]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge branch 'fortglx/4.11/time' of https://git.linaro.org/people/john.stultz/linux...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void cpu_load_update_nohz_start(void);
181 extern void cpu_load_update_nohz_stop(void);
182 #else
183 static inline void cpu_load_update_nohz_start(void) { }
184 static inline void cpu_load_update_nohz_stop(void) { }
185 #endif
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_NEW 2048
223 #define TASK_STATE_MAX 4096
224
225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
226
227 extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
229
230 /* Convenience macros for the sake of set_task_state */
231 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
234
235 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
237 /* Convenience macros for the sake of wake_up */
238 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
239 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
240
241 /* get_task_state() */
242 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
245
246 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
248 #define task_is_stopped_or_traced(task) \
249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
250 #define task_contributes_to_load(task) \
251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
254
255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257 #define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262 #define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
265 smp_store_mb((tsk)->state, (state_value)); \
266 } while (0)
267
268 #define __set_current_state(state_value) \
269 do { \
270 current->task_state_change = _THIS_IP_; \
271 current->state = (state_value); \
272 } while (0)
273 #define set_current_state(state_value) \
274 do { \
275 current->task_state_change = _THIS_IP_; \
276 smp_store_mb(current->state, (state_value)); \
277 } while (0)
278
279 #else
280
281 /*
282 * @tsk had better be current, or you get to keep the pieces.
283 *
284 * The only reason is that computing current can be more expensive than
285 * using a pointer that's already available.
286 *
287 * Therefore, see set_current_state().
288 */
289 #define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291 #define set_task_state(tsk, state_value) \
292 smp_store_mb((tsk)->state, (state_value))
293
294 /*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
299 * for (;;) {
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (!need_sleep)
302 * break;
303 *
304 * schedule();
305 * }
306 * __set_current_state(TASK_RUNNING);
307 *
308 * If the caller does not need such serialisation (because, for instance, the
309 * condition test and condition change and wakeup are under the same lock) then
310 * use __set_current_state().
311 *
312 * The above is typically ordered against the wakeup, which does:
313 *
314 * need_sleep = false;
315 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
316 *
317 * Where wake_up_state() (and all other wakeup primitives) imply enough
318 * barriers to order the store of the variable against wakeup.
319 *
320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
323 *
324 * This is obviously fine, since they both store the exact same value.
325 *
326 * Also see the comments of try_to_wake_up().
327 */
328 #define __set_current_state(state_value) \
329 do { current->state = (state_value); } while (0)
330 #define set_current_state(state_value) \
331 smp_store_mb(current->state, (state_value))
332
333 #endif
334
335 /* Task command name length */
336 #define TASK_COMM_LEN 16
337
338 #include <linux/spinlock.h>
339
340 /*
341 * This serializes "schedule()" and also protects
342 * the run-queue from deletions/modifications (but
343 * _adding_ to the beginning of the run-queue has
344 * a separate lock).
345 */
346 extern rwlock_t tasklist_lock;
347 extern spinlock_t mmlist_lock;
348
349 struct task_struct;
350
351 #ifdef CONFIG_PROVE_RCU
352 extern int lockdep_tasklist_lock_is_held(void);
353 #endif /* #ifdef CONFIG_PROVE_RCU */
354
355 extern void sched_init(void);
356 extern void sched_init_smp(void);
357 extern asmlinkage void schedule_tail(struct task_struct *prev);
358 extern void init_idle(struct task_struct *idle, int cpu);
359 extern void init_idle_bootup_task(struct task_struct *idle);
360
361 extern cpumask_var_t cpu_isolated_map;
362
363 extern int runqueue_is_locked(int cpu);
364
365 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
366 extern void nohz_balance_enter_idle(int cpu);
367 extern void set_cpu_sd_state_idle(void);
368 extern int get_nohz_timer_target(void);
369 #else
370 static inline void nohz_balance_enter_idle(int cpu) { }
371 static inline void set_cpu_sd_state_idle(void) { }
372 #endif
373
374 /*
375 * Only dump TASK_* tasks. (0 for all tasks)
376 */
377 extern void show_state_filter(unsigned long state_filter);
378
379 static inline void show_state(void)
380 {
381 show_state_filter(0);
382 }
383
384 extern void show_regs(struct pt_regs *);
385
386 /*
387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
388 * task), SP is the stack pointer of the first frame that should be shown in the back
389 * trace (or NULL if the entire call-chain of the task should be shown).
390 */
391 extern void show_stack(struct task_struct *task, unsigned long *sp);
392
393 extern void cpu_init (void);
394 extern void trap_init(void);
395 extern void update_process_times(int user);
396 extern void scheduler_tick(void);
397 extern int sched_cpu_starting(unsigned int cpu);
398 extern int sched_cpu_activate(unsigned int cpu);
399 extern int sched_cpu_deactivate(unsigned int cpu);
400
401 #ifdef CONFIG_HOTPLUG_CPU
402 extern int sched_cpu_dying(unsigned int cpu);
403 #else
404 # define sched_cpu_dying NULL
405 #endif
406
407 extern void sched_show_task(struct task_struct *p);
408
409 #ifdef CONFIG_LOCKUP_DETECTOR
410 extern void touch_softlockup_watchdog_sched(void);
411 extern void touch_softlockup_watchdog(void);
412 extern void touch_softlockup_watchdog_sync(void);
413 extern void touch_all_softlockup_watchdogs(void);
414 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
415 void __user *buffer,
416 size_t *lenp, loff_t *ppos);
417 extern unsigned int softlockup_panic;
418 extern unsigned int hardlockup_panic;
419 void lockup_detector_init(void);
420 #else
421 static inline void touch_softlockup_watchdog_sched(void)
422 {
423 }
424 static inline void touch_softlockup_watchdog(void)
425 {
426 }
427 static inline void touch_softlockup_watchdog_sync(void)
428 {
429 }
430 static inline void touch_all_softlockup_watchdogs(void)
431 {
432 }
433 static inline void lockup_detector_init(void)
434 {
435 }
436 #endif
437
438 #ifdef CONFIG_DETECT_HUNG_TASK
439 void reset_hung_task_detector(void);
440 #else
441 static inline void reset_hung_task_detector(void)
442 {
443 }
444 #endif
445
446 /* Attach to any functions which should be ignored in wchan output. */
447 #define __sched __attribute__((__section__(".sched.text")))
448
449 /* Linker adds these: start and end of __sched functions */
450 extern char __sched_text_start[], __sched_text_end[];
451
452 /* Is this address in the __sched functions? */
453 extern int in_sched_functions(unsigned long addr);
454
455 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
456 extern signed long schedule_timeout(signed long timeout);
457 extern signed long schedule_timeout_interruptible(signed long timeout);
458 extern signed long schedule_timeout_killable(signed long timeout);
459 extern signed long schedule_timeout_uninterruptible(signed long timeout);
460 extern signed long schedule_timeout_idle(signed long timeout);
461 asmlinkage void schedule(void);
462 extern void schedule_preempt_disabled(void);
463
464 extern long io_schedule_timeout(long timeout);
465
466 static inline void io_schedule(void)
467 {
468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
469 }
470
471 void __noreturn do_task_dead(void);
472
473 struct nsproxy;
474 struct user_namespace;
475
476 #ifdef CONFIG_MMU
477 extern void arch_pick_mmap_layout(struct mm_struct *mm);
478 extern unsigned long
479 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
480 unsigned long, unsigned long);
481 extern unsigned long
482 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
483 unsigned long len, unsigned long pgoff,
484 unsigned long flags);
485 #else
486 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
487 #endif
488
489 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
490 #define SUID_DUMP_USER 1 /* Dump as user of process */
491 #define SUID_DUMP_ROOT 2 /* Dump as root */
492
493 /* mm flags */
494
495 /* for SUID_DUMP_* above */
496 #define MMF_DUMPABLE_BITS 2
497 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
498
499 extern void set_dumpable(struct mm_struct *mm, int value);
500 /*
501 * This returns the actual value of the suid_dumpable flag. For things
502 * that are using this for checking for privilege transitions, it must
503 * test against SUID_DUMP_USER rather than treating it as a boolean
504 * value.
505 */
506 static inline int __get_dumpable(unsigned long mm_flags)
507 {
508 return mm_flags & MMF_DUMPABLE_MASK;
509 }
510
511 static inline int get_dumpable(struct mm_struct *mm)
512 {
513 return __get_dumpable(mm->flags);
514 }
515
516 /* coredump filter bits */
517 #define MMF_DUMP_ANON_PRIVATE 2
518 #define MMF_DUMP_ANON_SHARED 3
519 #define MMF_DUMP_MAPPED_PRIVATE 4
520 #define MMF_DUMP_MAPPED_SHARED 5
521 #define MMF_DUMP_ELF_HEADERS 6
522 #define MMF_DUMP_HUGETLB_PRIVATE 7
523 #define MMF_DUMP_HUGETLB_SHARED 8
524 #define MMF_DUMP_DAX_PRIVATE 9
525 #define MMF_DUMP_DAX_SHARED 10
526
527 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
528 #define MMF_DUMP_FILTER_BITS 9
529 #define MMF_DUMP_FILTER_MASK \
530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
531 #define MMF_DUMP_FILTER_DEFAULT \
532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
534
535 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
536 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
537 #else
538 # define MMF_DUMP_MASK_DEFAULT_ELF 0
539 #endif
540 /* leave room for more dump flags */
541 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
542 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
543 /*
544 * This one-shot flag is dropped due to necessity of changing exe once again
545 * on NFS restore
546 */
547 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
548
549 #define MMF_HAS_UPROBES 19 /* has uprobes */
550 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
551 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
552 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
553 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
554
555 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
556
557 struct sighand_struct {
558 atomic_t count;
559 struct k_sigaction action[_NSIG];
560 spinlock_t siglock;
561 wait_queue_head_t signalfd_wqh;
562 };
563
564 struct pacct_struct {
565 int ac_flag;
566 long ac_exitcode;
567 unsigned long ac_mem;
568 cputime_t ac_utime, ac_stime;
569 unsigned long ac_minflt, ac_majflt;
570 };
571
572 struct cpu_itimer {
573 cputime_t expires;
574 cputime_t incr;
575 u32 error;
576 u32 incr_error;
577 };
578
579 /**
580 * struct prev_cputime - snaphsot of system and user cputime
581 * @utime: time spent in user mode
582 * @stime: time spent in system mode
583 * @lock: protects the above two fields
584 *
585 * Stores previous user/system time values such that we can guarantee
586 * monotonicity.
587 */
588 struct prev_cputime {
589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
590 cputime_t utime;
591 cputime_t stime;
592 raw_spinlock_t lock;
593 #endif
594 };
595
596 static inline void prev_cputime_init(struct prev_cputime *prev)
597 {
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
599 prev->utime = prev->stime = 0;
600 raw_spin_lock_init(&prev->lock);
601 #endif
602 }
603
604 /**
605 * struct task_cputime - collected CPU time counts
606 * @utime: time spent in user mode, in &cputime_t units
607 * @stime: time spent in kernel mode, in &cputime_t units
608 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
609 *
610 * This structure groups together three kinds of CPU time that are tracked for
611 * threads and thread groups. Most things considering CPU time want to group
612 * these counts together and treat all three of them in parallel.
613 */
614 struct task_cputime {
615 cputime_t utime;
616 cputime_t stime;
617 unsigned long long sum_exec_runtime;
618 };
619
620 /* Alternate field names when used to cache expirations. */
621 #define virt_exp utime
622 #define prof_exp stime
623 #define sched_exp sum_exec_runtime
624
625 #define INIT_CPUTIME \
626 (struct task_cputime) { \
627 .utime = 0, \
628 .stime = 0, \
629 .sum_exec_runtime = 0, \
630 }
631
632 /*
633 * This is the atomic variant of task_cputime, which can be used for
634 * storing and updating task_cputime statistics without locking.
635 */
636 struct task_cputime_atomic {
637 atomic64_t utime;
638 atomic64_t stime;
639 atomic64_t sum_exec_runtime;
640 };
641
642 #define INIT_CPUTIME_ATOMIC \
643 (struct task_cputime_atomic) { \
644 .utime = ATOMIC64_INIT(0), \
645 .stime = ATOMIC64_INIT(0), \
646 .sum_exec_runtime = ATOMIC64_INIT(0), \
647 }
648
649 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
650
651 /*
652 * Disable preemption until the scheduler is running -- use an unconditional
653 * value so that it also works on !PREEMPT_COUNT kernels.
654 *
655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
656 */
657 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
658
659 /*
660 * Initial preempt_count value; reflects the preempt_count schedule invariant
661 * which states that during context switches:
662 *
663 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
664 *
665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
666 * Note: See finish_task_switch().
667 */
668 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
669
670 /**
671 * struct thread_group_cputimer - thread group interval timer counts
672 * @cputime_atomic: atomic thread group interval timers.
673 * @running: true when there are timers running and
674 * @cputime_atomic receives updates.
675 * @checking_timer: true when a thread in the group is in the
676 * process of checking for thread group timers.
677 *
678 * This structure contains the version of task_cputime, above, that is
679 * used for thread group CPU timer calculations.
680 */
681 struct thread_group_cputimer {
682 struct task_cputime_atomic cputime_atomic;
683 bool running;
684 bool checking_timer;
685 };
686
687 #include <linux/rwsem.h>
688 struct autogroup;
689
690 /*
691 * NOTE! "signal_struct" does not have its own
692 * locking, because a shared signal_struct always
693 * implies a shared sighand_struct, so locking
694 * sighand_struct is always a proper superset of
695 * the locking of signal_struct.
696 */
697 struct signal_struct {
698 atomic_t sigcnt;
699 atomic_t live;
700 int nr_threads;
701 struct list_head thread_head;
702
703 wait_queue_head_t wait_chldexit; /* for wait4() */
704
705 /* current thread group signal load-balancing target: */
706 struct task_struct *curr_target;
707
708 /* shared signal handling: */
709 struct sigpending shared_pending;
710
711 /* thread group exit support */
712 int group_exit_code;
713 /* overloaded:
714 * - notify group_exit_task when ->count is equal to notify_count
715 * - everyone except group_exit_task is stopped during signal delivery
716 * of fatal signals, group_exit_task processes the signal.
717 */
718 int notify_count;
719 struct task_struct *group_exit_task;
720
721 /* thread group stop support, overloads group_exit_code too */
722 int group_stop_count;
723 unsigned int flags; /* see SIGNAL_* flags below */
724
725 /*
726 * PR_SET_CHILD_SUBREAPER marks a process, like a service
727 * manager, to re-parent orphan (double-forking) child processes
728 * to this process instead of 'init'. The service manager is
729 * able to receive SIGCHLD signals and is able to investigate
730 * the process until it calls wait(). All children of this
731 * process will inherit a flag if they should look for a
732 * child_subreaper process at exit.
733 */
734 unsigned int is_child_subreaper:1;
735 unsigned int has_child_subreaper:1;
736
737 #ifdef CONFIG_POSIX_TIMERS
738
739 /* POSIX.1b Interval Timers */
740 int posix_timer_id;
741 struct list_head posix_timers;
742
743 /* ITIMER_REAL timer for the process */
744 struct hrtimer real_timer;
745 ktime_t it_real_incr;
746
747 /*
748 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
749 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
750 * values are defined to 0 and 1 respectively
751 */
752 struct cpu_itimer it[2];
753
754 /*
755 * Thread group totals for process CPU timers.
756 * See thread_group_cputimer(), et al, for details.
757 */
758 struct thread_group_cputimer cputimer;
759
760 /* Earliest-expiration cache. */
761 struct task_cputime cputime_expires;
762
763 struct list_head cpu_timers[3];
764
765 #endif
766
767 struct pid *leader_pid;
768
769 #ifdef CONFIG_NO_HZ_FULL
770 atomic_t tick_dep_mask;
771 #endif
772
773 struct pid *tty_old_pgrp;
774
775 /* boolean value for session group leader */
776 int leader;
777
778 struct tty_struct *tty; /* NULL if no tty */
779
780 #ifdef CONFIG_SCHED_AUTOGROUP
781 struct autogroup *autogroup;
782 #endif
783 /*
784 * Cumulative resource counters for dead threads in the group,
785 * and for reaped dead child processes forked by this group.
786 * Live threads maintain their own counters and add to these
787 * in __exit_signal, except for the group leader.
788 */
789 seqlock_t stats_lock;
790 cputime_t utime, stime, cutime, cstime;
791 cputime_t gtime;
792 cputime_t cgtime;
793 struct prev_cputime prev_cputime;
794 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
795 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
796 unsigned long inblock, oublock, cinblock, coublock;
797 unsigned long maxrss, cmaxrss;
798 struct task_io_accounting ioac;
799
800 /*
801 * Cumulative ns of schedule CPU time fo dead threads in the
802 * group, not including a zombie group leader, (This only differs
803 * from jiffies_to_ns(utime + stime) if sched_clock uses something
804 * other than jiffies.)
805 */
806 unsigned long long sum_sched_runtime;
807
808 /*
809 * We don't bother to synchronize most readers of this at all,
810 * because there is no reader checking a limit that actually needs
811 * to get both rlim_cur and rlim_max atomically, and either one
812 * alone is a single word that can safely be read normally.
813 * getrlimit/setrlimit use task_lock(current->group_leader) to
814 * protect this instead of the siglock, because they really
815 * have no need to disable irqs.
816 */
817 struct rlimit rlim[RLIM_NLIMITS];
818
819 #ifdef CONFIG_BSD_PROCESS_ACCT
820 struct pacct_struct pacct; /* per-process accounting information */
821 #endif
822 #ifdef CONFIG_TASKSTATS
823 struct taskstats *stats;
824 #endif
825 #ifdef CONFIG_AUDIT
826 unsigned audit_tty;
827 struct tty_audit_buf *tty_audit_buf;
828 #endif
829
830 /*
831 * Thread is the potential origin of an oom condition; kill first on
832 * oom
833 */
834 bool oom_flag_origin;
835 short oom_score_adj; /* OOM kill score adjustment */
836 short oom_score_adj_min; /* OOM kill score adjustment min value.
837 * Only settable by CAP_SYS_RESOURCE. */
838 struct mm_struct *oom_mm; /* recorded mm when the thread group got
839 * killed by the oom killer */
840
841 struct mutex cred_guard_mutex; /* guard against foreign influences on
842 * credential calculations
843 * (notably. ptrace) */
844 };
845
846 /*
847 * Bits in flags field of signal_struct.
848 */
849 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
850 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
851 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
852 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
853 /*
854 * Pending notifications to parent.
855 */
856 #define SIGNAL_CLD_STOPPED 0x00000010
857 #define SIGNAL_CLD_CONTINUED 0x00000020
858 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
859
860 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
861
862 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
863 SIGNAL_STOP_CONTINUED)
864
865 static inline void signal_set_stop_flags(struct signal_struct *sig,
866 unsigned int flags)
867 {
868 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
869 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
870 }
871
872 /* If true, all threads except ->group_exit_task have pending SIGKILL */
873 static inline int signal_group_exit(const struct signal_struct *sig)
874 {
875 return (sig->flags & SIGNAL_GROUP_EXIT) ||
876 (sig->group_exit_task != NULL);
877 }
878
879 /*
880 * Some day this will be a full-fledged user tracking system..
881 */
882 struct user_struct {
883 atomic_t __count; /* reference count */
884 atomic_t processes; /* How many processes does this user have? */
885 atomic_t sigpending; /* How many pending signals does this user have? */
886 #ifdef CONFIG_INOTIFY_USER
887 atomic_t inotify_watches; /* How many inotify watches does this user have? */
888 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
889 #endif
890 #ifdef CONFIG_FANOTIFY
891 atomic_t fanotify_listeners;
892 #endif
893 #ifdef CONFIG_EPOLL
894 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
895 #endif
896 #ifdef CONFIG_POSIX_MQUEUE
897 /* protected by mq_lock */
898 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
899 #endif
900 unsigned long locked_shm; /* How many pages of mlocked shm ? */
901 unsigned long unix_inflight; /* How many files in flight in unix sockets */
902 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
903
904 #ifdef CONFIG_KEYS
905 struct key *uid_keyring; /* UID specific keyring */
906 struct key *session_keyring; /* UID's default session keyring */
907 #endif
908
909 /* Hash table maintenance information */
910 struct hlist_node uidhash_node;
911 kuid_t uid;
912
913 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
914 atomic_long_t locked_vm;
915 #endif
916 };
917
918 extern int uids_sysfs_init(void);
919
920 extern struct user_struct *find_user(kuid_t);
921
922 extern struct user_struct root_user;
923 #define INIT_USER (&root_user)
924
925
926 struct backing_dev_info;
927 struct reclaim_state;
928
929 #ifdef CONFIG_SCHED_INFO
930 struct sched_info {
931 /* cumulative counters */
932 unsigned long pcount; /* # of times run on this cpu */
933 unsigned long long run_delay; /* time spent waiting on a runqueue */
934
935 /* timestamps */
936 unsigned long long last_arrival,/* when we last ran on a cpu */
937 last_queued; /* when we were last queued to run */
938 };
939 #endif /* CONFIG_SCHED_INFO */
940
941 #ifdef CONFIG_TASK_DELAY_ACCT
942 struct task_delay_info {
943 spinlock_t lock;
944 unsigned int flags; /* Private per-task flags */
945
946 /* For each stat XXX, add following, aligned appropriately
947 *
948 * struct timespec XXX_start, XXX_end;
949 * u64 XXX_delay;
950 * u32 XXX_count;
951 *
952 * Atomicity of updates to XXX_delay, XXX_count protected by
953 * single lock above (split into XXX_lock if contention is an issue).
954 */
955
956 /*
957 * XXX_count is incremented on every XXX operation, the delay
958 * associated with the operation is added to XXX_delay.
959 * XXX_delay contains the accumulated delay time in nanoseconds.
960 */
961 u64 blkio_start; /* Shared by blkio, swapin */
962 u64 blkio_delay; /* wait for sync block io completion */
963 u64 swapin_delay; /* wait for swapin block io completion */
964 u32 blkio_count; /* total count of the number of sync block */
965 /* io operations performed */
966 u32 swapin_count; /* total count of the number of swapin block */
967 /* io operations performed */
968
969 u64 freepages_start;
970 u64 freepages_delay; /* wait for memory reclaim */
971 u32 freepages_count; /* total count of memory reclaim */
972 };
973 #endif /* CONFIG_TASK_DELAY_ACCT */
974
975 static inline int sched_info_on(void)
976 {
977 #ifdef CONFIG_SCHEDSTATS
978 return 1;
979 #elif defined(CONFIG_TASK_DELAY_ACCT)
980 extern int delayacct_on;
981 return delayacct_on;
982 #else
983 return 0;
984 #endif
985 }
986
987 #ifdef CONFIG_SCHEDSTATS
988 void force_schedstat_enabled(void);
989 #endif
990
991 enum cpu_idle_type {
992 CPU_IDLE,
993 CPU_NOT_IDLE,
994 CPU_NEWLY_IDLE,
995 CPU_MAX_IDLE_TYPES
996 };
997
998 /*
999 * Integer metrics need fixed point arithmetic, e.g., sched/fair
1000 * has a few: load, load_avg, util_avg, freq, and capacity.
1001 *
1002 * We define a basic fixed point arithmetic range, and then formalize
1003 * all these metrics based on that basic range.
1004 */
1005 # define SCHED_FIXEDPOINT_SHIFT 10
1006 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
1007
1008 /*
1009 * Increase resolution of cpu_capacity calculations
1010 */
1011 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
1012 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1013
1014 /*
1015 * Wake-queues are lists of tasks with a pending wakeup, whose
1016 * callers have already marked the task as woken internally,
1017 * and can thus carry on. A common use case is being able to
1018 * do the wakeups once the corresponding user lock as been
1019 * released.
1020 *
1021 * We hold reference to each task in the list across the wakeup,
1022 * thus guaranteeing that the memory is still valid by the time
1023 * the actual wakeups are performed in wake_up_q().
1024 *
1025 * One per task suffices, because there's never a need for a task to be
1026 * in two wake queues simultaneously; it is forbidden to abandon a task
1027 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1028 * already in a wake queue, the wakeup will happen soon and the second
1029 * waker can just skip it.
1030 *
1031 * The DEFINE_WAKE_Q macro declares and initializes the list head.
1032 * wake_up_q() does NOT reinitialize the list; it's expected to be
1033 * called near the end of a function, where the fact that the queue is
1034 * not used again will be easy to see by inspection.
1035 *
1036 * Note that this can cause spurious wakeups. schedule() callers
1037 * must ensure the call is done inside a loop, confirming that the
1038 * wakeup condition has in fact occurred.
1039 */
1040 struct wake_q_node {
1041 struct wake_q_node *next;
1042 };
1043
1044 struct wake_q_head {
1045 struct wake_q_node *first;
1046 struct wake_q_node **lastp;
1047 };
1048
1049 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1050
1051 #define DEFINE_WAKE_Q(name) \
1052 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1053
1054 extern void wake_q_add(struct wake_q_head *head,
1055 struct task_struct *task);
1056 extern void wake_up_q(struct wake_q_head *head);
1057
1058 /*
1059 * sched-domains (multiprocessor balancing) declarations:
1060 */
1061 #ifdef CONFIG_SMP
1062 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1063 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1064 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1065 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1066 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1067 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1068 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1069 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1070 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1071 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1072 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1073 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1074 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1075 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1076 #define SD_NUMA 0x4000 /* cross-node balancing */
1077
1078 #ifdef CONFIG_SCHED_SMT
1079 static inline int cpu_smt_flags(void)
1080 {
1081 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1082 }
1083 #endif
1084
1085 #ifdef CONFIG_SCHED_MC
1086 static inline int cpu_core_flags(void)
1087 {
1088 return SD_SHARE_PKG_RESOURCES;
1089 }
1090 #endif
1091
1092 #ifdef CONFIG_NUMA
1093 static inline int cpu_numa_flags(void)
1094 {
1095 return SD_NUMA;
1096 }
1097 #endif
1098
1099 extern int arch_asym_cpu_priority(int cpu);
1100
1101 struct sched_domain_attr {
1102 int relax_domain_level;
1103 };
1104
1105 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1106 .relax_domain_level = -1, \
1107 }
1108
1109 extern int sched_domain_level_max;
1110
1111 struct sched_group;
1112
1113 struct sched_domain_shared {
1114 atomic_t ref;
1115 atomic_t nr_busy_cpus;
1116 int has_idle_cores;
1117 };
1118
1119 struct sched_domain {
1120 /* These fields must be setup */
1121 struct sched_domain *parent; /* top domain must be null terminated */
1122 struct sched_domain *child; /* bottom domain must be null terminated */
1123 struct sched_group *groups; /* the balancing groups of the domain */
1124 unsigned long min_interval; /* Minimum balance interval ms */
1125 unsigned long max_interval; /* Maximum balance interval ms */
1126 unsigned int busy_factor; /* less balancing by factor if busy */
1127 unsigned int imbalance_pct; /* No balance until over watermark */
1128 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1129 unsigned int busy_idx;
1130 unsigned int idle_idx;
1131 unsigned int newidle_idx;
1132 unsigned int wake_idx;
1133 unsigned int forkexec_idx;
1134 unsigned int smt_gain;
1135
1136 int nohz_idle; /* NOHZ IDLE status */
1137 int flags; /* See SD_* */
1138 int level;
1139
1140 /* Runtime fields. */
1141 unsigned long last_balance; /* init to jiffies. units in jiffies */
1142 unsigned int balance_interval; /* initialise to 1. units in ms. */
1143 unsigned int nr_balance_failed; /* initialise to 0 */
1144
1145 /* idle_balance() stats */
1146 u64 max_newidle_lb_cost;
1147 unsigned long next_decay_max_lb_cost;
1148
1149 u64 avg_scan_cost; /* select_idle_sibling */
1150
1151 #ifdef CONFIG_SCHEDSTATS
1152 /* load_balance() stats */
1153 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1154 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1155 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1156 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1157 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1158 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1159 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1160 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1161
1162 /* Active load balancing */
1163 unsigned int alb_count;
1164 unsigned int alb_failed;
1165 unsigned int alb_pushed;
1166
1167 /* SD_BALANCE_EXEC stats */
1168 unsigned int sbe_count;
1169 unsigned int sbe_balanced;
1170 unsigned int sbe_pushed;
1171
1172 /* SD_BALANCE_FORK stats */
1173 unsigned int sbf_count;
1174 unsigned int sbf_balanced;
1175 unsigned int sbf_pushed;
1176
1177 /* try_to_wake_up() stats */
1178 unsigned int ttwu_wake_remote;
1179 unsigned int ttwu_move_affine;
1180 unsigned int ttwu_move_balance;
1181 #endif
1182 #ifdef CONFIG_SCHED_DEBUG
1183 char *name;
1184 #endif
1185 union {
1186 void *private; /* used during construction */
1187 struct rcu_head rcu; /* used during destruction */
1188 };
1189 struct sched_domain_shared *shared;
1190
1191 unsigned int span_weight;
1192 /*
1193 * Span of all CPUs in this domain.
1194 *
1195 * NOTE: this field is variable length. (Allocated dynamically
1196 * by attaching extra space to the end of the structure,
1197 * depending on how many CPUs the kernel has booted up with)
1198 */
1199 unsigned long span[0];
1200 };
1201
1202 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1203 {
1204 return to_cpumask(sd->span);
1205 }
1206
1207 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1208 struct sched_domain_attr *dattr_new);
1209
1210 /* Allocate an array of sched domains, for partition_sched_domains(). */
1211 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1212 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1213
1214 bool cpus_share_cache(int this_cpu, int that_cpu);
1215
1216 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1217 typedef int (*sched_domain_flags_f)(void);
1218
1219 #define SDTL_OVERLAP 0x01
1220
1221 struct sd_data {
1222 struct sched_domain **__percpu sd;
1223 struct sched_domain_shared **__percpu sds;
1224 struct sched_group **__percpu sg;
1225 struct sched_group_capacity **__percpu sgc;
1226 };
1227
1228 struct sched_domain_topology_level {
1229 sched_domain_mask_f mask;
1230 sched_domain_flags_f sd_flags;
1231 int flags;
1232 int numa_level;
1233 struct sd_data data;
1234 #ifdef CONFIG_SCHED_DEBUG
1235 char *name;
1236 #endif
1237 };
1238
1239 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1240 extern void wake_up_if_idle(int cpu);
1241
1242 #ifdef CONFIG_SCHED_DEBUG
1243 # define SD_INIT_NAME(type) .name = #type
1244 #else
1245 # define SD_INIT_NAME(type)
1246 #endif
1247
1248 #else /* CONFIG_SMP */
1249
1250 struct sched_domain_attr;
1251
1252 static inline void
1253 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1254 struct sched_domain_attr *dattr_new)
1255 {
1256 }
1257
1258 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1259 {
1260 return true;
1261 }
1262
1263 #endif /* !CONFIG_SMP */
1264
1265
1266 struct io_context; /* See blkdev.h */
1267
1268
1269 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1270 extern void prefetch_stack(struct task_struct *t);
1271 #else
1272 static inline void prefetch_stack(struct task_struct *t) { }
1273 #endif
1274
1275 struct audit_context; /* See audit.c */
1276 struct mempolicy;
1277 struct pipe_inode_info;
1278 struct uts_namespace;
1279
1280 struct load_weight {
1281 unsigned long weight;
1282 u32 inv_weight;
1283 };
1284
1285 /*
1286 * The load_avg/util_avg accumulates an infinite geometric series
1287 * (see __update_load_avg() in kernel/sched/fair.c).
1288 *
1289 * [load_avg definition]
1290 *
1291 * load_avg = runnable% * scale_load_down(load)
1292 *
1293 * where runnable% is the time ratio that a sched_entity is runnable.
1294 * For cfs_rq, it is the aggregated load_avg of all runnable and
1295 * blocked sched_entities.
1296 *
1297 * load_avg may also take frequency scaling into account:
1298 *
1299 * load_avg = runnable% * scale_load_down(load) * freq%
1300 *
1301 * where freq% is the CPU frequency normalized to the highest frequency.
1302 *
1303 * [util_avg definition]
1304 *
1305 * util_avg = running% * SCHED_CAPACITY_SCALE
1306 *
1307 * where running% is the time ratio that a sched_entity is running on
1308 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1309 * and blocked sched_entities.
1310 *
1311 * util_avg may also factor frequency scaling and CPU capacity scaling:
1312 *
1313 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1314 *
1315 * where freq% is the same as above, and capacity% is the CPU capacity
1316 * normalized to the greatest capacity (due to uarch differences, etc).
1317 *
1318 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1319 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1320 * we therefore scale them to as large a range as necessary. This is for
1321 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1322 *
1323 * [Overflow issue]
1324 *
1325 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1326 * with the highest load (=88761), always runnable on a single cfs_rq,
1327 * and should not overflow as the number already hits PID_MAX_LIMIT.
1328 *
1329 * For all other cases (including 32-bit kernels), struct load_weight's
1330 * weight will overflow first before we do, because:
1331 *
1332 * Max(load_avg) <= Max(load.weight)
1333 *
1334 * Then it is the load_weight's responsibility to consider overflow
1335 * issues.
1336 */
1337 struct sched_avg {
1338 u64 last_update_time, load_sum;
1339 u32 util_sum, period_contrib;
1340 unsigned long load_avg, util_avg;
1341 };
1342
1343 #ifdef CONFIG_SCHEDSTATS
1344 struct sched_statistics {
1345 u64 wait_start;
1346 u64 wait_max;
1347 u64 wait_count;
1348 u64 wait_sum;
1349 u64 iowait_count;
1350 u64 iowait_sum;
1351
1352 u64 sleep_start;
1353 u64 sleep_max;
1354 s64 sum_sleep_runtime;
1355
1356 u64 block_start;
1357 u64 block_max;
1358 u64 exec_max;
1359 u64 slice_max;
1360
1361 u64 nr_migrations_cold;
1362 u64 nr_failed_migrations_affine;
1363 u64 nr_failed_migrations_running;
1364 u64 nr_failed_migrations_hot;
1365 u64 nr_forced_migrations;
1366
1367 u64 nr_wakeups;
1368 u64 nr_wakeups_sync;
1369 u64 nr_wakeups_migrate;
1370 u64 nr_wakeups_local;
1371 u64 nr_wakeups_remote;
1372 u64 nr_wakeups_affine;
1373 u64 nr_wakeups_affine_attempts;
1374 u64 nr_wakeups_passive;
1375 u64 nr_wakeups_idle;
1376 };
1377 #endif
1378
1379 struct sched_entity {
1380 struct load_weight load; /* for load-balancing */
1381 struct rb_node run_node;
1382 struct list_head group_node;
1383 unsigned int on_rq;
1384
1385 u64 exec_start;
1386 u64 sum_exec_runtime;
1387 u64 vruntime;
1388 u64 prev_sum_exec_runtime;
1389
1390 u64 nr_migrations;
1391
1392 #ifdef CONFIG_SCHEDSTATS
1393 struct sched_statistics statistics;
1394 #endif
1395
1396 #ifdef CONFIG_FAIR_GROUP_SCHED
1397 int depth;
1398 struct sched_entity *parent;
1399 /* rq on which this entity is (to be) queued: */
1400 struct cfs_rq *cfs_rq;
1401 /* rq "owned" by this entity/group: */
1402 struct cfs_rq *my_q;
1403 #endif
1404
1405 #ifdef CONFIG_SMP
1406 /*
1407 * Per entity load average tracking.
1408 *
1409 * Put into separate cache line so it does not
1410 * collide with read-mostly values above.
1411 */
1412 struct sched_avg avg ____cacheline_aligned_in_smp;
1413 #endif
1414 };
1415
1416 struct sched_rt_entity {
1417 struct list_head run_list;
1418 unsigned long timeout;
1419 unsigned long watchdog_stamp;
1420 unsigned int time_slice;
1421 unsigned short on_rq;
1422 unsigned short on_list;
1423
1424 struct sched_rt_entity *back;
1425 #ifdef CONFIG_RT_GROUP_SCHED
1426 struct sched_rt_entity *parent;
1427 /* rq on which this entity is (to be) queued: */
1428 struct rt_rq *rt_rq;
1429 /* rq "owned" by this entity/group: */
1430 struct rt_rq *my_q;
1431 #endif
1432 };
1433
1434 struct sched_dl_entity {
1435 struct rb_node rb_node;
1436
1437 /*
1438 * Original scheduling parameters. Copied here from sched_attr
1439 * during sched_setattr(), they will remain the same until
1440 * the next sched_setattr().
1441 */
1442 u64 dl_runtime; /* maximum runtime for each instance */
1443 u64 dl_deadline; /* relative deadline of each instance */
1444 u64 dl_period; /* separation of two instances (period) */
1445 u64 dl_bw; /* dl_runtime / dl_deadline */
1446
1447 /*
1448 * Actual scheduling parameters. Initialized with the values above,
1449 * they are continously updated during task execution. Note that
1450 * the remaining runtime could be < 0 in case we are in overrun.
1451 */
1452 s64 runtime; /* remaining runtime for this instance */
1453 u64 deadline; /* absolute deadline for this instance */
1454 unsigned int flags; /* specifying the scheduler behaviour */
1455
1456 /*
1457 * Some bool flags:
1458 *
1459 * @dl_throttled tells if we exhausted the runtime. If so, the
1460 * task has to wait for a replenishment to be performed at the
1461 * next firing of dl_timer.
1462 *
1463 * @dl_boosted tells if we are boosted due to DI. If so we are
1464 * outside bandwidth enforcement mechanism (but only until we
1465 * exit the critical section);
1466 *
1467 * @dl_yielded tells if task gave up the cpu before consuming
1468 * all its available runtime during the last job.
1469 */
1470 int dl_throttled, dl_boosted, dl_yielded;
1471
1472 /*
1473 * Bandwidth enforcement timer. Each -deadline task has its
1474 * own bandwidth to be enforced, thus we need one timer per task.
1475 */
1476 struct hrtimer dl_timer;
1477 };
1478
1479 union rcu_special {
1480 struct {
1481 u8 blocked;
1482 u8 need_qs;
1483 u8 exp_need_qs;
1484 u8 pad; /* Otherwise the compiler can store garbage here. */
1485 } b; /* Bits. */
1486 u32 s; /* Set of bits. */
1487 };
1488 struct rcu_node;
1489
1490 enum perf_event_task_context {
1491 perf_invalid_context = -1,
1492 perf_hw_context = 0,
1493 perf_sw_context,
1494 perf_nr_task_contexts,
1495 };
1496
1497 /* Track pages that require TLB flushes */
1498 struct tlbflush_unmap_batch {
1499 /*
1500 * Each bit set is a CPU that potentially has a TLB entry for one of
1501 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1502 */
1503 struct cpumask cpumask;
1504
1505 /* True if any bit in cpumask is set */
1506 bool flush_required;
1507
1508 /*
1509 * If true then the PTE was dirty when unmapped. The entry must be
1510 * flushed before IO is initiated or a stale TLB entry potentially
1511 * allows an update without redirtying the page.
1512 */
1513 bool writable;
1514 };
1515
1516 struct task_struct {
1517 #ifdef CONFIG_THREAD_INFO_IN_TASK
1518 /*
1519 * For reasons of header soup (see current_thread_info()), this
1520 * must be the first element of task_struct.
1521 */
1522 struct thread_info thread_info;
1523 #endif
1524 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1525 void *stack;
1526 atomic_t usage;
1527 unsigned int flags; /* per process flags, defined below */
1528 unsigned int ptrace;
1529
1530 #ifdef CONFIG_SMP
1531 struct llist_node wake_entry;
1532 int on_cpu;
1533 #ifdef CONFIG_THREAD_INFO_IN_TASK
1534 unsigned int cpu; /* current CPU */
1535 #endif
1536 unsigned int wakee_flips;
1537 unsigned long wakee_flip_decay_ts;
1538 struct task_struct *last_wakee;
1539
1540 int wake_cpu;
1541 #endif
1542 int on_rq;
1543
1544 int prio, static_prio, normal_prio;
1545 unsigned int rt_priority;
1546 const struct sched_class *sched_class;
1547 struct sched_entity se;
1548 struct sched_rt_entity rt;
1549 #ifdef CONFIG_CGROUP_SCHED
1550 struct task_group *sched_task_group;
1551 #endif
1552 struct sched_dl_entity dl;
1553
1554 #ifdef CONFIG_PREEMPT_NOTIFIERS
1555 /* list of struct preempt_notifier: */
1556 struct hlist_head preempt_notifiers;
1557 #endif
1558
1559 #ifdef CONFIG_BLK_DEV_IO_TRACE
1560 unsigned int btrace_seq;
1561 #endif
1562
1563 unsigned int policy;
1564 int nr_cpus_allowed;
1565 cpumask_t cpus_allowed;
1566
1567 #ifdef CONFIG_PREEMPT_RCU
1568 int rcu_read_lock_nesting;
1569 union rcu_special rcu_read_unlock_special;
1570 struct list_head rcu_node_entry;
1571 struct rcu_node *rcu_blocked_node;
1572 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1573 #ifdef CONFIG_TASKS_RCU
1574 unsigned long rcu_tasks_nvcsw;
1575 bool rcu_tasks_holdout;
1576 struct list_head rcu_tasks_holdout_list;
1577 int rcu_tasks_idle_cpu;
1578 #endif /* #ifdef CONFIG_TASKS_RCU */
1579
1580 #ifdef CONFIG_SCHED_INFO
1581 struct sched_info sched_info;
1582 #endif
1583
1584 struct list_head tasks;
1585 #ifdef CONFIG_SMP
1586 struct plist_node pushable_tasks;
1587 struct rb_node pushable_dl_tasks;
1588 #endif
1589
1590 struct mm_struct *mm, *active_mm;
1591 /* per-thread vma caching */
1592 u32 vmacache_seqnum;
1593 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1594 #if defined(SPLIT_RSS_COUNTING)
1595 struct task_rss_stat rss_stat;
1596 #endif
1597 /* task state */
1598 int exit_state;
1599 int exit_code, exit_signal;
1600 int pdeath_signal; /* The signal sent when the parent dies */
1601 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1602
1603 /* Used for emulating ABI behavior of previous Linux versions */
1604 unsigned int personality;
1605
1606 /* scheduler bits, serialized by scheduler locks */
1607 unsigned sched_reset_on_fork:1;
1608 unsigned sched_contributes_to_load:1;
1609 unsigned sched_migrated:1;
1610 unsigned sched_remote_wakeup:1;
1611 unsigned :0; /* force alignment to the next boundary */
1612
1613 /* unserialized, strictly 'current' */
1614 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1615 unsigned in_iowait:1;
1616 #if !defined(TIF_RESTORE_SIGMASK)
1617 unsigned restore_sigmask:1;
1618 #endif
1619 #ifdef CONFIG_MEMCG
1620 unsigned memcg_may_oom:1;
1621 #ifndef CONFIG_SLOB
1622 unsigned memcg_kmem_skip_account:1;
1623 #endif
1624 #endif
1625 #ifdef CONFIG_COMPAT_BRK
1626 unsigned brk_randomized:1;
1627 #endif
1628
1629 unsigned long atomic_flags; /* Flags needing atomic access. */
1630
1631 struct restart_block restart_block;
1632
1633 pid_t pid;
1634 pid_t tgid;
1635
1636 #ifdef CONFIG_CC_STACKPROTECTOR
1637 /* Canary value for the -fstack-protector gcc feature */
1638 unsigned long stack_canary;
1639 #endif
1640 /*
1641 * pointers to (original) parent process, youngest child, younger sibling,
1642 * older sibling, respectively. (p->father can be replaced with
1643 * p->real_parent->pid)
1644 */
1645 struct task_struct __rcu *real_parent; /* real parent process */
1646 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1647 /*
1648 * children/sibling forms the list of my natural children
1649 */
1650 struct list_head children; /* list of my children */
1651 struct list_head sibling; /* linkage in my parent's children list */
1652 struct task_struct *group_leader; /* threadgroup leader */
1653
1654 /*
1655 * ptraced is the list of tasks this task is using ptrace on.
1656 * This includes both natural children and PTRACE_ATTACH targets.
1657 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1658 */
1659 struct list_head ptraced;
1660 struct list_head ptrace_entry;
1661
1662 /* PID/PID hash table linkage. */
1663 struct pid_link pids[PIDTYPE_MAX];
1664 struct list_head thread_group;
1665 struct list_head thread_node;
1666
1667 struct completion *vfork_done; /* for vfork() */
1668 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1669 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1670
1671 cputime_t utime, stime;
1672 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1673 cputime_t utimescaled, stimescaled;
1674 #endif
1675 cputime_t gtime;
1676 struct prev_cputime prev_cputime;
1677 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1678 seqcount_t vtime_seqcount;
1679 unsigned long long vtime_snap;
1680 enum {
1681 /* Task is sleeping or running in a CPU with VTIME inactive */
1682 VTIME_INACTIVE = 0,
1683 /* Task runs in userspace in a CPU with VTIME active */
1684 VTIME_USER,
1685 /* Task runs in kernelspace in a CPU with VTIME active */
1686 VTIME_SYS,
1687 } vtime_snap_whence;
1688 #endif
1689
1690 #ifdef CONFIG_NO_HZ_FULL
1691 atomic_t tick_dep_mask;
1692 #endif
1693 unsigned long nvcsw, nivcsw; /* context switch counts */
1694 u64 start_time; /* monotonic time in nsec */
1695 u64 real_start_time; /* boot based time in nsec */
1696 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1697 unsigned long min_flt, maj_flt;
1698
1699 #ifdef CONFIG_POSIX_TIMERS
1700 struct task_cputime cputime_expires;
1701 struct list_head cpu_timers[3];
1702 #endif
1703
1704 /* process credentials */
1705 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1706 const struct cred __rcu *real_cred; /* objective and real subjective task
1707 * credentials (COW) */
1708 const struct cred __rcu *cred; /* effective (overridable) subjective task
1709 * credentials (COW) */
1710 char comm[TASK_COMM_LEN]; /* executable name excluding path
1711 - access with [gs]et_task_comm (which lock
1712 it with task_lock())
1713 - initialized normally by setup_new_exec */
1714 /* file system info */
1715 struct nameidata *nameidata;
1716 #ifdef CONFIG_SYSVIPC
1717 /* ipc stuff */
1718 struct sysv_sem sysvsem;
1719 struct sysv_shm sysvshm;
1720 #endif
1721 #ifdef CONFIG_DETECT_HUNG_TASK
1722 /* hung task detection */
1723 unsigned long last_switch_count;
1724 #endif
1725 /* filesystem information */
1726 struct fs_struct *fs;
1727 /* open file information */
1728 struct files_struct *files;
1729 /* namespaces */
1730 struct nsproxy *nsproxy;
1731 /* signal handlers */
1732 struct signal_struct *signal;
1733 struct sighand_struct *sighand;
1734
1735 sigset_t blocked, real_blocked;
1736 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1737 struct sigpending pending;
1738
1739 unsigned long sas_ss_sp;
1740 size_t sas_ss_size;
1741 unsigned sas_ss_flags;
1742
1743 struct callback_head *task_works;
1744
1745 struct audit_context *audit_context;
1746 #ifdef CONFIG_AUDITSYSCALL
1747 kuid_t loginuid;
1748 unsigned int sessionid;
1749 #endif
1750 struct seccomp seccomp;
1751
1752 /* Thread group tracking */
1753 u32 parent_exec_id;
1754 u32 self_exec_id;
1755 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1756 * mempolicy */
1757 spinlock_t alloc_lock;
1758
1759 /* Protection of the PI data structures: */
1760 raw_spinlock_t pi_lock;
1761
1762 struct wake_q_node wake_q;
1763
1764 #ifdef CONFIG_RT_MUTEXES
1765 /* PI waiters blocked on a rt_mutex held by this task */
1766 struct rb_root pi_waiters;
1767 struct rb_node *pi_waiters_leftmost;
1768 /* Deadlock detection and priority inheritance handling */
1769 struct rt_mutex_waiter *pi_blocked_on;
1770 #endif
1771
1772 #ifdef CONFIG_DEBUG_MUTEXES
1773 /* mutex deadlock detection */
1774 struct mutex_waiter *blocked_on;
1775 #endif
1776 #ifdef CONFIG_TRACE_IRQFLAGS
1777 unsigned int irq_events;
1778 unsigned long hardirq_enable_ip;
1779 unsigned long hardirq_disable_ip;
1780 unsigned int hardirq_enable_event;
1781 unsigned int hardirq_disable_event;
1782 int hardirqs_enabled;
1783 int hardirq_context;
1784 unsigned long softirq_disable_ip;
1785 unsigned long softirq_enable_ip;
1786 unsigned int softirq_disable_event;
1787 unsigned int softirq_enable_event;
1788 int softirqs_enabled;
1789 int softirq_context;
1790 #endif
1791 #ifdef CONFIG_LOCKDEP
1792 # define MAX_LOCK_DEPTH 48UL
1793 u64 curr_chain_key;
1794 int lockdep_depth;
1795 unsigned int lockdep_recursion;
1796 struct held_lock held_locks[MAX_LOCK_DEPTH];
1797 gfp_t lockdep_reclaim_gfp;
1798 #endif
1799 #ifdef CONFIG_UBSAN
1800 unsigned int in_ubsan;
1801 #endif
1802
1803 /* journalling filesystem info */
1804 void *journal_info;
1805
1806 /* stacked block device info */
1807 struct bio_list *bio_list;
1808
1809 #ifdef CONFIG_BLOCK
1810 /* stack plugging */
1811 struct blk_plug *plug;
1812 #endif
1813
1814 /* VM state */
1815 struct reclaim_state *reclaim_state;
1816
1817 struct backing_dev_info *backing_dev_info;
1818
1819 struct io_context *io_context;
1820
1821 unsigned long ptrace_message;
1822 siginfo_t *last_siginfo; /* For ptrace use. */
1823 struct task_io_accounting ioac;
1824 #if defined(CONFIG_TASK_XACCT)
1825 u64 acct_rss_mem1; /* accumulated rss usage */
1826 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1827 cputime_t acct_timexpd; /* stime + utime since last update */
1828 #endif
1829 #ifdef CONFIG_CPUSETS
1830 nodemask_t mems_allowed; /* Protected by alloc_lock */
1831 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1832 int cpuset_mem_spread_rotor;
1833 int cpuset_slab_spread_rotor;
1834 #endif
1835 #ifdef CONFIG_CGROUPS
1836 /* Control Group info protected by css_set_lock */
1837 struct css_set __rcu *cgroups;
1838 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1839 struct list_head cg_list;
1840 #endif
1841 #ifdef CONFIG_INTEL_RDT_A
1842 int closid;
1843 #endif
1844 #ifdef CONFIG_FUTEX
1845 struct robust_list_head __user *robust_list;
1846 #ifdef CONFIG_COMPAT
1847 struct compat_robust_list_head __user *compat_robust_list;
1848 #endif
1849 struct list_head pi_state_list;
1850 struct futex_pi_state *pi_state_cache;
1851 #endif
1852 #ifdef CONFIG_PERF_EVENTS
1853 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1854 struct mutex perf_event_mutex;
1855 struct list_head perf_event_list;
1856 #endif
1857 #ifdef CONFIG_DEBUG_PREEMPT
1858 unsigned long preempt_disable_ip;
1859 #endif
1860 #ifdef CONFIG_NUMA
1861 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1862 short il_next;
1863 short pref_node_fork;
1864 #endif
1865 #ifdef CONFIG_NUMA_BALANCING
1866 int numa_scan_seq;
1867 unsigned int numa_scan_period;
1868 unsigned int numa_scan_period_max;
1869 int numa_preferred_nid;
1870 unsigned long numa_migrate_retry;
1871 u64 node_stamp; /* migration stamp */
1872 u64 last_task_numa_placement;
1873 u64 last_sum_exec_runtime;
1874 struct callback_head numa_work;
1875
1876 struct list_head numa_entry;
1877 struct numa_group *numa_group;
1878
1879 /*
1880 * numa_faults is an array split into four regions:
1881 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1882 * in this precise order.
1883 *
1884 * faults_memory: Exponential decaying average of faults on a per-node
1885 * basis. Scheduling placement decisions are made based on these
1886 * counts. The values remain static for the duration of a PTE scan.
1887 * faults_cpu: Track the nodes the process was running on when a NUMA
1888 * hinting fault was incurred.
1889 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1890 * during the current scan window. When the scan completes, the counts
1891 * in faults_memory and faults_cpu decay and these values are copied.
1892 */
1893 unsigned long *numa_faults;
1894 unsigned long total_numa_faults;
1895
1896 /*
1897 * numa_faults_locality tracks if faults recorded during the last
1898 * scan window were remote/local or failed to migrate. The task scan
1899 * period is adapted based on the locality of the faults with different
1900 * weights depending on whether they were shared or private faults
1901 */
1902 unsigned long numa_faults_locality[3];
1903
1904 unsigned long numa_pages_migrated;
1905 #endif /* CONFIG_NUMA_BALANCING */
1906
1907 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1908 struct tlbflush_unmap_batch tlb_ubc;
1909 #endif
1910
1911 struct rcu_head rcu;
1912
1913 /*
1914 * cache last used pipe for splice
1915 */
1916 struct pipe_inode_info *splice_pipe;
1917
1918 struct page_frag task_frag;
1919
1920 #ifdef CONFIG_TASK_DELAY_ACCT
1921 struct task_delay_info *delays;
1922 #endif
1923 #ifdef CONFIG_FAULT_INJECTION
1924 int make_it_fail;
1925 #endif
1926 /*
1927 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1928 * balance_dirty_pages() for some dirty throttling pause
1929 */
1930 int nr_dirtied;
1931 int nr_dirtied_pause;
1932 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1933
1934 #ifdef CONFIG_LATENCYTOP
1935 int latency_record_count;
1936 struct latency_record latency_record[LT_SAVECOUNT];
1937 #endif
1938 /*
1939 * time slack values; these are used to round up poll() and
1940 * select() etc timeout values. These are in nanoseconds.
1941 */
1942 u64 timer_slack_ns;
1943 u64 default_timer_slack_ns;
1944
1945 #ifdef CONFIG_KASAN
1946 unsigned int kasan_depth;
1947 #endif
1948 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1949 /* Index of current stored address in ret_stack */
1950 int curr_ret_stack;
1951 /* Stack of return addresses for return function tracing */
1952 struct ftrace_ret_stack *ret_stack;
1953 /* time stamp for last schedule */
1954 unsigned long long ftrace_timestamp;
1955 /*
1956 * Number of functions that haven't been traced
1957 * because of depth overrun.
1958 */
1959 atomic_t trace_overrun;
1960 /* Pause for the tracing */
1961 atomic_t tracing_graph_pause;
1962 #endif
1963 #ifdef CONFIG_TRACING
1964 /* state flags for use by tracers */
1965 unsigned long trace;
1966 /* bitmask and counter of trace recursion */
1967 unsigned long trace_recursion;
1968 #endif /* CONFIG_TRACING */
1969 #ifdef CONFIG_KCOV
1970 /* Coverage collection mode enabled for this task (0 if disabled). */
1971 enum kcov_mode kcov_mode;
1972 /* Size of the kcov_area. */
1973 unsigned kcov_size;
1974 /* Buffer for coverage collection. */
1975 void *kcov_area;
1976 /* kcov desciptor wired with this task or NULL. */
1977 struct kcov *kcov;
1978 #endif
1979 #ifdef CONFIG_MEMCG
1980 struct mem_cgroup *memcg_in_oom;
1981 gfp_t memcg_oom_gfp_mask;
1982 int memcg_oom_order;
1983
1984 /* number of pages to reclaim on returning to userland */
1985 unsigned int memcg_nr_pages_over_high;
1986 #endif
1987 #ifdef CONFIG_UPROBES
1988 struct uprobe_task *utask;
1989 #endif
1990 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1991 unsigned int sequential_io;
1992 unsigned int sequential_io_avg;
1993 #endif
1994 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1995 unsigned long task_state_change;
1996 #endif
1997 int pagefault_disabled;
1998 #ifdef CONFIG_MMU
1999 struct task_struct *oom_reaper_list;
2000 #endif
2001 #ifdef CONFIG_VMAP_STACK
2002 struct vm_struct *stack_vm_area;
2003 #endif
2004 #ifdef CONFIG_THREAD_INFO_IN_TASK
2005 /* A live task holds one reference. */
2006 atomic_t stack_refcount;
2007 #endif
2008 /* CPU-specific state of this task */
2009 struct thread_struct thread;
2010 /*
2011 * WARNING: on x86, 'thread_struct' contains a variable-sized
2012 * structure. It *MUST* be at the end of 'task_struct'.
2013 *
2014 * Do not put anything below here!
2015 */
2016 };
2017
2018 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2019 extern int arch_task_struct_size __read_mostly;
2020 #else
2021 # define arch_task_struct_size (sizeof(struct task_struct))
2022 #endif
2023
2024 #ifdef CONFIG_VMAP_STACK
2025 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2026 {
2027 return t->stack_vm_area;
2028 }
2029 #else
2030 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2031 {
2032 return NULL;
2033 }
2034 #endif
2035
2036 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2037 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2038
2039 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2040 {
2041 return p->nr_cpus_allowed;
2042 }
2043
2044 #define TNF_MIGRATED 0x01
2045 #define TNF_NO_GROUP 0x02
2046 #define TNF_SHARED 0x04
2047 #define TNF_FAULT_LOCAL 0x08
2048 #define TNF_MIGRATE_FAIL 0x10
2049
2050 static inline bool in_vfork(struct task_struct *tsk)
2051 {
2052 bool ret;
2053
2054 /*
2055 * need RCU to access ->real_parent if CLONE_VM was used along with
2056 * CLONE_PARENT.
2057 *
2058 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2059 * imply CLONE_VM
2060 *
2061 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2062 * ->real_parent is not necessarily the task doing vfork(), so in
2063 * theory we can't rely on task_lock() if we want to dereference it.
2064 *
2065 * And in this case we can't trust the real_parent->mm == tsk->mm
2066 * check, it can be false negative. But we do not care, if init or
2067 * another oom-unkillable task does this it should blame itself.
2068 */
2069 rcu_read_lock();
2070 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2071 rcu_read_unlock();
2072
2073 return ret;
2074 }
2075
2076 #ifdef CONFIG_NUMA_BALANCING
2077 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2078 extern pid_t task_numa_group_id(struct task_struct *p);
2079 extern void set_numabalancing_state(bool enabled);
2080 extern void task_numa_free(struct task_struct *p);
2081 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2082 int src_nid, int dst_cpu);
2083 #else
2084 static inline void task_numa_fault(int last_node, int node, int pages,
2085 int flags)
2086 {
2087 }
2088 static inline pid_t task_numa_group_id(struct task_struct *p)
2089 {
2090 return 0;
2091 }
2092 static inline void set_numabalancing_state(bool enabled)
2093 {
2094 }
2095 static inline void task_numa_free(struct task_struct *p)
2096 {
2097 }
2098 static inline bool should_numa_migrate_memory(struct task_struct *p,
2099 struct page *page, int src_nid, int dst_cpu)
2100 {
2101 return true;
2102 }
2103 #endif
2104
2105 static inline struct pid *task_pid(struct task_struct *task)
2106 {
2107 return task->pids[PIDTYPE_PID].pid;
2108 }
2109
2110 static inline struct pid *task_tgid(struct task_struct *task)
2111 {
2112 return task->group_leader->pids[PIDTYPE_PID].pid;
2113 }
2114
2115 /*
2116 * Without tasklist or rcu lock it is not safe to dereference
2117 * the result of task_pgrp/task_session even if task == current,
2118 * we can race with another thread doing sys_setsid/sys_setpgid.
2119 */
2120 static inline struct pid *task_pgrp(struct task_struct *task)
2121 {
2122 return task->group_leader->pids[PIDTYPE_PGID].pid;
2123 }
2124
2125 static inline struct pid *task_session(struct task_struct *task)
2126 {
2127 return task->group_leader->pids[PIDTYPE_SID].pid;
2128 }
2129
2130 struct pid_namespace;
2131
2132 /*
2133 * the helpers to get the task's different pids as they are seen
2134 * from various namespaces
2135 *
2136 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2137 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2138 * current.
2139 * task_xid_nr_ns() : id seen from the ns specified;
2140 *
2141 * set_task_vxid() : assigns a virtual id to a task;
2142 *
2143 * see also pid_nr() etc in include/linux/pid.h
2144 */
2145 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2146 struct pid_namespace *ns);
2147
2148 static inline pid_t task_pid_nr(struct task_struct *tsk)
2149 {
2150 return tsk->pid;
2151 }
2152
2153 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2154 struct pid_namespace *ns)
2155 {
2156 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2157 }
2158
2159 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2160 {
2161 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2162 }
2163
2164
2165 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2166 {
2167 return tsk->tgid;
2168 }
2169
2170 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2171
2172 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2173 {
2174 return pid_vnr(task_tgid(tsk));
2175 }
2176
2177
2178 static inline int pid_alive(const struct task_struct *p);
2179 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2180 {
2181 pid_t pid = 0;
2182
2183 rcu_read_lock();
2184 if (pid_alive(tsk))
2185 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2186 rcu_read_unlock();
2187
2188 return pid;
2189 }
2190
2191 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2192 {
2193 return task_ppid_nr_ns(tsk, &init_pid_ns);
2194 }
2195
2196 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2197 struct pid_namespace *ns)
2198 {
2199 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2200 }
2201
2202 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2203 {
2204 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2205 }
2206
2207
2208 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2209 struct pid_namespace *ns)
2210 {
2211 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2212 }
2213
2214 static inline pid_t task_session_vnr(struct task_struct *tsk)
2215 {
2216 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2217 }
2218
2219 /* obsolete, do not use */
2220 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2221 {
2222 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2223 }
2224
2225 /**
2226 * pid_alive - check that a task structure is not stale
2227 * @p: Task structure to be checked.
2228 *
2229 * Test if a process is not yet dead (at most zombie state)
2230 * If pid_alive fails, then pointers within the task structure
2231 * can be stale and must not be dereferenced.
2232 *
2233 * Return: 1 if the process is alive. 0 otherwise.
2234 */
2235 static inline int pid_alive(const struct task_struct *p)
2236 {
2237 return p->pids[PIDTYPE_PID].pid != NULL;
2238 }
2239
2240 /**
2241 * is_global_init - check if a task structure is init. Since init
2242 * is free to have sub-threads we need to check tgid.
2243 * @tsk: Task structure to be checked.
2244 *
2245 * Check if a task structure is the first user space task the kernel created.
2246 *
2247 * Return: 1 if the task structure is init. 0 otherwise.
2248 */
2249 static inline int is_global_init(struct task_struct *tsk)
2250 {
2251 return task_tgid_nr(tsk) == 1;
2252 }
2253
2254 extern struct pid *cad_pid;
2255
2256 extern void free_task(struct task_struct *tsk);
2257 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2258
2259 extern void __put_task_struct(struct task_struct *t);
2260
2261 static inline void put_task_struct(struct task_struct *t)
2262 {
2263 if (atomic_dec_and_test(&t->usage))
2264 __put_task_struct(t);
2265 }
2266
2267 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2268 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2269
2270 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2271 extern void task_cputime(struct task_struct *t,
2272 cputime_t *utime, cputime_t *stime);
2273 extern cputime_t task_gtime(struct task_struct *t);
2274 #else
2275 static inline void task_cputime(struct task_struct *t,
2276 cputime_t *utime, cputime_t *stime)
2277 {
2278 *utime = t->utime;
2279 *stime = t->stime;
2280 }
2281
2282 static inline cputime_t task_gtime(struct task_struct *t)
2283 {
2284 return t->gtime;
2285 }
2286 #endif
2287
2288 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2289 static inline void task_cputime_scaled(struct task_struct *t,
2290 cputime_t *utimescaled,
2291 cputime_t *stimescaled)
2292 {
2293 *utimescaled = t->utimescaled;
2294 *stimescaled = t->stimescaled;
2295 }
2296 #else
2297 static inline void task_cputime_scaled(struct task_struct *t,
2298 cputime_t *utimescaled,
2299 cputime_t *stimescaled)
2300 {
2301 task_cputime(t, utimescaled, stimescaled);
2302 }
2303 #endif
2304
2305 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2306 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2307
2308 /*
2309 * Per process flags
2310 */
2311 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
2312 #define PF_EXITING 0x00000004 /* getting shut down */
2313 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2314 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2315 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2316 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2317 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2318 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2319 #define PF_DUMPCORE 0x00000200 /* dumped core */
2320 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2321 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2322 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2323 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2324 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2325 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2326 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2327 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2328 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2329 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2330 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2331 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2332 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2333 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2334 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2335 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2336 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2337 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2338 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2339
2340 /*
2341 * Only the _current_ task can read/write to tsk->flags, but other
2342 * tasks can access tsk->flags in readonly mode for example
2343 * with tsk_used_math (like during threaded core dumping).
2344 * There is however an exception to this rule during ptrace
2345 * or during fork: the ptracer task is allowed to write to the
2346 * child->flags of its traced child (same goes for fork, the parent
2347 * can write to the child->flags), because we're guaranteed the
2348 * child is not running and in turn not changing child->flags
2349 * at the same time the parent does it.
2350 */
2351 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2352 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2353 #define clear_used_math() clear_stopped_child_used_math(current)
2354 #define set_used_math() set_stopped_child_used_math(current)
2355 #define conditional_stopped_child_used_math(condition, child) \
2356 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2357 #define conditional_used_math(condition) \
2358 conditional_stopped_child_used_math(condition, current)
2359 #define copy_to_stopped_child_used_math(child) \
2360 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2361 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2362 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2363 #define used_math() tsk_used_math(current)
2364
2365 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2366 * __GFP_FS is also cleared as it implies __GFP_IO.
2367 */
2368 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2369 {
2370 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2371 flags &= ~(__GFP_IO | __GFP_FS);
2372 return flags;
2373 }
2374
2375 static inline unsigned int memalloc_noio_save(void)
2376 {
2377 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2378 current->flags |= PF_MEMALLOC_NOIO;
2379 return flags;
2380 }
2381
2382 static inline void memalloc_noio_restore(unsigned int flags)
2383 {
2384 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2385 }
2386
2387 /* Per-process atomic flags. */
2388 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2389 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2390 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2391 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2392
2393
2394 #define TASK_PFA_TEST(name, func) \
2395 static inline bool task_##func(struct task_struct *p) \
2396 { return test_bit(PFA_##name, &p->atomic_flags); }
2397 #define TASK_PFA_SET(name, func) \
2398 static inline void task_set_##func(struct task_struct *p) \
2399 { set_bit(PFA_##name, &p->atomic_flags); }
2400 #define TASK_PFA_CLEAR(name, func) \
2401 static inline void task_clear_##func(struct task_struct *p) \
2402 { clear_bit(PFA_##name, &p->atomic_flags); }
2403
2404 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2405 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2406
2407 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2408 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2409 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2410
2411 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2412 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2413 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2414
2415 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2416 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2417
2418 /*
2419 * task->jobctl flags
2420 */
2421 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2422
2423 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2424 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2425 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2426 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2427 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2428 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2429 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2430
2431 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2432 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2433 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2434 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2435 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2436 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2437 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2438
2439 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2440 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2441
2442 extern bool task_set_jobctl_pending(struct task_struct *task,
2443 unsigned long mask);
2444 extern void task_clear_jobctl_trapping(struct task_struct *task);
2445 extern void task_clear_jobctl_pending(struct task_struct *task,
2446 unsigned long mask);
2447
2448 static inline void rcu_copy_process(struct task_struct *p)
2449 {
2450 #ifdef CONFIG_PREEMPT_RCU
2451 p->rcu_read_lock_nesting = 0;
2452 p->rcu_read_unlock_special.s = 0;
2453 p->rcu_blocked_node = NULL;
2454 INIT_LIST_HEAD(&p->rcu_node_entry);
2455 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2456 #ifdef CONFIG_TASKS_RCU
2457 p->rcu_tasks_holdout = false;
2458 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2459 p->rcu_tasks_idle_cpu = -1;
2460 #endif /* #ifdef CONFIG_TASKS_RCU */
2461 }
2462
2463 static inline void tsk_restore_flags(struct task_struct *task,
2464 unsigned long orig_flags, unsigned long flags)
2465 {
2466 task->flags &= ~flags;
2467 task->flags |= orig_flags & flags;
2468 }
2469
2470 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2471 const struct cpumask *trial);
2472 extern int task_can_attach(struct task_struct *p,
2473 const struct cpumask *cs_cpus_allowed);
2474 #ifdef CONFIG_SMP
2475 extern void do_set_cpus_allowed(struct task_struct *p,
2476 const struct cpumask *new_mask);
2477
2478 extern int set_cpus_allowed_ptr(struct task_struct *p,
2479 const struct cpumask *new_mask);
2480 #else
2481 static inline void do_set_cpus_allowed(struct task_struct *p,
2482 const struct cpumask *new_mask)
2483 {
2484 }
2485 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2486 const struct cpumask *new_mask)
2487 {
2488 if (!cpumask_test_cpu(0, new_mask))
2489 return -EINVAL;
2490 return 0;
2491 }
2492 #endif
2493
2494 #ifdef CONFIG_NO_HZ_COMMON
2495 void calc_load_enter_idle(void);
2496 void calc_load_exit_idle(void);
2497 #else
2498 static inline void calc_load_enter_idle(void) { }
2499 static inline void calc_load_exit_idle(void) { }
2500 #endif /* CONFIG_NO_HZ_COMMON */
2501
2502 #ifndef cpu_relax_yield
2503 #define cpu_relax_yield() cpu_relax()
2504 #endif
2505
2506 /*
2507 * Do not use outside of architecture code which knows its limitations.
2508 *
2509 * sched_clock() has no promise of monotonicity or bounded drift between
2510 * CPUs, use (which you should not) requires disabling IRQs.
2511 *
2512 * Please use one of the three interfaces below.
2513 */
2514 extern unsigned long long notrace sched_clock(void);
2515 /*
2516 * See the comment in kernel/sched/clock.c
2517 */
2518 extern u64 running_clock(void);
2519 extern u64 sched_clock_cpu(int cpu);
2520
2521
2522 extern void sched_clock_init(void);
2523
2524 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2525 static inline void sched_clock_tick(void)
2526 {
2527 }
2528
2529 static inline void sched_clock_idle_sleep_event(void)
2530 {
2531 }
2532
2533 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2534 {
2535 }
2536
2537 static inline u64 cpu_clock(int cpu)
2538 {
2539 return sched_clock();
2540 }
2541
2542 static inline u64 local_clock(void)
2543 {
2544 return sched_clock();
2545 }
2546 #else
2547 /*
2548 * Architectures can set this to 1 if they have specified
2549 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2550 * but then during bootup it turns out that sched_clock()
2551 * is reliable after all:
2552 */
2553 extern int sched_clock_stable(void);
2554 extern void set_sched_clock_stable(void);
2555 extern void clear_sched_clock_stable(void);
2556
2557 extern void sched_clock_tick(void);
2558 extern void sched_clock_idle_sleep_event(void);
2559 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2560
2561 /*
2562 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2563 * time source that is monotonic per cpu argument and has bounded drift
2564 * between cpus.
2565 *
2566 * ######################### BIG FAT WARNING ##########################
2567 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2568 * # go backwards !! #
2569 * ####################################################################
2570 */
2571 static inline u64 cpu_clock(int cpu)
2572 {
2573 return sched_clock_cpu(cpu);
2574 }
2575
2576 static inline u64 local_clock(void)
2577 {
2578 return sched_clock_cpu(raw_smp_processor_id());
2579 }
2580 #endif
2581
2582 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2583 /*
2584 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2585 * The reason for this explicit opt-in is not to have perf penalty with
2586 * slow sched_clocks.
2587 */
2588 extern void enable_sched_clock_irqtime(void);
2589 extern void disable_sched_clock_irqtime(void);
2590 #else
2591 static inline void enable_sched_clock_irqtime(void) {}
2592 static inline void disable_sched_clock_irqtime(void) {}
2593 #endif
2594
2595 extern unsigned long long
2596 task_sched_runtime(struct task_struct *task);
2597
2598 /* sched_exec is called by processes performing an exec */
2599 #ifdef CONFIG_SMP
2600 extern void sched_exec(void);
2601 #else
2602 #define sched_exec() {}
2603 #endif
2604
2605 extern void sched_clock_idle_sleep_event(void);
2606 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2607
2608 #ifdef CONFIG_HOTPLUG_CPU
2609 extern void idle_task_exit(void);
2610 #else
2611 static inline void idle_task_exit(void) {}
2612 #endif
2613
2614 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2615 extern void wake_up_nohz_cpu(int cpu);
2616 #else
2617 static inline void wake_up_nohz_cpu(int cpu) { }
2618 #endif
2619
2620 #ifdef CONFIG_NO_HZ_FULL
2621 extern u64 scheduler_tick_max_deferment(void);
2622 #endif
2623
2624 #ifdef CONFIG_SCHED_AUTOGROUP
2625 extern void sched_autogroup_create_attach(struct task_struct *p);
2626 extern void sched_autogroup_detach(struct task_struct *p);
2627 extern void sched_autogroup_fork(struct signal_struct *sig);
2628 extern void sched_autogroup_exit(struct signal_struct *sig);
2629 extern void sched_autogroup_exit_task(struct task_struct *p);
2630 #ifdef CONFIG_PROC_FS
2631 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2632 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2633 #endif
2634 #else
2635 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2636 static inline void sched_autogroup_detach(struct task_struct *p) { }
2637 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2638 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2639 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2640 #endif
2641
2642 extern int yield_to(struct task_struct *p, bool preempt);
2643 extern void set_user_nice(struct task_struct *p, long nice);
2644 extern int task_prio(const struct task_struct *p);
2645 /**
2646 * task_nice - return the nice value of a given task.
2647 * @p: the task in question.
2648 *
2649 * Return: The nice value [ -20 ... 0 ... 19 ].
2650 */
2651 static inline int task_nice(const struct task_struct *p)
2652 {
2653 return PRIO_TO_NICE((p)->static_prio);
2654 }
2655 extern int can_nice(const struct task_struct *p, const int nice);
2656 extern int task_curr(const struct task_struct *p);
2657 extern int idle_cpu(int cpu);
2658 extern int sched_setscheduler(struct task_struct *, int,
2659 const struct sched_param *);
2660 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2661 const struct sched_param *);
2662 extern int sched_setattr(struct task_struct *,
2663 const struct sched_attr *);
2664 extern struct task_struct *idle_task(int cpu);
2665 /**
2666 * is_idle_task - is the specified task an idle task?
2667 * @p: the task in question.
2668 *
2669 * Return: 1 if @p is an idle task. 0 otherwise.
2670 */
2671 static inline bool is_idle_task(const struct task_struct *p)
2672 {
2673 return !!(p->flags & PF_IDLE);
2674 }
2675 extern struct task_struct *curr_task(int cpu);
2676 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2677
2678 void yield(void);
2679
2680 union thread_union {
2681 #ifndef CONFIG_THREAD_INFO_IN_TASK
2682 struct thread_info thread_info;
2683 #endif
2684 unsigned long stack[THREAD_SIZE/sizeof(long)];
2685 };
2686
2687 #ifndef __HAVE_ARCH_KSTACK_END
2688 static inline int kstack_end(void *addr)
2689 {
2690 /* Reliable end of stack detection:
2691 * Some APM bios versions misalign the stack
2692 */
2693 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2694 }
2695 #endif
2696
2697 extern union thread_union init_thread_union;
2698 extern struct task_struct init_task;
2699
2700 extern struct mm_struct init_mm;
2701
2702 extern struct pid_namespace init_pid_ns;
2703
2704 /*
2705 * find a task by one of its numerical ids
2706 *
2707 * find_task_by_pid_ns():
2708 * finds a task by its pid in the specified namespace
2709 * find_task_by_vpid():
2710 * finds a task by its virtual pid
2711 *
2712 * see also find_vpid() etc in include/linux/pid.h
2713 */
2714
2715 extern struct task_struct *find_task_by_vpid(pid_t nr);
2716 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2717 struct pid_namespace *ns);
2718
2719 /* per-UID process charging. */
2720 extern struct user_struct * alloc_uid(kuid_t);
2721 static inline struct user_struct *get_uid(struct user_struct *u)
2722 {
2723 atomic_inc(&u->__count);
2724 return u;
2725 }
2726 extern void free_uid(struct user_struct *);
2727
2728 #include <asm/current.h>
2729
2730 extern void xtime_update(unsigned long ticks);
2731
2732 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2733 extern int wake_up_process(struct task_struct *tsk);
2734 extern void wake_up_new_task(struct task_struct *tsk);
2735 #ifdef CONFIG_SMP
2736 extern void kick_process(struct task_struct *tsk);
2737 #else
2738 static inline void kick_process(struct task_struct *tsk) { }
2739 #endif
2740 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2741 extern void sched_dead(struct task_struct *p);
2742
2743 extern void proc_caches_init(void);
2744 extern void flush_signals(struct task_struct *);
2745 extern void ignore_signals(struct task_struct *);
2746 extern void flush_signal_handlers(struct task_struct *, int force_default);
2747 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2748
2749 static inline int kernel_dequeue_signal(siginfo_t *info)
2750 {
2751 struct task_struct *tsk = current;
2752 siginfo_t __info;
2753 int ret;
2754
2755 spin_lock_irq(&tsk->sighand->siglock);
2756 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2757 spin_unlock_irq(&tsk->sighand->siglock);
2758
2759 return ret;
2760 }
2761
2762 static inline void kernel_signal_stop(void)
2763 {
2764 spin_lock_irq(&current->sighand->siglock);
2765 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2766 __set_current_state(TASK_STOPPED);
2767 spin_unlock_irq(&current->sighand->siglock);
2768
2769 schedule();
2770 }
2771
2772 extern void release_task(struct task_struct * p);
2773 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2774 extern int force_sigsegv(int, struct task_struct *);
2775 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2776 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2777 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2778 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2779 const struct cred *, u32);
2780 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2781 extern int kill_pid(struct pid *pid, int sig, int priv);
2782 extern int kill_proc_info(int, struct siginfo *, pid_t);
2783 extern __must_check bool do_notify_parent(struct task_struct *, int);
2784 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2785 extern void force_sig(int, struct task_struct *);
2786 extern int send_sig(int, struct task_struct *, int);
2787 extern int zap_other_threads(struct task_struct *p);
2788 extern struct sigqueue *sigqueue_alloc(void);
2789 extern void sigqueue_free(struct sigqueue *);
2790 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2791 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2792
2793 #ifdef TIF_RESTORE_SIGMASK
2794 /*
2795 * Legacy restore_sigmask accessors. These are inefficient on
2796 * SMP architectures because they require atomic operations.
2797 */
2798
2799 /**
2800 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2801 *
2802 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2803 * will run before returning to user mode, to process the flag. For
2804 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2805 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2806 * arch code will notice on return to user mode, in case those bits
2807 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2808 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2809 */
2810 static inline void set_restore_sigmask(void)
2811 {
2812 set_thread_flag(TIF_RESTORE_SIGMASK);
2813 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2814 }
2815 static inline void clear_restore_sigmask(void)
2816 {
2817 clear_thread_flag(TIF_RESTORE_SIGMASK);
2818 }
2819 static inline bool test_restore_sigmask(void)
2820 {
2821 return test_thread_flag(TIF_RESTORE_SIGMASK);
2822 }
2823 static inline bool test_and_clear_restore_sigmask(void)
2824 {
2825 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2826 }
2827
2828 #else /* TIF_RESTORE_SIGMASK */
2829
2830 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2831 static inline void set_restore_sigmask(void)
2832 {
2833 current->restore_sigmask = true;
2834 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2835 }
2836 static inline void clear_restore_sigmask(void)
2837 {
2838 current->restore_sigmask = false;
2839 }
2840 static inline bool test_restore_sigmask(void)
2841 {
2842 return current->restore_sigmask;
2843 }
2844 static inline bool test_and_clear_restore_sigmask(void)
2845 {
2846 if (!current->restore_sigmask)
2847 return false;
2848 current->restore_sigmask = false;
2849 return true;
2850 }
2851 #endif
2852
2853 static inline void restore_saved_sigmask(void)
2854 {
2855 if (test_and_clear_restore_sigmask())
2856 __set_current_blocked(&current->saved_sigmask);
2857 }
2858
2859 static inline sigset_t *sigmask_to_save(void)
2860 {
2861 sigset_t *res = &current->blocked;
2862 if (unlikely(test_restore_sigmask()))
2863 res = &current->saved_sigmask;
2864 return res;
2865 }
2866
2867 static inline int kill_cad_pid(int sig, int priv)
2868 {
2869 return kill_pid(cad_pid, sig, priv);
2870 }
2871
2872 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2873 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2874 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2875 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2876
2877 /*
2878 * True if we are on the alternate signal stack.
2879 */
2880 static inline int on_sig_stack(unsigned long sp)
2881 {
2882 /*
2883 * If the signal stack is SS_AUTODISARM then, by construction, we
2884 * can't be on the signal stack unless user code deliberately set
2885 * SS_AUTODISARM when we were already on it.
2886 *
2887 * This improves reliability: if user state gets corrupted such that
2888 * the stack pointer points very close to the end of the signal stack,
2889 * then this check will enable the signal to be handled anyway.
2890 */
2891 if (current->sas_ss_flags & SS_AUTODISARM)
2892 return 0;
2893
2894 #ifdef CONFIG_STACK_GROWSUP
2895 return sp >= current->sas_ss_sp &&
2896 sp - current->sas_ss_sp < current->sas_ss_size;
2897 #else
2898 return sp > current->sas_ss_sp &&
2899 sp - current->sas_ss_sp <= current->sas_ss_size;
2900 #endif
2901 }
2902
2903 static inline int sas_ss_flags(unsigned long sp)
2904 {
2905 if (!current->sas_ss_size)
2906 return SS_DISABLE;
2907
2908 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2909 }
2910
2911 static inline void sas_ss_reset(struct task_struct *p)
2912 {
2913 p->sas_ss_sp = 0;
2914 p->sas_ss_size = 0;
2915 p->sas_ss_flags = SS_DISABLE;
2916 }
2917
2918 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2919 {
2920 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2921 #ifdef CONFIG_STACK_GROWSUP
2922 return current->sas_ss_sp;
2923 #else
2924 return current->sas_ss_sp + current->sas_ss_size;
2925 #endif
2926 return sp;
2927 }
2928
2929 /*
2930 * Routines for handling mm_structs
2931 */
2932 extern struct mm_struct * mm_alloc(void);
2933
2934 /* mmdrop drops the mm and the page tables */
2935 extern void __mmdrop(struct mm_struct *);
2936 static inline void mmdrop(struct mm_struct *mm)
2937 {
2938 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2939 __mmdrop(mm);
2940 }
2941
2942 static inline void mmdrop_async_fn(struct work_struct *work)
2943 {
2944 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2945 __mmdrop(mm);
2946 }
2947
2948 static inline void mmdrop_async(struct mm_struct *mm)
2949 {
2950 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2951 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2952 schedule_work(&mm->async_put_work);
2953 }
2954 }
2955
2956 static inline bool mmget_not_zero(struct mm_struct *mm)
2957 {
2958 return atomic_inc_not_zero(&mm->mm_users);
2959 }
2960
2961 /* mmput gets rid of the mappings and all user-space */
2962 extern void mmput(struct mm_struct *);
2963 #ifdef CONFIG_MMU
2964 /* same as above but performs the slow path from the async context. Can
2965 * be called from the atomic context as well
2966 */
2967 extern void mmput_async(struct mm_struct *);
2968 #endif
2969
2970 /* Grab a reference to a task's mm, if it is not already going away */
2971 extern struct mm_struct *get_task_mm(struct task_struct *task);
2972 /*
2973 * Grab a reference to a task's mm, if it is not already going away
2974 * and ptrace_may_access with the mode parameter passed to it
2975 * succeeds.
2976 */
2977 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2978 /* Remove the current tasks stale references to the old mm_struct */
2979 extern void mm_release(struct task_struct *, struct mm_struct *);
2980
2981 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2982 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2983 struct task_struct *, unsigned long);
2984 #else
2985 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2986 struct task_struct *);
2987
2988 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2989 * via pt_regs, so ignore the tls argument passed via C. */
2990 static inline int copy_thread_tls(
2991 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2992 struct task_struct *p, unsigned long tls)
2993 {
2994 return copy_thread(clone_flags, sp, arg, p);
2995 }
2996 #endif
2997 extern void flush_thread(void);
2998
2999 #ifdef CONFIG_HAVE_EXIT_THREAD
3000 extern void exit_thread(struct task_struct *tsk);
3001 #else
3002 static inline void exit_thread(struct task_struct *tsk)
3003 {
3004 }
3005 #endif
3006
3007 extern void exit_files(struct task_struct *);
3008 extern void __cleanup_sighand(struct sighand_struct *);
3009
3010 extern void exit_itimers(struct signal_struct *);
3011 extern void flush_itimer_signals(void);
3012
3013 extern void do_group_exit(int);
3014
3015 extern int do_execve(struct filename *,
3016 const char __user * const __user *,
3017 const char __user * const __user *);
3018 extern int do_execveat(int, struct filename *,
3019 const char __user * const __user *,
3020 const char __user * const __user *,
3021 int);
3022 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3023 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3024 struct task_struct *fork_idle(int);
3025 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3026
3027 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3028 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3029 {
3030 __set_task_comm(tsk, from, false);
3031 }
3032 extern char *get_task_comm(char *to, struct task_struct *tsk);
3033
3034 #ifdef CONFIG_SMP
3035 void scheduler_ipi(void);
3036 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3037 #else
3038 static inline void scheduler_ipi(void) { }
3039 static inline unsigned long wait_task_inactive(struct task_struct *p,
3040 long match_state)
3041 {
3042 return 1;
3043 }
3044 #endif
3045
3046 #define tasklist_empty() \
3047 list_empty(&init_task.tasks)
3048
3049 #define next_task(p) \
3050 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3051
3052 #define for_each_process(p) \
3053 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3054
3055 extern bool current_is_single_threaded(void);
3056
3057 /*
3058 * Careful: do_each_thread/while_each_thread is a double loop so
3059 * 'break' will not work as expected - use goto instead.
3060 */
3061 #define do_each_thread(g, t) \
3062 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3063
3064 #define while_each_thread(g, t) \
3065 while ((t = next_thread(t)) != g)
3066
3067 #define __for_each_thread(signal, t) \
3068 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3069
3070 #define for_each_thread(p, t) \
3071 __for_each_thread((p)->signal, t)
3072
3073 /* Careful: this is a double loop, 'break' won't work as expected. */
3074 #define for_each_process_thread(p, t) \
3075 for_each_process(p) for_each_thread(p, t)
3076
3077 static inline int get_nr_threads(struct task_struct *tsk)
3078 {
3079 return tsk->signal->nr_threads;
3080 }
3081
3082 static inline bool thread_group_leader(struct task_struct *p)
3083 {
3084 return p->exit_signal >= 0;
3085 }
3086
3087 /* Do to the insanities of de_thread it is possible for a process
3088 * to have the pid of the thread group leader without actually being
3089 * the thread group leader. For iteration through the pids in proc
3090 * all we care about is that we have a task with the appropriate
3091 * pid, we don't actually care if we have the right task.
3092 */
3093 static inline bool has_group_leader_pid(struct task_struct *p)
3094 {
3095 return task_pid(p) == p->signal->leader_pid;
3096 }
3097
3098 static inline
3099 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3100 {
3101 return p1->signal == p2->signal;
3102 }
3103
3104 static inline struct task_struct *next_thread(const struct task_struct *p)
3105 {
3106 return list_entry_rcu(p->thread_group.next,
3107 struct task_struct, thread_group);
3108 }
3109
3110 static inline int thread_group_empty(struct task_struct *p)
3111 {
3112 return list_empty(&p->thread_group);
3113 }
3114
3115 #define delay_group_leader(p) \
3116 (thread_group_leader(p) && !thread_group_empty(p))
3117
3118 /*
3119 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3120 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3121 * pins the final release of task.io_context. Also protects ->cpuset and
3122 * ->cgroup.subsys[]. And ->vfork_done.
3123 *
3124 * Nests both inside and outside of read_lock(&tasklist_lock).
3125 * It must not be nested with write_lock_irq(&tasklist_lock),
3126 * neither inside nor outside.
3127 */
3128 static inline void task_lock(struct task_struct *p)
3129 {
3130 spin_lock(&p->alloc_lock);
3131 }
3132
3133 static inline void task_unlock(struct task_struct *p)
3134 {
3135 spin_unlock(&p->alloc_lock);
3136 }
3137
3138 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3139 unsigned long *flags);
3140
3141 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3142 unsigned long *flags)
3143 {
3144 struct sighand_struct *ret;
3145
3146 ret = __lock_task_sighand(tsk, flags);
3147 (void)__cond_lock(&tsk->sighand->siglock, ret);
3148 return ret;
3149 }
3150
3151 static inline void unlock_task_sighand(struct task_struct *tsk,
3152 unsigned long *flags)
3153 {
3154 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3155 }
3156
3157 /**
3158 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3159 * @tsk: task causing the changes
3160 *
3161 * All operations which modify a threadgroup - a new thread joining the
3162 * group, death of a member thread (the assertion of PF_EXITING) and
3163 * exec(2) dethreading the process and replacing the leader - are wrapped
3164 * by threadgroup_change_{begin|end}(). This is to provide a place which
3165 * subsystems needing threadgroup stability can hook into for
3166 * synchronization.
3167 */
3168 static inline void threadgroup_change_begin(struct task_struct *tsk)
3169 {
3170 might_sleep();
3171 cgroup_threadgroup_change_begin(tsk);
3172 }
3173
3174 /**
3175 * threadgroup_change_end - mark the end of changes to a threadgroup
3176 * @tsk: task causing the changes
3177 *
3178 * See threadgroup_change_begin().
3179 */
3180 static inline void threadgroup_change_end(struct task_struct *tsk)
3181 {
3182 cgroup_threadgroup_change_end(tsk);
3183 }
3184
3185 #ifdef CONFIG_THREAD_INFO_IN_TASK
3186
3187 static inline struct thread_info *task_thread_info(struct task_struct *task)
3188 {
3189 return &task->thread_info;
3190 }
3191
3192 /*
3193 * When accessing the stack of a non-current task that might exit, use
3194 * try_get_task_stack() instead. task_stack_page will return a pointer
3195 * that could get freed out from under you.
3196 */
3197 static inline void *task_stack_page(const struct task_struct *task)
3198 {
3199 return task->stack;
3200 }
3201
3202 #define setup_thread_stack(new,old) do { } while(0)
3203
3204 static inline unsigned long *end_of_stack(const struct task_struct *task)
3205 {
3206 return task->stack;
3207 }
3208
3209 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3210
3211 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3212 #define task_stack_page(task) ((void *)(task)->stack)
3213
3214 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3215 {
3216 *task_thread_info(p) = *task_thread_info(org);
3217 task_thread_info(p)->task = p;
3218 }
3219
3220 /*
3221 * Return the address of the last usable long on the stack.
3222 *
3223 * When the stack grows down, this is just above the thread
3224 * info struct. Going any lower will corrupt the threadinfo.
3225 *
3226 * When the stack grows up, this is the highest address.
3227 * Beyond that position, we corrupt data on the next page.
3228 */
3229 static inline unsigned long *end_of_stack(struct task_struct *p)
3230 {
3231 #ifdef CONFIG_STACK_GROWSUP
3232 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3233 #else
3234 return (unsigned long *)(task_thread_info(p) + 1);
3235 #endif
3236 }
3237
3238 #endif
3239
3240 #ifdef CONFIG_THREAD_INFO_IN_TASK
3241 static inline void *try_get_task_stack(struct task_struct *tsk)
3242 {
3243 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3244 task_stack_page(tsk) : NULL;
3245 }
3246
3247 extern void put_task_stack(struct task_struct *tsk);
3248 #else
3249 static inline void *try_get_task_stack(struct task_struct *tsk)
3250 {
3251 return task_stack_page(tsk);
3252 }
3253
3254 static inline void put_task_stack(struct task_struct *tsk) {}
3255 #endif
3256
3257 #define task_stack_end_corrupted(task) \
3258 (*(end_of_stack(task)) != STACK_END_MAGIC)
3259
3260 static inline int object_is_on_stack(void *obj)
3261 {
3262 void *stack = task_stack_page(current);
3263
3264 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3265 }
3266
3267 extern void thread_stack_cache_init(void);
3268
3269 #ifdef CONFIG_DEBUG_STACK_USAGE
3270 static inline unsigned long stack_not_used(struct task_struct *p)
3271 {
3272 unsigned long *n = end_of_stack(p);
3273
3274 do { /* Skip over canary */
3275 # ifdef CONFIG_STACK_GROWSUP
3276 n--;
3277 # else
3278 n++;
3279 # endif
3280 } while (!*n);
3281
3282 # ifdef CONFIG_STACK_GROWSUP
3283 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3284 # else
3285 return (unsigned long)n - (unsigned long)end_of_stack(p);
3286 # endif
3287 }
3288 #endif
3289 extern void set_task_stack_end_magic(struct task_struct *tsk);
3290
3291 /* set thread flags in other task's structures
3292 * - see asm/thread_info.h for TIF_xxxx flags available
3293 */
3294 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3295 {
3296 set_ti_thread_flag(task_thread_info(tsk), flag);
3297 }
3298
3299 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3300 {
3301 clear_ti_thread_flag(task_thread_info(tsk), flag);
3302 }
3303
3304 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3305 {
3306 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3307 }
3308
3309 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3310 {
3311 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3312 }
3313
3314 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3315 {
3316 return test_ti_thread_flag(task_thread_info(tsk), flag);
3317 }
3318
3319 static inline void set_tsk_need_resched(struct task_struct *tsk)
3320 {
3321 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3322 }
3323
3324 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3325 {
3326 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3327 }
3328
3329 static inline int test_tsk_need_resched(struct task_struct *tsk)
3330 {
3331 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3332 }
3333
3334 static inline int restart_syscall(void)
3335 {
3336 set_tsk_thread_flag(current, TIF_SIGPENDING);
3337 return -ERESTARTNOINTR;
3338 }
3339
3340 static inline int signal_pending(struct task_struct *p)
3341 {
3342 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3343 }
3344
3345 static inline int __fatal_signal_pending(struct task_struct *p)
3346 {
3347 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3348 }
3349
3350 static inline int fatal_signal_pending(struct task_struct *p)
3351 {
3352 return signal_pending(p) && __fatal_signal_pending(p);
3353 }
3354
3355 static inline int signal_pending_state(long state, struct task_struct *p)
3356 {
3357 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3358 return 0;
3359 if (!signal_pending(p))
3360 return 0;
3361
3362 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3363 }
3364
3365 /*
3366 * cond_resched() and cond_resched_lock(): latency reduction via
3367 * explicit rescheduling in places that are safe. The return
3368 * value indicates whether a reschedule was done in fact.
3369 * cond_resched_lock() will drop the spinlock before scheduling,
3370 * cond_resched_softirq() will enable bhs before scheduling.
3371 */
3372 #ifndef CONFIG_PREEMPT
3373 extern int _cond_resched(void);
3374 #else
3375 static inline int _cond_resched(void) { return 0; }
3376 #endif
3377
3378 #define cond_resched() ({ \
3379 ___might_sleep(__FILE__, __LINE__, 0); \
3380 _cond_resched(); \
3381 })
3382
3383 extern int __cond_resched_lock(spinlock_t *lock);
3384
3385 #define cond_resched_lock(lock) ({ \
3386 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3387 __cond_resched_lock(lock); \
3388 })
3389
3390 extern int __cond_resched_softirq(void);
3391
3392 #define cond_resched_softirq() ({ \
3393 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3394 __cond_resched_softirq(); \
3395 })
3396
3397 static inline void cond_resched_rcu(void)
3398 {
3399 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3400 rcu_read_unlock();
3401 cond_resched();
3402 rcu_read_lock();
3403 #endif
3404 }
3405
3406 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3407 {
3408 #ifdef CONFIG_DEBUG_PREEMPT
3409 return p->preempt_disable_ip;
3410 #else
3411 return 0;
3412 #endif
3413 }
3414
3415 /*
3416 * Does a critical section need to be broken due to another
3417 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3418 * but a general need for low latency)
3419 */
3420 static inline int spin_needbreak(spinlock_t *lock)
3421 {
3422 #ifdef CONFIG_PREEMPT
3423 return spin_is_contended(lock);
3424 #else
3425 return 0;
3426 #endif
3427 }
3428
3429 /*
3430 * Idle thread specific functions to determine the need_resched
3431 * polling state.
3432 */
3433 #ifdef TIF_POLLING_NRFLAG
3434 static inline int tsk_is_polling(struct task_struct *p)
3435 {
3436 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3437 }
3438
3439 static inline void __current_set_polling(void)
3440 {
3441 set_thread_flag(TIF_POLLING_NRFLAG);
3442 }
3443
3444 static inline bool __must_check current_set_polling_and_test(void)
3445 {
3446 __current_set_polling();
3447
3448 /*
3449 * Polling state must be visible before we test NEED_RESCHED,
3450 * paired by resched_curr()
3451 */
3452 smp_mb__after_atomic();
3453
3454 return unlikely(tif_need_resched());
3455 }
3456
3457 static inline void __current_clr_polling(void)
3458 {
3459 clear_thread_flag(TIF_POLLING_NRFLAG);
3460 }
3461
3462 static inline bool __must_check current_clr_polling_and_test(void)
3463 {
3464 __current_clr_polling();
3465
3466 /*
3467 * Polling state must be visible before we test NEED_RESCHED,
3468 * paired by resched_curr()
3469 */
3470 smp_mb__after_atomic();
3471
3472 return unlikely(tif_need_resched());
3473 }
3474
3475 #else
3476 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3477 static inline void __current_set_polling(void) { }
3478 static inline void __current_clr_polling(void) { }
3479
3480 static inline bool __must_check current_set_polling_and_test(void)
3481 {
3482 return unlikely(tif_need_resched());
3483 }
3484 static inline bool __must_check current_clr_polling_and_test(void)
3485 {
3486 return unlikely(tif_need_resched());
3487 }
3488 #endif
3489
3490 static inline void current_clr_polling(void)
3491 {
3492 __current_clr_polling();
3493
3494 /*
3495 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3496 * Once the bit is cleared, we'll get IPIs with every new
3497 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3498 * fold.
3499 */
3500 smp_mb(); /* paired with resched_curr() */
3501
3502 preempt_fold_need_resched();
3503 }
3504
3505 static __always_inline bool need_resched(void)
3506 {
3507 return unlikely(tif_need_resched());
3508 }
3509
3510 /*
3511 * Thread group CPU time accounting.
3512 */
3513 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3514 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3515
3516 /*
3517 * Reevaluate whether the task has signals pending delivery.
3518 * Wake the task if so.
3519 * This is required every time the blocked sigset_t changes.
3520 * callers must hold sighand->siglock.
3521 */
3522 extern void recalc_sigpending_and_wake(struct task_struct *t);
3523 extern void recalc_sigpending(void);
3524
3525 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3526
3527 static inline void signal_wake_up(struct task_struct *t, bool resume)
3528 {
3529 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3530 }
3531 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3532 {
3533 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3534 }
3535
3536 /*
3537 * Wrappers for p->thread_info->cpu access. No-op on UP.
3538 */
3539 #ifdef CONFIG_SMP
3540
3541 static inline unsigned int task_cpu(const struct task_struct *p)
3542 {
3543 #ifdef CONFIG_THREAD_INFO_IN_TASK
3544 return p->cpu;
3545 #else
3546 return task_thread_info(p)->cpu;
3547 #endif
3548 }
3549
3550 static inline int task_node(const struct task_struct *p)
3551 {
3552 return cpu_to_node(task_cpu(p));
3553 }
3554
3555 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3556
3557 #else
3558
3559 static inline unsigned int task_cpu(const struct task_struct *p)
3560 {
3561 return 0;
3562 }
3563
3564 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3565 {
3566 }
3567
3568 #endif /* CONFIG_SMP */
3569
3570 /*
3571 * In order to reduce various lock holder preemption latencies provide an
3572 * interface to see if a vCPU is currently running or not.
3573 *
3574 * This allows us to terminate optimistic spin loops and block, analogous to
3575 * the native optimistic spin heuristic of testing if the lock owner task is
3576 * running or not.
3577 */
3578 #ifndef vcpu_is_preempted
3579 # define vcpu_is_preempted(cpu) false
3580 #endif
3581
3582 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3583 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3584
3585 #ifdef CONFIG_CGROUP_SCHED
3586 extern struct task_group root_task_group;
3587 #endif /* CONFIG_CGROUP_SCHED */
3588
3589 extern int task_can_switch_user(struct user_struct *up,
3590 struct task_struct *tsk);
3591
3592 #ifdef CONFIG_TASK_XACCT
3593 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3594 {
3595 tsk->ioac.rchar += amt;
3596 }
3597
3598 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3599 {
3600 tsk->ioac.wchar += amt;
3601 }
3602
3603 static inline void inc_syscr(struct task_struct *tsk)
3604 {
3605 tsk->ioac.syscr++;
3606 }
3607
3608 static inline void inc_syscw(struct task_struct *tsk)
3609 {
3610 tsk->ioac.syscw++;
3611 }
3612 #else
3613 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3614 {
3615 }
3616
3617 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3618 {
3619 }
3620
3621 static inline void inc_syscr(struct task_struct *tsk)
3622 {
3623 }
3624
3625 static inline void inc_syscw(struct task_struct *tsk)
3626 {
3627 }
3628 #endif
3629
3630 #ifndef TASK_SIZE_OF
3631 #define TASK_SIZE_OF(tsk) TASK_SIZE
3632 #endif
3633
3634 #ifdef CONFIG_MEMCG
3635 extern void mm_update_next_owner(struct mm_struct *mm);
3636 #else
3637 static inline void mm_update_next_owner(struct mm_struct *mm)
3638 {
3639 }
3640 #endif /* CONFIG_MEMCG */
3641
3642 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3643 unsigned int limit)
3644 {
3645 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3646 }
3647
3648 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3649 unsigned int limit)
3650 {
3651 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3652 }
3653
3654 static inline unsigned long rlimit(unsigned int limit)
3655 {
3656 return task_rlimit(current, limit);
3657 }
3658
3659 static inline unsigned long rlimit_max(unsigned int limit)
3660 {
3661 return task_rlimit_max(current, limit);
3662 }
3663
3664 #define SCHED_CPUFREQ_RT (1U << 0)
3665 #define SCHED_CPUFREQ_DL (1U << 1)
3666 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3667
3668 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3669
3670 #ifdef CONFIG_CPU_FREQ
3671 struct update_util_data {
3672 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3673 };
3674
3675 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3676 void (*func)(struct update_util_data *data, u64 time,
3677 unsigned int flags));
3678 void cpufreq_remove_update_util_hook(int cpu);
3679 #endif /* CONFIG_CPU_FREQ */
3680
3681 #endif