]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/sched.h
59738efff8ad92c9aa7b5fa3bef6848f5309d882
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWNET 0x40000000 /* New network namespace */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37 /* SCHED_ISO: reserved but not implemented yet */
38 #define SCHED_IDLE 5
39
40 #ifdef __KERNEL__
41
42 struct sched_param {
43 int sched_priority;
44 };
45
46 #include <asm/param.h> /* for HZ */
47
48 #include <linux/capability.h>
49 #include <linux/threads.h>
50 #include <linux/kernel.h>
51 #include <linux/types.h>
52 #include <linux/timex.h>
53 #include <linux/jiffies.h>
54 #include <linux/rbtree.h>
55 #include <linux/thread_info.h>
56 #include <linux/cpumask.h>
57 #include <linux/errno.h>
58 #include <linux/nodemask.h>
59 #include <linux/mm_types.h>
60
61 #include <asm/system.h>
62 #include <asm/semaphore.h>
63 #include <asm/page.h>
64 #include <asm/ptrace.h>
65 #include <asm/cputime.h>
66
67 #include <linux/smp.h>
68 #include <linux/sem.h>
69 #include <linux/signal.h>
70 #include <linux/securebits.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/futex.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90
91 #include <asm/processor.h>
92
93 struct exec_domain;
94 struct futex_pi_state;
95 struct bio;
96
97 /*
98 * List of flags we want to share for kernel threads,
99 * if only because they are not used by them anyway.
100 */
101 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
102
103 /*
104 * These are the constant used to fake the fixed-point load-average
105 * counting. Some notes:
106 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
107 * a load-average precision of 10 bits integer + 11 bits fractional
108 * - if you want to count load-averages more often, you need more
109 * precision, or rounding will get you. With 2-second counting freq,
110 * the EXP_n values would be 1981, 2034 and 2043 if still using only
111 * 11 bit fractions.
112 */
113 extern unsigned long avenrun[]; /* Load averages */
114
115 #define FSHIFT 11 /* nr of bits of precision */
116 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
117 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
118 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
119 #define EXP_5 2014 /* 1/exp(5sec/5min) */
120 #define EXP_15 2037 /* 1/exp(5sec/15min) */
121
122 #define CALC_LOAD(load,exp,n) \
123 load *= exp; \
124 load += n*(FIXED_1-exp); \
125 load >>= FSHIFT;
126
127 extern unsigned long total_forks;
128 extern int nr_threads;
129 DECLARE_PER_CPU(unsigned long, process_counts);
130 extern int nr_processes(void);
131 extern unsigned long nr_running(void);
132 extern unsigned long nr_uninterruptible(void);
133 extern unsigned long nr_active(void);
134 extern unsigned long nr_iowait(void);
135 extern unsigned long weighted_cpuload(const int cpu);
136
137 struct seq_file;
138 struct cfs_rq;
139 struct task_group;
140 #ifdef CONFIG_SCHED_DEBUG
141 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
142 extern void proc_sched_set_task(struct task_struct *p);
143 extern void
144 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
145 #else
146 static inline void
147 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
148 {
149 }
150 static inline void proc_sched_set_task(struct task_struct *p)
151 {
152 }
153 static inline void
154 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
155 {
156 }
157 #endif
158
159 /*
160 * Task state bitmask. NOTE! These bits are also
161 * encoded in fs/proc/array.c: get_task_state().
162 *
163 * We have two separate sets of flags: task->state
164 * is about runnability, while task->exit_state are
165 * about the task exiting. Confusing, but this way
166 * modifying one set can't modify the other one by
167 * mistake.
168 */
169 #define TASK_RUNNING 0
170 #define TASK_INTERRUPTIBLE 1
171 #define TASK_UNINTERRUPTIBLE 2
172 #define TASK_STOPPED 4
173 #define TASK_TRACED 8
174 /* in tsk->exit_state */
175 #define EXIT_ZOMBIE 16
176 #define EXIT_DEAD 32
177 /* in tsk->state again */
178 #define TASK_DEAD 64
179
180 #define __set_task_state(tsk, state_value) \
181 do { (tsk)->state = (state_value); } while (0)
182 #define set_task_state(tsk, state_value) \
183 set_mb((tsk)->state, (state_value))
184
185 /*
186 * set_current_state() includes a barrier so that the write of current->state
187 * is correctly serialised wrt the caller's subsequent test of whether to
188 * actually sleep:
189 *
190 * set_current_state(TASK_UNINTERRUPTIBLE);
191 * if (do_i_need_to_sleep())
192 * schedule();
193 *
194 * If the caller does not need such serialisation then use __set_current_state()
195 */
196 #define __set_current_state(state_value) \
197 do { current->state = (state_value); } while (0)
198 #define set_current_state(state_value) \
199 set_mb(current->state, (state_value))
200
201 /* Task command name length */
202 #define TASK_COMM_LEN 16
203
204 #include <linux/spinlock.h>
205
206 /*
207 * This serializes "schedule()" and also protects
208 * the run-queue from deletions/modifications (but
209 * _adding_ to the beginning of the run-queue has
210 * a separate lock).
211 */
212 extern rwlock_t tasklist_lock;
213 extern spinlock_t mmlist_lock;
214
215 struct task_struct;
216
217 extern void sched_init(void);
218 extern void sched_init_smp(void);
219 extern void init_idle(struct task_struct *idle, int cpu);
220 extern void init_idle_bootup_task(struct task_struct *idle);
221
222 extern cpumask_t nohz_cpu_mask;
223 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
224 extern int select_nohz_load_balancer(int cpu);
225 #else
226 static inline int select_nohz_load_balancer(int cpu)
227 {
228 return 0;
229 }
230 #endif
231
232 /*
233 * Only dump TASK_* tasks. (0 for all tasks)
234 */
235 extern void show_state_filter(unsigned long state_filter);
236
237 static inline void show_state(void)
238 {
239 show_state_filter(0);
240 }
241
242 extern void show_regs(struct pt_regs *);
243
244 /*
245 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
246 * task), SP is the stack pointer of the first frame that should be shown in the back
247 * trace (or NULL if the entire call-chain of the task should be shown).
248 */
249 extern void show_stack(struct task_struct *task, unsigned long *sp);
250
251 void io_schedule(void);
252 long io_schedule_timeout(long timeout);
253
254 extern void cpu_init (void);
255 extern void trap_init(void);
256 extern void update_process_times(int user);
257 extern void scheduler_tick(void);
258
259 #ifdef CONFIG_DETECT_SOFTLOCKUP
260 extern void softlockup_tick(void);
261 extern void spawn_softlockup_task(void);
262 extern void touch_softlockup_watchdog(void);
263 extern void touch_all_softlockup_watchdogs(void);
264 #else
265 static inline void softlockup_tick(void)
266 {
267 }
268 static inline void spawn_softlockup_task(void)
269 {
270 }
271 static inline void touch_softlockup_watchdog(void)
272 {
273 }
274 static inline void touch_all_softlockup_watchdogs(void)
275 {
276 }
277 #endif
278
279
280 /* Attach to any functions which should be ignored in wchan output. */
281 #define __sched __attribute__((__section__(".sched.text")))
282 /* Is this address in the __sched functions? */
283 extern int in_sched_functions(unsigned long addr);
284
285 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
286 extern signed long FASTCALL(schedule_timeout(signed long timeout));
287 extern signed long schedule_timeout_interruptible(signed long timeout);
288 extern signed long schedule_timeout_uninterruptible(signed long timeout);
289 asmlinkage void schedule(void);
290
291 struct nsproxy;
292 struct user_namespace;
293
294 /* Maximum number of active map areas.. This is a random (large) number */
295 #define DEFAULT_MAX_MAP_COUNT 65536
296
297 extern int sysctl_max_map_count;
298
299 #include <linux/aio.h>
300
301 extern unsigned long
302 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
303 unsigned long, unsigned long);
304 extern unsigned long
305 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
306 unsigned long len, unsigned long pgoff,
307 unsigned long flags);
308 extern void arch_unmap_area(struct mm_struct *, unsigned long);
309 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
310
311 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
312 /*
313 * The mm counters are not protected by its page_table_lock,
314 * so must be incremented atomically.
315 */
316 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
317 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
318 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
319 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
320 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
321
322 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
323 /*
324 * The mm counters are protected by its page_table_lock,
325 * so can be incremented directly.
326 */
327 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
328 #define get_mm_counter(mm, member) ((mm)->_##member)
329 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
330 #define inc_mm_counter(mm, member) (mm)->_##member++
331 #define dec_mm_counter(mm, member) (mm)->_##member--
332
333 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
334
335 #define get_mm_rss(mm) \
336 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
337 #define update_hiwater_rss(mm) do { \
338 unsigned long _rss = get_mm_rss(mm); \
339 if ((mm)->hiwater_rss < _rss) \
340 (mm)->hiwater_rss = _rss; \
341 } while (0)
342 #define update_hiwater_vm(mm) do { \
343 if ((mm)->hiwater_vm < (mm)->total_vm) \
344 (mm)->hiwater_vm = (mm)->total_vm; \
345 } while (0)
346
347 extern void set_dumpable(struct mm_struct *mm, int value);
348 extern int get_dumpable(struct mm_struct *mm);
349
350 /* mm flags */
351 /* dumpable bits */
352 #define MMF_DUMPABLE 0 /* core dump is permitted */
353 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
354 #define MMF_DUMPABLE_BITS 2
355
356 /* coredump filter bits */
357 #define MMF_DUMP_ANON_PRIVATE 2
358 #define MMF_DUMP_ANON_SHARED 3
359 #define MMF_DUMP_MAPPED_PRIVATE 4
360 #define MMF_DUMP_MAPPED_SHARED 5
361 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
362 #define MMF_DUMP_FILTER_BITS 4
363 #define MMF_DUMP_FILTER_MASK \
364 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
365 #define MMF_DUMP_FILTER_DEFAULT \
366 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
367
368 struct sighand_struct {
369 atomic_t count;
370 struct k_sigaction action[_NSIG];
371 spinlock_t siglock;
372 wait_queue_head_t signalfd_wqh;
373 };
374
375 struct pacct_struct {
376 int ac_flag;
377 long ac_exitcode;
378 unsigned long ac_mem;
379 cputime_t ac_utime, ac_stime;
380 unsigned long ac_minflt, ac_majflt;
381 };
382
383 /*
384 * NOTE! "signal_struct" does not have it's own
385 * locking, because a shared signal_struct always
386 * implies a shared sighand_struct, so locking
387 * sighand_struct is always a proper superset of
388 * the locking of signal_struct.
389 */
390 struct signal_struct {
391 atomic_t count;
392 atomic_t live;
393
394 wait_queue_head_t wait_chldexit; /* for wait4() */
395
396 /* current thread group signal load-balancing target: */
397 struct task_struct *curr_target;
398
399 /* shared signal handling: */
400 struct sigpending shared_pending;
401
402 /* thread group exit support */
403 int group_exit_code;
404 /* overloaded:
405 * - notify group_exit_task when ->count is equal to notify_count
406 * - everyone except group_exit_task is stopped during signal delivery
407 * of fatal signals, group_exit_task processes the signal.
408 */
409 struct task_struct *group_exit_task;
410 int notify_count;
411
412 /* thread group stop support, overloads group_exit_code too */
413 int group_stop_count;
414 unsigned int flags; /* see SIGNAL_* flags below */
415
416 /* POSIX.1b Interval Timers */
417 struct list_head posix_timers;
418
419 /* ITIMER_REAL timer for the process */
420 struct hrtimer real_timer;
421 struct task_struct *tsk;
422 ktime_t it_real_incr;
423
424 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
425 cputime_t it_prof_expires, it_virt_expires;
426 cputime_t it_prof_incr, it_virt_incr;
427
428 /* job control IDs */
429 pid_t pgrp;
430 struct pid *tty_old_pgrp;
431
432 union {
433 pid_t session __deprecated;
434 pid_t __session;
435 };
436
437 /* boolean value for session group leader */
438 int leader;
439
440 struct tty_struct *tty; /* NULL if no tty */
441
442 /*
443 * Cumulative resource counters for dead threads in the group,
444 * and for reaped dead child processes forked by this group.
445 * Live threads maintain their own counters and add to these
446 * in __exit_signal, except for the group leader.
447 */
448 cputime_t utime, stime, cutime, cstime;
449 cputime_t gtime;
450 cputime_t cgtime;
451 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
452 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
453 unsigned long inblock, oublock, cinblock, coublock;
454
455 /*
456 * Cumulative ns of scheduled CPU time for dead threads in the
457 * group, not including a zombie group leader. (This only differs
458 * from jiffies_to_ns(utime + stime) if sched_clock uses something
459 * other than jiffies.)
460 */
461 unsigned long long sum_sched_runtime;
462
463 /*
464 * We don't bother to synchronize most readers of this at all,
465 * because there is no reader checking a limit that actually needs
466 * to get both rlim_cur and rlim_max atomically, and either one
467 * alone is a single word that can safely be read normally.
468 * getrlimit/setrlimit use task_lock(current->group_leader) to
469 * protect this instead of the siglock, because they really
470 * have no need to disable irqs.
471 */
472 struct rlimit rlim[RLIM_NLIMITS];
473
474 struct list_head cpu_timers[3];
475
476 /* keep the process-shared keyrings here so that they do the right
477 * thing in threads created with CLONE_THREAD */
478 #ifdef CONFIG_KEYS
479 struct key *session_keyring; /* keyring inherited over fork */
480 struct key *process_keyring; /* keyring private to this process */
481 #endif
482 #ifdef CONFIG_BSD_PROCESS_ACCT
483 struct pacct_struct pacct; /* per-process accounting information */
484 #endif
485 #ifdef CONFIG_TASKSTATS
486 struct taskstats *stats;
487 #endif
488 #ifdef CONFIG_AUDIT
489 unsigned audit_tty;
490 struct tty_audit_buf *tty_audit_buf;
491 #endif
492 };
493
494 /* Context switch must be unlocked if interrupts are to be enabled */
495 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
496 # define __ARCH_WANT_UNLOCKED_CTXSW
497 #endif
498
499 /*
500 * Bits in flags field of signal_struct.
501 */
502 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
503 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
504 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
505 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
506
507 /*
508 * Some day this will be a full-fledged user tracking system..
509 */
510 struct user_struct {
511 atomic_t __count; /* reference count */
512 atomic_t processes; /* How many processes does this user have? */
513 atomic_t files; /* How many open files does this user have? */
514 atomic_t sigpending; /* How many pending signals does this user have? */
515 #ifdef CONFIG_INOTIFY_USER
516 atomic_t inotify_watches; /* How many inotify watches does this user have? */
517 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
518 #endif
519 /* protected by mq_lock */
520 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
521 unsigned long locked_shm; /* How many pages of mlocked shm ? */
522
523 #ifdef CONFIG_KEYS
524 struct key *uid_keyring; /* UID specific keyring */
525 struct key *session_keyring; /* UID's default session keyring */
526 #endif
527
528 /* Hash table maintenance information */
529 struct hlist_node uidhash_node;
530 uid_t uid;
531
532 #ifdef CONFIG_FAIR_USER_SCHED
533 struct task_group *tg;
534 struct kset kset;
535 struct subsys_attribute user_attr;
536 struct work_struct work;
537 #endif
538 };
539
540 #ifdef CONFIG_FAIR_USER_SCHED
541 extern int uids_kobject_init(void);
542 #else
543 static inline int uids_kobject_init(void) { return 0; }
544 #endif
545
546 extern struct user_struct *find_user(uid_t);
547
548 extern struct user_struct root_user;
549 #define INIT_USER (&root_user)
550
551 struct backing_dev_info;
552 struct reclaim_state;
553
554 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
555 struct sched_info {
556 /* cumulative counters */
557 unsigned long pcount; /* # of times run on this cpu */
558 unsigned long long cpu_time, /* time spent on the cpu */
559 run_delay; /* time spent waiting on a runqueue */
560
561 /* timestamps */
562 unsigned long long last_arrival,/* when we last ran on a cpu */
563 last_queued; /* when we were last queued to run */
564 #ifdef CONFIG_SCHEDSTATS
565 /* BKL stats */
566 unsigned long bkl_count;
567 #endif
568 };
569 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
570
571 #ifdef CONFIG_SCHEDSTATS
572 extern const struct file_operations proc_schedstat_operations;
573 #endif /* CONFIG_SCHEDSTATS */
574
575 #ifdef CONFIG_TASK_DELAY_ACCT
576 struct task_delay_info {
577 spinlock_t lock;
578 unsigned int flags; /* Private per-task flags */
579
580 /* For each stat XXX, add following, aligned appropriately
581 *
582 * struct timespec XXX_start, XXX_end;
583 * u64 XXX_delay;
584 * u32 XXX_count;
585 *
586 * Atomicity of updates to XXX_delay, XXX_count protected by
587 * single lock above (split into XXX_lock if contention is an issue).
588 */
589
590 /*
591 * XXX_count is incremented on every XXX operation, the delay
592 * associated with the operation is added to XXX_delay.
593 * XXX_delay contains the accumulated delay time in nanoseconds.
594 */
595 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
596 u64 blkio_delay; /* wait for sync block io completion */
597 u64 swapin_delay; /* wait for swapin block io completion */
598 u32 blkio_count; /* total count of the number of sync block */
599 /* io operations performed */
600 u32 swapin_count; /* total count of the number of swapin block */
601 /* io operations performed */
602 };
603 #endif /* CONFIG_TASK_DELAY_ACCT */
604
605 static inline int sched_info_on(void)
606 {
607 #ifdef CONFIG_SCHEDSTATS
608 return 1;
609 #elif defined(CONFIG_TASK_DELAY_ACCT)
610 extern int delayacct_on;
611 return delayacct_on;
612 #else
613 return 0;
614 #endif
615 }
616
617 enum cpu_idle_type {
618 CPU_IDLE,
619 CPU_NOT_IDLE,
620 CPU_NEWLY_IDLE,
621 CPU_MAX_IDLE_TYPES
622 };
623
624 /*
625 * sched-domains (multiprocessor balancing) declarations:
626 */
627
628 /*
629 * Increase resolution of nice-level calculations:
630 */
631 #define SCHED_LOAD_SHIFT 10
632 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
633
634 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
635
636 #ifdef CONFIG_SMP
637 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
638 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
639 #define SD_BALANCE_EXEC 4 /* Balance on exec */
640 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
641 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
642 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
643 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
644 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
645 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
646 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
647 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
648
649 #define BALANCE_FOR_MC_POWER \
650 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
651
652 #define BALANCE_FOR_PKG_POWER \
653 ((sched_mc_power_savings || sched_smt_power_savings) ? \
654 SD_POWERSAVINGS_BALANCE : 0)
655
656 #define test_sd_parent(sd, flag) ((sd->parent && \
657 (sd->parent->flags & flag)) ? 1 : 0)
658
659
660 struct sched_group {
661 struct sched_group *next; /* Must be a circular list */
662 cpumask_t cpumask;
663
664 /*
665 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
666 * single CPU. This is read only (except for setup, hotplug CPU).
667 * Note : Never change cpu_power without recompute its reciprocal
668 */
669 unsigned int __cpu_power;
670 /*
671 * reciprocal value of cpu_power to avoid expensive divides
672 * (see include/linux/reciprocal_div.h)
673 */
674 u32 reciprocal_cpu_power;
675 };
676
677 struct sched_domain {
678 /* These fields must be setup */
679 struct sched_domain *parent; /* top domain must be null terminated */
680 struct sched_domain *child; /* bottom domain must be null terminated */
681 struct sched_group *groups; /* the balancing groups of the domain */
682 cpumask_t span; /* span of all CPUs in this domain */
683 unsigned long min_interval; /* Minimum balance interval ms */
684 unsigned long max_interval; /* Maximum balance interval ms */
685 unsigned int busy_factor; /* less balancing by factor if busy */
686 unsigned int imbalance_pct; /* No balance until over watermark */
687 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
688 unsigned int busy_idx;
689 unsigned int idle_idx;
690 unsigned int newidle_idx;
691 unsigned int wake_idx;
692 unsigned int forkexec_idx;
693 int flags; /* See SD_* */
694
695 /* Runtime fields. */
696 unsigned long last_balance; /* init to jiffies. units in jiffies */
697 unsigned int balance_interval; /* initialise to 1. units in ms. */
698 unsigned int nr_balance_failed; /* initialise to 0 */
699
700 #ifdef CONFIG_SCHEDSTATS
701 /* load_balance() stats */
702 unsigned long lb_count[CPU_MAX_IDLE_TYPES];
703 unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
704 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
705 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
706 unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
707 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
708 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
709 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
710
711 /* Active load balancing */
712 unsigned long alb_count;
713 unsigned long alb_failed;
714 unsigned long alb_pushed;
715
716 /* SD_BALANCE_EXEC stats */
717 unsigned long sbe_count;
718 unsigned long sbe_balanced;
719 unsigned long sbe_pushed;
720
721 /* SD_BALANCE_FORK stats */
722 unsigned long sbf_count;
723 unsigned long sbf_balanced;
724 unsigned long sbf_pushed;
725
726 /* try_to_wake_up() stats */
727 unsigned long ttwu_wake_remote;
728 unsigned long ttwu_move_affine;
729 unsigned long ttwu_move_balance;
730 #endif
731 };
732
733 #endif /* CONFIG_SMP */
734
735 /*
736 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
737 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
738 * task of nice 0 or enough lower priority tasks to bring up the
739 * weighted_cpuload
740 */
741 static inline int above_background_load(void)
742 {
743 unsigned long cpu;
744
745 for_each_online_cpu(cpu) {
746 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
747 return 1;
748 }
749 return 0;
750 }
751
752 struct io_context; /* See blkdev.h */
753 struct cpuset;
754
755 #define NGROUPS_SMALL 32
756 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
757 struct group_info {
758 int ngroups;
759 atomic_t usage;
760 gid_t small_block[NGROUPS_SMALL];
761 int nblocks;
762 gid_t *blocks[0];
763 };
764
765 /*
766 * get_group_info() must be called with the owning task locked (via task_lock())
767 * when task != current. The reason being that the vast majority of callers are
768 * looking at current->group_info, which can not be changed except by the
769 * current task. Changing current->group_info requires the task lock, too.
770 */
771 #define get_group_info(group_info) do { \
772 atomic_inc(&(group_info)->usage); \
773 } while (0)
774
775 #define put_group_info(group_info) do { \
776 if (atomic_dec_and_test(&(group_info)->usage)) \
777 groups_free(group_info); \
778 } while (0)
779
780 extern struct group_info *groups_alloc(int gidsetsize);
781 extern void groups_free(struct group_info *group_info);
782 extern int set_current_groups(struct group_info *group_info);
783 extern int groups_search(struct group_info *group_info, gid_t grp);
784 /* access the groups "array" with this macro */
785 #define GROUP_AT(gi, i) \
786 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
787
788 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
789 extern void prefetch_stack(struct task_struct *t);
790 #else
791 static inline void prefetch_stack(struct task_struct *t) { }
792 #endif
793
794 struct audit_context; /* See audit.c */
795 struct mempolicy;
796 struct pipe_inode_info;
797 struct uts_namespace;
798
799 struct rq;
800 struct sched_domain;
801
802 struct sched_class {
803 const struct sched_class *next;
804
805 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
806 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
807 void (*yield_task) (struct rq *rq);
808
809 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
810
811 struct task_struct * (*pick_next_task) (struct rq *rq);
812 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
813
814 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
815 struct rq *busiest,
816 unsigned long max_nr_move, unsigned long max_load_move,
817 struct sched_domain *sd, enum cpu_idle_type idle,
818 int *all_pinned, int *this_best_prio);
819
820 void (*set_curr_task) (struct rq *rq);
821 void (*task_tick) (struct rq *rq, struct task_struct *p);
822 void (*task_new) (struct rq *rq, struct task_struct *p);
823 };
824
825 struct load_weight {
826 unsigned long weight, inv_weight;
827 };
828
829 /*
830 * CFS stats for a schedulable entity (task, task-group etc)
831 *
832 * Current field usage histogram:
833 *
834 * 4 se->block_start
835 * 4 se->run_node
836 * 4 se->sleep_start
837 * 6 se->load.weight
838 */
839 struct sched_entity {
840 struct load_weight load; /* for load-balancing */
841 struct rb_node run_node;
842 unsigned int on_rq;
843 int peer_preempt;
844
845 u64 exec_start;
846 u64 sum_exec_runtime;
847 u64 vruntime;
848 u64 prev_sum_exec_runtime;
849
850 #ifdef CONFIG_SCHEDSTATS
851 u64 wait_start;
852 u64 wait_max;
853
854 u64 sleep_start;
855 u64 sleep_max;
856 s64 sum_sleep_runtime;
857
858 u64 block_start;
859 u64 block_max;
860 u64 exec_max;
861 u64 slice_max;
862
863 u64 nr_migrations;
864 u64 nr_migrations_cold;
865 u64 nr_failed_migrations_affine;
866 u64 nr_failed_migrations_running;
867 u64 nr_failed_migrations_hot;
868 u64 nr_forced_migrations;
869 u64 nr_forced2_migrations;
870
871 u64 nr_wakeups;
872 u64 nr_wakeups_sync;
873 u64 nr_wakeups_migrate;
874 u64 nr_wakeups_local;
875 u64 nr_wakeups_remote;
876 u64 nr_wakeups_affine;
877 u64 nr_wakeups_affine_attempts;
878 u64 nr_wakeups_passive;
879 u64 nr_wakeups_idle;
880 #endif
881
882 #ifdef CONFIG_FAIR_GROUP_SCHED
883 struct sched_entity *parent;
884 /* rq on which this entity is (to be) queued: */
885 struct cfs_rq *cfs_rq;
886 /* rq "owned" by this entity/group: */
887 struct cfs_rq *my_q;
888 #endif
889 };
890
891 struct task_struct {
892 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
893 void *stack;
894 atomic_t usage;
895 unsigned int flags; /* per process flags, defined below */
896 unsigned int ptrace;
897
898 int lock_depth; /* BKL lock depth */
899
900 #ifdef CONFIG_SMP
901 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
902 int oncpu;
903 #endif
904 #endif
905
906 int prio, static_prio, normal_prio;
907 struct list_head run_list;
908 const struct sched_class *sched_class;
909 struct sched_entity se;
910
911 #ifdef CONFIG_PREEMPT_NOTIFIERS
912 /* list of struct preempt_notifier: */
913 struct hlist_head preempt_notifiers;
914 #endif
915
916 unsigned short ioprio;
917 #ifdef CONFIG_BLK_DEV_IO_TRACE
918 unsigned int btrace_seq;
919 #endif
920
921 unsigned int policy;
922 cpumask_t cpus_allowed;
923 unsigned int time_slice;
924
925 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
926 struct sched_info sched_info;
927 #endif
928
929 struct list_head tasks;
930 /*
931 * ptrace_list/ptrace_children forms the list of my children
932 * that were stolen by a ptracer.
933 */
934 struct list_head ptrace_children;
935 struct list_head ptrace_list;
936
937 struct mm_struct *mm, *active_mm;
938
939 /* task state */
940 struct linux_binfmt *binfmt;
941 int exit_state;
942 int exit_code, exit_signal;
943 int pdeath_signal; /* The signal sent when the parent dies */
944 /* ??? */
945 unsigned int personality;
946 unsigned did_exec:1;
947 pid_t pid;
948 pid_t tgid;
949
950 #ifdef CONFIG_CC_STACKPROTECTOR
951 /* Canary value for the -fstack-protector gcc feature */
952 unsigned long stack_canary;
953 #endif
954 /*
955 * pointers to (original) parent process, youngest child, younger sibling,
956 * older sibling, respectively. (p->father can be replaced with
957 * p->parent->pid)
958 */
959 struct task_struct *real_parent; /* real parent process (when being debugged) */
960 struct task_struct *parent; /* parent process */
961 /*
962 * children/sibling forms the list of my children plus the
963 * tasks I'm ptracing.
964 */
965 struct list_head children; /* list of my children */
966 struct list_head sibling; /* linkage in my parent's children list */
967 struct task_struct *group_leader; /* threadgroup leader */
968
969 /* PID/PID hash table linkage. */
970 struct pid_link pids[PIDTYPE_MAX];
971 struct list_head thread_group;
972
973 struct completion *vfork_done; /* for vfork() */
974 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
975 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
976
977 unsigned int rt_priority;
978 cputime_t utime, stime;
979 cputime_t gtime;
980 unsigned long nvcsw, nivcsw; /* context switch counts */
981 struct timespec start_time; /* monotonic time */
982 struct timespec real_start_time; /* boot based time */
983 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
984 unsigned long min_flt, maj_flt;
985
986 cputime_t it_prof_expires, it_virt_expires;
987 unsigned long long it_sched_expires;
988 struct list_head cpu_timers[3];
989
990 /* process credentials */
991 uid_t uid,euid,suid,fsuid;
992 gid_t gid,egid,sgid,fsgid;
993 struct group_info *group_info;
994 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
995 unsigned keep_capabilities:1;
996 struct user_struct *user;
997 #ifdef CONFIG_KEYS
998 struct key *request_key_auth; /* assumed request_key authority */
999 struct key *thread_keyring; /* keyring private to this thread */
1000 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1001 #endif
1002 /*
1003 * fpu_counter contains the number of consecutive context switches
1004 * that the FPU is used. If this is over a threshold, the lazy fpu
1005 * saving becomes unlazy to save the trap. This is an unsigned char
1006 * so that after 256 times the counter wraps and the behavior turns
1007 * lazy again; this to deal with bursty apps that only use FPU for
1008 * a short time
1009 */
1010 unsigned char fpu_counter;
1011 int oomkilladj; /* OOM kill score adjustment (bit shift). */
1012 char comm[TASK_COMM_LEN]; /* executable name excluding path
1013 - access with [gs]et_task_comm (which lock
1014 it with task_lock())
1015 - initialized normally by flush_old_exec */
1016 /* file system info */
1017 int link_count, total_link_count;
1018 #ifdef CONFIG_SYSVIPC
1019 /* ipc stuff */
1020 struct sysv_sem sysvsem;
1021 #endif
1022 /* CPU-specific state of this task */
1023 struct thread_struct thread;
1024 /* filesystem information */
1025 struct fs_struct *fs;
1026 /* open file information */
1027 struct files_struct *files;
1028 /* namespaces */
1029 struct nsproxy *nsproxy;
1030 /* signal handlers */
1031 struct signal_struct *signal;
1032 struct sighand_struct *sighand;
1033
1034 sigset_t blocked, real_blocked;
1035 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1036 struct sigpending pending;
1037
1038 unsigned long sas_ss_sp;
1039 size_t sas_ss_size;
1040 int (*notifier)(void *priv);
1041 void *notifier_data;
1042 sigset_t *notifier_mask;
1043
1044 void *security;
1045 struct audit_context *audit_context;
1046 seccomp_t seccomp;
1047
1048 /* Thread group tracking */
1049 u32 parent_exec_id;
1050 u32 self_exec_id;
1051 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1052 spinlock_t alloc_lock;
1053
1054 /* Protection of the PI data structures: */
1055 spinlock_t pi_lock;
1056
1057 #ifdef CONFIG_RT_MUTEXES
1058 /* PI waiters blocked on a rt_mutex held by this task */
1059 struct plist_head pi_waiters;
1060 /* Deadlock detection and priority inheritance handling */
1061 struct rt_mutex_waiter *pi_blocked_on;
1062 #endif
1063
1064 #ifdef CONFIG_DEBUG_MUTEXES
1065 /* mutex deadlock detection */
1066 struct mutex_waiter *blocked_on;
1067 #endif
1068 #ifdef CONFIG_TRACE_IRQFLAGS
1069 unsigned int irq_events;
1070 int hardirqs_enabled;
1071 unsigned long hardirq_enable_ip;
1072 unsigned int hardirq_enable_event;
1073 unsigned long hardirq_disable_ip;
1074 unsigned int hardirq_disable_event;
1075 int softirqs_enabled;
1076 unsigned long softirq_disable_ip;
1077 unsigned int softirq_disable_event;
1078 unsigned long softirq_enable_ip;
1079 unsigned int softirq_enable_event;
1080 int hardirq_context;
1081 int softirq_context;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084 # define MAX_LOCK_DEPTH 30UL
1085 u64 curr_chain_key;
1086 int lockdep_depth;
1087 struct held_lock held_locks[MAX_LOCK_DEPTH];
1088 unsigned int lockdep_recursion;
1089 #endif
1090
1091 /* journalling filesystem info */
1092 void *journal_info;
1093
1094 /* stacked block device info */
1095 struct bio *bio_list, **bio_tail;
1096
1097 /* VM state */
1098 struct reclaim_state *reclaim_state;
1099
1100 struct backing_dev_info *backing_dev_info;
1101
1102 struct io_context *io_context;
1103
1104 unsigned long ptrace_message;
1105 siginfo_t *last_siginfo; /* For ptrace use. */
1106 /*
1107 * current io wait handle: wait queue entry to use for io waits
1108 * If this thread is processing aio, this points at the waitqueue
1109 * inside the currently handled kiocb. It may be NULL (i.e. default
1110 * to a stack based synchronous wait) if its doing sync IO.
1111 */
1112 wait_queue_t *io_wait;
1113 #ifdef CONFIG_TASK_XACCT
1114 /* i/o counters(bytes read/written, #syscalls */
1115 u64 rchar, wchar, syscr, syscw;
1116 #endif
1117 struct task_io_accounting ioac;
1118 #if defined(CONFIG_TASK_XACCT)
1119 u64 acct_rss_mem1; /* accumulated rss usage */
1120 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1121 cputime_t acct_stimexpd;/* stime since last update */
1122 #endif
1123 #ifdef CONFIG_NUMA
1124 struct mempolicy *mempolicy;
1125 short il_next;
1126 #endif
1127 #ifdef CONFIG_CPUSETS
1128 struct cpuset *cpuset;
1129 nodemask_t mems_allowed;
1130 int cpuset_mems_generation;
1131 int cpuset_mem_spread_rotor;
1132 #endif
1133 struct robust_list_head __user *robust_list;
1134 #ifdef CONFIG_COMPAT
1135 struct compat_robust_list_head __user *compat_robust_list;
1136 #endif
1137 struct list_head pi_state_list;
1138 struct futex_pi_state *pi_state_cache;
1139
1140 atomic_t fs_excl; /* holding fs exclusive resources */
1141 struct rcu_head rcu;
1142
1143 /*
1144 * cache last used pipe for splice
1145 */
1146 struct pipe_inode_info *splice_pipe;
1147 #ifdef CONFIG_TASK_DELAY_ACCT
1148 struct task_delay_info *delays;
1149 #endif
1150 #ifdef CONFIG_FAULT_INJECTION
1151 int make_it_fail;
1152 #endif
1153 struct prop_local_single dirties;
1154 };
1155
1156 /*
1157 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1158 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1159 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1160 * values are inverted: lower p->prio value means higher priority.
1161 *
1162 * The MAX_USER_RT_PRIO value allows the actual maximum
1163 * RT priority to be separate from the value exported to
1164 * user-space. This allows kernel threads to set their
1165 * priority to a value higher than any user task. Note:
1166 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1167 */
1168
1169 #define MAX_USER_RT_PRIO 100
1170 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1171
1172 #define MAX_PRIO (MAX_RT_PRIO + 40)
1173 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1174
1175 static inline int rt_prio(int prio)
1176 {
1177 if (unlikely(prio < MAX_RT_PRIO))
1178 return 1;
1179 return 0;
1180 }
1181
1182 static inline int rt_task(struct task_struct *p)
1183 {
1184 return rt_prio(p->prio);
1185 }
1186
1187 static inline pid_t process_group(struct task_struct *tsk)
1188 {
1189 return tsk->signal->pgrp;
1190 }
1191
1192 static inline pid_t signal_session(struct signal_struct *sig)
1193 {
1194 return sig->__session;
1195 }
1196
1197 static inline pid_t process_session(struct task_struct *tsk)
1198 {
1199 return signal_session(tsk->signal);
1200 }
1201
1202 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1203 {
1204 sig->__session = session;
1205 }
1206
1207 static inline struct pid *task_pid(struct task_struct *task)
1208 {
1209 return task->pids[PIDTYPE_PID].pid;
1210 }
1211
1212 static inline struct pid *task_tgid(struct task_struct *task)
1213 {
1214 return task->group_leader->pids[PIDTYPE_PID].pid;
1215 }
1216
1217 static inline struct pid *task_pgrp(struct task_struct *task)
1218 {
1219 return task->group_leader->pids[PIDTYPE_PGID].pid;
1220 }
1221
1222 static inline struct pid *task_session(struct task_struct *task)
1223 {
1224 return task->group_leader->pids[PIDTYPE_SID].pid;
1225 }
1226
1227 /**
1228 * pid_alive - check that a task structure is not stale
1229 * @p: Task structure to be checked.
1230 *
1231 * Test if a process is not yet dead (at most zombie state)
1232 * If pid_alive fails, then pointers within the task structure
1233 * can be stale and must not be dereferenced.
1234 */
1235 static inline int pid_alive(struct task_struct *p)
1236 {
1237 return p->pids[PIDTYPE_PID].pid != NULL;
1238 }
1239
1240 /**
1241 * is_init - check if a task structure is init
1242 * @tsk: Task structure to be checked.
1243 *
1244 * Check if a task structure is the first user space task the kernel created.
1245 */
1246 static inline int is_init(struct task_struct *tsk)
1247 {
1248 return tsk->pid == 1;
1249 }
1250
1251 extern struct pid *cad_pid;
1252
1253 extern void free_task(struct task_struct *tsk);
1254 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1255
1256 extern void __put_task_struct(struct task_struct *t);
1257
1258 static inline void put_task_struct(struct task_struct *t)
1259 {
1260 if (atomic_dec_and_test(&t->usage))
1261 __put_task_struct(t);
1262 }
1263
1264 /*
1265 * Per process flags
1266 */
1267 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1268 /* Not implemented yet, only for 486*/
1269 #define PF_STARTING 0x00000002 /* being created */
1270 #define PF_EXITING 0x00000004 /* getting shut down */
1271 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1272 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1273 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1274 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1275 #define PF_DUMPCORE 0x00000200 /* dumped core */
1276 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1277 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1278 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1279 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1280 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1281 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1282 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1283 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1284 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1285 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1286 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1287 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1288 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1289 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1290 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1291 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1292 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1293 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1294
1295 /*
1296 * Only the _current_ task can read/write to tsk->flags, but other
1297 * tasks can access tsk->flags in readonly mode for example
1298 * with tsk_used_math (like during threaded core dumping).
1299 * There is however an exception to this rule during ptrace
1300 * or during fork: the ptracer task is allowed to write to the
1301 * child->flags of its traced child (same goes for fork, the parent
1302 * can write to the child->flags), because we're guaranteed the
1303 * child is not running and in turn not changing child->flags
1304 * at the same time the parent does it.
1305 */
1306 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1307 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1308 #define clear_used_math() clear_stopped_child_used_math(current)
1309 #define set_used_math() set_stopped_child_used_math(current)
1310 #define conditional_stopped_child_used_math(condition, child) \
1311 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1312 #define conditional_used_math(condition) \
1313 conditional_stopped_child_used_math(condition, current)
1314 #define copy_to_stopped_child_used_math(child) \
1315 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1316 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1317 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1318 #define used_math() tsk_used_math(current)
1319
1320 #ifdef CONFIG_SMP
1321 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1322 #else
1323 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1324 {
1325 if (!cpu_isset(0, new_mask))
1326 return -EINVAL;
1327 return 0;
1328 }
1329 #endif
1330
1331 extern unsigned long long sched_clock(void);
1332
1333 /*
1334 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1335 * clock constructed from sched_clock():
1336 */
1337 extern unsigned long long cpu_clock(int cpu);
1338
1339 extern unsigned long long
1340 task_sched_runtime(struct task_struct *task);
1341
1342 /* sched_exec is called by processes performing an exec */
1343 #ifdef CONFIG_SMP
1344 extern void sched_exec(void);
1345 #else
1346 #define sched_exec() {}
1347 #endif
1348
1349 extern void sched_clock_idle_sleep_event(void);
1350 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1351
1352 #ifdef CONFIG_HOTPLUG_CPU
1353 extern void idle_task_exit(void);
1354 #else
1355 static inline void idle_task_exit(void) {}
1356 #endif
1357
1358 extern void sched_idle_next(void);
1359
1360 #ifdef CONFIG_SCHED_DEBUG
1361 extern unsigned int sysctl_sched_latency;
1362 extern unsigned int sysctl_sched_nr_latency;
1363 extern unsigned int sysctl_sched_wakeup_granularity;
1364 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1365 extern unsigned int sysctl_sched_child_runs_first;
1366 extern unsigned int sysctl_sched_features;
1367 extern unsigned int sysctl_sched_migration_cost;
1368 #endif
1369
1370 extern unsigned int sysctl_sched_compat_yield;
1371
1372 #ifdef CONFIG_RT_MUTEXES
1373 extern int rt_mutex_getprio(struct task_struct *p);
1374 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1375 extern void rt_mutex_adjust_pi(struct task_struct *p);
1376 #else
1377 static inline int rt_mutex_getprio(struct task_struct *p)
1378 {
1379 return p->normal_prio;
1380 }
1381 # define rt_mutex_adjust_pi(p) do { } while (0)
1382 #endif
1383
1384 extern void set_user_nice(struct task_struct *p, long nice);
1385 extern int task_prio(const struct task_struct *p);
1386 extern int task_nice(const struct task_struct *p);
1387 extern int can_nice(const struct task_struct *p, const int nice);
1388 extern int task_curr(const struct task_struct *p);
1389 extern int idle_cpu(int cpu);
1390 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1391 extern struct task_struct *idle_task(int cpu);
1392 extern struct task_struct *curr_task(int cpu);
1393 extern void set_curr_task(int cpu, struct task_struct *p);
1394
1395 void yield(void);
1396
1397 /*
1398 * The default (Linux) execution domain.
1399 */
1400 extern struct exec_domain default_exec_domain;
1401
1402 union thread_union {
1403 struct thread_info thread_info;
1404 unsigned long stack[THREAD_SIZE/sizeof(long)];
1405 };
1406
1407 #ifndef __HAVE_ARCH_KSTACK_END
1408 static inline int kstack_end(void *addr)
1409 {
1410 /* Reliable end of stack detection:
1411 * Some APM bios versions misalign the stack
1412 */
1413 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1414 }
1415 #endif
1416
1417 extern union thread_union init_thread_union;
1418 extern struct task_struct init_task;
1419
1420 extern struct mm_struct init_mm;
1421
1422 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1423 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1424 extern void __set_special_pids(pid_t session, pid_t pgrp);
1425
1426 /* per-UID process charging. */
1427 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1428 static inline struct user_struct *get_uid(struct user_struct *u)
1429 {
1430 atomic_inc(&u->__count);
1431 return u;
1432 }
1433 extern void free_uid(struct user_struct *);
1434 extern void switch_uid(struct user_struct *);
1435 extern void release_uids(struct user_namespace *ns);
1436
1437 #include <asm/current.h>
1438
1439 extern void do_timer(unsigned long ticks);
1440
1441 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1442 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1443 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1444 unsigned long clone_flags));
1445 #ifdef CONFIG_SMP
1446 extern void kick_process(struct task_struct *tsk);
1447 #else
1448 static inline void kick_process(struct task_struct *tsk) { }
1449 #endif
1450 extern void sched_fork(struct task_struct *p, int clone_flags);
1451 extern void sched_dead(struct task_struct *p);
1452
1453 extern int in_group_p(gid_t);
1454 extern int in_egroup_p(gid_t);
1455
1456 extern void proc_caches_init(void);
1457 extern void flush_signals(struct task_struct *);
1458 extern void ignore_signals(struct task_struct *);
1459 extern void flush_signal_handlers(struct task_struct *, int force_default);
1460 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1461
1462 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1463 {
1464 unsigned long flags;
1465 int ret;
1466
1467 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1468 ret = dequeue_signal(tsk, mask, info);
1469 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1470
1471 return ret;
1472 }
1473
1474 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1475 sigset_t *mask);
1476 extern void unblock_all_signals(void);
1477 extern void release_task(struct task_struct * p);
1478 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1479 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1480 extern int force_sigsegv(int, struct task_struct *);
1481 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1482 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1483 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1484 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1485 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1486 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1487 extern int kill_pid(struct pid *pid, int sig, int priv);
1488 extern int kill_proc_info(int, struct siginfo *, pid_t);
1489 extern void do_notify_parent(struct task_struct *, int);
1490 extern void force_sig(int, struct task_struct *);
1491 extern void force_sig_specific(int, struct task_struct *);
1492 extern int send_sig(int, struct task_struct *, int);
1493 extern void zap_other_threads(struct task_struct *p);
1494 extern int kill_proc(pid_t, int, int);
1495 extern struct sigqueue *sigqueue_alloc(void);
1496 extern void sigqueue_free(struct sigqueue *);
1497 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1498 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1499 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1500 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1501
1502 static inline int kill_cad_pid(int sig, int priv)
1503 {
1504 return kill_pid(cad_pid, sig, priv);
1505 }
1506
1507 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1508 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1509 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1510 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1511
1512 static inline int is_si_special(const struct siginfo *info)
1513 {
1514 return info <= SEND_SIG_FORCED;
1515 }
1516
1517 /* True if we are on the alternate signal stack. */
1518
1519 static inline int on_sig_stack(unsigned long sp)
1520 {
1521 return (sp - current->sas_ss_sp < current->sas_ss_size);
1522 }
1523
1524 static inline int sas_ss_flags(unsigned long sp)
1525 {
1526 return (current->sas_ss_size == 0 ? SS_DISABLE
1527 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1528 }
1529
1530 /*
1531 * Routines for handling mm_structs
1532 */
1533 extern struct mm_struct * mm_alloc(void);
1534
1535 /* mmdrop drops the mm and the page tables */
1536 extern void FASTCALL(__mmdrop(struct mm_struct *));
1537 static inline void mmdrop(struct mm_struct * mm)
1538 {
1539 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1540 __mmdrop(mm);
1541 }
1542
1543 /* mmput gets rid of the mappings and all user-space */
1544 extern void mmput(struct mm_struct *);
1545 /* Grab a reference to a task's mm, if it is not already going away */
1546 extern struct mm_struct *get_task_mm(struct task_struct *task);
1547 /* Remove the current tasks stale references to the old mm_struct */
1548 extern void mm_release(struct task_struct *, struct mm_struct *);
1549
1550 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1551 extern void flush_thread(void);
1552 extern void exit_thread(void);
1553
1554 extern void exit_files(struct task_struct *);
1555 extern void __cleanup_signal(struct signal_struct *);
1556 extern void __cleanup_sighand(struct sighand_struct *);
1557 extern void exit_itimers(struct signal_struct *);
1558
1559 extern NORET_TYPE void do_group_exit(int);
1560
1561 extern void daemonize(const char *, ...);
1562 extern int allow_signal(int);
1563 extern int disallow_signal(int);
1564
1565 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1566 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1567 struct task_struct *fork_idle(int);
1568
1569 extern void set_task_comm(struct task_struct *tsk, char *from);
1570 extern void get_task_comm(char *to, struct task_struct *tsk);
1571
1572 #ifdef CONFIG_SMP
1573 extern void wait_task_inactive(struct task_struct * p);
1574 #else
1575 #define wait_task_inactive(p) do { } while (0)
1576 #endif
1577
1578 #define remove_parent(p) list_del_init(&(p)->sibling)
1579 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1580
1581 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1582
1583 #define for_each_process(p) \
1584 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1585
1586 /*
1587 * Careful: do_each_thread/while_each_thread is a double loop so
1588 * 'break' will not work as expected - use goto instead.
1589 */
1590 #define do_each_thread(g, t) \
1591 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1592
1593 #define while_each_thread(g, t) \
1594 while ((t = next_thread(t)) != g)
1595
1596 /* de_thread depends on thread_group_leader not being a pid based check */
1597 #define thread_group_leader(p) (p == p->group_leader)
1598
1599 /* Do to the insanities of de_thread it is possible for a process
1600 * to have the pid of the thread group leader without actually being
1601 * the thread group leader. For iteration through the pids in proc
1602 * all we care about is that we have a task with the appropriate
1603 * pid, we don't actually care if we have the right task.
1604 */
1605 static inline int has_group_leader_pid(struct task_struct *p)
1606 {
1607 return p->pid == p->tgid;
1608 }
1609
1610 static inline struct task_struct *next_thread(const struct task_struct *p)
1611 {
1612 return list_entry(rcu_dereference(p->thread_group.next),
1613 struct task_struct, thread_group);
1614 }
1615
1616 static inline int thread_group_empty(struct task_struct *p)
1617 {
1618 return list_empty(&p->thread_group);
1619 }
1620
1621 #define delay_group_leader(p) \
1622 (thread_group_leader(p) && !thread_group_empty(p))
1623
1624 /*
1625 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1626 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1627 * pins the final release of task.io_context. Also protects ->cpuset.
1628 *
1629 * Nests both inside and outside of read_lock(&tasklist_lock).
1630 * It must not be nested with write_lock_irq(&tasklist_lock),
1631 * neither inside nor outside.
1632 */
1633 static inline void task_lock(struct task_struct *p)
1634 {
1635 spin_lock(&p->alloc_lock);
1636 }
1637
1638 static inline void task_unlock(struct task_struct *p)
1639 {
1640 spin_unlock(&p->alloc_lock);
1641 }
1642
1643 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1644 unsigned long *flags);
1645
1646 static inline void unlock_task_sighand(struct task_struct *tsk,
1647 unsigned long *flags)
1648 {
1649 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1650 }
1651
1652 #ifndef __HAVE_THREAD_FUNCTIONS
1653
1654 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1655 #define task_stack_page(task) ((task)->stack)
1656
1657 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1658 {
1659 *task_thread_info(p) = *task_thread_info(org);
1660 task_thread_info(p)->task = p;
1661 }
1662
1663 static inline unsigned long *end_of_stack(struct task_struct *p)
1664 {
1665 return (unsigned long *)(task_thread_info(p) + 1);
1666 }
1667
1668 #endif
1669
1670 /* set thread flags in other task's structures
1671 * - see asm/thread_info.h for TIF_xxxx flags available
1672 */
1673 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1674 {
1675 set_ti_thread_flag(task_thread_info(tsk), flag);
1676 }
1677
1678 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1679 {
1680 clear_ti_thread_flag(task_thread_info(tsk), flag);
1681 }
1682
1683 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1684 {
1685 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1686 }
1687
1688 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1689 {
1690 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1691 }
1692
1693 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1694 {
1695 return test_ti_thread_flag(task_thread_info(tsk), flag);
1696 }
1697
1698 static inline void set_tsk_need_resched(struct task_struct *tsk)
1699 {
1700 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1701 }
1702
1703 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1704 {
1705 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1706 }
1707
1708 static inline int signal_pending(struct task_struct *p)
1709 {
1710 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1711 }
1712
1713 static inline int need_resched(void)
1714 {
1715 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1716 }
1717
1718 /*
1719 * cond_resched() and cond_resched_lock(): latency reduction via
1720 * explicit rescheduling in places that are safe. The return
1721 * value indicates whether a reschedule was done in fact.
1722 * cond_resched_lock() will drop the spinlock before scheduling,
1723 * cond_resched_softirq() will enable bhs before scheduling.
1724 */
1725 extern int cond_resched(void);
1726 extern int cond_resched_lock(spinlock_t * lock);
1727 extern int cond_resched_softirq(void);
1728
1729 /*
1730 * Does a critical section need to be broken due to another
1731 * task waiting?:
1732 */
1733 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1734 # define need_lockbreak(lock) ((lock)->break_lock)
1735 #else
1736 # define need_lockbreak(lock) 0
1737 #endif
1738
1739 /*
1740 * Does a critical section need to be broken due to another
1741 * task waiting or preemption being signalled:
1742 */
1743 static inline int lock_need_resched(spinlock_t *lock)
1744 {
1745 if (need_lockbreak(lock) || need_resched())
1746 return 1;
1747 return 0;
1748 }
1749
1750 /*
1751 * Reevaluate whether the task has signals pending delivery.
1752 * Wake the task if so.
1753 * This is required every time the blocked sigset_t changes.
1754 * callers must hold sighand->siglock.
1755 */
1756 extern void recalc_sigpending_and_wake(struct task_struct *t);
1757 extern void recalc_sigpending(void);
1758
1759 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1760
1761 /*
1762 * Wrappers for p->thread_info->cpu access. No-op on UP.
1763 */
1764 #ifdef CONFIG_SMP
1765
1766 static inline unsigned int task_cpu(const struct task_struct *p)
1767 {
1768 return task_thread_info(p)->cpu;
1769 }
1770
1771 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1772
1773 #else
1774
1775 static inline unsigned int task_cpu(const struct task_struct *p)
1776 {
1777 return 0;
1778 }
1779
1780 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1781 {
1782 }
1783
1784 #endif /* CONFIG_SMP */
1785
1786 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1787 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1788 #else
1789 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1790 {
1791 mm->mmap_base = TASK_UNMAPPED_BASE;
1792 mm->get_unmapped_area = arch_get_unmapped_area;
1793 mm->unmap_area = arch_unmap_area;
1794 }
1795 #endif
1796
1797 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1798 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1799
1800 extern int sched_mc_power_savings, sched_smt_power_savings;
1801
1802 extern void normalize_rt_tasks(void);
1803
1804 #ifdef CONFIG_FAIR_GROUP_SCHED
1805
1806 extern struct task_group init_task_group;
1807
1808 extern struct task_group *sched_create_group(void);
1809 extern void sched_destroy_group(struct task_group *tg);
1810 extern void sched_move_task(struct task_struct *tsk);
1811 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1812 extern unsigned long sched_group_shares(struct task_group *tg);
1813
1814 #endif
1815
1816 #ifdef CONFIG_TASK_XACCT
1817 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1818 {
1819 tsk->rchar += amt;
1820 }
1821
1822 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1823 {
1824 tsk->wchar += amt;
1825 }
1826
1827 static inline void inc_syscr(struct task_struct *tsk)
1828 {
1829 tsk->syscr++;
1830 }
1831
1832 static inline void inc_syscw(struct task_struct *tsk)
1833 {
1834 tsk->syscw++;
1835 }
1836 #else
1837 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1838 {
1839 }
1840
1841 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1842 {
1843 }
1844
1845 static inline void inc_syscr(struct task_struct *tsk)
1846 {
1847 }
1848
1849 static inline void inc_syscw(struct task_struct *tsk)
1850 {
1851 }
1852 #endif
1853
1854 #endif /* __KERNEL__ */
1855
1856 #endif