]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/sched.h
sched/deadline: Add SCHED_DEADLINE structures & implementation
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt_mask.h>
26
27 #include <asm/page.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
30
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
44
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56
57 #include <asm/processor.h>
58
59 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
60
61 /*
62 * Extended scheduling parameters data structure.
63 *
64 * This is needed because the original struct sched_param can not be
65 * altered without introducing ABI issues with legacy applications
66 * (e.g., in sched_getparam()).
67 *
68 * However, the possibility of specifying more than just a priority for
69 * the tasks may be useful for a wide variety of application fields, e.g.,
70 * multimedia, streaming, automation and control, and many others.
71 *
72 * This variant (sched_attr) is meant at describing a so-called
73 * sporadic time-constrained task. In such model a task is specified by:
74 * - the activation period or minimum instance inter-arrival time;
75 * - the maximum (or average, depending on the actual scheduling
76 * discipline) computation time of all instances, a.k.a. runtime;
77 * - the deadline (relative to the actual activation time) of each
78 * instance.
79 * Very briefly, a periodic (sporadic) task asks for the execution of
80 * some specific computation --which is typically called an instance--
81 * (at most) every period. Moreover, each instance typically lasts no more
82 * than the runtime and must be completed by time instant t equal to
83 * the instance activation time + the deadline.
84 *
85 * This is reflected by the actual fields of the sched_attr structure:
86 *
87 * @size size of the structure, for fwd/bwd compat.
88 *
89 * @sched_policy task's scheduling policy
90 * @sched_flags for customizing the scheduler behaviour
91 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
92 * @sched_priority task's static priority (SCHED_FIFO/RR)
93 * @sched_deadline representative of the task's deadline
94 * @sched_runtime representative of the task's runtime
95 * @sched_period representative of the task's period
96 *
97 * Given this task model, there are a multiplicity of scheduling algorithms
98 * and policies, that can be used to ensure all the tasks will make their
99 * timing constraints.
100 *
101 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
102 * only user of this new interface. More information about the algorithm
103 * available in the scheduling class file or in Documentation/.
104 */
105 struct sched_attr {
106 u32 size;
107
108 u32 sched_policy;
109 u64 sched_flags;
110
111 /* SCHED_NORMAL, SCHED_BATCH */
112 s32 sched_nice;
113
114 /* SCHED_FIFO, SCHED_RR */
115 u32 sched_priority;
116
117 /* SCHED_DEADLINE */
118 u64 sched_runtime;
119 u64 sched_deadline;
120 u64 sched_period;
121 };
122
123 struct exec_domain;
124 struct futex_pi_state;
125 struct robust_list_head;
126 struct bio_list;
127 struct fs_struct;
128 struct perf_event_context;
129 struct blk_plug;
130
131 /*
132 * List of flags we want to share for kernel threads,
133 * if only because they are not used by them anyway.
134 */
135 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
136
137 /*
138 * These are the constant used to fake the fixed-point load-average
139 * counting. Some notes:
140 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
141 * a load-average precision of 10 bits integer + 11 bits fractional
142 * - if you want to count load-averages more often, you need more
143 * precision, or rounding will get you. With 2-second counting freq,
144 * the EXP_n values would be 1981, 2034 and 2043 if still using only
145 * 11 bit fractions.
146 */
147 extern unsigned long avenrun[]; /* Load averages */
148 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
149
150 #define FSHIFT 11 /* nr of bits of precision */
151 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
152 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
153 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
154 #define EXP_5 2014 /* 1/exp(5sec/5min) */
155 #define EXP_15 2037 /* 1/exp(5sec/15min) */
156
157 #define CALC_LOAD(load,exp,n) \
158 load *= exp; \
159 load += n*(FIXED_1-exp); \
160 load >>= FSHIFT;
161
162 extern unsigned long total_forks;
163 extern int nr_threads;
164 DECLARE_PER_CPU(unsigned long, process_counts);
165 extern int nr_processes(void);
166 extern unsigned long nr_running(void);
167 extern unsigned long nr_iowait(void);
168 extern unsigned long nr_iowait_cpu(int cpu);
169 extern unsigned long this_cpu_load(void);
170
171
172 extern void calc_global_load(unsigned long ticks);
173 extern void update_cpu_load_nohz(void);
174
175 extern unsigned long get_parent_ip(unsigned long addr);
176
177 extern void dump_cpu_task(int cpu);
178
179 struct seq_file;
180 struct cfs_rq;
181 struct task_group;
182 #ifdef CONFIG_SCHED_DEBUG
183 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
184 extern void proc_sched_set_task(struct task_struct *p);
185 extern void
186 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
187 #endif
188
189 /*
190 * Task state bitmask. NOTE! These bits are also
191 * encoded in fs/proc/array.c: get_task_state().
192 *
193 * We have two separate sets of flags: task->state
194 * is about runnability, while task->exit_state are
195 * about the task exiting. Confusing, but this way
196 * modifying one set can't modify the other one by
197 * mistake.
198 */
199 #define TASK_RUNNING 0
200 #define TASK_INTERRUPTIBLE 1
201 #define TASK_UNINTERRUPTIBLE 2
202 #define __TASK_STOPPED 4
203 #define __TASK_TRACED 8
204 /* in tsk->exit_state */
205 #define EXIT_ZOMBIE 16
206 #define EXIT_DEAD 32
207 /* in tsk->state again */
208 #define TASK_DEAD 64
209 #define TASK_WAKEKILL 128
210 #define TASK_WAKING 256
211 #define TASK_PARKED 512
212 #define TASK_STATE_MAX 1024
213
214 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
215
216 extern char ___assert_task_state[1 - 2*!!(
217 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
218
219 /* Convenience macros for the sake of set_task_state */
220 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
221 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
222 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
223
224 /* Convenience macros for the sake of wake_up */
225 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
226 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
227
228 /* get_task_state() */
229 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
230 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
231 __TASK_TRACED)
232
233 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
234 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
235 #define task_is_stopped_or_traced(task) \
236 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
237 #define task_contributes_to_load(task) \
238 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
239 (task->flags & PF_FROZEN) == 0)
240
241 #define __set_task_state(tsk, state_value) \
242 do { (tsk)->state = (state_value); } while (0)
243 #define set_task_state(tsk, state_value) \
244 set_mb((tsk)->state, (state_value))
245
246 /*
247 * set_current_state() includes a barrier so that the write of current->state
248 * is correctly serialised wrt the caller's subsequent test of whether to
249 * actually sleep:
250 *
251 * set_current_state(TASK_UNINTERRUPTIBLE);
252 * if (do_i_need_to_sleep())
253 * schedule();
254 *
255 * If the caller does not need such serialisation then use __set_current_state()
256 */
257 #define __set_current_state(state_value) \
258 do { current->state = (state_value); } while (0)
259 #define set_current_state(state_value) \
260 set_mb(current->state, (state_value))
261
262 /* Task command name length */
263 #define TASK_COMM_LEN 16
264
265 #include <linux/spinlock.h>
266
267 /*
268 * This serializes "schedule()" and also protects
269 * the run-queue from deletions/modifications (but
270 * _adding_ to the beginning of the run-queue has
271 * a separate lock).
272 */
273 extern rwlock_t tasklist_lock;
274 extern spinlock_t mmlist_lock;
275
276 struct task_struct;
277
278 #ifdef CONFIG_PROVE_RCU
279 extern int lockdep_tasklist_lock_is_held(void);
280 #endif /* #ifdef CONFIG_PROVE_RCU */
281
282 extern void sched_init(void);
283 extern void sched_init_smp(void);
284 extern asmlinkage void schedule_tail(struct task_struct *prev);
285 extern void init_idle(struct task_struct *idle, int cpu);
286 extern void init_idle_bootup_task(struct task_struct *idle);
287
288 extern int runqueue_is_locked(int cpu);
289
290 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
291 extern void nohz_balance_enter_idle(int cpu);
292 extern void set_cpu_sd_state_idle(void);
293 extern int get_nohz_timer_target(void);
294 #else
295 static inline void nohz_balance_enter_idle(int cpu) { }
296 static inline void set_cpu_sd_state_idle(void) { }
297 #endif
298
299 /*
300 * Only dump TASK_* tasks. (0 for all tasks)
301 */
302 extern void show_state_filter(unsigned long state_filter);
303
304 static inline void show_state(void)
305 {
306 show_state_filter(0);
307 }
308
309 extern void show_regs(struct pt_regs *);
310
311 /*
312 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
313 * task), SP is the stack pointer of the first frame that should be shown in the back
314 * trace (or NULL if the entire call-chain of the task should be shown).
315 */
316 extern void show_stack(struct task_struct *task, unsigned long *sp);
317
318 void io_schedule(void);
319 long io_schedule_timeout(long timeout);
320
321 extern void cpu_init (void);
322 extern void trap_init(void);
323 extern void update_process_times(int user);
324 extern void scheduler_tick(void);
325
326 extern void sched_show_task(struct task_struct *p);
327
328 #ifdef CONFIG_LOCKUP_DETECTOR
329 extern void touch_softlockup_watchdog(void);
330 extern void touch_softlockup_watchdog_sync(void);
331 extern void touch_all_softlockup_watchdogs(void);
332 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
333 void __user *buffer,
334 size_t *lenp, loff_t *ppos);
335 extern unsigned int softlockup_panic;
336 void lockup_detector_init(void);
337 #else
338 static inline void touch_softlockup_watchdog(void)
339 {
340 }
341 static inline void touch_softlockup_watchdog_sync(void)
342 {
343 }
344 static inline void touch_all_softlockup_watchdogs(void)
345 {
346 }
347 static inline void lockup_detector_init(void)
348 {
349 }
350 #endif
351
352 #ifdef CONFIG_DETECT_HUNG_TASK
353 void reset_hung_task_detector(void);
354 #else
355 static inline void reset_hung_task_detector(void)
356 {
357 }
358 #endif
359
360 /* Attach to any functions which should be ignored in wchan output. */
361 #define __sched __attribute__((__section__(".sched.text")))
362
363 /* Linker adds these: start and end of __sched functions */
364 extern char __sched_text_start[], __sched_text_end[];
365
366 /* Is this address in the __sched functions? */
367 extern int in_sched_functions(unsigned long addr);
368
369 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
370 extern signed long schedule_timeout(signed long timeout);
371 extern signed long schedule_timeout_interruptible(signed long timeout);
372 extern signed long schedule_timeout_killable(signed long timeout);
373 extern signed long schedule_timeout_uninterruptible(signed long timeout);
374 asmlinkage void schedule(void);
375 extern void schedule_preempt_disabled(void);
376
377 struct nsproxy;
378 struct user_namespace;
379
380 #ifdef CONFIG_MMU
381 extern void arch_pick_mmap_layout(struct mm_struct *mm);
382 extern unsigned long
383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384 unsigned long, unsigned long);
385 extern unsigned long
386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387 unsigned long len, unsigned long pgoff,
388 unsigned long flags);
389 #else
390 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
391 #endif
392
393
394 extern void set_dumpable(struct mm_struct *mm, int value);
395 extern int get_dumpable(struct mm_struct *mm);
396
397 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
398 #define SUID_DUMP_USER 1 /* Dump as user of process */
399 #define SUID_DUMP_ROOT 2 /* Dump as root */
400
401 /* mm flags */
402 /* dumpable bits */
403 #define MMF_DUMPABLE 0 /* core dump is permitted */
404 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
405
406 #define MMF_DUMPABLE_BITS 2
407 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
408
409 /* coredump filter bits */
410 #define MMF_DUMP_ANON_PRIVATE 2
411 #define MMF_DUMP_ANON_SHARED 3
412 #define MMF_DUMP_MAPPED_PRIVATE 4
413 #define MMF_DUMP_MAPPED_SHARED 5
414 #define MMF_DUMP_ELF_HEADERS 6
415 #define MMF_DUMP_HUGETLB_PRIVATE 7
416 #define MMF_DUMP_HUGETLB_SHARED 8
417
418 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
419 #define MMF_DUMP_FILTER_BITS 7
420 #define MMF_DUMP_FILTER_MASK \
421 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
422 #define MMF_DUMP_FILTER_DEFAULT \
423 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
424 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
425
426 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
427 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
428 #else
429 # define MMF_DUMP_MASK_DEFAULT_ELF 0
430 #endif
431 /* leave room for more dump flags */
432 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
433 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
434 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
435
436 #define MMF_HAS_UPROBES 19 /* has uprobes */
437 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
438
439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440
441 struct sighand_struct {
442 atomic_t count;
443 struct k_sigaction action[_NSIG];
444 spinlock_t siglock;
445 wait_queue_head_t signalfd_wqh;
446 };
447
448 struct pacct_struct {
449 int ac_flag;
450 long ac_exitcode;
451 unsigned long ac_mem;
452 cputime_t ac_utime, ac_stime;
453 unsigned long ac_minflt, ac_majflt;
454 };
455
456 struct cpu_itimer {
457 cputime_t expires;
458 cputime_t incr;
459 u32 error;
460 u32 incr_error;
461 };
462
463 /**
464 * struct cputime - snaphsot of system and user cputime
465 * @utime: time spent in user mode
466 * @stime: time spent in system mode
467 *
468 * Gathers a generic snapshot of user and system time.
469 */
470 struct cputime {
471 cputime_t utime;
472 cputime_t stime;
473 };
474
475 /**
476 * struct task_cputime - collected CPU time counts
477 * @utime: time spent in user mode, in &cputime_t units
478 * @stime: time spent in kernel mode, in &cputime_t units
479 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
480 *
481 * This is an extension of struct cputime that includes the total runtime
482 * spent by the task from the scheduler point of view.
483 *
484 * As a result, this structure groups together three kinds of CPU time
485 * that are tracked for threads and thread groups. Most things considering
486 * CPU time want to group these counts together and treat all three
487 * of them in parallel.
488 */
489 struct task_cputime {
490 cputime_t utime;
491 cputime_t stime;
492 unsigned long long sum_exec_runtime;
493 };
494 /* Alternate field names when used to cache expirations. */
495 #define prof_exp stime
496 #define virt_exp utime
497 #define sched_exp sum_exec_runtime
498
499 #define INIT_CPUTIME \
500 (struct task_cputime) { \
501 .utime = 0, \
502 .stime = 0, \
503 .sum_exec_runtime = 0, \
504 }
505
506 #ifdef CONFIG_PREEMPT_COUNT
507 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
508 #else
509 #define PREEMPT_DISABLED PREEMPT_ENABLED
510 #endif
511
512 /*
513 * Disable preemption until the scheduler is running.
514 * Reset by start_kernel()->sched_init()->init_idle().
515 *
516 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
517 * before the scheduler is active -- see should_resched().
518 */
519 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
520
521 /**
522 * struct thread_group_cputimer - thread group interval timer counts
523 * @cputime: thread group interval timers.
524 * @running: non-zero when there are timers running and
525 * @cputime receives updates.
526 * @lock: lock for fields in this struct.
527 *
528 * This structure contains the version of task_cputime, above, that is
529 * used for thread group CPU timer calculations.
530 */
531 struct thread_group_cputimer {
532 struct task_cputime cputime;
533 int running;
534 raw_spinlock_t lock;
535 };
536
537 #include <linux/rwsem.h>
538 struct autogroup;
539
540 /*
541 * NOTE! "signal_struct" does not have its own
542 * locking, because a shared signal_struct always
543 * implies a shared sighand_struct, so locking
544 * sighand_struct is always a proper superset of
545 * the locking of signal_struct.
546 */
547 struct signal_struct {
548 atomic_t sigcnt;
549 atomic_t live;
550 int nr_threads;
551
552 wait_queue_head_t wait_chldexit; /* for wait4() */
553
554 /* current thread group signal load-balancing target: */
555 struct task_struct *curr_target;
556
557 /* shared signal handling: */
558 struct sigpending shared_pending;
559
560 /* thread group exit support */
561 int group_exit_code;
562 /* overloaded:
563 * - notify group_exit_task when ->count is equal to notify_count
564 * - everyone except group_exit_task is stopped during signal delivery
565 * of fatal signals, group_exit_task processes the signal.
566 */
567 int notify_count;
568 struct task_struct *group_exit_task;
569
570 /* thread group stop support, overloads group_exit_code too */
571 int group_stop_count;
572 unsigned int flags; /* see SIGNAL_* flags below */
573
574 /*
575 * PR_SET_CHILD_SUBREAPER marks a process, like a service
576 * manager, to re-parent orphan (double-forking) child processes
577 * to this process instead of 'init'. The service manager is
578 * able to receive SIGCHLD signals and is able to investigate
579 * the process until it calls wait(). All children of this
580 * process will inherit a flag if they should look for a
581 * child_subreaper process at exit.
582 */
583 unsigned int is_child_subreaper:1;
584 unsigned int has_child_subreaper:1;
585
586 /* POSIX.1b Interval Timers */
587 int posix_timer_id;
588 struct list_head posix_timers;
589
590 /* ITIMER_REAL timer for the process */
591 struct hrtimer real_timer;
592 struct pid *leader_pid;
593 ktime_t it_real_incr;
594
595 /*
596 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
597 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
598 * values are defined to 0 and 1 respectively
599 */
600 struct cpu_itimer it[2];
601
602 /*
603 * Thread group totals for process CPU timers.
604 * See thread_group_cputimer(), et al, for details.
605 */
606 struct thread_group_cputimer cputimer;
607
608 /* Earliest-expiration cache. */
609 struct task_cputime cputime_expires;
610
611 struct list_head cpu_timers[3];
612
613 struct pid *tty_old_pgrp;
614
615 /* boolean value for session group leader */
616 int leader;
617
618 struct tty_struct *tty; /* NULL if no tty */
619
620 #ifdef CONFIG_SCHED_AUTOGROUP
621 struct autogroup *autogroup;
622 #endif
623 /*
624 * Cumulative resource counters for dead threads in the group,
625 * and for reaped dead child processes forked by this group.
626 * Live threads maintain their own counters and add to these
627 * in __exit_signal, except for the group leader.
628 */
629 cputime_t utime, stime, cutime, cstime;
630 cputime_t gtime;
631 cputime_t cgtime;
632 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
633 struct cputime prev_cputime;
634 #endif
635 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
636 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
637 unsigned long inblock, oublock, cinblock, coublock;
638 unsigned long maxrss, cmaxrss;
639 struct task_io_accounting ioac;
640
641 /*
642 * Cumulative ns of schedule CPU time fo dead threads in the
643 * group, not including a zombie group leader, (This only differs
644 * from jiffies_to_ns(utime + stime) if sched_clock uses something
645 * other than jiffies.)
646 */
647 unsigned long long sum_sched_runtime;
648
649 /*
650 * We don't bother to synchronize most readers of this at all,
651 * because there is no reader checking a limit that actually needs
652 * to get both rlim_cur and rlim_max atomically, and either one
653 * alone is a single word that can safely be read normally.
654 * getrlimit/setrlimit use task_lock(current->group_leader) to
655 * protect this instead of the siglock, because they really
656 * have no need to disable irqs.
657 */
658 struct rlimit rlim[RLIM_NLIMITS];
659
660 #ifdef CONFIG_BSD_PROCESS_ACCT
661 struct pacct_struct pacct; /* per-process accounting information */
662 #endif
663 #ifdef CONFIG_TASKSTATS
664 struct taskstats *stats;
665 #endif
666 #ifdef CONFIG_AUDIT
667 unsigned audit_tty;
668 unsigned audit_tty_log_passwd;
669 struct tty_audit_buf *tty_audit_buf;
670 #endif
671 #ifdef CONFIG_CGROUPS
672 /*
673 * group_rwsem prevents new tasks from entering the threadgroup and
674 * member tasks from exiting,a more specifically, setting of
675 * PF_EXITING. fork and exit paths are protected with this rwsem
676 * using threadgroup_change_begin/end(). Users which require
677 * threadgroup to remain stable should use threadgroup_[un]lock()
678 * which also takes care of exec path. Currently, cgroup is the
679 * only user.
680 */
681 struct rw_semaphore group_rwsem;
682 #endif
683
684 oom_flags_t oom_flags;
685 short oom_score_adj; /* OOM kill score adjustment */
686 short oom_score_adj_min; /* OOM kill score adjustment min value.
687 * Only settable by CAP_SYS_RESOURCE. */
688
689 struct mutex cred_guard_mutex; /* guard against foreign influences on
690 * credential calculations
691 * (notably. ptrace) */
692 };
693
694 /*
695 * Bits in flags field of signal_struct.
696 */
697 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
698 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
699 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
700 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
701 /*
702 * Pending notifications to parent.
703 */
704 #define SIGNAL_CLD_STOPPED 0x00000010
705 #define SIGNAL_CLD_CONTINUED 0x00000020
706 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
707
708 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
709
710 /* If true, all threads except ->group_exit_task have pending SIGKILL */
711 static inline int signal_group_exit(const struct signal_struct *sig)
712 {
713 return (sig->flags & SIGNAL_GROUP_EXIT) ||
714 (sig->group_exit_task != NULL);
715 }
716
717 /*
718 * Some day this will be a full-fledged user tracking system..
719 */
720 struct user_struct {
721 atomic_t __count; /* reference count */
722 atomic_t processes; /* How many processes does this user have? */
723 atomic_t files; /* How many open files does this user have? */
724 atomic_t sigpending; /* How many pending signals does this user have? */
725 #ifdef CONFIG_INOTIFY_USER
726 atomic_t inotify_watches; /* How many inotify watches does this user have? */
727 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
728 #endif
729 #ifdef CONFIG_FANOTIFY
730 atomic_t fanotify_listeners;
731 #endif
732 #ifdef CONFIG_EPOLL
733 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
734 #endif
735 #ifdef CONFIG_POSIX_MQUEUE
736 /* protected by mq_lock */
737 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
738 #endif
739 unsigned long locked_shm; /* How many pages of mlocked shm ? */
740
741 #ifdef CONFIG_KEYS
742 struct key *uid_keyring; /* UID specific keyring */
743 struct key *session_keyring; /* UID's default session keyring */
744 #endif
745
746 /* Hash table maintenance information */
747 struct hlist_node uidhash_node;
748 kuid_t uid;
749
750 #ifdef CONFIG_PERF_EVENTS
751 atomic_long_t locked_vm;
752 #endif
753 };
754
755 extern int uids_sysfs_init(void);
756
757 extern struct user_struct *find_user(kuid_t);
758
759 extern struct user_struct root_user;
760 #define INIT_USER (&root_user)
761
762
763 struct backing_dev_info;
764 struct reclaim_state;
765
766 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
767 struct sched_info {
768 /* cumulative counters */
769 unsigned long pcount; /* # of times run on this cpu */
770 unsigned long long run_delay; /* time spent waiting on a runqueue */
771
772 /* timestamps */
773 unsigned long long last_arrival,/* when we last ran on a cpu */
774 last_queued; /* when we were last queued to run */
775 };
776 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
777
778 #ifdef CONFIG_TASK_DELAY_ACCT
779 struct task_delay_info {
780 spinlock_t lock;
781 unsigned int flags; /* Private per-task flags */
782
783 /* For each stat XXX, add following, aligned appropriately
784 *
785 * struct timespec XXX_start, XXX_end;
786 * u64 XXX_delay;
787 * u32 XXX_count;
788 *
789 * Atomicity of updates to XXX_delay, XXX_count protected by
790 * single lock above (split into XXX_lock if contention is an issue).
791 */
792
793 /*
794 * XXX_count is incremented on every XXX operation, the delay
795 * associated with the operation is added to XXX_delay.
796 * XXX_delay contains the accumulated delay time in nanoseconds.
797 */
798 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
799 u64 blkio_delay; /* wait for sync block io completion */
800 u64 swapin_delay; /* wait for swapin block io completion */
801 u32 blkio_count; /* total count of the number of sync block */
802 /* io operations performed */
803 u32 swapin_count; /* total count of the number of swapin block */
804 /* io operations performed */
805
806 struct timespec freepages_start, freepages_end;
807 u64 freepages_delay; /* wait for memory reclaim */
808 u32 freepages_count; /* total count of memory reclaim */
809 };
810 #endif /* CONFIG_TASK_DELAY_ACCT */
811
812 static inline int sched_info_on(void)
813 {
814 #ifdef CONFIG_SCHEDSTATS
815 return 1;
816 #elif defined(CONFIG_TASK_DELAY_ACCT)
817 extern int delayacct_on;
818 return delayacct_on;
819 #else
820 return 0;
821 #endif
822 }
823
824 enum cpu_idle_type {
825 CPU_IDLE,
826 CPU_NOT_IDLE,
827 CPU_NEWLY_IDLE,
828 CPU_MAX_IDLE_TYPES
829 };
830
831 /*
832 * Increase resolution of cpu_power calculations
833 */
834 #define SCHED_POWER_SHIFT 10
835 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
836
837 /*
838 * sched-domains (multiprocessor balancing) declarations:
839 */
840 #ifdef CONFIG_SMP
841 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
842 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
843 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
844 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
845 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
846 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
847 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
848 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
849 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
850 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
851 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
852 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
853 #define SD_NUMA 0x4000 /* cross-node balancing */
854
855 extern int __weak arch_sd_sibiling_asym_packing(void);
856
857 struct sched_domain_attr {
858 int relax_domain_level;
859 };
860
861 #define SD_ATTR_INIT (struct sched_domain_attr) { \
862 .relax_domain_level = -1, \
863 }
864
865 extern int sched_domain_level_max;
866
867 struct sched_group;
868
869 struct sched_domain {
870 /* These fields must be setup */
871 struct sched_domain *parent; /* top domain must be null terminated */
872 struct sched_domain *child; /* bottom domain must be null terminated */
873 struct sched_group *groups; /* the balancing groups of the domain */
874 unsigned long min_interval; /* Minimum balance interval ms */
875 unsigned long max_interval; /* Maximum balance interval ms */
876 unsigned int busy_factor; /* less balancing by factor if busy */
877 unsigned int imbalance_pct; /* No balance until over watermark */
878 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
879 unsigned int busy_idx;
880 unsigned int idle_idx;
881 unsigned int newidle_idx;
882 unsigned int wake_idx;
883 unsigned int forkexec_idx;
884 unsigned int smt_gain;
885
886 int nohz_idle; /* NOHZ IDLE status */
887 int flags; /* See SD_* */
888 int level;
889
890 /* Runtime fields. */
891 unsigned long last_balance; /* init to jiffies. units in jiffies */
892 unsigned int balance_interval; /* initialise to 1. units in ms. */
893 unsigned int nr_balance_failed; /* initialise to 0 */
894
895 /* idle_balance() stats */
896 u64 max_newidle_lb_cost;
897 unsigned long next_decay_max_lb_cost;
898
899 #ifdef CONFIG_SCHEDSTATS
900 /* load_balance() stats */
901 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
902 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
903 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
904 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
905 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
906 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
907 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
908 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
909
910 /* Active load balancing */
911 unsigned int alb_count;
912 unsigned int alb_failed;
913 unsigned int alb_pushed;
914
915 /* SD_BALANCE_EXEC stats */
916 unsigned int sbe_count;
917 unsigned int sbe_balanced;
918 unsigned int sbe_pushed;
919
920 /* SD_BALANCE_FORK stats */
921 unsigned int sbf_count;
922 unsigned int sbf_balanced;
923 unsigned int sbf_pushed;
924
925 /* try_to_wake_up() stats */
926 unsigned int ttwu_wake_remote;
927 unsigned int ttwu_move_affine;
928 unsigned int ttwu_move_balance;
929 #endif
930 #ifdef CONFIG_SCHED_DEBUG
931 char *name;
932 #endif
933 union {
934 void *private; /* used during construction */
935 struct rcu_head rcu; /* used during destruction */
936 };
937
938 unsigned int span_weight;
939 /*
940 * Span of all CPUs in this domain.
941 *
942 * NOTE: this field is variable length. (Allocated dynamically
943 * by attaching extra space to the end of the structure,
944 * depending on how many CPUs the kernel has booted up with)
945 */
946 unsigned long span[0];
947 };
948
949 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
950 {
951 return to_cpumask(sd->span);
952 }
953
954 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
955 struct sched_domain_attr *dattr_new);
956
957 /* Allocate an array of sched domains, for partition_sched_domains(). */
958 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
959 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
960
961 bool cpus_share_cache(int this_cpu, int that_cpu);
962
963 #else /* CONFIG_SMP */
964
965 struct sched_domain_attr;
966
967 static inline void
968 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
969 struct sched_domain_attr *dattr_new)
970 {
971 }
972
973 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
974 {
975 return true;
976 }
977
978 #endif /* !CONFIG_SMP */
979
980
981 struct io_context; /* See blkdev.h */
982
983
984 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
985 extern void prefetch_stack(struct task_struct *t);
986 #else
987 static inline void prefetch_stack(struct task_struct *t) { }
988 #endif
989
990 struct audit_context; /* See audit.c */
991 struct mempolicy;
992 struct pipe_inode_info;
993 struct uts_namespace;
994
995 struct load_weight {
996 unsigned long weight;
997 u32 inv_weight;
998 };
999
1000 struct sched_avg {
1001 /*
1002 * These sums represent an infinite geometric series and so are bound
1003 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1004 * choices of y < 1-2^(-32)*1024.
1005 */
1006 u32 runnable_avg_sum, runnable_avg_period;
1007 u64 last_runnable_update;
1008 s64 decay_count;
1009 unsigned long load_avg_contrib;
1010 };
1011
1012 #ifdef CONFIG_SCHEDSTATS
1013 struct sched_statistics {
1014 u64 wait_start;
1015 u64 wait_max;
1016 u64 wait_count;
1017 u64 wait_sum;
1018 u64 iowait_count;
1019 u64 iowait_sum;
1020
1021 u64 sleep_start;
1022 u64 sleep_max;
1023 s64 sum_sleep_runtime;
1024
1025 u64 block_start;
1026 u64 block_max;
1027 u64 exec_max;
1028 u64 slice_max;
1029
1030 u64 nr_migrations_cold;
1031 u64 nr_failed_migrations_affine;
1032 u64 nr_failed_migrations_running;
1033 u64 nr_failed_migrations_hot;
1034 u64 nr_forced_migrations;
1035
1036 u64 nr_wakeups;
1037 u64 nr_wakeups_sync;
1038 u64 nr_wakeups_migrate;
1039 u64 nr_wakeups_local;
1040 u64 nr_wakeups_remote;
1041 u64 nr_wakeups_affine;
1042 u64 nr_wakeups_affine_attempts;
1043 u64 nr_wakeups_passive;
1044 u64 nr_wakeups_idle;
1045 };
1046 #endif
1047
1048 struct sched_entity {
1049 struct load_weight load; /* for load-balancing */
1050 struct rb_node run_node;
1051 struct list_head group_node;
1052 unsigned int on_rq;
1053
1054 u64 exec_start;
1055 u64 sum_exec_runtime;
1056 u64 vruntime;
1057 u64 prev_sum_exec_runtime;
1058
1059 u64 nr_migrations;
1060
1061 #ifdef CONFIG_SCHEDSTATS
1062 struct sched_statistics statistics;
1063 #endif
1064
1065 #ifdef CONFIG_FAIR_GROUP_SCHED
1066 struct sched_entity *parent;
1067 /* rq on which this entity is (to be) queued: */
1068 struct cfs_rq *cfs_rq;
1069 /* rq "owned" by this entity/group: */
1070 struct cfs_rq *my_q;
1071 #endif
1072
1073 #ifdef CONFIG_SMP
1074 /* Per-entity load-tracking */
1075 struct sched_avg avg;
1076 #endif
1077 };
1078
1079 struct sched_rt_entity {
1080 struct list_head run_list;
1081 unsigned long timeout;
1082 unsigned long watchdog_stamp;
1083 unsigned int time_slice;
1084
1085 struct sched_rt_entity *back;
1086 #ifdef CONFIG_RT_GROUP_SCHED
1087 struct sched_rt_entity *parent;
1088 /* rq on which this entity is (to be) queued: */
1089 struct rt_rq *rt_rq;
1090 /* rq "owned" by this entity/group: */
1091 struct rt_rq *my_q;
1092 #endif
1093 };
1094
1095 struct sched_dl_entity {
1096 struct rb_node rb_node;
1097
1098 /*
1099 * Original scheduling parameters. Copied here from sched_attr
1100 * during sched_setscheduler2(), they will remain the same until
1101 * the next sched_setscheduler2().
1102 */
1103 u64 dl_runtime; /* maximum runtime for each instance */
1104 u64 dl_deadline; /* relative deadline of each instance */
1105
1106 /*
1107 * Actual scheduling parameters. Initialized with the values above,
1108 * they are continously updated during task execution. Note that
1109 * the remaining runtime could be < 0 in case we are in overrun.
1110 */
1111 s64 runtime; /* remaining runtime for this instance */
1112 u64 deadline; /* absolute deadline for this instance */
1113 unsigned int flags; /* specifying the scheduler behaviour */
1114
1115 /*
1116 * Some bool flags:
1117 *
1118 * @dl_throttled tells if we exhausted the runtime. If so, the
1119 * task has to wait for a replenishment to be performed at the
1120 * next firing of dl_timer.
1121 *
1122 * @dl_new tells if a new instance arrived. If so we must
1123 * start executing it with full runtime and reset its absolute
1124 * deadline;
1125 */
1126 int dl_throttled, dl_new;
1127
1128 /*
1129 * Bandwidth enforcement timer. Each -deadline task has its
1130 * own bandwidth to be enforced, thus we need one timer per task.
1131 */
1132 struct hrtimer dl_timer;
1133 };
1134
1135 struct rcu_node;
1136
1137 enum perf_event_task_context {
1138 perf_invalid_context = -1,
1139 perf_hw_context = 0,
1140 perf_sw_context,
1141 perf_nr_task_contexts,
1142 };
1143
1144 struct task_struct {
1145 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1146 void *stack;
1147 atomic_t usage;
1148 unsigned int flags; /* per process flags, defined below */
1149 unsigned int ptrace;
1150
1151 #ifdef CONFIG_SMP
1152 struct llist_node wake_entry;
1153 int on_cpu;
1154 struct task_struct *last_wakee;
1155 unsigned long wakee_flips;
1156 unsigned long wakee_flip_decay_ts;
1157
1158 int wake_cpu;
1159 #endif
1160 int on_rq;
1161
1162 int prio, static_prio, normal_prio;
1163 unsigned int rt_priority;
1164 const struct sched_class *sched_class;
1165 struct sched_entity se;
1166 struct sched_rt_entity rt;
1167 #ifdef CONFIG_CGROUP_SCHED
1168 struct task_group *sched_task_group;
1169 #endif
1170 struct sched_dl_entity dl;
1171
1172 #ifdef CONFIG_PREEMPT_NOTIFIERS
1173 /* list of struct preempt_notifier: */
1174 struct hlist_head preempt_notifiers;
1175 #endif
1176
1177 #ifdef CONFIG_BLK_DEV_IO_TRACE
1178 unsigned int btrace_seq;
1179 #endif
1180
1181 unsigned int policy;
1182 int nr_cpus_allowed;
1183 cpumask_t cpus_allowed;
1184
1185 #ifdef CONFIG_PREEMPT_RCU
1186 int rcu_read_lock_nesting;
1187 char rcu_read_unlock_special;
1188 struct list_head rcu_node_entry;
1189 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1190 #ifdef CONFIG_TREE_PREEMPT_RCU
1191 struct rcu_node *rcu_blocked_node;
1192 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1193 #ifdef CONFIG_RCU_BOOST
1194 struct rt_mutex *rcu_boost_mutex;
1195 #endif /* #ifdef CONFIG_RCU_BOOST */
1196
1197 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1198 struct sched_info sched_info;
1199 #endif
1200
1201 struct list_head tasks;
1202 #ifdef CONFIG_SMP
1203 struct plist_node pushable_tasks;
1204 #endif
1205
1206 struct mm_struct *mm, *active_mm;
1207 #ifdef CONFIG_COMPAT_BRK
1208 unsigned brk_randomized:1;
1209 #endif
1210 #if defined(SPLIT_RSS_COUNTING)
1211 struct task_rss_stat rss_stat;
1212 #endif
1213 /* task state */
1214 int exit_state;
1215 int exit_code, exit_signal;
1216 int pdeath_signal; /* The signal sent when the parent dies */
1217 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1218
1219 /* Used for emulating ABI behavior of previous Linux versions */
1220 unsigned int personality;
1221
1222 unsigned did_exec:1;
1223 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1224 * execve */
1225 unsigned in_iowait:1;
1226
1227 /* task may not gain privileges */
1228 unsigned no_new_privs:1;
1229
1230 /* Revert to default priority/policy when forking */
1231 unsigned sched_reset_on_fork:1;
1232 unsigned sched_contributes_to_load:1;
1233
1234 pid_t pid;
1235 pid_t tgid;
1236
1237 #ifdef CONFIG_CC_STACKPROTECTOR
1238 /* Canary value for the -fstack-protector gcc feature */
1239 unsigned long stack_canary;
1240 #endif
1241 /*
1242 * pointers to (original) parent process, youngest child, younger sibling,
1243 * older sibling, respectively. (p->father can be replaced with
1244 * p->real_parent->pid)
1245 */
1246 struct task_struct __rcu *real_parent; /* real parent process */
1247 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1248 /*
1249 * children/sibling forms the list of my natural children
1250 */
1251 struct list_head children; /* list of my children */
1252 struct list_head sibling; /* linkage in my parent's children list */
1253 struct task_struct *group_leader; /* threadgroup leader */
1254
1255 /*
1256 * ptraced is the list of tasks this task is using ptrace on.
1257 * This includes both natural children and PTRACE_ATTACH targets.
1258 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1259 */
1260 struct list_head ptraced;
1261 struct list_head ptrace_entry;
1262
1263 /* PID/PID hash table linkage. */
1264 struct pid_link pids[PIDTYPE_MAX];
1265 struct list_head thread_group;
1266
1267 struct completion *vfork_done; /* for vfork() */
1268 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1269 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1270
1271 cputime_t utime, stime, utimescaled, stimescaled;
1272 cputime_t gtime;
1273 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1274 struct cputime prev_cputime;
1275 #endif
1276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1277 seqlock_t vtime_seqlock;
1278 unsigned long long vtime_snap;
1279 enum {
1280 VTIME_SLEEPING = 0,
1281 VTIME_USER,
1282 VTIME_SYS,
1283 } vtime_snap_whence;
1284 #endif
1285 unsigned long nvcsw, nivcsw; /* context switch counts */
1286 struct timespec start_time; /* monotonic time */
1287 struct timespec real_start_time; /* boot based time */
1288 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1289 unsigned long min_flt, maj_flt;
1290
1291 struct task_cputime cputime_expires;
1292 struct list_head cpu_timers[3];
1293
1294 /* process credentials */
1295 const struct cred __rcu *real_cred; /* objective and real subjective task
1296 * credentials (COW) */
1297 const struct cred __rcu *cred; /* effective (overridable) subjective task
1298 * credentials (COW) */
1299 char comm[TASK_COMM_LEN]; /* executable name excluding path
1300 - access with [gs]et_task_comm (which lock
1301 it with task_lock())
1302 - initialized normally by setup_new_exec */
1303 /* file system info */
1304 int link_count, total_link_count;
1305 #ifdef CONFIG_SYSVIPC
1306 /* ipc stuff */
1307 struct sysv_sem sysvsem;
1308 #endif
1309 #ifdef CONFIG_DETECT_HUNG_TASK
1310 /* hung task detection */
1311 unsigned long last_switch_count;
1312 #endif
1313 /* CPU-specific state of this task */
1314 struct thread_struct thread;
1315 /* filesystem information */
1316 struct fs_struct *fs;
1317 /* open file information */
1318 struct files_struct *files;
1319 /* namespaces */
1320 struct nsproxy *nsproxy;
1321 /* signal handlers */
1322 struct signal_struct *signal;
1323 struct sighand_struct *sighand;
1324
1325 sigset_t blocked, real_blocked;
1326 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1327 struct sigpending pending;
1328
1329 unsigned long sas_ss_sp;
1330 size_t sas_ss_size;
1331 int (*notifier)(void *priv);
1332 void *notifier_data;
1333 sigset_t *notifier_mask;
1334 struct callback_head *task_works;
1335
1336 struct audit_context *audit_context;
1337 #ifdef CONFIG_AUDITSYSCALL
1338 kuid_t loginuid;
1339 unsigned int sessionid;
1340 #endif
1341 struct seccomp seccomp;
1342
1343 /* Thread group tracking */
1344 u32 parent_exec_id;
1345 u32 self_exec_id;
1346 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1347 * mempolicy */
1348 spinlock_t alloc_lock;
1349
1350 /* Protection of the PI data structures: */
1351 raw_spinlock_t pi_lock;
1352
1353 #ifdef CONFIG_RT_MUTEXES
1354 /* PI waiters blocked on a rt_mutex held by this task */
1355 struct plist_head pi_waiters;
1356 /* Deadlock detection and priority inheritance handling */
1357 struct rt_mutex_waiter *pi_blocked_on;
1358 #endif
1359
1360 #ifdef CONFIG_DEBUG_MUTEXES
1361 /* mutex deadlock detection */
1362 struct mutex_waiter *blocked_on;
1363 #endif
1364 #ifdef CONFIG_TRACE_IRQFLAGS
1365 unsigned int irq_events;
1366 unsigned long hardirq_enable_ip;
1367 unsigned long hardirq_disable_ip;
1368 unsigned int hardirq_enable_event;
1369 unsigned int hardirq_disable_event;
1370 int hardirqs_enabled;
1371 int hardirq_context;
1372 unsigned long softirq_disable_ip;
1373 unsigned long softirq_enable_ip;
1374 unsigned int softirq_disable_event;
1375 unsigned int softirq_enable_event;
1376 int softirqs_enabled;
1377 int softirq_context;
1378 #endif
1379 #ifdef CONFIG_LOCKDEP
1380 # define MAX_LOCK_DEPTH 48UL
1381 u64 curr_chain_key;
1382 int lockdep_depth;
1383 unsigned int lockdep_recursion;
1384 struct held_lock held_locks[MAX_LOCK_DEPTH];
1385 gfp_t lockdep_reclaim_gfp;
1386 #endif
1387
1388 /* journalling filesystem info */
1389 void *journal_info;
1390
1391 /* stacked block device info */
1392 struct bio_list *bio_list;
1393
1394 #ifdef CONFIG_BLOCK
1395 /* stack plugging */
1396 struct blk_plug *plug;
1397 #endif
1398
1399 /* VM state */
1400 struct reclaim_state *reclaim_state;
1401
1402 struct backing_dev_info *backing_dev_info;
1403
1404 struct io_context *io_context;
1405
1406 unsigned long ptrace_message;
1407 siginfo_t *last_siginfo; /* For ptrace use. */
1408 struct task_io_accounting ioac;
1409 #if defined(CONFIG_TASK_XACCT)
1410 u64 acct_rss_mem1; /* accumulated rss usage */
1411 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1412 cputime_t acct_timexpd; /* stime + utime since last update */
1413 #endif
1414 #ifdef CONFIG_CPUSETS
1415 nodemask_t mems_allowed; /* Protected by alloc_lock */
1416 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1417 int cpuset_mem_spread_rotor;
1418 int cpuset_slab_spread_rotor;
1419 #endif
1420 #ifdef CONFIG_CGROUPS
1421 /* Control Group info protected by css_set_lock */
1422 struct css_set __rcu *cgroups;
1423 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1424 struct list_head cg_list;
1425 #endif
1426 #ifdef CONFIG_FUTEX
1427 struct robust_list_head __user *robust_list;
1428 #ifdef CONFIG_COMPAT
1429 struct compat_robust_list_head __user *compat_robust_list;
1430 #endif
1431 struct list_head pi_state_list;
1432 struct futex_pi_state *pi_state_cache;
1433 #endif
1434 #ifdef CONFIG_PERF_EVENTS
1435 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1436 struct mutex perf_event_mutex;
1437 struct list_head perf_event_list;
1438 #endif
1439 #ifdef CONFIG_NUMA
1440 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1441 short il_next;
1442 short pref_node_fork;
1443 #endif
1444 #ifdef CONFIG_NUMA_BALANCING
1445 int numa_scan_seq;
1446 unsigned int numa_scan_period;
1447 unsigned int numa_scan_period_max;
1448 int numa_preferred_nid;
1449 int numa_migrate_deferred;
1450 unsigned long numa_migrate_retry;
1451 u64 node_stamp; /* migration stamp */
1452 struct callback_head numa_work;
1453
1454 struct list_head numa_entry;
1455 struct numa_group *numa_group;
1456
1457 /*
1458 * Exponential decaying average of faults on a per-node basis.
1459 * Scheduling placement decisions are made based on the these counts.
1460 * The values remain static for the duration of a PTE scan
1461 */
1462 unsigned long *numa_faults;
1463 unsigned long total_numa_faults;
1464
1465 /*
1466 * numa_faults_buffer records faults per node during the current
1467 * scan window. When the scan completes, the counts in numa_faults
1468 * decay and these values are copied.
1469 */
1470 unsigned long *numa_faults_buffer;
1471
1472 /*
1473 * numa_faults_locality tracks if faults recorded during the last
1474 * scan window were remote/local. The task scan period is adapted
1475 * based on the locality of the faults with different weights
1476 * depending on whether they were shared or private faults
1477 */
1478 unsigned long numa_faults_locality[2];
1479
1480 unsigned long numa_pages_migrated;
1481 #endif /* CONFIG_NUMA_BALANCING */
1482
1483 struct rcu_head rcu;
1484
1485 /*
1486 * cache last used pipe for splice
1487 */
1488 struct pipe_inode_info *splice_pipe;
1489
1490 struct page_frag task_frag;
1491
1492 #ifdef CONFIG_TASK_DELAY_ACCT
1493 struct task_delay_info *delays;
1494 #endif
1495 #ifdef CONFIG_FAULT_INJECTION
1496 int make_it_fail;
1497 #endif
1498 /*
1499 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1500 * balance_dirty_pages() for some dirty throttling pause
1501 */
1502 int nr_dirtied;
1503 int nr_dirtied_pause;
1504 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1505
1506 #ifdef CONFIG_LATENCYTOP
1507 int latency_record_count;
1508 struct latency_record latency_record[LT_SAVECOUNT];
1509 #endif
1510 /*
1511 * time slack values; these are used to round up poll() and
1512 * select() etc timeout values. These are in nanoseconds.
1513 */
1514 unsigned long timer_slack_ns;
1515 unsigned long default_timer_slack_ns;
1516
1517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1518 /* Index of current stored address in ret_stack */
1519 int curr_ret_stack;
1520 /* Stack of return addresses for return function tracing */
1521 struct ftrace_ret_stack *ret_stack;
1522 /* time stamp for last schedule */
1523 unsigned long long ftrace_timestamp;
1524 /*
1525 * Number of functions that haven't been traced
1526 * because of depth overrun.
1527 */
1528 atomic_t trace_overrun;
1529 /* Pause for the tracing */
1530 atomic_t tracing_graph_pause;
1531 #endif
1532 #ifdef CONFIG_TRACING
1533 /* state flags for use by tracers */
1534 unsigned long trace;
1535 /* bitmask and counter of trace recursion */
1536 unsigned long trace_recursion;
1537 #endif /* CONFIG_TRACING */
1538 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1539 struct memcg_batch_info {
1540 int do_batch; /* incremented when batch uncharge started */
1541 struct mem_cgroup *memcg; /* target memcg of uncharge */
1542 unsigned long nr_pages; /* uncharged usage */
1543 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1544 } memcg_batch;
1545 unsigned int memcg_kmem_skip_account;
1546 struct memcg_oom_info {
1547 struct mem_cgroup *memcg;
1548 gfp_t gfp_mask;
1549 int order;
1550 unsigned int may_oom:1;
1551 } memcg_oom;
1552 #endif
1553 #ifdef CONFIG_UPROBES
1554 struct uprobe_task *utask;
1555 #endif
1556 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1557 unsigned int sequential_io;
1558 unsigned int sequential_io_avg;
1559 #endif
1560 };
1561
1562 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1563 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1564
1565 #define TNF_MIGRATED 0x01
1566 #define TNF_NO_GROUP 0x02
1567 #define TNF_SHARED 0x04
1568 #define TNF_FAULT_LOCAL 0x08
1569
1570 #ifdef CONFIG_NUMA_BALANCING
1571 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1572 extern pid_t task_numa_group_id(struct task_struct *p);
1573 extern void set_numabalancing_state(bool enabled);
1574 extern void task_numa_free(struct task_struct *p);
1575
1576 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1577 #else
1578 static inline void task_numa_fault(int last_node, int node, int pages,
1579 int flags)
1580 {
1581 }
1582 static inline pid_t task_numa_group_id(struct task_struct *p)
1583 {
1584 return 0;
1585 }
1586 static inline void set_numabalancing_state(bool enabled)
1587 {
1588 }
1589 static inline void task_numa_free(struct task_struct *p)
1590 {
1591 }
1592 #endif
1593
1594 static inline struct pid *task_pid(struct task_struct *task)
1595 {
1596 return task->pids[PIDTYPE_PID].pid;
1597 }
1598
1599 static inline struct pid *task_tgid(struct task_struct *task)
1600 {
1601 return task->group_leader->pids[PIDTYPE_PID].pid;
1602 }
1603
1604 /*
1605 * Without tasklist or rcu lock it is not safe to dereference
1606 * the result of task_pgrp/task_session even if task == current,
1607 * we can race with another thread doing sys_setsid/sys_setpgid.
1608 */
1609 static inline struct pid *task_pgrp(struct task_struct *task)
1610 {
1611 return task->group_leader->pids[PIDTYPE_PGID].pid;
1612 }
1613
1614 static inline struct pid *task_session(struct task_struct *task)
1615 {
1616 return task->group_leader->pids[PIDTYPE_SID].pid;
1617 }
1618
1619 struct pid_namespace;
1620
1621 /*
1622 * the helpers to get the task's different pids as they are seen
1623 * from various namespaces
1624 *
1625 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1626 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1627 * current.
1628 * task_xid_nr_ns() : id seen from the ns specified;
1629 *
1630 * set_task_vxid() : assigns a virtual id to a task;
1631 *
1632 * see also pid_nr() etc in include/linux/pid.h
1633 */
1634 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1635 struct pid_namespace *ns);
1636
1637 static inline pid_t task_pid_nr(struct task_struct *tsk)
1638 {
1639 return tsk->pid;
1640 }
1641
1642 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1643 struct pid_namespace *ns)
1644 {
1645 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1646 }
1647
1648 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1649 {
1650 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1651 }
1652
1653
1654 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1655 {
1656 return tsk->tgid;
1657 }
1658
1659 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1660
1661 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1662 {
1663 return pid_vnr(task_tgid(tsk));
1664 }
1665
1666
1667 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1668 struct pid_namespace *ns)
1669 {
1670 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1671 }
1672
1673 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1674 {
1675 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1676 }
1677
1678
1679 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1680 struct pid_namespace *ns)
1681 {
1682 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1683 }
1684
1685 static inline pid_t task_session_vnr(struct task_struct *tsk)
1686 {
1687 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1688 }
1689
1690 /* obsolete, do not use */
1691 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1692 {
1693 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1694 }
1695
1696 /**
1697 * pid_alive - check that a task structure is not stale
1698 * @p: Task structure to be checked.
1699 *
1700 * Test if a process is not yet dead (at most zombie state)
1701 * If pid_alive fails, then pointers within the task structure
1702 * can be stale and must not be dereferenced.
1703 *
1704 * Return: 1 if the process is alive. 0 otherwise.
1705 */
1706 static inline int pid_alive(struct task_struct *p)
1707 {
1708 return p->pids[PIDTYPE_PID].pid != NULL;
1709 }
1710
1711 /**
1712 * is_global_init - check if a task structure is init
1713 * @tsk: Task structure to be checked.
1714 *
1715 * Check if a task structure is the first user space task the kernel created.
1716 *
1717 * Return: 1 if the task structure is init. 0 otherwise.
1718 */
1719 static inline int is_global_init(struct task_struct *tsk)
1720 {
1721 return tsk->pid == 1;
1722 }
1723
1724 extern struct pid *cad_pid;
1725
1726 extern void free_task(struct task_struct *tsk);
1727 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1728
1729 extern void __put_task_struct(struct task_struct *t);
1730
1731 static inline void put_task_struct(struct task_struct *t)
1732 {
1733 if (atomic_dec_and_test(&t->usage))
1734 __put_task_struct(t);
1735 }
1736
1737 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1738 extern void task_cputime(struct task_struct *t,
1739 cputime_t *utime, cputime_t *stime);
1740 extern void task_cputime_scaled(struct task_struct *t,
1741 cputime_t *utimescaled, cputime_t *stimescaled);
1742 extern cputime_t task_gtime(struct task_struct *t);
1743 #else
1744 static inline void task_cputime(struct task_struct *t,
1745 cputime_t *utime, cputime_t *stime)
1746 {
1747 if (utime)
1748 *utime = t->utime;
1749 if (stime)
1750 *stime = t->stime;
1751 }
1752
1753 static inline void task_cputime_scaled(struct task_struct *t,
1754 cputime_t *utimescaled,
1755 cputime_t *stimescaled)
1756 {
1757 if (utimescaled)
1758 *utimescaled = t->utimescaled;
1759 if (stimescaled)
1760 *stimescaled = t->stimescaled;
1761 }
1762
1763 static inline cputime_t task_gtime(struct task_struct *t)
1764 {
1765 return t->gtime;
1766 }
1767 #endif
1768 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1770
1771 /*
1772 * Per process flags
1773 */
1774 #define PF_EXITING 0x00000004 /* getting shut down */
1775 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1776 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1777 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1778 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1779 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1780 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1781 #define PF_DUMPCORE 0x00000200 /* dumped core */
1782 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1783 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1784 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1785 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1786 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1787 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1788 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1789 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1790 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1791 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1792 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1793 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1794 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1795 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1796 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1797 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1798 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1799 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1800 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1801 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1802 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1803 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1804
1805 /*
1806 * Only the _current_ task can read/write to tsk->flags, but other
1807 * tasks can access tsk->flags in readonly mode for example
1808 * with tsk_used_math (like during threaded core dumping).
1809 * There is however an exception to this rule during ptrace
1810 * or during fork: the ptracer task is allowed to write to the
1811 * child->flags of its traced child (same goes for fork, the parent
1812 * can write to the child->flags), because we're guaranteed the
1813 * child is not running and in turn not changing child->flags
1814 * at the same time the parent does it.
1815 */
1816 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1817 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1818 #define clear_used_math() clear_stopped_child_used_math(current)
1819 #define set_used_math() set_stopped_child_used_math(current)
1820 #define conditional_stopped_child_used_math(condition, child) \
1821 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1822 #define conditional_used_math(condition) \
1823 conditional_stopped_child_used_math(condition, current)
1824 #define copy_to_stopped_child_used_math(child) \
1825 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1826 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1827 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1828 #define used_math() tsk_used_math(current)
1829
1830 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1831 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1832 {
1833 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1834 flags &= ~__GFP_IO;
1835 return flags;
1836 }
1837
1838 static inline unsigned int memalloc_noio_save(void)
1839 {
1840 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1841 current->flags |= PF_MEMALLOC_NOIO;
1842 return flags;
1843 }
1844
1845 static inline void memalloc_noio_restore(unsigned int flags)
1846 {
1847 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1848 }
1849
1850 /*
1851 * task->jobctl flags
1852 */
1853 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1854
1855 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1856 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1857 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1858 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1859 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1860 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1861 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1862
1863 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1864 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1865 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1866 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1867 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1868 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1869 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1870
1871 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1872 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1873
1874 extern bool task_set_jobctl_pending(struct task_struct *task,
1875 unsigned int mask);
1876 extern void task_clear_jobctl_trapping(struct task_struct *task);
1877 extern void task_clear_jobctl_pending(struct task_struct *task,
1878 unsigned int mask);
1879
1880 #ifdef CONFIG_PREEMPT_RCU
1881
1882 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1883 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1884
1885 static inline void rcu_copy_process(struct task_struct *p)
1886 {
1887 p->rcu_read_lock_nesting = 0;
1888 p->rcu_read_unlock_special = 0;
1889 #ifdef CONFIG_TREE_PREEMPT_RCU
1890 p->rcu_blocked_node = NULL;
1891 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1892 #ifdef CONFIG_RCU_BOOST
1893 p->rcu_boost_mutex = NULL;
1894 #endif /* #ifdef CONFIG_RCU_BOOST */
1895 INIT_LIST_HEAD(&p->rcu_node_entry);
1896 }
1897
1898 #else
1899
1900 static inline void rcu_copy_process(struct task_struct *p)
1901 {
1902 }
1903
1904 #endif
1905
1906 static inline void tsk_restore_flags(struct task_struct *task,
1907 unsigned long orig_flags, unsigned long flags)
1908 {
1909 task->flags &= ~flags;
1910 task->flags |= orig_flags & flags;
1911 }
1912
1913 #ifdef CONFIG_SMP
1914 extern void do_set_cpus_allowed(struct task_struct *p,
1915 const struct cpumask *new_mask);
1916
1917 extern int set_cpus_allowed_ptr(struct task_struct *p,
1918 const struct cpumask *new_mask);
1919 #else
1920 static inline void do_set_cpus_allowed(struct task_struct *p,
1921 const struct cpumask *new_mask)
1922 {
1923 }
1924 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1925 const struct cpumask *new_mask)
1926 {
1927 if (!cpumask_test_cpu(0, new_mask))
1928 return -EINVAL;
1929 return 0;
1930 }
1931 #endif
1932
1933 #ifdef CONFIG_NO_HZ_COMMON
1934 void calc_load_enter_idle(void);
1935 void calc_load_exit_idle(void);
1936 #else
1937 static inline void calc_load_enter_idle(void) { }
1938 static inline void calc_load_exit_idle(void) { }
1939 #endif /* CONFIG_NO_HZ_COMMON */
1940
1941 #ifndef CONFIG_CPUMASK_OFFSTACK
1942 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1943 {
1944 return set_cpus_allowed_ptr(p, &new_mask);
1945 }
1946 #endif
1947
1948 /*
1949 * Do not use outside of architecture code which knows its limitations.
1950 *
1951 * sched_clock() has no promise of monotonicity or bounded drift between
1952 * CPUs, use (which you should not) requires disabling IRQs.
1953 *
1954 * Please use one of the three interfaces below.
1955 */
1956 extern unsigned long long notrace sched_clock(void);
1957 /*
1958 * See the comment in kernel/sched/clock.c
1959 */
1960 extern u64 cpu_clock(int cpu);
1961 extern u64 local_clock(void);
1962 extern u64 sched_clock_cpu(int cpu);
1963
1964
1965 extern void sched_clock_init(void);
1966
1967 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1968 static inline void sched_clock_tick(void)
1969 {
1970 }
1971
1972 static inline void sched_clock_idle_sleep_event(void)
1973 {
1974 }
1975
1976 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1977 {
1978 }
1979 #else
1980 /*
1981 * Architectures can set this to 1 if they have specified
1982 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1983 * but then during bootup it turns out that sched_clock()
1984 * is reliable after all:
1985 */
1986 extern int sched_clock_stable;
1987
1988 extern void sched_clock_tick(void);
1989 extern void sched_clock_idle_sleep_event(void);
1990 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1991 #endif
1992
1993 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1994 /*
1995 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1996 * The reason for this explicit opt-in is not to have perf penalty with
1997 * slow sched_clocks.
1998 */
1999 extern void enable_sched_clock_irqtime(void);
2000 extern void disable_sched_clock_irqtime(void);
2001 #else
2002 static inline void enable_sched_clock_irqtime(void) {}
2003 static inline void disable_sched_clock_irqtime(void) {}
2004 #endif
2005
2006 extern unsigned long long
2007 task_sched_runtime(struct task_struct *task);
2008
2009 /* sched_exec is called by processes performing an exec */
2010 #ifdef CONFIG_SMP
2011 extern void sched_exec(void);
2012 #else
2013 #define sched_exec() {}
2014 #endif
2015
2016 extern void sched_clock_idle_sleep_event(void);
2017 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2018
2019 #ifdef CONFIG_HOTPLUG_CPU
2020 extern void idle_task_exit(void);
2021 #else
2022 static inline void idle_task_exit(void) {}
2023 #endif
2024
2025 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2026 extern void wake_up_nohz_cpu(int cpu);
2027 #else
2028 static inline void wake_up_nohz_cpu(int cpu) { }
2029 #endif
2030
2031 #ifdef CONFIG_NO_HZ_FULL
2032 extern bool sched_can_stop_tick(void);
2033 extern u64 scheduler_tick_max_deferment(void);
2034 #else
2035 static inline bool sched_can_stop_tick(void) { return false; }
2036 #endif
2037
2038 #ifdef CONFIG_SCHED_AUTOGROUP
2039 extern void sched_autogroup_create_attach(struct task_struct *p);
2040 extern void sched_autogroup_detach(struct task_struct *p);
2041 extern void sched_autogroup_fork(struct signal_struct *sig);
2042 extern void sched_autogroup_exit(struct signal_struct *sig);
2043 #ifdef CONFIG_PROC_FS
2044 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2045 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2046 #endif
2047 #else
2048 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2049 static inline void sched_autogroup_detach(struct task_struct *p) { }
2050 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2051 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2052 #endif
2053
2054 extern bool yield_to(struct task_struct *p, bool preempt);
2055 extern void set_user_nice(struct task_struct *p, long nice);
2056 extern int task_prio(const struct task_struct *p);
2057 extern int task_nice(const struct task_struct *p);
2058 extern int can_nice(const struct task_struct *p, const int nice);
2059 extern int task_curr(const struct task_struct *p);
2060 extern int idle_cpu(int cpu);
2061 extern int sched_setscheduler(struct task_struct *, int,
2062 const struct sched_param *);
2063 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2064 const struct sched_param *);
2065 extern int sched_setattr(struct task_struct *,
2066 const struct sched_attr *);
2067 extern struct task_struct *idle_task(int cpu);
2068 /**
2069 * is_idle_task - is the specified task an idle task?
2070 * @p: the task in question.
2071 *
2072 * Return: 1 if @p is an idle task. 0 otherwise.
2073 */
2074 static inline bool is_idle_task(const struct task_struct *p)
2075 {
2076 return p->pid == 0;
2077 }
2078 extern struct task_struct *curr_task(int cpu);
2079 extern void set_curr_task(int cpu, struct task_struct *p);
2080
2081 void yield(void);
2082
2083 /*
2084 * The default (Linux) execution domain.
2085 */
2086 extern struct exec_domain default_exec_domain;
2087
2088 union thread_union {
2089 struct thread_info thread_info;
2090 unsigned long stack[THREAD_SIZE/sizeof(long)];
2091 };
2092
2093 #ifndef __HAVE_ARCH_KSTACK_END
2094 static inline int kstack_end(void *addr)
2095 {
2096 /* Reliable end of stack detection:
2097 * Some APM bios versions misalign the stack
2098 */
2099 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2100 }
2101 #endif
2102
2103 extern union thread_union init_thread_union;
2104 extern struct task_struct init_task;
2105
2106 extern struct mm_struct init_mm;
2107
2108 extern struct pid_namespace init_pid_ns;
2109
2110 /*
2111 * find a task by one of its numerical ids
2112 *
2113 * find_task_by_pid_ns():
2114 * finds a task by its pid in the specified namespace
2115 * find_task_by_vpid():
2116 * finds a task by its virtual pid
2117 *
2118 * see also find_vpid() etc in include/linux/pid.h
2119 */
2120
2121 extern struct task_struct *find_task_by_vpid(pid_t nr);
2122 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2123 struct pid_namespace *ns);
2124
2125 /* per-UID process charging. */
2126 extern struct user_struct * alloc_uid(kuid_t);
2127 static inline struct user_struct *get_uid(struct user_struct *u)
2128 {
2129 atomic_inc(&u->__count);
2130 return u;
2131 }
2132 extern void free_uid(struct user_struct *);
2133
2134 #include <asm/current.h>
2135
2136 extern void xtime_update(unsigned long ticks);
2137
2138 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2139 extern int wake_up_process(struct task_struct *tsk);
2140 extern void wake_up_new_task(struct task_struct *tsk);
2141 #ifdef CONFIG_SMP
2142 extern void kick_process(struct task_struct *tsk);
2143 #else
2144 static inline void kick_process(struct task_struct *tsk) { }
2145 #endif
2146 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2147 extern void sched_dead(struct task_struct *p);
2148
2149 extern void proc_caches_init(void);
2150 extern void flush_signals(struct task_struct *);
2151 extern void __flush_signals(struct task_struct *);
2152 extern void ignore_signals(struct task_struct *);
2153 extern void flush_signal_handlers(struct task_struct *, int force_default);
2154 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2155
2156 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2157 {
2158 unsigned long flags;
2159 int ret;
2160
2161 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2162 ret = dequeue_signal(tsk, mask, info);
2163 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2164
2165 return ret;
2166 }
2167
2168 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2169 sigset_t *mask);
2170 extern void unblock_all_signals(void);
2171 extern void release_task(struct task_struct * p);
2172 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2173 extern int force_sigsegv(int, struct task_struct *);
2174 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2175 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2176 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2177 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2178 const struct cred *, u32);
2179 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2180 extern int kill_pid(struct pid *pid, int sig, int priv);
2181 extern int kill_proc_info(int, struct siginfo *, pid_t);
2182 extern __must_check bool do_notify_parent(struct task_struct *, int);
2183 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2184 extern void force_sig(int, struct task_struct *);
2185 extern int send_sig(int, struct task_struct *, int);
2186 extern int zap_other_threads(struct task_struct *p);
2187 extern struct sigqueue *sigqueue_alloc(void);
2188 extern void sigqueue_free(struct sigqueue *);
2189 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2190 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2191
2192 static inline void restore_saved_sigmask(void)
2193 {
2194 if (test_and_clear_restore_sigmask())
2195 __set_current_blocked(&current->saved_sigmask);
2196 }
2197
2198 static inline sigset_t *sigmask_to_save(void)
2199 {
2200 sigset_t *res = &current->blocked;
2201 if (unlikely(test_restore_sigmask()))
2202 res = &current->saved_sigmask;
2203 return res;
2204 }
2205
2206 static inline int kill_cad_pid(int sig, int priv)
2207 {
2208 return kill_pid(cad_pid, sig, priv);
2209 }
2210
2211 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2212 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2213 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2214 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2215
2216 /*
2217 * True if we are on the alternate signal stack.
2218 */
2219 static inline int on_sig_stack(unsigned long sp)
2220 {
2221 #ifdef CONFIG_STACK_GROWSUP
2222 return sp >= current->sas_ss_sp &&
2223 sp - current->sas_ss_sp < current->sas_ss_size;
2224 #else
2225 return sp > current->sas_ss_sp &&
2226 sp - current->sas_ss_sp <= current->sas_ss_size;
2227 #endif
2228 }
2229
2230 static inline int sas_ss_flags(unsigned long sp)
2231 {
2232 return (current->sas_ss_size == 0 ? SS_DISABLE
2233 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2234 }
2235
2236 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2237 {
2238 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2239 #ifdef CONFIG_STACK_GROWSUP
2240 return current->sas_ss_sp;
2241 #else
2242 return current->sas_ss_sp + current->sas_ss_size;
2243 #endif
2244 return sp;
2245 }
2246
2247 /*
2248 * Routines for handling mm_structs
2249 */
2250 extern struct mm_struct * mm_alloc(void);
2251
2252 /* mmdrop drops the mm and the page tables */
2253 extern void __mmdrop(struct mm_struct *);
2254 static inline void mmdrop(struct mm_struct * mm)
2255 {
2256 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2257 __mmdrop(mm);
2258 }
2259
2260 /* mmput gets rid of the mappings and all user-space */
2261 extern void mmput(struct mm_struct *);
2262 /* Grab a reference to a task's mm, if it is not already going away */
2263 extern struct mm_struct *get_task_mm(struct task_struct *task);
2264 /*
2265 * Grab a reference to a task's mm, if it is not already going away
2266 * and ptrace_may_access with the mode parameter passed to it
2267 * succeeds.
2268 */
2269 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2270 /* Remove the current tasks stale references to the old mm_struct */
2271 extern void mm_release(struct task_struct *, struct mm_struct *);
2272 /* Allocate a new mm structure and copy contents from tsk->mm */
2273 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2274
2275 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2276 struct task_struct *);
2277 extern void flush_thread(void);
2278 extern void exit_thread(void);
2279
2280 extern void exit_files(struct task_struct *);
2281 extern void __cleanup_sighand(struct sighand_struct *);
2282
2283 extern void exit_itimers(struct signal_struct *);
2284 extern void flush_itimer_signals(void);
2285
2286 extern void do_group_exit(int);
2287
2288 extern int allow_signal(int);
2289 extern int disallow_signal(int);
2290
2291 extern int do_execve(const char *,
2292 const char __user * const __user *,
2293 const char __user * const __user *);
2294 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2295 struct task_struct *fork_idle(int);
2296 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2297
2298 extern void set_task_comm(struct task_struct *tsk, char *from);
2299 extern char *get_task_comm(char *to, struct task_struct *tsk);
2300
2301 #ifdef CONFIG_SMP
2302 void scheduler_ipi(void);
2303 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2304 #else
2305 static inline void scheduler_ipi(void) { }
2306 static inline unsigned long wait_task_inactive(struct task_struct *p,
2307 long match_state)
2308 {
2309 return 1;
2310 }
2311 #endif
2312
2313 #define next_task(p) \
2314 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2315
2316 #define for_each_process(p) \
2317 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2318
2319 extern bool current_is_single_threaded(void);
2320
2321 /*
2322 * Careful: do_each_thread/while_each_thread is a double loop so
2323 * 'break' will not work as expected - use goto instead.
2324 */
2325 #define do_each_thread(g, t) \
2326 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2327
2328 #define while_each_thread(g, t) \
2329 while ((t = next_thread(t)) != g)
2330
2331 static inline int get_nr_threads(struct task_struct *tsk)
2332 {
2333 return tsk->signal->nr_threads;
2334 }
2335
2336 static inline bool thread_group_leader(struct task_struct *p)
2337 {
2338 return p->exit_signal >= 0;
2339 }
2340
2341 /* Do to the insanities of de_thread it is possible for a process
2342 * to have the pid of the thread group leader without actually being
2343 * the thread group leader. For iteration through the pids in proc
2344 * all we care about is that we have a task with the appropriate
2345 * pid, we don't actually care if we have the right task.
2346 */
2347 static inline bool has_group_leader_pid(struct task_struct *p)
2348 {
2349 return task_pid(p) == p->signal->leader_pid;
2350 }
2351
2352 static inline
2353 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2354 {
2355 return p1->signal == p2->signal;
2356 }
2357
2358 static inline struct task_struct *next_thread(const struct task_struct *p)
2359 {
2360 return list_entry_rcu(p->thread_group.next,
2361 struct task_struct, thread_group);
2362 }
2363
2364 static inline int thread_group_empty(struct task_struct *p)
2365 {
2366 return list_empty(&p->thread_group);
2367 }
2368
2369 #define delay_group_leader(p) \
2370 (thread_group_leader(p) && !thread_group_empty(p))
2371
2372 /*
2373 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2374 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2375 * pins the final release of task.io_context. Also protects ->cpuset and
2376 * ->cgroup.subsys[]. And ->vfork_done.
2377 *
2378 * Nests both inside and outside of read_lock(&tasklist_lock).
2379 * It must not be nested with write_lock_irq(&tasklist_lock),
2380 * neither inside nor outside.
2381 */
2382 static inline void task_lock(struct task_struct *p)
2383 {
2384 spin_lock(&p->alloc_lock);
2385 }
2386
2387 static inline void task_unlock(struct task_struct *p)
2388 {
2389 spin_unlock(&p->alloc_lock);
2390 }
2391
2392 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2393 unsigned long *flags);
2394
2395 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2396 unsigned long *flags)
2397 {
2398 struct sighand_struct *ret;
2399
2400 ret = __lock_task_sighand(tsk, flags);
2401 (void)__cond_lock(&tsk->sighand->siglock, ret);
2402 return ret;
2403 }
2404
2405 static inline void unlock_task_sighand(struct task_struct *tsk,
2406 unsigned long *flags)
2407 {
2408 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2409 }
2410
2411 #ifdef CONFIG_CGROUPS
2412 static inline void threadgroup_change_begin(struct task_struct *tsk)
2413 {
2414 down_read(&tsk->signal->group_rwsem);
2415 }
2416 static inline void threadgroup_change_end(struct task_struct *tsk)
2417 {
2418 up_read(&tsk->signal->group_rwsem);
2419 }
2420
2421 /**
2422 * threadgroup_lock - lock threadgroup
2423 * @tsk: member task of the threadgroup to lock
2424 *
2425 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2426 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2427 * change ->group_leader/pid. This is useful for cases where the threadgroup
2428 * needs to stay stable across blockable operations.
2429 *
2430 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2431 * synchronization. While held, no new task will be added to threadgroup
2432 * and no existing live task will have its PF_EXITING set.
2433 *
2434 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2435 * sub-thread becomes a new leader.
2436 */
2437 static inline void threadgroup_lock(struct task_struct *tsk)
2438 {
2439 down_write(&tsk->signal->group_rwsem);
2440 }
2441
2442 /**
2443 * threadgroup_unlock - unlock threadgroup
2444 * @tsk: member task of the threadgroup to unlock
2445 *
2446 * Reverse threadgroup_lock().
2447 */
2448 static inline void threadgroup_unlock(struct task_struct *tsk)
2449 {
2450 up_write(&tsk->signal->group_rwsem);
2451 }
2452 #else
2453 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2454 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2455 static inline void threadgroup_lock(struct task_struct *tsk) {}
2456 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2457 #endif
2458
2459 #ifndef __HAVE_THREAD_FUNCTIONS
2460
2461 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2462 #define task_stack_page(task) ((task)->stack)
2463
2464 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2465 {
2466 *task_thread_info(p) = *task_thread_info(org);
2467 task_thread_info(p)->task = p;
2468 }
2469
2470 static inline unsigned long *end_of_stack(struct task_struct *p)
2471 {
2472 return (unsigned long *)(task_thread_info(p) + 1);
2473 }
2474
2475 #endif
2476
2477 static inline int object_is_on_stack(void *obj)
2478 {
2479 void *stack = task_stack_page(current);
2480
2481 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2482 }
2483
2484 extern void thread_info_cache_init(void);
2485
2486 #ifdef CONFIG_DEBUG_STACK_USAGE
2487 static inline unsigned long stack_not_used(struct task_struct *p)
2488 {
2489 unsigned long *n = end_of_stack(p);
2490
2491 do { /* Skip over canary */
2492 n++;
2493 } while (!*n);
2494
2495 return (unsigned long)n - (unsigned long)end_of_stack(p);
2496 }
2497 #endif
2498
2499 /* set thread flags in other task's structures
2500 * - see asm/thread_info.h for TIF_xxxx flags available
2501 */
2502 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2503 {
2504 set_ti_thread_flag(task_thread_info(tsk), flag);
2505 }
2506
2507 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2508 {
2509 clear_ti_thread_flag(task_thread_info(tsk), flag);
2510 }
2511
2512 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2513 {
2514 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2515 }
2516
2517 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2518 {
2519 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2520 }
2521
2522 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2523 {
2524 return test_ti_thread_flag(task_thread_info(tsk), flag);
2525 }
2526
2527 static inline void set_tsk_need_resched(struct task_struct *tsk)
2528 {
2529 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2530 }
2531
2532 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2533 {
2534 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2535 }
2536
2537 static inline int test_tsk_need_resched(struct task_struct *tsk)
2538 {
2539 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2540 }
2541
2542 static inline int restart_syscall(void)
2543 {
2544 set_tsk_thread_flag(current, TIF_SIGPENDING);
2545 return -ERESTARTNOINTR;
2546 }
2547
2548 static inline int signal_pending(struct task_struct *p)
2549 {
2550 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2551 }
2552
2553 static inline int __fatal_signal_pending(struct task_struct *p)
2554 {
2555 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2556 }
2557
2558 static inline int fatal_signal_pending(struct task_struct *p)
2559 {
2560 return signal_pending(p) && __fatal_signal_pending(p);
2561 }
2562
2563 static inline int signal_pending_state(long state, struct task_struct *p)
2564 {
2565 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2566 return 0;
2567 if (!signal_pending(p))
2568 return 0;
2569
2570 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2571 }
2572
2573 /*
2574 * cond_resched() and cond_resched_lock(): latency reduction via
2575 * explicit rescheduling in places that are safe. The return
2576 * value indicates whether a reschedule was done in fact.
2577 * cond_resched_lock() will drop the spinlock before scheduling,
2578 * cond_resched_softirq() will enable bhs before scheduling.
2579 */
2580 extern int _cond_resched(void);
2581
2582 #define cond_resched() ({ \
2583 __might_sleep(__FILE__, __LINE__, 0); \
2584 _cond_resched(); \
2585 })
2586
2587 extern int __cond_resched_lock(spinlock_t *lock);
2588
2589 #ifdef CONFIG_PREEMPT_COUNT
2590 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2591 #else
2592 #define PREEMPT_LOCK_OFFSET 0
2593 #endif
2594
2595 #define cond_resched_lock(lock) ({ \
2596 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2597 __cond_resched_lock(lock); \
2598 })
2599
2600 extern int __cond_resched_softirq(void);
2601
2602 #define cond_resched_softirq() ({ \
2603 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2604 __cond_resched_softirq(); \
2605 })
2606
2607 static inline void cond_resched_rcu(void)
2608 {
2609 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2610 rcu_read_unlock();
2611 cond_resched();
2612 rcu_read_lock();
2613 #endif
2614 }
2615
2616 /*
2617 * Does a critical section need to be broken due to another
2618 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2619 * but a general need for low latency)
2620 */
2621 static inline int spin_needbreak(spinlock_t *lock)
2622 {
2623 #ifdef CONFIG_PREEMPT
2624 return spin_is_contended(lock);
2625 #else
2626 return 0;
2627 #endif
2628 }
2629
2630 /*
2631 * Idle thread specific functions to determine the need_resched
2632 * polling state. We have two versions, one based on TS_POLLING in
2633 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2634 * thread_info.flags
2635 */
2636 #ifdef TS_POLLING
2637 static inline int tsk_is_polling(struct task_struct *p)
2638 {
2639 return task_thread_info(p)->status & TS_POLLING;
2640 }
2641 static inline void __current_set_polling(void)
2642 {
2643 current_thread_info()->status |= TS_POLLING;
2644 }
2645
2646 static inline bool __must_check current_set_polling_and_test(void)
2647 {
2648 __current_set_polling();
2649
2650 /*
2651 * Polling state must be visible before we test NEED_RESCHED,
2652 * paired by resched_task()
2653 */
2654 smp_mb();
2655
2656 return unlikely(tif_need_resched());
2657 }
2658
2659 static inline void __current_clr_polling(void)
2660 {
2661 current_thread_info()->status &= ~TS_POLLING;
2662 }
2663
2664 static inline bool __must_check current_clr_polling_and_test(void)
2665 {
2666 __current_clr_polling();
2667
2668 /*
2669 * Polling state must be visible before we test NEED_RESCHED,
2670 * paired by resched_task()
2671 */
2672 smp_mb();
2673
2674 return unlikely(tif_need_resched());
2675 }
2676 #elif defined(TIF_POLLING_NRFLAG)
2677 static inline int tsk_is_polling(struct task_struct *p)
2678 {
2679 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2680 }
2681
2682 static inline void __current_set_polling(void)
2683 {
2684 set_thread_flag(TIF_POLLING_NRFLAG);
2685 }
2686
2687 static inline bool __must_check current_set_polling_and_test(void)
2688 {
2689 __current_set_polling();
2690
2691 /*
2692 * Polling state must be visible before we test NEED_RESCHED,
2693 * paired by resched_task()
2694 *
2695 * XXX: assumes set/clear bit are identical barrier wise.
2696 */
2697 smp_mb__after_clear_bit();
2698
2699 return unlikely(tif_need_resched());
2700 }
2701
2702 static inline void __current_clr_polling(void)
2703 {
2704 clear_thread_flag(TIF_POLLING_NRFLAG);
2705 }
2706
2707 static inline bool __must_check current_clr_polling_and_test(void)
2708 {
2709 __current_clr_polling();
2710
2711 /*
2712 * Polling state must be visible before we test NEED_RESCHED,
2713 * paired by resched_task()
2714 */
2715 smp_mb__after_clear_bit();
2716
2717 return unlikely(tif_need_resched());
2718 }
2719
2720 #else
2721 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2722 static inline void __current_set_polling(void) { }
2723 static inline void __current_clr_polling(void) { }
2724
2725 static inline bool __must_check current_set_polling_and_test(void)
2726 {
2727 return unlikely(tif_need_resched());
2728 }
2729 static inline bool __must_check current_clr_polling_and_test(void)
2730 {
2731 return unlikely(tif_need_resched());
2732 }
2733 #endif
2734
2735 static __always_inline bool need_resched(void)
2736 {
2737 return unlikely(tif_need_resched());
2738 }
2739
2740 /*
2741 * Thread group CPU time accounting.
2742 */
2743 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2744 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2745
2746 static inline void thread_group_cputime_init(struct signal_struct *sig)
2747 {
2748 raw_spin_lock_init(&sig->cputimer.lock);
2749 }
2750
2751 /*
2752 * Reevaluate whether the task has signals pending delivery.
2753 * Wake the task if so.
2754 * This is required every time the blocked sigset_t changes.
2755 * callers must hold sighand->siglock.
2756 */
2757 extern void recalc_sigpending_and_wake(struct task_struct *t);
2758 extern void recalc_sigpending(void);
2759
2760 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2761
2762 static inline void signal_wake_up(struct task_struct *t, bool resume)
2763 {
2764 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2765 }
2766 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2767 {
2768 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2769 }
2770
2771 /*
2772 * Wrappers for p->thread_info->cpu access. No-op on UP.
2773 */
2774 #ifdef CONFIG_SMP
2775
2776 static inline unsigned int task_cpu(const struct task_struct *p)
2777 {
2778 return task_thread_info(p)->cpu;
2779 }
2780
2781 static inline int task_node(const struct task_struct *p)
2782 {
2783 return cpu_to_node(task_cpu(p));
2784 }
2785
2786 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2787
2788 #else
2789
2790 static inline unsigned int task_cpu(const struct task_struct *p)
2791 {
2792 return 0;
2793 }
2794
2795 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2796 {
2797 }
2798
2799 #endif /* CONFIG_SMP */
2800
2801 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2802 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2803
2804 #ifdef CONFIG_CGROUP_SCHED
2805 extern struct task_group root_task_group;
2806 #endif /* CONFIG_CGROUP_SCHED */
2807
2808 extern int task_can_switch_user(struct user_struct *up,
2809 struct task_struct *tsk);
2810
2811 #ifdef CONFIG_TASK_XACCT
2812 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2813 {
2814 tsk->ioac.rchar += amt;
2815 }
2816
2817 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2818 {
2819 tsk->ioac.wchar += amt;
2820 }
2821
2822 static inline void inc_syscr(struct task_struct *tsk)
2823 {
2824 tsk->ioac.syscr++;
2825 }
2826
2827 static inline void inc_syscw(struct task_struct *tsk)
2828 {
2829 tsk->ioac.syscw++;
2830 }
2831 #else
2832 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2833 {
2834 }
2835
2836 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2837 {
2838 }
2839
2840 static inline void inc_syscr(struct task_struct *tsk)
2841 {
2842 }
2843
2844 static inline void inc_syscw(struct task_struct *tsk)
2845 {
2846 }
2847 #endif
2848
2849 #ifndef TASK_SIZE_OF
2850 #define TASK_SIZE_OF(tsk) TASK_SIZE
2851 #endif
2852
2853 #ifdef CONFIG_MM_OWNER
2854 extern void mm_update_next_owner(struct mm_struct *mm);
2855 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2856 #else
2857 static inline void mm_update_next_owner(struct mm_struct *mm)
2858 {
2859 }
2860
2861 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2862 {
2863 }
2864 #endif /* CONFIG_MM_OWNER */
2865
2866 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2867 unsigned int limit)
2868 {
2869 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2870 }
2871
2872 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2873 unsigned int limit)
2874 {
2875 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2876 }
2877
2878 static inline unsigned long rlimit(unsigned int limit)
2879 {
2880 return task_rlimit(current, limit);
2881 }
2882
2883 static inline unsigned long rlimit_max(unsigned int limit)
2884 {
2885 return task_rlimit_max(current, limit);
2886 }
2887
2888 #endif