal_struct {
607 atomic_t sigcnt;
608 atomic_t live;
609 int nr_threads;
610 struct list_head thread_head;
611
612 wait_queue_head_t wait_chldexit; /* for wait4() */
613
614 /* current thread group signal load-balancing target: */
615 struct task_struct *curr_target;
616
617 /* shared signal handling: */
618 struct sigpending shared_pending;
619
620 /* thread group exit support */
621 int group_exit_code;
622 /* overloaded:
623 * - notify group_exit_task when ->count is equal to notify_count
624 * - everyone except group_exit_task is stopped during signal delivery
625 * of fatal signals, group_exit_task processes the signal.
626 */
627 int notify_count;
628 struct task_struct *group_exit_task;
629
630 /* thread group stop support, overloads group_exit_code too */
631 int group_stop_count;
632 unsigned int flags; /* see SIGNAL_* flags below */
633
634 /*
635 * PR_SET_CHILD_SUBREAPER marks a process, like a service
636 * manager, to re-parent orphan (double-forking) child processes
637 * to this process instead of 'init'. The service manager is
638 * able to receive SIGCHLD signals and is able to investigate
639 * the process until it calls wait(). All children of this
640 * process will inherit a flag if they should look for a
641 * child_subreaper process at exit.
642 */
643 unsigned int is_child_subreaper:1;
644 unsigned int has_child_subreaper:1;
645
646 /* POSIX.1b Interval Timers */
647 int posix_timer_id;
648 struct list_head posix_timers;
649
650 /* ITIMER_REAL timer for the process */
651 struct hrtimer real_timer;
652 struct pid *leader_pid;
653 ktime_t it_real_incr;
654
655 /*
656 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
657 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
658 * values are defined to 0 and 1 respectively
659 */
660 struct cpu_itimer it[2];
661
662 /*
663 * Thread group totals for process CPU timers.
664 * See thread_group_cputimer(), et al, for details.
665 */
666 struct thread_group_cputimer cputimer;
667
668 /* Earliest-expiration cache. */
669 struct task_cputime cputime_expires;
670
671 struct list_head cpu_timers[3];
672
673 struct pid *tty_old_pgrp;
674
675 /* boolean value for session group leader */
676 int leader;
677
678 struct tty_struct *tty; /* NULL if no tty */
679
680 #ifdef CONFIG_SCHED_AUTOGROUP
681 struct autogroup *autogroup;
682 #endif
683 /*
684 * Cumulative resource counters for dead threads in the group,
685 * and for reaped dead child processes forked by this group.
686 * Live threads maintain their own counters and add to these
687 * in __exit_signal, except for the group leader.
688 */
689 seqlock_t stats_lock;
690 cputime_t utime, stime, cutime, cstime;
691 cputime_t gtime;
692 cputime_t cgtime;
693 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
694 struct cputime prev_cputime;
695 #endif
696 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
697 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
698 unsigned long inblock, oublock, cinblock, coublock;
699 unsigned long maxrss, cmaxrss;
700 struct task_io_accounting ioac;
701
702 /*
703 * Cumulative ns of schedule CPU time fo dead threads in the
704 * group, not including a zombie group leader, (This only differs
705 * from jiffies_to_ns(utime + stime) if sched_clock uses something
706 * other than jiffies.)
707 */
708 unsigned long long sum_sched_runtime;
709
710 /*
711 * We don't bother to synchronize most readers of this at all,
712 * because there is no reader checking a limit that actually needs
713 * to get both rlim_cur and rlim_max atomically, and either one
714 * alone is a single word that can safely be read normally.
715 * getrlimit/setrlimit use task_lock(current->group_leader) to
716 * protect this instead of the siglock, because they really
717 * have no need to disable irqs.
718 */
719 struct rlimit rlim[RLIM_NLIMITS];
720
721 #ifdef CONFIG_BSD_PROCESS_ACCT
722 struct pacct_struct pacct; /* per-process accounting information */
723 #endif
724 #ifdef CONFIG_TASKSTATS
725 struct taskstats *stats;
726 #endif
727 #ifdef CONFIG_AUDIT
728 unsigned audit_tty;
729 unsigned audit_tty_log_passwd;
730 struct tty_audit_buf *tty_audit_buf;
731 #endif
732 #ifdef CONFIG_CGROUPS
733 /*
734 * group_rwsem prevents new tasks from entering the threadgroup and
735 * member tasks from exiting,a more specifically, setting of
736 * PF_EXITING. fork and exit paths are protected with this rwsem
737 * using threadgroup_change_begin/end(). Users which require
738 * threadgroup to remain stable should use threadgroup_[un]lock()
739 * which also takes care of exec path. Currently, cgroup is the
740 * only user.
741 */
742 struct rw_semaphore group_rwsem;
743 #endif
744
745 oom_flags_t oom_flags;
746 short oom_score_adj; /* OOM kill score adjustment */
747 short oom_score_adj_min; /* OOM kill score adjustment min value.
748 * Only settable by CAP_SYS_RESOURCE. */
749
750 struct mutex cred_guard_mutex; /* guard against foreign influences on
751 * credential calculations
752 * (notably. ptrace) */
753 };
754
755 /*
756 * Bits in flags field of signal_struct.
757 */
758 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
759 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
760 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
761 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
762 /*
763 * Pending notifications to parent.
764 */
765 #define SIGNAL_CLD_STOPPED 0x00000010
766 #define SIGNAL_CLD_CONTINUED 0x00000020
767 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
768
769 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
770
771 /* If true, all threads except ->group_exit_task have pending SIGKILL */
772 static inline int signal_group_exit(const struct signal_struct *sig)
773 {
774 return (sig->flags & SIGNAL_GROUP_EXIT) ||
775 (sig->group_exit_task != NULL);
776 }
777
778 /*
779 * Some day this will be a full-fledged user tracking system..
780 */
781 struct user_struct {
782 atomic_t __count; /* reference count */
783 atomic_t processes; /* How many processes does this user have? */
784 atomic_t sigpending; /* How many pending signals does this user have? */
785 #ifdef CONFIG_INOTIFY_USER
786 atomic_t inotify_watches; /* How many inotify watches does this user have? */
787 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
788 #endif
789 #ifdef CONFIG_FANOTIFY
790 atomic_t fanotify_listeners;
791 #endif
792 #ifdef CONFIG_EPOLL
793 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
794 #endif
795 #ifdef CONFIG_POSIX_MQUEUE
796 /* protected by mq_lock */
797 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
798 #endif
799 unsigned long locked_shm; /* How many pages of mlocked shm ? */
800
801 #ifdef CONFIG_KEYS
802 struct key *uid_keyring; /* UID specific keyring */
803 struct key *session_keyring; /* UID's default session keyring */
804 #endif
805
806 /* Hash table maintenance information */
807 struct hlist_node uidhash_node;
808 kuid_t uid;
809
810 #ifdef CONFIG_PERF_EVENTS
811 atomic_long_t locked_vm;
812 #endif
813 };
814
815 extern int uids_sysfs_init(void);
816
817 extern struct user_struct *find_user(kuid_t);
818
819 extern struct user_struct root_user;
820 #define INIT_USER (&root_user)
821
822
823 struct backing_dev_info;
824 struct reclaim_state;
825
826 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
827 struct sched_info {
828 /* cumulative counters */
829 unsigned long pcount; /* # of times run on this cpu */
830 unsigned long long run_delay; /* time spent waiting on a runqueue */
831
832 /* timestamps */
833 unsigned long long last_arrival,/* when we last ran on a cpu */
834 last_queued; /* when we were last queued to run */
835 };
836 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
837
838 #ifdef CONFIG_TASK_DELAY_ACCT
839 struct task_delay_info {
840 spinlock_t lock;
841 unsigned int flags; /* Private per-task flags */
842
843 /* For each stat XXX, add following, aligned appropriately
844 *
845 * struct timespec XXX_start, XXX_end;
846 * u64 XXX_delay;
847 * u32 XXX_count;
848 *
849 * Atomicity of updates to XXX_delay, XXX_count protected by
850 * single lock above (split into XXX_lock if contention is an issue).
851 */
852
853 /*
854 * XXX_count is incremented on every XXX operation, the delay
855 * associated with the operation is added to XXX_delay.
856 * XXX_delay contains the accumulated delay time in nanoseconds.
857 */
858 u64 blkio_start; /* Shared by blkio, swapin */
859 u64 blkio_delay; /* wait for sync block io completion */
860 u64 swapin_delay; /* wait for swapin block io completion */
861 u32 blkio_count; /* total count of the number of sync block */
862 /* io operations performed */
863 u32 swapin_count; /* total count of the number of swapin block */
864 /* io operations performed */
865
866 u64 freepages_start;
867 u64 freepages_delay; /* wait for memory reclaim */
868 u32 freepages_count; /* total count of memory reclaim */
869 };
870 #endif /* CONFIG_TASK_DELAY_ACCT */
871
872 static inline int sched_info_on(void)
873 {
874 #ifdef CONFIG_SCHEDSTATS
875 return 1;
876 #elif defined(CONFIG_TASK_DELAY_ACCT)
877 extern int delayacct_on;
878 return delayacct_on;
879 #else
880 return 0;
881 #endif
882 }
883
884 enum cpu_idle_type {
885 CPU_IDLE,
886 CPU_NOT_IDLE,
887 CPU_NEWLY_IDLE,
888 CPU_MAX_IDLE_TYPES
889 };
890
891 /*
892 * Increase resolution of cpu_capacity calculations
893 */
894 #define SCHED_CAPACITY_SHIFT 10
895 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
896
897 /*
898 * sched-domains (multiprocessor balancing) declarations:
899 */
900 #ifdef CONFIG_SMP
901 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
902 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
903 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
904 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
905 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
906 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
907 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
908 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
909 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
910 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
911 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
912 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
913 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
914 #define SD_NUMA 0x4000 /* cross-node balancing */
915
916 #ifdef CONFIG_SCHED_SMT
917 static inline int cpu_smt_flags(void)
918 {
919 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
920 }
921 #endif
922
923 #ifdef CONFIG_SCHED_MC
924 static inline int cpu_core_flags(void)
925 {
926 return SD_SHARE_PKG_RESOURCES;
927 }
928 #endif
929
930 #ifdef CONFIG_NUMA
931 static inline int cpu_numa_flags(void)
932 {
933 return SD_NUMA;
934 }
935 #endif
936
937 struct sched_domain_attr {
938 int relax_domain_level;
939 };
940
941 #define SD_ATTR_INIT (struct sched_domain_attr) { \
942 .relax_domain_level = -1, \
943 }
944
945 extern int sched_domain_level_max;
946
947 struct sched_group;
948
949 struct sched_domain {
950 /* These fields must be setup */
951 struct sched_domain *parent; /* top domain must be null terminated */
952 struct sched_domain *child; /* bottom domain must be null terminated */
953 struct sched_group *groups; /* the balancing groups of the domain */
954 unsigned long min_interval; /* Minimum balance interval ms */
955 unsigned long max_interval; /* Maximum balance interval ms */
956 unsigned int busy_factor; /* less balancing by factor if busy */
957 unsigned int imbalance_pct; /* No balance until over watermark */
958 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
959 unsigned int busy_idx;
960 unsigned int idle_idx;
961 unsigned int newidle_idx;
962 unsigned int wake_idx;
963 unsigned int forkexec_idx;
964 unsigned int smt_gain;
965
966 int nohz_idle; /* NOHZ IDLE status */
967 int flags; /* See SD_* */
968 int level;
969
970 /* Runtime fields. */
971 unsigned long last_balance; /* init to jiffies. units in jiffies */
972 unsigned int balance_interval; /* initialise to 1. units in ms. */
973 unsigned int nr_balance_failed; /* initialise to 0 */
974
975 /* idle_balance() stats */
976 u64 max_newidle_lb_cost;
977 unsigned long next_decay_max_lb_cost;
978
979 #ifdef CONFIG_SCHEDSTATS
980 /* load_balance() stats */
981 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
982 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
983 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
984 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
985 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
986 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
987 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
988 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
989
990 /* Active load balancing */
991 unsigned int alb_count;
992 unsigned int alb_failed;
993 unsigned int alb_pushed;
994
995 /* SD_BALANCE_EXEC stats */
996 unsigned int sbe_count;
997 unsigned int sbe_balanced;
998 unsigned int sbe_pushed;
999
1000 /* SD_BALANCE_FORK stats */
1001 unsigned int sbf_count;
1002 unsigned int sbf_balanced;
1003 unsigned int sbf_pushed;
1004
1005 /* try_to_wake_up() stats */
1006 unsigned int ttwu_wake_remote;
1007 unsigned int ttwu_move_affine;
1008 unsigned int ttwu_move_balance;
1009 #endif
1010 #ifdef CONFIG_SCHED_DEBUG
1011 char *name;
1012 #endif
1013 union {
1014 void *private; /* used during construction */
1015 struct rcu_head rcu; /* used during destruction */
1016 };
1017
1018 unsigned int span_weight;
1019 /*
1020 * Span of all CPUs in this domain.
1021 *
1022 * NOTE: this field is variable length. (Allocated dynamically
1023 * by attaching extra space to the end of the structure,
1024 * depending on how many CPUs the kernel has booted up with)
1025 */
1026 unsigned long span[0];
1027 };
1028
1029 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1030 {
1031 return to_cpumask(sd->span);
1032 }
1033
1034 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1035 struct sched_domain_attr *dattr_new);
1036
1037 /* Allocate an array of sched domains, for partition_sched_domains(). */
1038 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1039 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1040
1041 bool cpus_share_cache(int this_cpu, int that_cpu);
1042
1043 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1044 typedef int (*sched_domain_flags_f)(void);
1045
1046 #define SDTL_OVERLAP 0x01
1047
1048 struct sd_data {
1049 struct sched_domain **__percpu sd;
1050 struct sched_group **__percpu sg;
1051 struct sched_group_capacity **__percpu sgc;
1052 };
1053
1054 struct sched_domain_topology_level {
1055 sched_domain_mask_f mask;
1056 sched_domain_flags_f sd_flags;
1057 int flags;
1058 int numa_level;
1059 struct sd_data data;
1060 #ifdef CONFIG_SCHED_DEBUG
1061 char *name;
1062 #endif
1063 };
1064
1065 extern struct sched_domain_topology_level *sched_domain_topology;
1066
1067 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1068 extern void wake_up_if_idle(int cpu);
1069
1070 #ifdef CONFIG_SCHED_DEBUG
1071 # define SD_INIT_NAME(type) .name = #type
1072 #else
1073 # define SD_INIT_NAME(type)
1074 #endif
1075
1076 #else /* CONFIG_SMP */
1077
1078 struct sched_domain_attr;
1079
1080 static inline void
1081 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1082 struct sched_domain_attr *dattr_new)
1083 {
1084 }
1085
1086 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1087 {
1088 return true;
1089 }
1090
1091 #endif /* !CONFIG_SMP */
1092
1093
1094 struct io_context; /* See blkdev.h */
1095
1096
1097 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1098 extern void prefetch_stack(struct task_struct *t);
1099 #else
1100 static inline void prefetch_stack(struct task_struct *t) { }
1101 #endif
1102
1103 struct audit_context; /* See audit.c */
1104 struct mempolicy;
1105 struct pipe_inode_info;
1106 struct uts_namespace;
1107
1108 struct load_weight {
1109 unsigned long weight;
1110 u32 inv_weight;
1111 };
1112
1113 struct sched_avg {
1114 /*
1115 * These sums represent an infinite geometric series and so are bound
1116 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1117 * choices of y < 1-2^(-32)*1024.
1118 */
1119 u32 runnable_avg_sum, runnable_avg_period;
1120 u64 last_runnable_update;
1121 s64 decay_count;
1122 unsigned long load_avg_contrib;
1123 };
1124
1125 #ifdef CONFIG_SCHEDSTATS
1126 struct sched_statistics {
1127 u64 wait_start;
1128 u64 wait_max;
1129 u64 wait_count;
1130 u64 wait_sum;
1131 u64 iowait_count;
1132 u64 iowait_sum;
1133
1134 u64 sleep_start;
1135 u64 sleep_max;
1136 s64 sum_sleep_runtime;
1137
1138 u64 block_start;
1139 u64 block_max;
1140 u64 exec_max;
1141 u64 slice_max;
1142
1143 u64 nr_migrations_cold;
1144 u64 nr_failed_migrations_affine;
1145 u64 nr_failed_migrations_running;
1146 u64 nr_failed_migrations_hot;
1147 u64 nr_forced_migrations;
1148
1149 u64 nr_wakeups;
1150 u64 nr_wakeups_sync;
1151 u64 nr_wakeups_migrate;
1152 u64 nr_wakeups_local;
1153 u64 nr_wakeups_remote;
1154 u64 nr_wakeups_affine;
1155 u64 nr_wakeups_affine_attempts;
1156 u64 nr_wakeups_passive;
1157 u64 nr_wakeups_idle;
1158 };
1159 #endif
1160
1161 struct sched_entity {
1162 struct load_weight load; /* for load-balancing */
1163 struct rb_node run_node;
1164 struct list_head group_node;
1165 unsigned int on_rq;
1166
1167 u64 exec_start;
1168 u64 sum_exec_runtime;
1169 u64 vruntime;
1170 u64 prev_sum_exec_runtime;
1171
1172 u64 nr_migrations;
1173
1174 #ifdef CONFIG_SCHEDSTATS
1175 struct sched_statistics statistics;
1176 #endif
1177
1178 #ifdef CONFIG_FAIR_GROUP_SCHED
1179 int depth;
1180 struct sched_entity *parent;
1181 /* rq on which this entity is (to be) queued: */
1182 struct cfs_rq *cfs_rq;
1183 /* rq "owned" by this entity/group: */
1184 struct cfs_rq *my_q;
1185 #endif
1186
1187 #ifdef CONFIG_SMP
1188 /* Per-entity load-tracking */
1189 struct sched_avg avg;
1190 #endif
1191 };
1192
1193 struct sched_rt_entity {
1194 struct list_head run_list;
1195 unsigned long timeout;
1196 unsigned long watchdog_stamp;
1197 unsigned int time_slice;
1198
1199 struct sched_rt_entity *back;
1200 #ifdef CONFIG_RT_GROUP_SCHED
1201 struct sched_rt_entity *parent;
1202 /* rq on which this entity is (to be) queued: */
1203 struct rt_rq *rt_rq;
1204 /* rq "owned" by this entity/group: */
1205 struct rt_rq *my_q;
1206 #endif
1207 };
1208
1209 struct sched_dl_entity {
1210 struct rb_node rb_node;
1211
1212 /*
1213 * Original scheduling parameters. Copied here from sched_attr
1214 * during sched_setattr(), they will remain the same until
1215 * the next sched_setattr().
1216 */
1217 u64 dl_runtime; /* maximum runtime for each instance */
1218 u64 dl_deadline; /* relative deadline of each instance */
1219 u64 dl_period; /* separation of two instances (period) */
1220 u64 dl_bw; /* dl_runtime / dl_deadline */
1221
1222 /*
1223 * Actual scheduling parameters. Initialized with the values above,
1224 * they are continously updated during task execution. Note that
1225 * the remaining runtime could be < 0 in case we are in overrun.
1226 */
1227 s64 runtime; /* remaining runtime for this instance */
1228 u64 deadline; /* absolute deadline for this instance */
1229 unsigned int flags; /* specifying the scheduler behaviour */
1230
1231 /*
1232 * Some bool flags:
1233 *
1234 * @dl_throttled tells if we exhausted the runtime. If so, the
1235 * task has to wait for a replenishment to be performed at the
1236 * next firing of dl_timer.
1237 *
1238 * @dl_new tells if a new instance arrived. If so we must
1239 * start executing it with full runtime and reset its absolute
1240 * deadline;
1241 *
1242 * @dl_boosted tells if we are boosted due to DI. If so we are
1243 * outside bandwidth enforcement mechanism (but only until we
1244 * exit the critical section);
1245 *
1246 * @dl_yielded tells if task gave up the cpu before consuming
1247 * all its available runtime during the last job.
1248 */
1249 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1250
1251 /*
1252 * Bandwidth enforcement timer. Each -deadline task has its
1253 * own bandwidth to be enforced, thus we need one timer per task.
1254 */
1255 struct hrtimer dl_timer;
1256 };
1257
1258 union rcu_special {
1259 struct {
1260 bool blocked;
1261 bool need_qs;
1262 } b;
1263 short s;
1264 };
1265 struct rcu_node;
1266
1267 enum perf_event_task_context {
1268 perf_invalid_context = -1,
1269 perf_hw_context = 0,
1270 perf_sw_context,
1271 perf_nr_task_contexts,
1272 };
1273
1274 struct task_struct {
1275 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1276 void *stack;
1277 atomic_t usage;
1278 unsigned int flags; /* per process flags, defined below */
1279 unsigned int ptrace;
1280
1281 #ifdef CONFIG_SMP
1282 struct llist_node wake_entry;
1283 int on_cpu;
1284 struct task_struct *last_wakee;
1285 unsigned long wakee_flips;
1286 unsigned long wakee_flip_decay_ts;
1287
1288 int wake_cpu;
1289 #endif
1290 int on_rq;
1291
1292 int prio, static_prio, normal_prio;
1293 unsigned int rt_priority;
1294 const struct sched_class *sched_class;
1295 struct sched_entity se;
1296 struct sched_rt_entity rt;
1297 #ifdef CONFIG_CGROUP_SCHED
1298 struct task_group *sched_task_group;
1299 #endif
1300 struct sched_dl_entity dl;
1301
1302 #ifdef CONFIG_PREEMPT_NOTIFIERS
1303 /* list of struct preempt_notifier: */
1304 struct hlist_head preempt_notifiers;
1305 #endif
1306
1307 #ifdef CONFIG_BLK_DEV_IO_TRACE
1308 unsigned int btrace_seq;
1309 #endif
1310
1311 unsigned int policy;
1312 int nr_cpus_allowed;
1313 cpumask_t cpus_allowed;
1314
1315 #ifdef CONFIG_PREEMPT_RCU
1316 int rcu_read_lock_nesting;
1317 union rcu_special rcu_read_unlock_special;
1318 struct list_head rcu_node_entry;
1319 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1320 #ifdef CONFIG_PREEMPT_RCU
1321 struct rcu_node *rcu_blocked_node;
1322 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1323 #ifdef CONFIG_TASKS_RCU
1324 unsigned long rcu_tasks_nvcsw;
1325 bool rcu_tasks_holdout;
1326 struct list_head rcu_tasks_holdout_list;
1327 int rcu_tasks_idle_cpu;
1328 #endif /* #ifdef CONFIG_TASKS_RCU */
1329
1330 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1331 struct sched_info sched_info;
1332 #endif
1333
1334 struct list_head tasks;
1335 #ifdef CONFIG_SMP
1336 struct plist_node pushable_tasks;
1337 struct rb_node pushable_dl_tasks;
1338 #endif
1339
1340 struct mm_struct *mm, *active_mm;
1341 #ifdef CONFIG_COMPAT_BRK
1342 unsigned brk_randomized:1;
1343 #endif
1344 /* per-thread vma caching */
1345 u32 vmacache_seqnum;
1346 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1347 #if defined(SPLIT_RSS_COUNTING)
1348 struct task_rss_stat rss_stat;
1349 #endif
1350 /* task state */
1351 int exit_state;
1352 int exit_code, exit_signal;
1353 int pdeath_signal; /* The signal sent when the parent dies */
1354 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1355
1356 /* Used for emulating ABI behavior of previous Linux versions */
1357 unsigned int personality;
1358
1359 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1360 * execve */
1361 unsigned in_iowait:1;
1362
1363 /* Revert to default priority/policy when forking */
1364 unsigned sched_reset_on_fork:1;
1365 unsigned sched_contributes_to_load:1;
1366
1367 unsigned long atomic_flags; /* Flags needing atomic access. */
1368
1369 pid_t pid;
1370 pid_t tgid;
1371
1372 #ifdef CONFIG_CC_STACKPROTECTOR
1373 /* Canary value for the -fstack-protector gcc feature */
1374 unsigned long stack_canary;
1375 #endif
1376 /*
1377 * pointers to (original) parent process, youngest child, younger sibling,
1378 * older sibling, respectively. (p->father can be replaced with
1379 * p->real_parent->pid)
1380 */
1381 struct task_struct __rcu *real_parent; /* real parent process */
1382 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1383 /*
1384 * children/sibling forms the list of my natural children
1385 */
1386 struct list_head children; /* list of my children */
1387 struct list_head sibling; /* linkage in my parent's children list */
1388 struct task_struct *group_leader; /* threadgroup leader */
1389
1390 /*
1391 * ptraced is the list of tasks this task is using ptrace on.
1392 * This includes both natural children and PTRACE_ATTACH targets.
1393 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1394 */
1395 struct list_head ptraced;
1396 struct list_head ptrace_entry;
1397
1398 /* PID/PID hash table linkage. */
1399 struct pid_link pids[PIDTYPE_MAX];
1400 struct list_head thread_group;
1401 struct list_head thread_node;
1402
1403 struct completion *vfork_done; /* for vfork() */
1404 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1405 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1406
1407 cputime_t utime, stime, utimescaled, stimescaled;
1408 cputime_t gtime;
1409 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1410 struct cputime prev_cputime;
1411 #endif
1412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1413 seqlock_t vtime_seqlock;
1414 unsigned long long vtime_snap;
1415 enum {
1416 VTIME_SLEEPING = 0,
1417 VTIME_USER,
1418 VTIME_SYS,
1419 } vtime_snap_whence;
1420 #endif
1421 unsigned long nvcsw, nivcsw; /* context switch counts */
1422 u64 start_time; /* monotonic time in nsec */
1423 u64 real_start_time; /* boot based time in nsec */
1424 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1425 unsigned long min_flt, maj_flt;
1426
1427 struct task_cputime cputime_expires;
1428 struct list_head cpu_timers[3];
1429
1430 /* process credentials */
1431 const struct cred __rcu *real_cred; /* objective and real subjective task
1432 * credentials (COW) */
1433 const struct cred __rcu *cred; /* effective (overridable) subjective task
1434 * credentials (COW) */
1435 char comm[TASK_COMM_LEN]; /* executable name excluding path
1436 - access with [gs]et_task_comm (which lock
1437 it with task_lock())
1438 - initialized normally by setup_new_exec */
1439 /* file system info */
1440 int link_count, total_link_count;
1441 #ifdef CONFIG_SYSVIPC
1442 /* ipc stuff */
1443 struct sysv_sem sysvsem;
1444 struct sysv_shm sysvshm;
1445 #endif
1446 #ifdef CONFIG_DETECT_HUNG_TASK
1447 /* hung task detection */
1448 unsigned long last_switch_count;
1449 #endif
1450 /* CPU-specific state of this task */
1451 struct thread_struct thread;
1452 /* filesystem information */
1453 struct fs_struct *fs;
1454 /* open file information */
1455 struct files_struct *files;
1456 /* namespaces */
1457 struct nsproxy *nsproxy;
1458 /* signal handlers */
1459 struct signal_struct *signal;
1460 struct sighand_struct *sighand;
1461
1462 sigset_t blocked, real_blocked;
1463 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1464 struct sigpending pending;
1465
1466 unsigned long sas_ss_sp;
1467 size_t sas_ss_size;
1468 int (*notifier)(void *priv);
1469 void *notifier_data;
1470 sigset_t *notifier_mask;
1471 struct callback_head *task_works;
1472
1473 struct audit_context *audit_context;
1474 #ifdef CONFIG_AUDITSYSCALL
1475 kuid_t loginuid;
1476 unsigned int sessionid;
1477 #endif
1478 struct seccomp seccomp;
1479
1480 /* Thread group tracking */
1481 u32 parent_exec_id;
1482 u32 self_exec_id;
1483 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1484 * mempolicy */
1485 spinlock_t alloc_lock;
1486
1487 /* Protection of the PI data structures: */
1488 raw_spinlock_t pi_lock;
1489
1490 #ifdef CONFIG_RT_MUTEXES
1491 /* PI waiters blocked on a rt_mutex held by this task */
1492 struct rb_root pi_waiters;
1493 struct rb_node *pi_waiters_leftmost;
1494 /* Deadlock detection and priority inheritance handling */
1495 struct rt_mutex_waiter *pi_blocked_on;
1496 #endif
1497
1498 #ifdef CONFIG_DEBUG_MUTEXES
1499 /* mutex deadlock detection */
1500 struct mutex_waiter *blocked_on;
1501 #endif
1502 #ifdef CONFIG_TRACE_IRQFLAGS
1503 unsigned int irq_events;
1504 unsigned long hardirq_enable_ip;
1505 unsigned long hardirq_disable_ip;
1506 unsigned int hardirq_enable_event;
1507 unsigned int hardirq_disable_event;
1508 int hardirqs_enabled;
1509 int hardirq_context;
1510 unsigned long softirq_disable_ip;
1511 unsigned long softirq_enable_ip;
1512 unsigned int softirq_disable_event;
1513 unsigned int softirq_enable_event;
1514 int softirqs_enabled;
1515 int softirq_context;
1516 #endif
1517 #ifdef CONFIG_LOCKDEP
1518 # define MAX_LOCK_DEPTH 48UL
1519 u64 curr_chain_key;
1520 int lockdep_depth;
1521 unsigned int lockdep_recursion;
1522 struct held_lock held_locks[MAX_LOCK_DEPTH];
1523 gfp_t lockdep_reclaim_gfp;
1524 #endif
1525
1526 /* journalling filesystem info */
1527 void *journal_info;
1528
1529 /* stacked block device info */
1530 struct bio_list *bio_list;
1531
1532 #ifdef CONFIG_BLOCK
1533 /* stack plugging */
1534 struct blk_plug *plug;
1535 #endif
1536
1537 /* VM state */
1538 struct reclaim_state *reclaim_state;
1539
1540 struct backing_dev_info *backing_dev_info;
1541
1542 struct io_context *io_context;
1543
1544 unsigned long ptrace_message;
1545 siginfo_t *last_siginfo; /* For ptrace use. */
1546 struct task_io_accounting ioac;
1547 #if defined(CONFIG_TASK_XACCT)
1548 u64 acct_rss_mem1; /* accumulated rss usage */
1549 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1550 cputime_t acct_timexpd; /* stime + utime since last update */
1551 #endif
1552 #ifdef CONFIG_CPUSETS
1553 nodemask_t mems_allowed; /* Protected by alloc_lock */
1554 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1555 int cpuset_mem_spread_rotor;
1556 int cpuset_slab_spread_rotor;
1557 #endif
1558 #ifdef CONFIG_CGROUPS
1559 /* Control Group info protected by css_set_lock */
1560 struct css_set __rcu *cgroups;
1561 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1562 struct list_head cg_list;
1563 #endif
1564 #ifdef CONFIG_FUTEX
1565 struct robust_list_head __user *robust_list;
1566 #ifdef CONFIG_COMPAT
1567 struct compat_robust_list_head __user *compat_robust_list;
1568 #endif
1569 struct list_head pi_state_list;
1570 struct futex_pi_state *pi_state_cache;
1571 #endif
1572 #ifdef CONFIG_PERF_EVENTS
1573 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1574 struct mutex perf_event_mutex;
1575 struct list_head perf_event_list;
1576 #endif
1577 #ifdef CONFIG_DEBUG_PREEMPT
1578 unsigned long preempt_disable_ip;
1579 #endif
1580 #ifdef CONFIG_NUMA
1581 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1582 short il_next;
1583 short pref_node_fork;
1584 #endif
1585 #ifdef CONFIG_NUMA_BALANCING
1586 int numa_scan_seq;
1587 unsigned int numa_scan_period;
1588 unsigned int numa_scan_period_max;
1589 int numa_preferred_nid;
1590 unsigned long numa_migrate_retry;
1591 u64 node_stamp; /* migration stamp */
1592 u64 last_task_numa_placement;
1593 u64 last_sum_exec_runtime;
1594 struct callback_head numa_work;
1595
1596 struct list_head numa_entry;
1597 struct numa_group *numa_group;
1598
1599 /*
1600 * numa_faults is an array split into four regions:
1601 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1602 * in this precise order.
1603 *
1604 * faults_memory: Exponential decaying average of faults on a per-node
1605 * basis. Scheduling placement decisions are made based on these
1606 * counts. The values remain static for the duration of a PTE scan.
1607 * faults_cpu: Track the nodes the process was running on when a NUMA
1608 * hinting fault was incurred.
1609 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1610 * during the current scan window. When the scan completes, the counts
1611 * in faults_memory and faults_cpu decay and these values are copied.
1612 */
1613 unsigned long *numa_faults;
1614 unsigned long total_numa_faults;
1615
1616 /*
1617 * numa_faults_locality tracks if faults recorded during the last
1618 * scan window were remote/local. The task scan period is adapted
1619 * based on the locality of the faults with different weights
1620 * depending on whether they were shared or private faults
1621 */
1622 unsigned long numa_faults_locality[2];
1623
1624 unsigned long numa_pages_migrated;
1625 #endif /* CONFIG_NUMA_BALANCING */
1626
1627 struct rcu_head rcu;
1628
1629 /*
1630 * cache last used pipe for splice
1631 */
1632 struct pipe_inode_info *splice_pipe;
1633
1634 struct page_frag task_frag;
1635
1636 #ifdef CONFIG_TASK_DELAY_ACCT
1637 struct task_delay_info *delays;
1638 #endif
1639 #ifdef CONFIG_FAULT_INJECTION
1640 int make_it_fail;
1641 #endif
1642 /*
1643 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1644 * balance_dirty_pages() for some dirty throttling pause
1645 */
1646 int nr_dirtied;
1647 int nr_dirtied_pause;
1648 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1649
1650 #ifdef CONFIG_LATENCYTOP
1651 int latency_record_count;
1652 struct latency_record latency_record[LT_SAVECOUNT];
1653 #endif
1654 /*
1655 * time slack values; these are used to round up poll() and
1656 * select() etc timeout values. These are in nanoseconds.
1657 */
1658 unsigned long timer_slack_ns;
1659 unsigned long default_timer_slack_ns;
1660
1661 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1662 /* Index of current stored address in ret_stack */
1663 int curr_ret_stack;
1664 /* Stack of return addresses for return function tracing */
1665 struct ftrace_ret_stack *ret_stack;
1666 /* time stamp for last schedule */
1667 unsigned long long ftrace_timestamp;
1668 /*
1669 * Number of functions that haven't been traced
1670 * because of depth overrun.
1671 */
1672 atomic_t trace_overrun;
1673 /* Pause for the tracing */
1674 atomic_t tracing_graph_pause;
1675 #endif
1676 #ifdef CONFIG_TRACING
1677 /* state flags for use by tracers */
1678 unsigned long trace;
1679 /* bitmask and counter of trace recursion */
1680 unsigned long trace_recursion;
1681 #endif /* CONFIG_TRACING */
1682 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1683 unsigned int memcg_kmem_skip_account;
1684 struct memcg_oom_info {
1685 struct mem_cgroup *memcg;
1686 gfp_t gfp_mask;
1687 int order;
1688 unsigned int may_oom:1;
1689 } memcg_oom;
1690 #endif
1691 #ifdef CONFIG_UPROBES
1692 struct uprobe_task *utask;
1693 #endif
1694 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1695 unsigned int sequential_io;
1696 unsigned int sequential_io_avg;
1697 #endif
1698 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1699 unsigned long task_state_change;
1700 #endif
1701 };
1702
1703 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1704 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1705
1706 #define TNF_MIGRATED 0x01
1707 #define TNF_NO_GROUP 0x02
1708 #define TNF_SHARED 0x04
1709 #define TNF_FAULT_LOCAL 0x08
1710
1711 #ifdef CONFIG_NUMA_BALANCING
1712 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1713 extern pid_t task_numa_group_id(struct task_struct *p);
1714 extern void set_numabalancing_state(bool enabled);
1715 extern void task_numa_free(struct task_struct *p);
1716 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1717 int src_nid, int dst_cpu);
1718 #else
1719 static inline void task_numa_fault(int last_node, int node, int pages,
1720 int flags)
1721 {
1722 }
1723 static inline pid_t task_numa_group_id(struct task_struct *p)
1724 {
1725 return 0;
1726 }
1727 static inline void set_numabalancing_state(bool enabled)
1728 {
1729 }
1730 static inline void task_numa_free(struct task_struct *p)
1731 {
1732 }
1733 static inline bool should_numa_migrate_memory(struct task_struct *p,
1734 struct page *page, int src_nid, int dst_cpu)
1735 {
1736 return true;
1737 }
1738 #endif
1739
1740 static inline struct pid *task_pid(struct task_struct *task)
1741 {
1742 return task->pids[PIDTYPE_PID].pid;
1743 }
1744
1745 static inline struct pid *task_tgid(struct task_struct *task)
1746 {
1747 return task->group_leader->pids[PIDTYPE_PID].pid;
1748 }
1749
1750 /*
1751 * Without tasklist or rcu lock it is not safe to dereference
1752 * the result of task_pgrp/task_session even if task == current,
1753 * we can race with another thread doing sys_setsid/sys_setpgid.
1754 */
1755 static inline struct pid *task_pgrp(struct task_struct *task)
1756 {
1757 return task->group_leader->pids[PIDTYPE_PGID].pid;
1758 }
1759
1760 static inline struct pid *task_session(struct task_struct *task)
1761 {
1762 return task->group_leader->pids[PIDTYPE_SID].pid;
1763 }
1764
1765 struct pid_namespace;
1766
1767 /*
1768 * the helpers to get the task's different pids as they are seen
1769 * from various namespaces
1770 *
1771 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1772 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1773 * current.
1774 * task_xid_nr_ns() : id seen from the ns specified;
1775 *
1776 * set_task_vxid() : assigns a virtual id to a task;
1777 *
1778 * see also pid_nr() etc in include/linux/pid.h
1779 */
1780 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1781 struct pid_namespace *ns);
1782
1783 static inline pid_t task_pid_nr(struct task_struct *tsk)
1784 {
1785 return tsk->pid;
1786 }
1787
1788 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1789 struct pid_namespace *ns)
1790 {
1791 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1792 }
1793
1794 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1795 {
1796 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1797 }
1798
1799
1800 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1801 {
1802 return tsk->tgid;
1803 }
1804
1805 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1806
1807 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1808 {
1809 return pid_vnr(task_tgid(tsk));
1810 }
1811
1812
1813 static inline int pid_alive(const struct task_struct *p);
1814 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1815 {
1816 pid_t pid = 0;
1817
1818 rcu_read_lock();
1819 if (pid_alive(tsk))
1820 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1821 rcu_read_unlock();
1822
1823 return pid;
1824 }
1825
1826 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1827 {
1828 return task_ppid_nr_ns(tsk, &init_pid_ns);
1829 }
1830
1831 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1832 struct pid_namespace *ns)
1833 {
1834 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1835 }
1836
1837 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1838 {
1839 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1840 }
1841
1842
1843 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1844 struct pid_namespace *ns)
1845 {
1846 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1847 }
1848
1849 static inline pid_t task_session_vnr(struct task_struct *tsk)
1850 {
1851 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1852 }
1853
1854 /* obsolete, do not use */
1855 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1856 {
1857 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1858 }
1859
1860 /**
1861 * pid_alive - check that a task structure is not stale
1862 * @p: Task structure to be checked.
1863 *
1864 * Test if a process is not yet dead (at most zombie state)
1865 * If pid_alive fails, then pointers within the task structure
1866 * can be stale and must not be dereferenced.
1867 *
1868 * Return: 1 if the process is alive. 0 otherwise.
1869 */
1870 static inline int pid_alive(const struct task_struct *p)
1871 {
1872 return p->pids[PIDTYPE_PID].pid != NULL;
1873 }
1874
1875 /**
1876 * is_global_init - check if a task structure is init
1877 * @tsk: Task structure to be checked.
1878 *
1879 * Check if a task structure is the first user space task the kernel created.
1880 *
1881 * Return: 1 if the task structure is init. 0 otherwise.
1882 */
1883 static inline int is_global_init(struct task_struct *tsk)
1884 {
1885 return tsk->pid == 1;
1886 }
1887
1888 extern struct pid *cad_pid;
1889
1890 extern void free_task(struct task_struct *tsk);
1891 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1892
1893 extern void __put_task_struct(struct task_struct *t);
1894
1895 static inline void put_task_struct(struct task_struct *t)
1896 {
1897 if (atomic_dec_and_test(&t->usage))
1898 __put_task_struct(t);
1899 }
1900
1901 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1902 extern void task_cputime(struct task_struct *t,
1903 cputime_t *utime, cputime_t *stime);
1904 extern void task_cputime_scaled(struct task_struct *t,
1905 cputime_t *utimescaled, cputime_t *stimescaled);
1906 extern cputime_t task_gtime(struct task_struct *t);
1907 #else
1908 static inline void task_cputime(struct task_struct *t,
1909 cputime_t *utime, cputime_t *stime)
1910 {
1911 if (utime)
1912 *utime = t->utime;
1913 if (stime)
1914 *stime = t->stime;
1915 }
1916
1917 static inline void task_cputime_scaled(struct task_struct *t,
1918 cputime_t *utimescaled,
1919 cputime_t *stimescaled)
1920 {
1921 if (utimescaled)
1922 *utimescaled = t->utimescaled;
1923 if (stimescaled)
1924 *stimescaled = t->stimescaled;
1925 }
1926
1927 static inline cputime_t task_gtime(struct task_struct *t)
1928 {
1929 return t->gtime;
1930 }
1931 #endif
1932 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1933 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1934
1935 /*
1936 * Per process flags
1937 */
1938 #define PF_EXITING 0x00000004 /* getting shut down */
1939 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1940 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1941 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1942 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1943 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1944 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1945 #define PF_DUMPCORE 0x00000200 /* dumped core */
1946 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1947 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1948 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1949 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1950 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1951 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1952 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1953 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1954 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1955 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1956 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1957 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1958 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1959 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1960 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1961 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1962 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1963 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1964 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1965
1966 /*
1967 * Only the _current_ task can read/write to tsk->flags, but other
1968 * tasks can access tsk->flags in readonly mode for example
1969 * with tsk_used_math (like during threaded core dumping).
1970 * There is however an exception to this rule during ptrace
1971 * or during fork: the ptracer task is allowed to write to the
1972 * child->flags of its traced child (same goes for fork, the parent
1973 * can write to the child->flags), because we're guaranteed the
1974 * child is not running and in turn not changing child->flags
1975 * at the same time the parent does it.
1976 */
1977 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1978 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1979 #define clear_used_math() clear_stopped_child_used_math(current)
1980 #define set_used_math() set_stopped_child_used_math(current)
1981 #define conditional_stopped_child_used_math(condition, child) \
1982 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1983 #define conditional_used_math(condition) \
1984 conditional_stopped_child_used_math(condition, current)
1985 #define copy_to_stopped_child_used_math(child) \
1986 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1987 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1988 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1989 #define used_math() tsk_used_math(current)
1990
1991 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1992 * __GFP_FS is also cleared as it implies __GFP_IO.
1993 */
1994 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1995 {
1996 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1997 flags &= ~(__GFP_IO | __GFP_FS);
1998 return flags;
1999 }
2000
2001 static inline unsigned int memalloc_noio_save(void)
2002 {
2003 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2004 current->flags |= PF_MEMALLOC_NOIO;
2005 return flags;
2006 }
2007
2008 static inline void memalloc_noio_restore(unsigned int flags)
2009 {
2010 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2011 }
2012
2013 /* Per-process atomic flags. */
2014 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2015 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2016 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2017
2018
2019 #define TASK_PFA_TEST(name, func) \
2020 static inline bool task_##func(struct task_struct *p) \
2021 { return test_bit(PFA_##name, &p->atomic_flags); }
2022 #define TASK_PFA_SET(name, func) \
2023 static inline void task_set_##func(struct task_struct *p) \
2024 { set_bit(PFA_##name, &p->atomic_flags); }
2025 #define TASK_PFA_CLEAR(name, func) \
2026 static inline void task_clear_##func(struct task_struct *p) \
2027 { clear_bit(PFA_##name, &p->atomic_flags); }
2028
2029 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2030 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2031
2032 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2033 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2034 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2035
2036 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2037 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2038 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2039
2040 /*
2041 * task->jobctl flags
2042 */
2043 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2044
2045 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2046 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2047 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2048 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2049 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2050 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2051 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2052
2053 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
2054 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
2055 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
2056 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
2057 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
2058 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
2059 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
2060
2061 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2062 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2063
2064 extern bool task_set_jobctl_pending(struct task_struct *task,
2065 unsigned int mask);
2066 extern void task_clear_jobctl_trapping(struct task_struct *task);
2067 extern void task_clear_jobctl_pending(struct task_struct *task,
2068 unsigned int mask);
2069
2070 static inline void rcu_copy_process(struct task_struct *p)
2071 {
2072 #ifdef CONFIG_PREEMPT_RCU
2073 p->rcu_read_lock_nesting = 0;
2074 p->rcu_read_unlock_special.s = 0;
2075 p->rcu_blocked_node = NULL;
2076 INIT_LIST_HEAD(&p->rcu_node_entry);
2077 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2078 #ifdef CONFIG_TASKS_RCU
2079 p->rcu_tasks_holdout = false;
2080 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2081 p->rcu_tasks_idle_cpu = -1;
2082 #endif /* #ifdef CONFIG_TASKS_RCU */
2083 }
2084
2085 static inline void tsk_restore_flags(struct task_struct *task,
2086 unsigned long orig_flags, unsigned long flags)
2087 {
2088 task->flags &= ~flags;
2089 task->flags |= orig_flags & flags;
2090 }
2091
2092 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2093 const struct cpumask *trial);
2094 extern int task_can_attach(struct task_struct *p,
2095 const struct cpumask *cs_cpus_allowed);
2096 #ifdef CONFIG_SMP
2097 extern void do_set_cpus_allowed(struct task_struct *p,
2098 const struct cpumask *new_mask);
2099
2100 extern int set_cpus_allowed_ptr(struct task_struct *p,
2101 const struct cpumask *new_mask);
2102 #else
2103 static inline void do_set_cpus_allowed(struct task_struct *p,
2104 const struct cpumask *new_mask)
2105 {
2106 }
2107 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2108 const struct cpumask *new_mask)
2109 {
2110 if (!cpumask_test_cpu(0, new_mask))
2111 return -EINVAL;
2112 return 0;
2113 }
2114 #endif
2115
2116 #ifdef CONFIG_NO_HZ_COMMON
2117 void calc_load_enter_idle(void);
2118 void calc_load_exit_idle(void);
2119 #else
2120 static inline void calc_load_enter_idle(void) { }
2121 static inline void calc_load_exit_idle(void) { }
2122 #endif /* CONFIG_NO_HZ_COMMON */
2123
2124 #ifndef CONFIG_CPUMASK_OFFSTACK
2125 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2126 {
2127 return set_cpus_allowed_ptr(p, &new_mask);
2128 }
2129 #endif
2130
2131 /*
2132 * Do not use outside of architecture code which knows its limitations.
2133 *
2134 * sched_clock() has no promise of monotonicity or bounded drift between
2135 * CPUs, use (which you should not) requires disabling IRQs.
2136 *
2137 * Please use one of the three interfaces below.
2138 */
2139 extern unsigned long long notrace sched_clock(void);
2140 /*
2141 * See the comment in kernel/sched/clock.c
2142 */
2143 extern u64 cpu_clock(int cpu);
2144 extern u64 local_clock(void);
2145 extern u64 sched_clock_cpu(int cpu);
2146
2147
2148 extern void sched_clock_init(void);
2149
2150 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2151 static inline void sched_clock_tick(void)
2152 {
2153 }
2154
2155 static inline void sched_clock_idle_sleep_event(void)
2156 {
2157 }
2158
2159 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2160 {
2161 }
2162 #else
2163 /*
2164 * Architectures can set this to 1 if they have specified
2165 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2166 * but then during bootup it turns out that sched_clock()
2167 * is reliable after all:
2168 */
2169 extern int sched_clock_stable(void);
2170 extern void set_sched_clock_stable(void);
2171 extern void clear_sched_clock_stable(void);
2172
2173 extern void sched_clock_tick(void);
2174 extern void sched_clock_idle_sleep_event(void);
2175 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2176 #endif
2177
2178 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2179 /*
2180 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2181 * The reason for this explicit opt-in is not to have perf penalty with
2182 * slow sched_clocks.
2183 */
2184 extern void enable_sched_clock_irqtime(void);
2185 extern void disable_sched_clock_irqtime(void);
2186 #else
2187 static inline void enable_sched_clock_irqtime(void) {}
2188 static inline void disable_sched_clock_irqtime(void) {}
2189 #endif
2190
2191 extern unsigned long long
2192 task_sched_runtime(struct task_struct *task);
2193
2194 /* sched_exec is called by processes performing an exec */
2195 #ifdef CONFIG_SMP
2196 extern void sched_exec(void);
2197 #else
2198 #define sched_exec() {}
2199 #endif
2200
2201 extern void sched_clock_idle_sleep_event(void);
2202 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2203
2204 #ifdef CONFIG_HOTPLUG_CPU
2205 extern void idle_task_exit(void);
2206 #else
2207 static inline void idle_task_exit(void) {}
2208 #endif
2209
2210 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2211 extern void wake_up_nohz_cpu(int cpu);
2212 #else
2213 static inline void wake_up_nohz_cpu(int cpu) { }
2214 #endif
2215
2216 #ifdef CONFIG_NO_HZ_FULL
2217 extern bool sched_can_stop_tick(void);
2218 extern u64 scheduler_tick_max_deferment(void);
2219 #else
2220 static inline bool sched_can_stop_tick(void) { return false; }
2221 #endif
2222
2223 #ifdef CONFIG_SCHED_AUTOGROUP
2224 extern void sched_autogroup_create_attach(struct task_struct *p);
2225 extern void sched_autogroup_detach(struct task_struct *p);
2226 extern void sched_autogroup_fork(struct signal_struct *sig);
2227 extern void sched_autogroup_exit(struct signal_struct *sig);
2228 #ifdef CONFIG_PROC_FS
2229 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2230 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2231 #endif
2232 #else
2233 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2234 static inline void sched_autogroup_detach(struct task_struct *p) { }
2235 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2236 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2237 #endif
2238
2239 extern int yield_to(struct task_struct *p, bool preempt);
2240 extern void set_user_nice(struct task_struct *p, long nice);
2241 extern int task_prio(const struct task_struct *p);
2242 /**
2243 * task_nice - return the nice value of a given task.
2244 * @p: the task in question.
2245 *
2246 * Return: The nice value [ -20 ... 0 ... 19 ].
2247 */
2248 static inline int task_nice(const struct task_struct *p)
2249 {
2250 return PRIO_TO_NICE((p)->static_prio);
2251 }
2252 extern int can_nice(const struct task_struct *p, const int nice);
2253 extern int task_curr(const struct task_struct *p);
2254 extern int idle_cpu(int cpu);
2255 extern int sched_setscheduler(struct task_struct *, int,
2256 const struct sched_param *);
2257 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2258 const struct sched_param *);
2259 extern int sched_setattr(struct task_struct *,
2260 const struct sched_attr *);
2261 extern struct task_struct *idle_task(int cpu);
2262 /**
2263 * is_idle_task - is the specified task an idle task?
2264 * @p: the task in question.
2265 *
2266 * Return: 1 if @p is an idle task. 0 otherwise.
2267 */
2268 static inline bool is_idle_task(const struct task_struct *p)
2269 {
2270 return p->pid == 0;
2271 }
2272 extern struct task_struct *curr_task(int cpu);
2273 extern void set_curr_task(int cpu, struct task_struct *p);
2274
2275 void yield(void);
2276
2277 /*
2278 * The default (Linux) execution domain.
2279 */
2280 extern struct exec_domain default_exec_domain;
2281
2282 union thread_union {
2283 struct thread_info thread_info;
2284 unsigned long stack[THREAD_SIZE/sizeof(long)];
2285 };
2286
2287 #ifndef __HAVE_ARCH_KSTACK_END
2288 static inline int kstack_end(void *addr)
2289 {
2290 /* Reliable end of stack detection:
2291 * Some APM bios versions misalign the stack
2292 */
2293 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2294 }
2295 #endif
2296
2297 extern union thread_union init_thread_union;
2298 extern struct task_struct init_task;
2299
2300 extern struct mm_struct init_mm;
2301
2302 extern struct pid_namespace init_pid_ns;
2303
2304 /*
2305 * find a task by one of its numerical ids
2306 *
2307 * find_task_by_pid_ns():
2308 * finds a task by its pid in the specified namespace
2309 * find_task_by_vpid():
2310 * finds a task by its virtual pid
2311 *
2312 * see also find_vpid() etc in include/linux/pid.h
2313 */
2314
2315 extern struct task_struct *find_task_by_vpid(pid_t nr);
2316 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2317 struct pid_namespace *ns);
2318
2319 /* per-UID process charging. */
2320 extern struct user_struct * alloc_uid(kuid_t);
2321 static inline struct user_struct *get_uid(struct user_struct *u)
2322 {
2323 atomic_inc(&u->__count);
2324 return u;
2325 }
2326 extern void free_uid(struct user_struct *);
2327
2328 #include <asm/current.h>
2329
2330 extern void xtime_update(unsigned long ticks);
2331
2332 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2333 extern int wake_up_process(struct task_struct *tsk);
2334 extern void wake_up_new_task(struct task_struct *tsk);
2335 #ifdef CONFIG_SMP
2336 extern void kick_process(struct task_struct *tsk);
2337 #else
2338 static inline void kick_process(struct task_struct *tsk) { }
2339 #endif
2340 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2341 extern void sched_dead(struct task_struct *p);
2342
2343 extern void proc_caches_init(void);
2344 extern void flush_signals(struct task_struct *);
2345 extern void __flush_signals(struct task_struct *);
2346 extern void ignore_signals(struct task_struct *);
2347 extern void flush_signal_handlers(struct task_struct *, int force_default);
2348 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2349
2350 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2351 {
2352 unsigned long flags;
2353 int ret;
2354
2355 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2356 ret = dequeue_signal(tsk, mask, info);
2357 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2358
2359 return ret;
2360 }
2361
2362 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2363 sigset_t *mask);
2364 extern void unblock_all_signals(void);
2365 extern void release_task(struct task_struct * p);
2366 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2367 extern int force_sigsegv(int, struct task_struct *);
2368 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2369 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2370 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2371 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2372 const struct cred *, u32);
2373 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2374 extern int kill_pid(struct pid *pid, int sig, int priv);
2375 extern int kill_proc_info(int, struct siginfo *, pid_t);
2376 extern __must_check bool do_notify_parent(struct task_struct *, int);
2377 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2378 extern void force_sig(int, struct task_struct *);
2379 extern int send_sig(int, struct task_struct *, int);
2380 extern int zap_other_threads(struct task_struct *p);
2381 extern struct sigqueue *sigqueue_alloc(void);
2382 extern void sigqueue_free(struct sigqueue *);
2383 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2384 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2385
2386 static inline void restore_saved_sigmask(void)
2387 {
2388 if (test_and_clear_restore_sigmask())
2389 __set_current_blocked(&current->saved_sigmask);
2390 }
2391
2392 static inline sigset_t *sigmask_to_save(void)
2393 {
2394 sigset_t *res = &current->blocked;
2395 if (unlikely(test_restore_sigmask()))
2396 res = &current->saved_sigmask;
2397 return res;
2398 }
2399
2400 static inline int kill_cad_pid(int sig, int priv)
2401 {
2402 return kill_pid(cad_pid, sig, priv);
2403 }
2404
2405 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2406 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2407 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2408 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2409
2410 /*
2411 * True if we are on the alternate signal stack.
2412 */
2413 static inline int on_sig_stack(unsigned long sp)
2414 {
2415 #ifdef CONFIG_STACK_GROWSUP
2416 return sp >= current->sas_ss_sp &&
2417 sp - current->sas_ss_sp < current->sas_ss_size;
2418 #else
2419 return sp > current->sas_ss_sp &&
2420 sp - current->sas_ss_sp <= current->sas_ss_size;
2421 #endif
2422 }
2423
2424 static inline int sas_ss_flags(unsigned long sp)
2425 {
2426 if (!current->sas_ss_size)
2427 return SS_DISABLE;
2428
2429 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2430 }
2431
2432 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2433 {
2434 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2435 #ifdef CONFIG_STACK_GROWSUP
2436 return current->sas_ss_sp;
2437 #else
2438 return current->sas_ss_sp + current->sas_ss_size;
2439 #endif
2440 return sp;
2441 }
2442
2443 /*
2444 * Routines for handling mm_structs
2445 */
2446 extern struct mm_struct * mm_alloc(void);
2447
2448 /* mmdrop drops the mm and the page tables */
2449 extern void __mmdrop(struct mm_struct *);
2450 static inline void mmdrop(struct mm_struct * mm)
2451 {
2452 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2453 __mmdrop(mm);
2454 }
2455
2456 /* mmput gets rid of the mappings and all user-space */
2457 extern void mmput(struct mm_struct *);
2458 /* Grab a reference to a task's mm, if it is not already going away */
2459 extern struct mm_struct *get_task_mm(struct task_struct *task);
2460 /*
2461 * Grab a reference to a task's mm, if it is not already going away
2462 * and ptrace_may_access with the mode parameter passed to it
2463 * succeeds.
2464 */
2465 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2466 /* Remove the current tasks stale references to the old mm_struct */
2467 extern void mm_release(struct task_struct *, struct mm_struct *);
2468
2469 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2470 struct task_struct *);
2471 extern void flush_thread(void);
2472 extern void exit_thread(void);
2473
2474 extern void exit_files(struct task_struct *);
2475 extern void __cleanup_sighand(struct sighand_struct *);
2476
2477 extern void exit_itimers(struct signal_struct *);
2478 extern void flush_itimer_signals(void);
2479
2480 extern void do_group_exit(int);
2481
2482 extern int do_execve(struct filename *,
2483 const char __user * const __user *,
2484 const char __user * const __user *);
2485 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2486 struct task_struct *fork_idle(int);
2487 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2488
2489 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2490 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2491 {
2492 __set_task_comm(tsk, from, false);
2493 }
2494 extern char *get_task_comm(char *to, struct task_struct *tsk);
2495
2496 #ifdef CONFIG_SMP
2497 void scheduler_ipi(void);
2498 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2499 #else
2500 static inline void scheduler_ipi(void) { }
2501 static inline unsigned long wait_task_inactive(struct task_struct *p,
2502 long match_state)
2503 {
2504 return 1;
2505 }
2506 #endif
2507
2508 #define next_task(p) \
2509 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2510
2511 #define for_each_process(p) \
2512 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2513
2514 extern bool current_is_single_threaded(void);
2515
2516 /*
2517 * Careful: do_each_thread/while_each_thread is a double loop so
2518 * 'break' will not work as expected - use goto instead.
2519 */
2520 #define do_each_thread(g, t) \
2521 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2522
2523 #define while_each_thread(g, t) \
2524 while ((t = next_thread(t)) != g)
2525
2526 #define __for_each_thread(signal, t) \
2527 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2528
2529 #define for_each_thread(p, t) \
2530 __for_each_thread((p)->signal, t)
2531
2532 /* Careful: this is a double loop, 'break' won't work as expected. */
2533 #define for_each_process_thread(p, t) \
2534 for_each_process(p) for_each_thread(p, t)
2535
2536 static inline int get_nr_threads(struct task_struct *tsk)
2537 {
2538 return tsk->signal->nr_threads;
2539 }
2540
2541 static inline bool thread_group_leader(struct task_struct *p)
2542 {
2543 return p->exit_signal >= 0;
2544 }
2545
2546 /* Do to the insanities of de_thread it is possible for a process
2547 * to have the pid of the thread group leader without actually being
2548 * the thread group leader. For iteration through the pids in proc
2549 * all we care about is that we have a task with the appropriate
2550 * pid, we don't actually care if we have the right task.
2551 */
2552 static inline bool has_group_leader_pid(struct task_struct *p)
2553 {
2554 return task_pid(p) == p->signal->leader_pid;
2555 }
2556
2557 static inline
2558 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2559 {
2560 return p1->signal == p2->signal;
2561 }
2562
2563 static inline struct task_struct *next_thread(const struct task_struct *p)
2564 {
2565 return list_entry_rcu(p->thread_group.next,
2566 struct task_struct, thread_group);
2567 }
2568
2569 static inline int thread_group_empty(struct task_struct *p)
2570 {
2571 return list_empty(&p->thread_group);
2572 }
2573
2574 #define delay_group_leader(p) \
2575 (thread_group_leader(p) && !thread_group_empty(p))
2576
2577 /*
2578 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2579 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2580 * pins the final release of task.io_context. Also protects ->cpuset and
2581 * ->cgroup.subsys[]. And ->vfork_done.
2582 *
2583 * Nests both inside and outside of read_lock(&tasklist_lock).
2584 * It must not be nested with write_lock_irq(&tasklist_lock),
2585 * neither inside nor outside.
2586 */
2587 static inline void task_lock(struct task_struct *p)
2588 {
2589 spin_lock(&p->alloc_lock);
2590 }
2591
2592 static inline void task_unlock(struct task_struct *p)
2593 {
2594 spin_unlock(&p->alloc_lock);
2595 }
2596
2597 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2598 unsigned long *flags);
2599
2600 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2601 unsigned long *flags)
2602 {
2603 struct sighand_struct *ret;
2604
2605 ret = __lock_task_sighand(tsk, flags);
2606 (void)__cond_lock(&tsk->sighand->siglock, ret);
2607 return ret;
2608 }
2609
2610 static inline void unlock_task_sighand(struct task_struct *tsk,
2611 unsigned long *flags)
2612 {
2613 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2614 }
2615
2616 #ifdef CONFIG_CGROUPS
2617 static inline void threadgroup_change_begin(struct task_struct *tsk)
2618 {
2619 down_read(&tsk->signal->group_rwsem);
2620 }
2621 static inline void threadgroup_change_end(struct task_struct *tsk)
2622 {
2623 up_read(&tsk->signal->group_rwsem);
2624 }
2625
2626 /**
2627 * threadgroup_lock - lock threadgroup
2628 * @tsk: member task of the threadgroup to lock
2629 *
2630 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2631 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2632 * change ->group_leader/pid. This is useful for cases where the threadgroup
2633 * needs to stay stable across blockable operations.
2634 *
2635 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2636 * synchronization. While held, no new task will be added to threadgroup
2637 * and no existing live task will have its PF_EXITING set.
2638 *
2639 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2640 * sub-thread becomes a new leader.
2641 */
2642 static inline void threadgroup_lock(struct task_struct *tsk)
2643 {
2644 down_write(&tsk->signal->group_rwsem);
2645 }
2646
2647 /**
2648 * threadgroup_unlock - unlock threadgroup
2649 * @tsk: member task of the threadgroup to unlock
2650 *
2651 * Reverse threadgroup_lock().
2652 */
2653 static inline void threadgroup_unlock(struct task_struct *tsk)
2654 {
2655 up_write(&tsk->signal->group_rwsem);
2656 }
2657 #else
2658 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2659 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2660 static inline void threadgroup_lock(struct task_struct *tsk) {}
2661 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2662 #endif
2663
2664 #ifndef __HAVE_THREAD_FUNCTIONS
2665
2666 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2667 #define task_stack_page(task) ((task)->stack)
2668
2669 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2670 {
2671 *task_thread_info(p) = *task_thread_info(org);
2672 task_thread_info(p)->task = p;
2673 }
2674
2675 /*
2676 * Return the address of the last usable long on the stack.
2677 *
2678 * When the stack grows down, this is just above the thread
2679 * info struct. Going any lower will corrupt the threadinfo.
2680 *
2681 * When the stack grows up, this is the highest address.
2682 * Beyond that position, we corrupt data on the next page.
2683 */
2684 static inline unsigned long *end_of_stack(struct task_struct *p)
2685 {
2686 #ifdef CONFIG_STACK_GROWSUP
2687 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2688 #else
2689 return (unsigned long *)(task_thread_info(p) + 1);
2690 #endif
2691 }
2692
2693 #endif
2694 #define task_stack_end_corrupted(task) \
2695 (*(end_of_stack(task)) != STACK_END_MAGIC)
2696
2697 static inline int object_is_on_stack(void *obj)
2698 {
2699 void *stack = task_stack_page(current);
2700
2701 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2702 }
2703
2704 extern void thread_info_cache_init(void);
2705
2706 #ifdef CONFIG_DEBUG_STACK_USAGE
2707 static inline unsigned long stack_not_used(struct task_struct *p)
2708 {
2709 unsigned long *n = end_of_stack(p);
2710
2711 do { /* Skip over canary */
2712 n++;
2713 } while (!*n);
2714
2715 return (unsigned long)n - (unsigned long)end_of_stack(p);
2716 }
2717 #endif
2718 extern void set_task_stack_end_magic(struct task_struct *tsk);
2719
2720 /* set thread flags in other task's structures
2721 * - see asm/thread_info.h for TIF_xxxx flags available
2722 */
2723 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2724 {
2725 set_ti_thread_flag(task_thread_info(tsk), flag);
2726 }
2727
2728 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2729 {
2730 clear_ti_thread_flag(task_thread_info(tsk), flag);
2731 }
2732
2733 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2734 {
2735 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2736 }
2737
2738 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2739 {
2740 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2741 }
2742
2743 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2744 {
2745 return test_ti_thread_flag(task_thread_info(tsk), flag);
2746 }
2747
2748 static inline void set_tsk_need_resched(struct task_struct *tsk)
2749 {
2750 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2751 }
2752
2753 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2754 {
2755 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2756 }
2757
2758 static inline int test_tsk_need_resched(struct task_struct *tsk)
2759 {
2760 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2761 }
2762
2763 static inline int restart_syscall(void)
2764 {
2765 set_tsk_thread_flag(current, TIF_SIGPENDING);
2766 return -ERESTARTNOINTR;
2767 }
2768
2769 static inline int signal_pending(struct task_struct *p)
2770 {
2771 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2772 }
2773
2774 static inline int __fatal_signal_pending(struct task_struct *p)
2775 {
2776 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2777 }
2778
2779 static inline int fatal_signal_pending(struct task_struct *p)
2780 {
2781 return signal_pending(p) && __fatal_signal_pending(p);
2782 }
2783
2784 static inline int signal_pending_state(long state, struct task_struct *p)
2785 {
2786 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2787 return 0;
2788 if (!signal_pending(p))
2789 return 0;
2790
2791 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2792 }
2793
2794 /*
2795 * cond_resched() and cond_resched_lock(): latency reduction via
2796 * explicit rescheduling in places that are safe. The return
2797 * value indicates whether a reschedule was done in fact.
2798 * cond_resched_lock() will drop the spinlock before scheduling,
2799 * cond_resched_softirq() will enable bhs before scheduling.
2800 */
2801 extern int _cond_resched(void);
2802
2803 #define cond_resched() ({ \
2804 ___might_sleep(__FILE__, __LINE__, 0); \
2805 _cond_resched(); \
2806 })
2807
2808 extern int __cond_resched_lock(spinlock_t *lock);
2809
2810 #ifdef CONFIG_PREEMPT_COUNT
2811 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2812 #else
2813 #define PREEMPT_LOCK_OFFSET 0
2814 #endif
2815
2816 #define cond_resched_lock(lock) ({ \
2817 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2818 __cond_resched_lock(lock); \
2819 })
2820
2821 extern int __cond_resched_softirq(void);
2822
2823 #define cond_resched_softirq() ({ \
2824 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2825 __cond_resched_softirq(); \
2826 })
2827
2828 static inline void cond_resched_rcu(void)
2829 {
2830 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2831 rcu_read_unlock();
2832 cond_resched();
2833 rcu_read_lock();
2834 #endif
2835 }
2836
2837 /*
2838 * Does a critical section need to be broken due to another
2839 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2840 * but a general need for low latency)
2841 */
2842 static inline int spin_needbreak(spinlock_t *lock)
2843 {
2844 #ifdef CONFIG_PREEMPT
2845 return spin_is_contended(lock);
2846 #else
2847 return 0;
2848 #endif
2849 }
2850
2851 /*
2852 * Idle thread specific functions to determine the need_resched
2853 * polling state.
2854 */
2855 #ifdef TIF_POLLING_NRFLAG
2856 static inline int tsk_is_polling(struct task_struct *p)
2857 {
2858 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2859 }
2860
2861 static inline void __current_set_polling(void)
2862 {
2863 set_thread_flag(TIF_POLLING_NRFLAG);
2864 }
2865
2866 static inline bool __must_check current_set_polling_and_test(void)
2867 {
2868 __current_set_polling();
2869
2870 /*
2871 * Polling state must be visible before we test NEED_RESCHED,
2872 * paired by resched_curr()
2873 */
2874 smp_mb__after_atomic();
2875
2876 return unlikely(tif_need_resched());
2877 }
2878
2879 static inline void __current_clr_polling(void)
2880 {
2881 clear_thread_flag(TIF_POLLING_NRFLAG);
2882 }
2883
2884 static inline bool __must_check current_clr_polling_and_test(void)
2885 {
2886 __current_clr_polling();
2887
2888 /*
2889 * Polling state must be visible before we test NEED_RESCHED,
2890 * paired by resched_curr()
2891 */
2892 smp_mb__after_atomic();
2893
2894 return unlikely(tif_need_resched());
2895 }
2896
2897 #else
2898 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2899 static inline void __current_set_polling(void) { }
2900 static inline void __current_clr_polling(void) { }
2901
2902 static inline bool __must_check current_set_polling_and_test(void)
2903 {
2904 return unlikely(tif_need_resched());
2905 }
2906 static inline bool __must_check current_clr_polling_and_test(void)
2907 {
2908 return unlikely(tif_need_resched());
2909 }
2910 #endif
2911
2912 static inline void current_clr_polling(void)
2913 {
2914 __current_clr_polling();
2915
2916 /*
2917 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2918 * Once the bit is cleared, we'll get IPIs with every new
2919 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2920 * fold.
2921 */
2922 smp_mb(); /* paired with resched_curr() */
2923
2924 preempt_fold_need_resched();
2925 }
2926
2927 static __always_inline bool need_resched(void)
2928 {
2929 return unlikely(tif_need_resched());
2930 }
2931
2932 /*
2933 * Thread group CPU time accounting.
2934 */
2935 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2936 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2937
2938 static inline void thread_group_cputime_init(struct signal_struct *sig)
2939 {
2940 raw_spin_lock_init(&sig->cputimer.lock);
2941 }
2942
2943 /*
2944 * Reevaluate whether the task has signals pending delivery.
2945 * Wake the task if so.
2946 * This is required every time the blocked sigset_t changes.
2947 * callers must hold sighand->siglock.
2948 */
2949 extern void recalc_sigpending_and_wake(struct task_struct *t);
2950 extern void recalc_sigpending(void);
2951
2952 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2953
2954 static inline void signal_wake_up(struct task_struct *t, bool resume)
2955 {
2956 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2957 }
2958 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2959 {
2960 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2961 }
2962
2963 /*
2964 * Wrappers for p->thread_info->cpu access. No-op on UP.
2965 */
2966 #ifdef CONFIG_SMP
2967
2968 static inline unsigned int task_cpu(const struct task_struct *p)
2969 {
2970 return task_thread_info(p)->cpu;
2971 }
2972
2973 static inline int task_node(const struct task_struct *p)
2974 {
2975 return cpu_to_node(task_cpu(p));
2976 }
2977
2978 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2979
2980 #else
2981
2982 static inline unsigned int task_cpu(const struct task_struct *p)
2983 {
2984 return 0;
2985 }
2986
2987 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2988 {
2989 }
2990
2991 #endif /* CONFIG_SMP */
2992
2993 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2994 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2995
2996 #ifdef CONFIG_CGROUP_SCHED
2997 extern struct task_group root_task_group;
2998 #endif /* CONFIG_CGROUP_SCHED */
2999
3000 extern int task_can_switch_user(struct user_struct *up,
3001 struct task_struct *tsk);
3002
3003 #ifdef CONFIG_TASK_XACCT
3004 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3005 {
3006 tsk->ioac.rchar += amt;
3007 }
3008
3009 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3010 {
3011 tsk->ioac.wchar += amt;
3012 }
3013
3014 static inline void inc_syscr(struct task_struct *tsk)
3015 {
3016 tsk->ioac.syscr++;
3017 }
3018
3019 static inline void inc_syscw(struct task_struct *tsk)
3020 {
3021 tsk->ioac.syscw++;
3022 }
3023 #else
3024 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3025 {
3026 }
3027
3028 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3029 {
3030 }
3031
3032 static inline void inc_syscr(struct task_struct *tsk)
3033 {
3034 }
3035
3036 static inline void inc_syscw(struct task_struct *tsk)
3037 {
3038 }
3039 #endif
3040
3041 #ifndef TASK_SIZE_OF
3042 #define TASK_SIZE_OF(tsk) TASK_SIZE
3043 #endif
3044
3045 #ifdef CONFIG_MEMCG
3046 extern void mm_update_next_owner(struct mm_struct *mm);
3047 #else
3048 static inline void mm_update_next_owner(struct mm_struct *mm)
3049 {
3050 }
3051 #endif /* CONFIG_MEMCG */
3052
3053 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3054 unsigned int limit)
3055 {
3056 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3057 }
3058
3059 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3060 unsigned int limit)
3061 {
3062 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3063 }
3064
3065 static inline unsigned long rlimit(unsigned int limit)
3066 {
3067 return task_rlimit(current, limit);
3068 }
3069
3070 static inline unsigned long rlimit_max(unsigned int limit)
3071 {
3072 return task_rlimit_max(current, limit);
3073 }
3074
3075 #endif