]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
coredump: move core dump functionality into its own file
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93 #include <linux/uidgid.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148 extern void update_cpu_load_nohz(void);
149
150 extern unsigned long get_parent_ip(unsigned long addr);
151
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 {
164 }
165 static inline void proc_sched_set_task(struct task_struct *p)
166 {
167 }
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 {
171 }
172 #endif
173
174 /*
175 * Task state bitmask. NOTE! These bits are also
176 * encoded in fs/proc/array.c: get_task_state().
177 *
178 * We have two separate sets of flags: task->state
179 * is about runnability, while task->exit_state are
180 * about the task exiting. Confusing, but this way
181 * modifying one set can't modify the other one by
182 * mistake.
183 */
184 #define TASK_RUNNING 0
185 #define TASK_INTERRUPTIBLE 1
186 #define TASK_UNINTERRUPTIBLE 2
187 #define __TASK_STOPPED 4
188 #define __TASK_TRACED 8
189 /* in tsk->exit_state */
190 #define EXIT_ZOMBIE 16
191 #define EXIT_DEAD 32
192 /* in tsk->state again */
193 #define TASK_DEAD 64
194 #define TASK_WAKEKILL 128
195 #define TASK_WAKING 256
196 #define TASK_STATE_MAX 512
197
198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199
200 extern char ___assert_task_state[1 - 2*!!(
201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
202
203 /* Convenience macros for the sake of set_task_state */
204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
207
208 /* Convenience macros for the sake of wake_up */
209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211
212 /* get_task_state() */
213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
215 __TASK_TRACED)
216
217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
219 #define task_is_dead(task) ((task)->exit_state != 0)
220 #define task_is_stopped_or_traced(task) \
221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
222 #define task_contributes_to_load(task) \
223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
224 (task->flags & PF_FROZEN) == 0)
225
226 #define __set_task_state(tsk, state_value) \
227 do { (tsk)->state = (state_value); } while (0)
228 #define set_task_state(tsk, state_value) \
229 set_mb((tsk)->state, (state_value))
230
231 /*
232 * set_current_state() includes a barrier so that the write of current->state
233 * is correctly serialised wrt the caller's subsequent test of whether to
234 * actually sleep:
235 *
236 * set_current_state(TASK_UNINTERRUPTIBLE);
237 * if (do_i_need_to_sleep())
238 * schedule();
239 *
240 * If the caller does not need such serialisation then use __set_current_state()
241 */
242 #define __set_current_state(state_value) \
243 do { current->state = (state_value); } while (0)
244 #define set_current_state(state_value) \
245 set_mb(current->state, (state_value))
246
247 /* Task command name length */
248 #define TASK_COMM_LEN 16
249
250 #include <linux/spinlock.h>
251
252 /*
253 * This serializes "schedule()" and also protects
254 * the run-queue from deletions/modifications (but
255 * _adding_ to the beginning of the run-queue has
256 * a separate lock).
257 */
258 extern rwlock_t tasklist_lock;
259 extern spinlock_t mmlist_lock;
260
261 struct task_struct;
262
263 #ifdef CONFIG_PROVE_RCU
264 extern int lockdep_tasklist_lock_is_held(void);
265 #endif /* #ifdef CONFIG_PROVE_RCU */
266
267 extern void sched_init(void);
268 extern void sched_init_smp(void);
269 extern asmlinkage void schedule_tail(struct task_struct *prev);
270 extern void init_idle(struct task_struct *idle, int cpu);
271 extern void init_idle_bootup_task(struct task_struct *idle);
272
273 extern int runqueue_is_locked(int cpu);
274
275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
276 extern void select_nohz_load_balancer(int stop_tick);
277 extern void set_cpu_sd_state_idle(void);
278 extern int get_nohz_timer_target(void);
279 #else
280 static inline void select_nohz_load_balancer(int stop_tick) { }
281 static inline void set_cpu_sd_state_idle(void) { }
282 #endif
283
284 /*
285 * Only dump TASK_* tasks. (0 for all tasks)
286 */
287 extern void show_state_filter(unsigned long state_filter);
288
289 static inline void show_state(void)
290 {
291 show_state_filter(0);
292 }
293
294 extern void show_regs(struct pt_regs *);
295
296 /*
297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
298 * task), SP is the stack pointer of the first frame that should be shown in the back
299 * trace (or NULL if the entire call-chain of the task should be shown).
300 */
301 extern void show_stack(struct task_struct *task, unsigned long *sp);
302
303 void io_schedule(void);
304 long io_schedule_timeout(long timeout);
305
306 extern void cpu_init (void);
307 extern void trap_init(void);
308 extern void update_process_times(int user);
309 extern void scheduler_tick(void);
310
311 extern void sched_show_task(struct task_struct *p);
312
313 #ifdef CONFIG_LOCKUP_DETECTOR
314 extern void touch_softlockup_watchdog(void);
315 extern void touch_softlockup_watchdog_sync(void);
316 extern void touch_all_softlockup_watchdogs(void);
317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
318 void __user *buffer,
319 size_t *lenp, loff_t *ppos);
320 extern unsigned int softlockup_panic;
321 void lockup_detector_init(void);
322 #else
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_softlockup_watchdog_sync(void)
327 {
328 }
329 static inline void touch_all_softlockup_watchdogs(void)
330 {
331 }
332 static inline void lockup_detector_init(void)
333 {
334 }
335 #endif
336
337 #ifdef CONFIG_DETECT_HUNG_TASK
338 extern unsigned int sysctl_hung_task_panic;
339 extern unsigned long sysctl_hung_task_check_count;
340 extern unsigned long sysctl_hung_task_timeout_secs;
341 extern unsigned long sysctl_hung_task_warnings;
342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
343 void __user *buffer,
344 size_t *lenp, loff_t *ppos);
345 #else
346 /* Avoid need for ifdefs elsewhere in the code */
347 enum { sysctl_hung_task_timeout_secs = 0 };
348 #endif
349
350 /* Attach to any functions which should be ignored in wchan output. */
351 #define __sched __attribute__((__section__(".sched.text")))
352
353 /* Linker adds these: start and end of __sched functions */
354 extern char __sched_text_start[], __sched_text_end[];
355
356 /* Is this address in the __sched functions? */
357 extern int in_sched_functions(unsigned long addr);
358
359 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
360 extern signed long schedule_timeout(signed long timeout);
361 extern signed long schedule_timeout_interruptible(signed long timeout);
362 extern signed long schedule_timeout_killable(signed long timeout);
363 extern signed long schedule_timeout_uninterruptible(signed long timeout);
364 asmlinkage void schedule(void);
365 extern void schedule_preempt_disabled(void);
366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
367
368 struct nsproxy;
369 struct user_namespace;
370
371 /*
372 * Default maximum number of active map areas, this limits the number of vmas
373 * per mm struct. Users can overwrite this number by sysctl but there is a
374 * problem.
375 *
376 * When a program's coredump is generated as ELF format, a section is created
377 * per a vma. In ELF, the number of sections is represented in unsigned short.
378 * This means the number of sections should be smaller than 65535 at coredump.
379 * Because the kernel adds some informative sections to a image of program at
380 * generating coredump, we need some margin. The number of extra sections is
381 * 1-3 now and depends on arch. We use "5" as safe margin, here.
382 */
383 #define MAPCOUNT_ELF_CORE_MARGIN (5)
384 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
385
386 extern int sysctl_max_map_count;
387
388 #include <linux/aio.h>
389
390 #ifdef CONFIG_MMU
391 extern void arch_pick_mmap_layout(struct mm_struct *mm);
392 extern unsigned long
393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
394 unsigned long, unsigned long);
395 extern unsigned long
396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
397 unsigned long len, unsigned long pgoff,
398 unsigned long flags);
399 extern void arch_unmap_area(struct mm_struct *, unsigned long);
400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
401 #else
402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
403 #endif
404
405
406 extern void set_dumpable(struct mm_struct *mm, int value);
407 extern int get_dumpable(struct mm_struct *mm);
408 extern int __get_dumpable(unsigned long mm_flags);
409
410 /* get/set_dumpable() values */
411 #define SUID_DUMPABLE_DISABLED 0
412 #define SUID_DUMPABLE_ENABLED 1
413 #define SUID_DUMPABLE_SAFE 2
414
415 /* mm flags */
416 /* dumpable bits */
417 #define MMF_DUMPABLE 0 /* core dump is permitted */
418 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
419
420 #define MMF_DUMPABLE_BITS 2
421 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
422
423 /* coredump filter bits */
424 #define MMF_DUMP_ANON_PRIVATE 2
425 #define MMF_DUMP_ANON_SHARED 3
426 #define MMF_DUMP_MAPPED_PRIVATE 4
427 #define MMF_DUMP_MAPPED_SHARED 5
428 #define MMF_DUMP_ELF_HEADERS 6
429 #define MMF_DUMP_HUGETLB_PRIVATE 7
430 #define MMF_DUMP_HUGETLB_SHARED 8
431
432 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
433 #define MMF_DUMP_FILTER_BITS 7
434 #define MMF_DUMP_FILTER_MASK \
435 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
436 #define MMF_DUMP_FILTER_DEFAULT \
437 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
438 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
439
440 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
441 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
442 #else
443 # define MMF_DUMP_MASK_DEFAULT_ELF 0
444 #endif
445 /* leave room for more dump flags */
446 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
447 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
448 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
449
450 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
451
452 struct sighand_struct {
453 atomic_t count;
454 struct k_sigaction action[_NSIG];
455 spinlock_t siglock;
456 wait_queue_head_t signalfd_wqh;
457 };
458
459 struct pacct_struct {
460 int ac_flag;
461 long ac_exitcode;
462 unsigned long ac_mem;
463 cputime_t ac_utime, ac_stime;
464 unsigned long ac_minflt, ac_majflt;
465 };
466
467 struct cpu_itimer {
468 cputime_t expires;
469 cputime_t incr;
470 u32 error;
471 u32 incr_error;
472 };
473
474 /**
475 * struct task_cputime - collected CPU time counts
476 * @utime: time spent in user mode, in &cputime_t units
477 * @stime: time spent in kernel mode, in &cputime_t units
478 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
479 *
480 * This structure groups together three kinds of CPU time that are
481 * tracked for threads and thread groups. Most things considering
482 * CPU time want to group these counts together and treat all three
483 * of them in parallel.
484 */
485 struct task_cputime {
486 cputime_t utime;
487 cputime_t stime;
488 unsigned long long sum_exec_runtime;
489 };
490 /* Alternate field names when used to cache expirations. */
491 #define prof_exp stime
492 #define virt_exp utime
493 #define sched_exp sum_exec_runtime
494
495 #define INIT_CPUTIME \
496 (struct task_cputime) { \
497 .utime = 0, \
498 .stime = 0, \
499 .sum_exec_runtime = 0, \
500 }
501
502 /*
503 * Disable preemption until the scheduler is running.
504 * Reset by start_kernel()->sched_init()->init_idle().
505 *
506 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
507 * before the scheduler is active -- see should_resched().
508 */
509 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
510
511 /**
512 * struct thread_group_cputimer - thread group interval timer counts
513 * @cputime: thread group interval timers.
514 * @running: non-zero when there are timers running and
515 * @cputime receives updates.
516 * @lock: lock for fields in this struct.
517 *
518 * This structure contains the version of task_cputime, above, that is
519 * used for thread group CPU timer calculations.
520 */
521 struct thread_group_cputimer {
522 struct task_cputime cputime;
523 int running;
524 raw_spinlock_t lock;
525 };
526
527 #include <linux/rwsem.h>
528 struct autogroup;
529
530 /*
531 * NOTE! "signal_struct" does not have its own
532 * locking, because a shared signal_struct always
533 * implies a shared sighand_struct, so locking
534 * sighand_struct is always a proper superset of
535 * the locking of signal_struct.
536 */
537 struct signal_struct {
538 atomic_t sigcnt;
539 atomic_t live;
540 int nr_threads;
541
542 wait_queue_head_t wait_chldexit; /* for wait4() */
543
544 /* current thread group signal load-balancing target: */
545 struct task_struct *curr_target;
546
547 /* shared signal handling: */
548 struct sigpending shared_pending;
549
550 /* thread group exit support */
551 int group_exit_code;
552 /* overloaded:
553 * - notify group_exit_task when ->count is equal to notify_count
554 * - everyone except group_exit_task is stopped during signal delivery
555 * of fatal signals, group_exit_task processes the signal.
556 */
557 int notify_count;
558 struct task_struct *group_exit_task;
559
560 /* thread group stop support, overloads group_exit_code too */
561 int group_stop_count;
562 unsigned int flags; /* see SIGNAL_* flags below */
563
564 /*
565 * PR_SET_CHILD_SUBREAPER marks a process, like a service
566 * manager, to re-parent orphan (double-forking) child processes
567 * to this process instead of 'init'. The service manager is
568 * able to receive SIGCHLD signals and is able to investigate
569 * the process until it calls wait(). All children of this
570 * process will inherit a flag if they should look for a
571 * child_subreaper process at exit.
572 */
573 unsigned int is_child_subreaper:1;
574 unsigned int has_child_subreaper:1;
575
576 /* POSIX.1b Interval Timers */
577 struct list_head posix_timers;
578
579 /* ITIMER_REAL timer for the process */
580 struct hrtimer real_timer;
581 struct pid *leader_pid;
582 ktime_t it_real_incr;
583
584 /*
585 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
586 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
587 * values are defined to 0 and 1 respectively
588 */
589 struct cpu_itimer it[2];
590
591 /*
592 * Thread group totals for process CPU timers.
593 * See thread_group_cputimer(), et al, for details.
594 */
595 struct thread_group_cputimer cputimer;
596
597 /* Earliest-expiration cache. */
598 struct task_cputime cputime_expires;
599
600 struct list_head cpu_timers[3];
601
602 struct pid *tty_old_pgrp;
603
604 /* boolean value for session group leader */
605 int leader;
606
607 struct tty_struct *tty; /* NULL if no tty */
608
609 #ifdef CONFIG_SCHED_AUTOGROUP
610 struct autogroup *autogroup;
611 #endif
612 /*
613 * Cumulative resource counters for dead threads in the group,
614 * and for reaped dead child processes forked by this group.
615 * Live threads maintain their own counters and add to these
616 * in __exit_signal, except for the group leader.
617 */
618 cputime_t utime, stime, cutime, cstime;
619 cputime_t gtime;
620 cputime_t cgtime;
621 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
622 cputime_t prev_utime, prev_stime;
623 #endif
624 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
625 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
626 unsigned long inblock, oublock, cinblock, coublock;
627 unsigned long maxrss, cmaxrss;
628 struct task_io_accounting ioac;
629
630 /*
631 * Cumulative ns of schedule CPU time fo dead threads in the
632 * group, not including a zombie group leader, (This only differs
633 * from jiffies_to_ns(utime + stime) if sched_clock uses something
634 * other than jiffies.)
635 */
636 unsigned long long sum_sched_runtime;
637
638 /*
639 * We don't bother to synchronize most readers of this at all,
640 * because there is no reader checking a limit that actually needs
641 * to get both rlim_cur and rlim_max atomically, and either one
642 * alone is a single word that can safely be read normally.
643 * getrlimit/setrlimit use task_lock(current->group_leader) to
644 * protect this instead of the siglock, because they really
645 * have no need to disable irqs.
646 */
647 struct rlimit rlim[RLIM_NLIMITS];
648
649 #ifdef CONFIG_BSD_PROCESS_ACCT
650 struct pacct_struct pacct; /* per-process accounting information */
651 #endif
652 #ifdef CONFIG_TASKSTATS
653 struct taskstats *stats;
654 #endif
655 #ifdef CONFIG_AUDIT
656 unsigned audit_tty;
657 struct tty_audit_buf *tty_audit_buf;
658 #endif
659 #ifdef CONFIG_CGROUPS
660 /*
661 * group_rwsem prevents new tasks from entering the threadgroup and
662 * member tasks from exiting,a more specifically, setting of
663 * PF_EXITING. fork and exit paths are protected with this rwsem
664 * using threadgroup_change_begin/end(). Users which require
665 * threadgroup to remain stable should use threadgroup_[un]lock()
666 * which also takes care of exec path. Currently, cgroup is the
667 * only user.
668 */
669 struct rw_semaphore group_rwsem;
670 #endif
671
672 int oom_adj; /* OOM kill score adjustment (bit shift) */
673 int oom_score_adj; /* OOM kill score adjustment */
674 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
675 * Only settable by CAP_SYS_RESOURCE. */
676
677 struct mutex cred_guard_mutex; /* guard against foreign influences on
678 * credential calculations
679 * (notably. ptrace) */
680 };
681
682 /* Context switch must be unlocked if interrupts are to be enabled */
683 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
684 # define __ARCH_WANT_UNLOCKED_CTXSW
685 #endif
686
687 /*
688 * Bits in flags field of signal_struct.
689 */
690 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
691 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
692 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
693 /*
694 * Pending notifications to parent.
695 */
696 #define SIGNAL_CLD_STOPPED 0x00000010
697 #define SIGNAL_CLD_CONTINUED 0x00000020
698 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
699
700 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
701
702 /* If true, all threads except ->group_exit_task have pending SIGKILL */
703 static inline int signal_group_exit(const struct signal_struct *sig)
704 {
705 return (sig->flags & SIGNAL_GROUP_EXIT) ||
706 (sig->group_exit_task != NULL);
707 }
708
709 /*
710 * Some day this will be a full-fledged user tracking system..
711 */
712 struct user_struct {
713 atomic_t __count; /* reference count */
714 atomic_t processes; /* How many processes does this user have? */
715 atomic_t files; /* How many open files does this user have? */
716 atomic_t sigpending; /* How many pending signals does this user have? */
717 #ifdef CONFIG_INOTIFY_USER
718 atomic_t inotify_watches; /* How many inotify watches does this user have? */
719 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
720 #endif
721 #ifdef CONFIG_FANOTIFY
722 atomic_t fanotify_listeners;
723 #endif
724 #ifdef CONFIG_EPOLL
725 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
726 #endif
727 #ifdef CONFIG_POSIX_MQUEUE
728 /* protected by mq_lock */
729 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
730 #endif
731 unsigned long locked_shm; /* How many pages of mlocked shm ? */
732
733 #ifdef CONFIG_KEYS
734 struct key *uid_keyring; /* UID specific keyring */
735 struct key *session_keyring; /* UID's default session keyring */
736 #endif
737
738 /* Hash table maintenance information */
739 struct hlist_node uidhash_node;
740 kuid_t uid;
741
742 #ifdef CONFIG_PERF_EVENTS
743 atomic_long_t locked_vm;
744 #endif
745 };
746
747 extern int uids_sysfs_init(void);
748
749 extern struct user_struct *find_user(kuid_t);
750
751 extern struct user_struct root_user;
752 #define INIT_USER (&root_user)
753
754
755 struct backing_dev_info;
756 struct reclaim_state;
757
758 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
759 struct sched_info {
760 /* cumulative counters */
761 unsigned long pcount; /* # of times run on this cpu */
762 unsigned long long run_delay; /* time spent waiting on a runqueue */
763
764 /* timestamps */
765 unsigned long long last_arrival,/* when we last ran on a cpu */
766 last_queued; /* when we were last queued to run */
767 };
768 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
769
770 #ifdef CONFIG_TASK_DELAY_ACCT
771 struct task_delay_info {
772 spinlock_t lock;
773 unsigned int flags; /* Private per-task flags */
774
775 /* For each stat XXX, add following, aligned appropriately
776 *
777 * struct timespec XXX_start, XXX_end;
778 * u64 XXX_delay;
779 * u32 XXX_count;
780 *
781 * Atomicity of updates to XXX_delay, XXX_count protected by
782 * single lock above (split into XXX_lock if contention is an issue).
783 */
784
785 /*
786 * XXX_count is incremented on every XXX operation, the delay
787 * associated with the operation is added to XXX_delay.
788 * XXX_delay contains the accumulated delay time in nanoseconds.
789 */
790 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
791 u64 blkio_delay; /* wait for sync block io completion */
792 u64 swapin_delay; /* wait for swapin block io completion */
793 u32 blkio_count; /* total count of the number of sync block */
794 /* io operations performed */
795 u32 swapin_count; /* total count of the number of swapin block */
796 /* io operations performed */
797
798 struct timespec freepages_start, freepages_end;
799 u64 freepages_delay; /* wait for memory reclaim */
800 u32 freepages_count; /* total count of memory reclaim */
801 };
802 #endif /* CONFIG_TASK_DELAY_ACCT */
803
804 static inline int sched_info_on(void)
805 {
806 #ifdef CONFIG_SCHEDSTATS
807 return 1;
808 #elif defined(CONFIG_TASK_DELAY_ACCT)
809 extern int delayacct_on;
810 return delayacct_on;
811 #else
812 return 0;
813 #endif
814 }
815
816 enum cpu_idle_type {
817 CPU_IDLE,
818 CPU_NOT_IDLE,
819 CPU_NEWLY_IDLE,
820 CPU_MAX_IDLE_TYPES
821 };
822
823 /*
824 * Increase resolution of nice-level calculations for 64-bit architectures.
825 * The extra resolution improves shares distribution and load balancing of
826 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
827 * hierarchies, especially on larger systems. This is not a user-visible change
828 * and does not change the user-interface for setting shares/weights.
829 *
830 * We increase resolution only if we have enough bits to allow this increased
831 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
832 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
833 * increased costs.
834 */
835 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
836 # define SCHED_LOAD_RESOLUTION 10
837 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
838 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
839 #else
840 # define SCHED_LOAD_RESOLUTION 0
841 # define scale_load(w) (w)
842 # define scale_load_down(w) (w)
843 #endif
844
845 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
846 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
847
848 /*
849 * Increase resolution of cpu_power calculations
850 */
851 #define SCHED_POWER_SHIFT 10
852 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
853
854 /*
855 * sched-domains (multiprocessor balancing) declarations:
856 */
857 #ifdef CONFIG_SMP
858 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
859 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
860 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
861 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
862 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
863 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
864 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
865 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
866 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
867 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
868 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
869 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
870 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
871
872 extern int __weak arch_sd_sibiling_asym_packing(void);
873
874 struct sched_group_power {
875 atomic_t ref;
876 /*
877 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
878 * single CPU.
879 */
880 unsigned int power, power_orig;
881 unsigned long next_update;
882 /*
883 * Number of busy cpus in this group.
884 */
885 atomic_t nr_busy_cpus;
886
887 unsigned long cpumask[0]; /* iteration mask */
888 };
889
890 struct sched_group {
891 struct sched_group *next; /* Must be a circular list */
892 atomic_t ref;
893
894 unsigned int group_weight;
895 struct sched_group_power *sgp;
896
897 /*
898 * The CPUs this group covers.
899 *
900 * NOTE: this field is variable length. (Allocated dynamically
901 * by attaching extra space to the end of the structure,
902 * depending on how many CPUs the kernel has booted up with)
903 */
904 unsigned long cpumask[0];
905 };
906
907 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
908 {
909 return to_cpumask(sg->cpumask);
910 }
911
912 /*
913 * cpumask masking which cpus in the group are allowed to iterate up the domain
914 * tree.
915 */
916 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
917 {
918 return to_cpumask(sg->sgp->cpumask);
919 }
920
921 /**
922 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
923 * @group: The group whose first cpu is to be returned.
924 */
925 static inline unsigned int group_first_cpu(struct sched_group *group)
926 {
927 return cpumask_first(sched_group_cpus(group));
928 }
929
930 struct sched_domain_attr {
931 int relax_domain_level;
932 };
933
934 #define SD_ATTR_INIT (struct sched_domain_attr) { \
935 .relax_domain_level = -1, \
936 }
937
938 extern int sched_domain_level_max;
939
940 struct sched_domain {
941 /* These fields must be setup */
942 struct sched_domain *parent; /* top domain must be null terminated */
943 struct sched_domain *child; /* bottom domain must be null terminated */
944 struct sched_group *groups; /* the balancing groups of the domain */
945 unsigned long min_interval; /* Minimum balance interval ms */
946 unsigned long max_interval; /* Maximum balance interval ms */
947 unsigned int busy_factor; /* less balancing by factor if busy */
948 unsigned int imbalance_pct; /* No balance until over watermark */
949 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
950 unsigned int busy_idx;
951 unsigned int idle_idx;
952 unsigned int newidle_idx;
953 unsigned int wake_idx;
954 unsigned int forkexec_idx;
955 unsigned int smt_gain;
956 int flags; /* See SD_* */
957 int level;
958
959 /* Runtime fields. */
960 unsigned long last_balance; /* init to jiffies. units in jiffies */
961 unsigned int balance_interval; /* initialise to 1. units in ms. */
962 unsigned int nr_balance_failed; /* initialise to 0 */
963
964 u64 last_update;
965
966 #ifdef CONFIG_SCHEDSTATS
967 /* load_balance() stats */
968 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
974 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
975 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
976
977 /* Active load balancing */
978 unsigned int alb_count;
979 unsigned int alb_failed;
980 unsigned int alb_pushed;
981
982 /* SD_BALANCE_EXEC stats */
983 unsigned int sbe_count;
984 unsigned int sbe_balanced;
985 unsigned int sbe_pushed;
986
987 /* SD_BALANCE_FORK stats */
988 unsigned int sbf_count;
989 unsigned int sbf_balanced;
990 unsigned int sbf_pushed;
991
992 /* try_to_wake_up() stats */
993 unsigned int ttwu_wake_remote;
994 unsigned int ttwu_move_affine;
995 unsigned int ttwu_move_balance;
996 #endif
997 #ifdef CONFIG_SCHED_DEBUG
998 char *name;
999 #endif
1000 union {
1001 void *private; /* used during construction */
1002 struct rcu_head rcu; /* used during destruction */
1003 };
1004
1005 unsigned int span_weight;
1006 /*
1007 * Span of all CPUs in this domain.
1008 *
1009 * NOTE: this field is variable length. (Allocated dynamically
1010 * by attaching extra space to the end of the structure,
1011 * depending on how many CPUs the kernel has booted up with)
1012 */
1013 unsigned long span[0];
1014 };
1015
1016 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1017 {
1018 return to_cpumask(sd->span);
1019 }
1020
1021 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1022 struct sched_domain_attr *dattr_new);
1023
1024 /* Allocate an array of sched domains, for partition_sched_domains(). */
1025 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1026 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1027
1028 /* Test a flag in parent sched domain */
1029 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1030 {
1031 if (sd->parent && (sd->parent->flags & flag))
1032 return 1;
1033
1034 return 0;
1035 }
1036
1037 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1038 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1039
1040 bool cpus_share_cache(int this_cpu, int that_cpu);
1041
1042 #else /* CONFIG_SMP */
1043
1044 struct sched_domain_attr;
1045
1046 static inline void
1047 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1048 struct sched_domain_attr *dattr_new)
1049 {
1050 }
1051
1052 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1053 {
1054 return true;
1055 }
1056
1057 #endif /* !CONFIG_SMP */
1058
1059
1060 struct io_context; /* See blkdev.h */
1061
1062
1063 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1064 extern void prefetch_stack(struct task_struct *t);
1065 #else
1066 static inline void prefetch_stack(struct task_struct *t) { }
1067 #endif
1068
1069 struct audit_context; /* See audit.c */
1070 struct mempolicy;
1071 struct pipe_inode_info;
1072 struct uts_namespace;
1073
1074 struct rq;
1075 struct sched_domain;
1076
1077 /*
1078 * wake flags
1079 */
1080 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1081 #define WF_FORK 0x02 /* child wakeup after fork */
1082 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1083
1084 #define ENQUEUE_WAKEUP 1
1085 #define ENQUEUE_HEAD 2
1086 #ifdef CONFIG_SMP
1087 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1088 #else
1089 #define ENQUEUE_WAKING 0
1090 #endif
1091
1092 #define DEQUEUE_SLEEP 1
1093
1094 struct sched_class {
1095 const struct sched_class *next;
1096
1097 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1098 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1099 void (*yield_task) (struct rq *rq);
1100 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1101
1102 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1103
1104 struct task_struct * (*pick_next_task) (struct rq *rq);
1105 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1106
1107 #ifdef CONFIG_SMP
1108 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1109
1110 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1111 void (*post_schedule) (struct rq *this_rq);
1112 void (*task_waking) (struct task_struct *task);
1113 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1114
1115 void (*set_cpus_allowed)(struct task_struct *p,
1116 const struct cpumask *newmask);
1117
1118 void (*rq_online)(struct rq *rq);
1119 void (*rq_offline)(struct rq *rq);
1120 #endif
1121
1122 void (*set_curr_task) (struct rq *rq);
1123 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1124 void (*task_fork) (struct task_struct *p);
1125
1126 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1127 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1128 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1129 int oldprio);
1130
1131 unsigned int (*get_rr_interval) (struct rq *rq,
1132 struct task_struct *task);
1133
1134 #ifdef CONFIG_FAIR_GROUP_SCHED
1135 void (*task_move_group) (struct task_struct *p, int on_rq);
1136 #endif
1137 };
1138
1139 struct load_weight {
1140 unsigned long weight, inv_weight;
1141 };
1142
1143 #ifdef CONFIG_SCHEDSTATS
1144 struct sched_statistics {
1145 u64 wait_start;
1146 u64 wait_max;
1147 u64 wait_count;
1148 u64 wait_sum;
1149 u64 iowait_count;
1150 u64 iowait_sum;
1151
1152 u64 sleep_start;
1153 u64 sleep_max;
1154 s64 sum_sleep_runtime;
1155
1156 u64 block_start;
1157 u64 block_max;
1158 u64 exec_max;
1159 u64 slice_max;
1160
1161 u64 nr_migrations_cold;
1162 u64 nr_failed_migrations_affine;
1163 u64 nr_failed_migrations_running;
1164 u64 nr_failed_migrations_hot;
1165 u64 nr_forced_migrations;
1166
1167 u64 nr_wakeups;
1168 u64 nr_wakeups_sync;
1169 u64 nr_wakeups_migrate;
1170 u64 nr_wakeups_local;
1171 u64 nr_wakeups_remote;
1172 u64 nr_wakeups_affine;
1173 u64 nr_wakeups_affine_attempts;
1174 u64 nr_wakeups_passive;
1175 u64 nr_wakeups_idle;
1176 };
1177 #endif
1178
1179 struct sched_entity {
1180 struct load_weight load; /* for load-balancing */
1181 struct rb_node run_node;
1182 struct list_head group_node;
1183 unsigned int on_rq;
1184
1185 u64 exec_start;
1186 u64 sum_exec_runtime;
1187 u64 vruntime;
1188 u64 prev_sum_exec_runtime;
1189
1190 u64 nr_migrations;
1191
1192 #ifdef CONFIG_SCHEDSTATS
1193 struct sched_statistics statistics;
1194 #endif
1195
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197 struct sched_entity *parent;
1198 /* rq on which this entity is (to be) queued: */
1199 struct cfs_rq *cfs_rq;
1200 /* rq "owned" by this entity/group: */
1201 struct cfs_rq *my_q;
1202 #endif
1203 };
1204
1205 struct sched_rt_entity {
1206 struct list_head run_list;
1207 unsigned long timeout;
1208 unsigned int time_slice;
1209
1210 struct sched_rt_entity *back;
1211 #ifdef CONFIG_RT_GROUP_SCHED
1212 struct sched_rt_entity *parent;
1213 /* rq on which this entity is (to be) queued: */
1214 struct rt_rq *rt_rq;
1215 /* rq "owned" by this entity/group: */
1216 struct rt_rq *my_q;
1217 #endif
1218 };
1219
1220 /*
1221 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1222 * Timeslices get refilled after they expire.
1223 */
1224 #define RR_TIMESLICE (100 * HZ / 1000)
1225
1226 struct rcu_node;
1227
1228 enum perf_event_task_context {
1229 perf_invalid_context = -1,
1230 perf_hw_context = 0,
1231 perf_sw_context,
1232 perf_nr_task_contexts,
1233 };
1234
1235 struct task_struct {
1236 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1237 void *stack;
1238 atomic_t usage;
1239 unsigned int flags; /* per process flags, defined below */
1240 unsigned int ptrace;
1241
1242 #ifdef CONFIG_SMP
1243 struct llist_node wake_entry;
1244 int on_cpu;
1245 #endif
1246 int on_rq;
1247
1248 int prio, static_prio, normal_prio;
1249 unsigned int rt_priority;
1250 const struct sched_class *sched_class;
1251 struct sched_entity se;
1252 struct sched_rt_entity rt;
1253 #ifdef CONFIG_CGROUP_SCHED
1254 struct task_group *sched_task_group;
1255 #endif
1256
1257 #ifdef CONFIG_PREEMPT_NOTIFIERS
1258 /* list of struct preempt_notifier: */
1259 struct hlist_head preempt_notifiers;
1260 #endif
1261
1262 /*
1263 * fpu_counter contains the number of consecutive context switches
1264 * that the FPU is used. If this is over a threshold, the lazy fpu
1265 * saving becomes unlazy to save the trap. This is an unsigned char
1266 * so that after 256 times the counter wraps and the behavior turns
1267 * lazy again; this to deal with bursty apps that only use FPU for
1268 * a short time
1269 */
1270 unsigned char fpu_counter;
1271 #ifdef CONFIG_BLK_DEV_IO_TRACE
1272 unsigned int btrace_seq;
1273 #endif
1274
1275 unsigned int policy;
1276 int nr_cpus_allowed;
1277 cpumask_t cpus_allowed;
1278
1279 #ifdef CONFIG_PREEMPT_RCU
1280 int rcu_read_lock_nesting;
1281 char rcu_read_unlock_special;
1282 struct list_head rcu_node_entry;
1283 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1284 #ifdef CONFIG_TREE_PREEMPT_RCU
1285 struct rcu_node *rcu_blocked_node;
1286 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1287 #ifdef CONFIG_RCU_BOOST
1288 struct rt_mutex *rcu_boost_mutex;
1289 #endif /* #ifdef CONFIG_RCU_BOOST */
1290
1291 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1292 struct sched_info sched_info;
1293 #endif
1294
1295 struct list_head tasks;
1296 #ifdef CONFIG_SMP
1297 struct plist_node pushable_tasks;
1298 #endif
1299
1300 struct mm_struct *mm, *active_mm;
1301 #ifdef CONFIG_COMPAT_BRK
1302 unsigned brk_randomized:1;
1303 #endif
1304 #if defined(SPLIT_RSS_COUNTING)
1305 struct task_rss_stat rss_stat;
1306 #endif
1307 /* task state */
1308 int exit_state;
1309 int exit_code, exit_signal;
1310 int pdeath_signal; /* The signal sent when the parent dies */
1311 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1312 /* ??? */
1313 unsigned int personality;
1314 unsigned did_exec:1;
1315 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1316 * execve */
1317 unsigned in_iowait:1;
1318
1319 /* task may not gain privileges */
1320 unsigned no_new_privs:1;
1321
1322 /* Revert to default priority/policy when forking */
1323 unsigned sched_reset_on_fork:1;
1324 unsigned sched_contributes_to_load:1;
1325
1326 pid_t pid;
1327 pid_t tgid;
1328
1329 #ifdef CONFIG_CC_STACKPROTECTOR
1330 /* Canary value for the -fstack-protector gcc feature */
1331 unsigned long stack_canary;
1332 #endif
1333 /*
1334 * pointers to (original) parent process, youngest child, younger sibling,
1335 * older sibling, respectively. (p->father can be replaced with
1336 * p->real_parent->pid)
1337 */
1338 struct task_struct __rcu *real_parent; /* real parent process */
1339 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1340 /*
1341 * children/sibling forms the list of my natural children
1342 */
1343 struct list_head children; /* list of my children */
1344 struct list_head sibling; /* linkage in my parent's children list */
1345 struct task_struct *group_leader; /* threadgroup leader */
1346
1347 /*
1348 * ptraced is the list of tasks this task is using ptrace on.
1349 * This includes both natural children and PTRACE_ATTACH targets.
1350 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1351 */
1352 struct list_head ptraced;
1353 struct list_head ptrace_entry;
1354
1355 /* PID/PID hash table linkage. */
1356 struct pid_link pids[PIDTYPE_MAX];
1357 struct list_head thread_group;
1358
1359 struct completion *vfork_done; /* for vfork() */
1360 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1361 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1362
1363 cputime_t utime, stime, utimescaled, stimescaled;
1364 cputime_t gtime;
1365 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1366 cputime_t prev_utime, prev_stime;
1367 #endif
1368 unsigned long nvcsw, nivcsw; /* context switch counts */
1369 struct timespec start_time; /* monotonic time */
1370 struct timespec real_start_time; /* boot based time */
1371 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1372 unsigned long min_flt, maj_flt;
1373
1374 struct task_cputime cputime_expires;
1375 struct list_head cpu_timers[3];
1376
1377 /* process credentials */
1378 const struct cred __rcu *real_cred; /* objective and real subjective task
1379 * credentials (COW) */
1380 const struct cred __rcu *cred; /* effective (overridable) subjective task
1381 * credentials (COW) */
1382 char comm[TASK_COMM_LEN]; /* executable name excluding path
1383 - access with [gs]et_task_comm (which lock
1384 it with task_lock())
1385 - initialized normally by setup_new_exec */
1386 /* file system info */
1387 int link_count, total_link_count;
1388 #ifdef CONFIG_SYSVIPC
1389 /* ipc stuff */
1390 struct sysv_sem sysvsem;
1391 #endif
1392 #ifdef CONFIG_DETECT_HUNG_TASK
1393 /* hung task detection */
1394 unsigned long last_switch_count;
1395 #endif
1396 /* CPU-specific state of this task */
1397 struct thread_struct thread;
1398 /* filesystem information */
1399 struct fs_struct *fs;
1400 /* open file information */
1401 struct files_struct *files;
1402 /* namespaces */
1403 struct nsproxy *nsproxy;
1404 /* signal handlers */
1405 struct signal_struct *signal;
1406 struct sighand_struct *sighand;
1407
1408 sigset_t blocked, real_blocked;
1409 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1410 struct sigpending pending;
1411
1412 unsigned long sas_ss_sp;
1413 size_t sas_ss_size;
1414 int (*notifier)(void *priv);
1415 void *notifier_data;
1416 sigset_t *notifier_mask;
1417 struct callback_head *task_works;
1418
1419 struct audit_context *audit_context;
1420 #ifdef CONFIG_AUDITSYSCALL
1421 uid_t loginuid;
1422 unsigned int sessionid;
1423 #endif
1424 struct seccomp seccomp;
1425
1426 /* Thread group tracking */
1427 u32 parent_exec_id;
1428 u32 self_exec_id;
1429 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1430 * mempolicy */
1431 spinlock_t alloc_lock;
1432
1433 /* Protection of the PI data structures: */
1434 raw_spinlock_t pi_lock;
1435
1436 #ifdef CONFIG_RT_MUTEXES
1437 /* PI waiters blocked on a rt_mutex held by this task */
1438 struct plist_head pi_waiters;
1439 /* Deadlock detection and priority inheritance handling */
1440 struct rt_mutex_waiter *pi_blocked_on;
1441 #endif
1442
1443 #ifdef CONFIG_DEBUG_MUTEXES
1444 /* mutex deadlock detection */
1445 struct mutex_waiter *blocked_on;
1446 #endif
1447 #ifdef CONFIG_TRACE_IRQFLAGS
1448 unsigned int irq_events;
1449 unsigned long hardirq_enable_ip;
1450 unsigned long hardirq_disable_ip;
1451 unsigned int hardirq_enable_event;
1452 unsigned int hardirq_disable_event;
1453 int hardirqs_enabled;
1454 int hardirq_context;
1455 unsigned long softirq_disable_ip;
1456 unsigned long softirq_enable_ip;
1457 unsigned int softirq_disable_event;
1458 unsigned int softirq_enable_event;
1459 int softirqs_enabled;
1460 int softirq_context;
1461 #endif
1462 #ifdef CONFIG_LOCKDEP
1463 # define MAX_LOCK_DEPTH 48UL
1464 u64 curr_chain_key;
1465 int lockdep_depth;
1466 unsigned int lockdep_recursion;
1467 struct held_lock held_locks[MAX_LOCK_DEPTH];
1468 gfp_t lockdep_reclaim_gfp;
1469 #endif
1470
1471 /* journalling filesystem info */
1472 void *journal_info;
1473
1474 /* stacked block device info */
1475 struct bio_list *bio_list;
1476
1477 #ifdef CONFIG_BLOCK
1478 /* stack plugging */
1479 struct blk_plug *plug;
1480 #endif
1481
1482 /* VM state */
1483 struct reclaim_state *reclaim_state;
1484
1485 struct backing_dev_info *backing_dev_info;
1486
1487 struct io_context *io_context;
1488
1489 unsigned long ptrace_message;
1490 siginfo_t *last_siginfo; /* For ptrace use. */
1491 struct task_io_accounting ioac;
1492 #if defined(CONFIG_TASK_XACCT)
1493 u64 acct_rss_mem1; /* accumulated rss usage */
1494 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1495 cputime_t acct_timexpd; /* stime + utime since last update */
1496 #endif
1497 #ifdef CONFIG_CPUSETS
1498 nodemask_t mems_allowed; /* Protected by alloc_lock */
1499 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1500 int cpuset_mem_spread_rotor;
1501 int cpuset_slab_spread_rotor;
1502 #endif
1503 #ifdef CONFIG_CGROUPS
1504 /* Control Group info protected by css_set_lock */
1505 struct css_set __rcu *cgroups;
1506 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1507 struct list_head cg_list;
1508 #endif
1509 #ifdef CONFIG_FUTEX
1510 struct robust_list_head __user *robust_list;
1511 #ifdef CONFIG_COMPAT
1512 struct compat_robust_list_head __user *compat_robust_list;
1513 #endif
1514 struct list_head pi_state_list;
1515 struct futex_pi_state *pi_state_cache;
1516 #endif
1517 #ifdef CONFIG_PERF_EVENTS
1518 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1519 struct mutex perf_event_mutex;
1520 struct list_head perf_event_list;
1521 #endif
1522 #ifdef CONFIG_NUMA
1523 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1524 short il_next;
1525 short pref_node_fork;
1526 #endif
1527 struct rcu_head rcu;
1528
1529 /*
1530 * cache last used pipe for splice
1531 */
1532 struct pipe_inode_info *splice_pipe;
1533 #ifdef CONFIG_TASK_DELAY_ACCT
1534 struct task_delay_info *delays;
1535 #endif
1536 #ifdef CONFIG_FAULT_INJECTION
1537 int make_it_fail;
1538 #endif
1539 /*
1540 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1541 * balance_dirty_pages() for some dirty throttling pause
1542 */
1543 int nr_dirtied;
1544 int nr_dirtied_pause;
1545 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1546
1547 #ifdef CONFIG_LATENCYTOP
1548 int latency_record_count;
1549 struct latency_record latency_record[LT_SAVECOUNT];
1550 #endif
1551 /*
1552 * time slack values; these are used to round up poll() and
1553 * select() etc timeout values. These are in nanoseconds.
1554 */
1555 unsigned long timer_slack_ns;
1556 unsigned long default_timer_slack_ns;
1557
1558 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1559 /* Index of current stored address in ret_stack */
1560 int curr_ret_stack;
1561 /* Stack of return addresses for return function tracing */
1562 struct ftrace_ret_stack *ret_stack;
1563 /* time stamp for last schedule */
1564 unsigned long long ftrace_timestamp;
1565 /*
1566 * Number of functions that haven't been traced
1567 * because of depth overrun.
1568 */
1569 atomic_t trace_overrun;
1570 /* Pause for the tracing */
1571 atomic_t tracing_graph_pause;
1572 #endif
1573 #ifdef CONFIG_TRACING
1574 /* state flags for use by tracers */
1575 unsigned long trace;
1576 /* bitmask and counter of trace recursion */
1577 unsigned long trace_recursion;
1578 #endif /* CONFIG_TRACING */
1579 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1580 struct memcg_batch_info {
1581 int do_batch; /* incremented when batch uncharge started */
1582 struct mem_cgroup *memcg; /* target memcg of uncharge */
1583 unsigned long nr_pages; /* uncharged usage */
1584 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1585 } memcg_batch;
1586 #endif
1587 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1588 atomic_t ptrace_bp_refcnt;
1589 #endif
1590 #ifdef CONFIG_UPROBES
1591 struct uprobe_task *utask;
1592 #endif
1593 };
1594
1595 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1596 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1597
1598 /*
1599 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1600 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1601 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1602 * values are inverted: lower p->prio value means higher priority.
1603 *
1604 * The MAX_USER_RT_PRIO value allows the actual maximum
1605 * RT priority to be separate from the value exported to
1606 * user-space. This allows kernel threads to set their
1607 * priority to a value higher than any user task. Note:
1608 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1609 */
1610
1611 #define MAX_USER_RT_PRIO 100
1612 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1613
1614 #define MAX_PRIO (MAX_RT_PRIO + 40)
1615 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1616
1617 static inline int rt_prio(int prio)
1618 {
1619 if (unlikely(prio < MAX_RT_PRIO))
1620 return 1;
1621 return 0;
1622 }
1623
1624 static inline int rt_task(struct task_struct *p)
1625 {
1626 return rt_prio(p->prio);
1627 }
1628
1629 static inline struct pid *task_pid(struct task_struct *task)
1630 {
1631 return task->pids[PIDTYPE_PID].pid;
1632 }
1633
1634 static inline struct pid *task_tgid(struct task_struct *task)
1635 {
1636 return task->group_leader->pids[PIDTYPE_PID].pid;
1637 }
1638
1639 /*
1640 * Without tasklist or rcu lock it is not safe to dereference
1641 * the result of task_pgrp/task_session even if task == current,
1642 * we can race with another thread doing sys_setsid/sys_setpgid.
1643 */
1644 static inline struct pid *task_pgrp(struct task_struct *task)
1645 {
1646 return task->group_leader->pids[PIDTYPE_PGID].pid;
1647 }
1648
1649 static inline struct pid *task_session(struct task_struct *task)
1650 {
1651 return task->group_leader->pids[PIDTYPE_SID].pid;
1652 }
1653
1654 struct pid_namespace;
1655
1656 /*
1657 * the helpers to get the task's different pids as they are seen
1658 * from various namespaces
1659 *
1660 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1661 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1662 * current.
1663 * task_xid_nr_ns() : id seen from the ns specified;
1664 *
1665 * set_task_vxid() : assigns a virtual id to a task;
1666 *
1667 * see also pid_nr() etc in include/linux/pid.h
1668 */
1669 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1670 struct pid_namespace *ns);
1671
1672 static inline pid_t task_pid_nr(struct task_struct *tsk)
1673 {
1674 return tsk->pid;
1675 }
1676
1677 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1678 struct pid_namespace *ns)
1679 {
1680 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1681 }
1682
1683 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1684 {
1685 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1686 }
1687
1688
1689 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1690 {
1691 return tsk->tgid;
1692 }
1693
1694 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1695
1696 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1697 {
1698 return pid_vnr(task_tgid(tsk));
1699 }
1700
1701
1702 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1703 struct pid_namespace *ns)
1704 {
1705 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1706 }
1707
1708 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1709 {
1710 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1711 }
1712
1713
1714 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1715 struct pid_namespace *ns)
1716 {
1717 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1718 }
1719
1720 static inline pid_t task_session_vnr(struct task_struct *tsk)
1721 {
1722 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1723 }
1724
1725 /* obsolete, do not use */
1726 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1727 {
1728 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1729 }
1730
1731 /**
1732 * pid_alive - check that a task structure is not stale
1733 * @p: Task structure to be checked.
1734 *
1735 * Test if a process is not yet dead (at most zombie state)
1736 * If pid_alive fails, then pointers within the task structure
1737 * can be stale and must not be dereferenced.
1738 */
1739 static inline int pid_alive(struct task_struct *p)
1740 {
1741 return p->pids[PIDTYPE_PID].pid != NULL;
1742 }
1743
1744 /**
1745 * is_global_init - check if a task structure is init
1746 * @tsk: Task structure to be checked.
1747 *
1748 * Check if a task structure is the first user space task the kernel created.
1749 */
1750 static inline int is_global_init(struct task_struct *tsk)
1751 {
1752 return tsk->pid == 1;
1753 }
1754
1755 /*
1756 * is_container_init:
1757 * check whether in the task is init in its own pid namespace.
1758 */
1759 extern int is_container_init(struct task_struct *tsk);
1760
1761 extern struct pid *cad_pid;
1762
1763 extern void free_task(struct task_struct *tsk);
1764 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1765
1766 extern void __put_task_struct(struct task_struct *t);
1767
1768 static inline void put_task_struct(struct task_struct *t)
1769 {
1770 if (atomic_dec_and_test(&t->usage))
1771 __put_task_struct(t);
1772 }
1773
1774 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1775 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1776
1777 /*
1778 * Per process flags
1779 */
1780 #define PF_EXITING 0x00000004 /* getting shut down */
1781 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1782 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1783 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1784 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1785 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1786 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1787 #define PF_DUMPCORE 0x00000200 /* dumped core */
1788 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1789 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1790 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1791 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1792 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1793 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1794 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1795 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1796 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1797 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1798 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1799 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1800 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1801 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1802 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1803 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1804 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1805 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1806 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1807
1808 /*
1809 * Only the _current_ task can read/write to tsk->flags, but other
1810 * tasks can access tsk->flags in readonly mode for example
1811 * with tsk_used_math (like during threaded core dumping).
1812 * There is however an exception to this rule during ptrace
1813 * or during fork: the ptracer task is allowed to write to the
1814 * child->flags of its traced child (same goes for fork, the parent
1815 * can write to the child->flags), because we're guaranteed the
1816 * child is not running and in turn not changing child->flags
1817 * at the same time the parent does it.
1818 */
1819 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1820 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1821 #define clear_used_math() clear_stopped_child_used_math(current)
1822 #define set_used_math() set_stopped_child_used_math(current)
1823 #define conditional_stopped_child_used_math(condition, child) \
1824 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1825 #define conditional_used_math(condition) \
1826 conditional_stopped_child_used_math(condition, current)
1827 #define copy_to_stopped_child_used_math(child) \
1828 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1829 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1830 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1831 #define used_math() tsk_used_math(current)
1832
1833 /*
1834 * task->jobctl flags
1835 */
1836 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1837
1838 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1839 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1840 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1841 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1842 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1843 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1844 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1845
1846 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1847 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1848 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1849 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1850 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1851 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1852 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1853
1854 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1855 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1856
1857 extern bool task_set_jobctl_pending(struct task_struct *task,
1858 unsigned int mask);
1859 extern void task_clear_jobctl_trapping(struct task_struct *task);
1860 extern void task_clear_jobctl_pending(struct task_struct *task,
1861 unsigned int mask);
1862
1863 #ifdef CONFIG_PREEMPT_RCU
1864
1865 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1866 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1867
1868 static inline void rcu_copy_process(struct task_struct *p)
1869 {
1870 p->rcu_read_lock_nesting = 0;
1871 p->rcu_read_unlock_special = 0;
1872 #ifdef CONFIG_TREE_PREEMPT_RCU
1873 p->rcu_blocked_node = NULL;
1874 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1875 #ifdef CONFIG_RCU_BOOST
1876 p->rcu_boost_mutex = NULL;
1877 #endif /* #ifdef CONFIG_RCU_BOOST */
1878 INIT_LIST_HEAD(&p->rcu_node_entry);
1879 }
1880
1881 #else
1882
1883 static inline void rcu_copy_process(struct task_struct *p)
1884 {
1885 }
1886
1887 #endif
1888
1889 static inline void tsk_restore_flags(struct task_struct *task,
1890 unsigned long orig_flags, unsigned long flags)
1891 {
1892 task->flags &= ~flags;
1893 task->flags |= orig_flags & flags;
1894 }
1895
1896 #ifdef CONFIG_SMP
1897 extern void do_set_cpus_allowed(struct task_struct *p,
1898 const struct cpumask *new_mask);
1899
1900 extern int set_cpus_allowed_ptr(struct task_struct *p,
1901 const struct cpumask *new_mask);
1902 #else
1903 static inline void do_set_cpus_allowed(struct task_struct *p,
1904 const struct cpumask *new_mask)
1905 {
1906 }
1907 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1908 const struct cpumask *new_mask)
1909 {
1910 if (!cpumask_test_cpu(0, new_mask))
1911 return -EINVAL;
1912 return 0;
1913 }
1914 #endif
1915
1916 #ifdef CONFIG_NO_HZ
1917 void calc_load_enter_idle(void);
1918 void calc_load_exit_idle(void);
1919 #else
1920 static inline void calc_load_enter_idle(void) { }
1921 static inline void calc_load_exit_idle(void) { }
1922 #endif /* CONFIG_NO_HZ */
1923
1924 #ifndef CONFIG_CPUMASK_OFFSTACK
1925 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1926 {
1927 return set_cpus_allowed_ptr(p, &new_mask);
1928 }
1929 #endif
1930
1931 /*
1932 * Do not use outside of architecture code which knows its limitations.
1933 *
1934 * sched_clock() has no promise of monotonicity or bounded drift between
1935 * CPUs, use (which you should not) requires disabling IRQs.
1936 *
1937 * Please use one of the three interfaces below.
1938 */
1939 extern unsigned long long notrace sched_clock(void);
1940 /*
1941 * See the comment in kernel/sched/clock.c
1942 */
1943 extern u64 cpu_clock(int cpu);
1944 extern u64 local_clock(void);
1945 extern u64 sched_clock_cpu(int cpu);
1946
1947
1948 extern void sched_clock_init(void);
1949
1950 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1951 static inline void sched_clock_tick(void)
1952 {
1953 }
1954
1955 static inline void sched_clock_idle_sleep_event(void)
1956 {
1957 }
1958
1959 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1960 {
1961 }
1962 #else
1963 /*
1964 * Architectures can set this to 1 if they have specified
1965 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1966 * but then during bootup it turns out that sched_clock()
1967 * is reliable after all:
1968 */
1969 extern int sched_clock_stable;
1970
1971 extern void sched_clock_tick(void);
1972 extern void sched_clock_idle_sleep_event(void);
1973 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1974 #endif
1975
1976 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1977 /*
1978 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1979 * The reason for this explicit opt-in is not to have perf penalty with
1980 * slow sched_clocks.
1981 */
1982 extern void enable_sched_clock_irqtime(void);
1983 extern void disable_sched_clock_irqtime(void);
1984 #else
1985 static inline void enable_sched_clock_irqtime(void) {}
1986 static inline void disable_sched_clock_irqtime(void) {}
1987 #endif
1988
1989 extern unsigned long long
1990 task_sched_runtime(struct task_struct *task);
1991
1992 /* sched_exec is called by processes performing an exec */
1993 #ifdef CONFIG_SMP
1994 extern void sched_exec(void);
1995 #else
1996 #define sched_exec() {}
1997 #endif
1998
1999 extern void sched_clock_idle_sleep_event(void);
2000 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2001
2002 #ifdef CONFIG_HOTPLUG_CPU
2003 extern void idle_task_exit(void);
2004 #else
2005 static inline void idle_task_exit(void) {}
2006 #endif
2007
2008 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2009 extern void wake_up_idle_cpu(int cpu);
2010 #else
2011 static inline void wake_up_idle_cpu(int cpu) { }
2012 #endif
2013
2014 extern unsigned int sysctl_sched_latency;
2015 extern unsigned int sysctl_sched_min_granularity;
2016 extern unsigned int sysctl_sched_wakeup_granularity;
2017 extern unsigned int sysctl_sched_child_runs_first;
2018
2019 enum sched_tunable_scaling {
2020 SCHED_TUNABLESCALING_NONE,
2021 SCHED_TUNABLESCALING_LOG,
2022 SCHED_TUNABLESCALING_LINEAR,
2023 SCHED_TUNABLESCALING_END,
2024 };
2025 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2026
2027 #ifdef CONFIG_SCHED_DEBUG
2028 extern unsigned int sysctl_sched_migration_cost;
2029 extern unsigned int sysctl_sched_nr_migrate;
2030 extern unsigned int sysctl_sched_time_avg;
2031 extern unsigned int sysctl_timer_migration;
2032 extern unsigned int sysctl_sched_shares_window;
2033
2034 int sched_proc_update_handler(struct ctl_table *table, int write,
2035 void __user *buffer, size_t *length,
2036 loff_t *ppos);
2037 #endif
2038 #ifdef CONFIG_SCHED_DEBUG
2039 static inline unsigned int get_sysctl_timer_migration(void)
2040 {
2041 return sysctl_timer_migration;
2042 }
2043 #else
2044 static inline unsigned int get_sysctl_timer_migration(void)
2045 {
2046 return 1;
2047 }
2048 #endif
2049 extern unsigned int sysctl_sched_rt_period;
2050 extern int sysctl_sched_rt_runtime;
2051
2052 int sched_rt_handler(struct ctl_table *table, int write,
2053 void __user *buffer, size_t *lenp,
2054 loff_t *ppos);
2055
2056 #ifdef CONFIG_SCHED_AUTOGROUP
2057 extern unsigned int sysctl_sched_autogroup_enabled;
2058
2059 extern void sched_autogroup_create_attach(struct task_struct *p);
2060 extern void sched_autogroup_detach(struct task_struct *p);
2061 extern void sched_autogroup_fork(struct signal_struct *sig);
2062 extern void sched_autogroup_exit(struct signal_struct *sig);
2063 #ifdef CONFIG_PROC_FS
2064 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2065 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2066 #endif
2067 #else
2068 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2069 static inline void sched_autogroup_detach(struct task_struct *p) { }
2070 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2071 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2072 #endif
2073
2074 #ifdef CONFIG_CFS_BANDWIDTH
2075 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2076 #endif
2077
2078 #ifdef CONFIG_RT_MUTEXES
2079 extern int rt_mutex_getprio(struct task_struct *p);
2080 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2081 extern void rt_mutex_adjust_pi(struct task_struct *p);
2082 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2083 {
2084 return tsk->pi_blocked_on != NULL;
2085 }
2086 #else
2087 static inline int rt_mutex_getprio(struct task_struct *p)
2088 {
2089 return p->normal_prio;
2090 }
2091 # define rt_mutex_adjust_pi(p) do { } while (0)
2092 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2093 {
2094 return false;
2095 }
2096 #endif
2097
2098 extern bool yield_to(struct task_struct *p, bool preempt);
2099 extern void set_user_nice(struct task_struct *p, long nice);
2100 extern int task_prio(const struct task_struct *p);
2101 extern int task_nice(const struct task_struct *p);
2102 extern int can_nice(const struct task_struct *p, const int nice);
2103 extern int task_curr(const struct task_struct *p);
2104 extern int idle_cpu(int cpu);
2105 extern int sched_setscheduler(struct task_struct *, int,
2106 const struct sched_param *);
2107 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2108 const struct sched_param *);
2109 extern struct task_struct *idle_task(int cpu);
2110 /**
2111 * is_idle_task - is the specified task an idle task?
2112 * @p: the task in question.
2113 */
2114 static inline bool is_idle_task(const struct task_struct *p)
2115 {
2116 return p->pid == 0;
2117 }
2118 extern struct task_struct *curr_task(int cpu);
2119 extern void set_curr_task(int cpu, struct task_struct *p);
2120
2121 void yield(void);
2122
2123 /*
2124 * The default (Linux) execution domain.
2125 */
2126 extern struct exec_domain default_exec_domain;
2127
2128 union thread_union {
2129 struct thread_info thread_info;
2130 unsigned long stack[THREAD_SIZE/sizeof(long)];
2131 };
2132
2133 #ifndef __HAVE_ARCH_KSTACK_END
2134 static inline int kstack_end(void *addr)
2135 {
2136 /* Reliable end of stack detection:
2137 * Some APM bios versions misalign the stack
2138 */
2139 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2140 }
2141 #endif
2142
2143 extern union thread_union init_thread_union;
2144 extern struct task_struct init_task;
2145
2146 extern struct mm_struct init_mm;
2147
2148 extern struct pid_namespace init_pid_ns;
2149
2150 /*
2151 * find a task by one of its numerical ids
2152 *
2153 * find_task_by_pid_ns():
2154 * finds a task by its pid in the specified namespace
2155 * find_task_by_vpid():
2156 * finds a task by its virtual pid
2157 *
2158 * see also find_vpid() etc in include/linux/pid.h
2159 */
2160
2161 extern struct task_struct *find_task_by_vpid(pid_t nr);
2162 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2163 struct pid_namespace *ns);
2164
2165 extern void __set_special_pids(struct pid *pid);
2166
2167 /* per-UID process charging. */
2168 extern struct user_struct * alloc_uid(kuid_t);
2169 static inline struct user_struct *get_uid(struct user_struct *u)
2170 {
2171 atomic_inc(&u->__count);
2172 return u;
2173 }
2174 extern void free_uid(struct user_struct *);
2175
2176 #include <asm/current.h>
2177
2178 extern void xtime_update(unsigned long ticks);
2179
2180 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2181 extern int wake_up_process(struct task_struct *tsk);
2182 extern void wake_up_new_task(struct task_struct *tsk);
2183 #ifdef CONFIG_SMP
2184 extern void kick_process(struct task_struct *tsk);
2185 #else
2186 static inline void kick_process(struct task_struct *tsk) { }
2187 #endif
2188 extern void sched_fork(struct task_struct *p);
2189 extern void sched_dead(struct task_struct *p);
2190
2191 extern void proc_caches_init(void);
2192 extern void flush_signals(struct task_struct *);
2193 extern void __flush_signals(struct task_struct *);
2194 extern void ignore_signals(struct task_struct *);
2195 extern void flush_signal_handlers(struct task_struct *, int force_default);
2196 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2197
2198 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2199 {
2200 unsigned long flags;
2201 int ret;
2202
2203 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2204 ret = dequeue_signal(tsk, mask, info);
2205 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2206
2207 return ret;
2208 }
2209
2210 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2211 sigset_t *mask);
2212 extern void unblock_all_signals(void);
2213 extern void release_task(struct task_struct * p);
2214 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2215 extern int force_sigsegv(int, struct task_struct *);
2216 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2217 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2218 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2219 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2220 const struct cred *, u32);
2221 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2222 extern int kill_pid(struct pid *pid, int sig, int priv);
2223 extern int kill_proc_info(int, struct siginfo *, pid_t);
2224 extern __must_check bool do_notify_parent(struct task_struct *, int);
2225 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2226 extern void force_sig(int, struct task_struct *);
2227 extern int send_sig(int, struct task_struct *, int);
2228 extern int zap_other_threads(struct task_struct *p);
2229 extern struct sigqueue *sigqueue_alloc(void);
2230 extern void sigqueue_free(struct sigqueue *);
2231 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2232 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2233 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2234
2235 static inline void restore_saved_sigmask(void)
2236 {
2237 if (test_and_clear_restore_sigmask())
2238 __set_current_blocked(&current->saved_sigmask);
2239 }
2240
2241 static inline sigset_t *sigmask_to_save(void)
2242 {
2243 sigset_t *res = &current->blocked;
2244 if (unlikely(test_restore_sigmask()))
2245 res = &current->saved_sigmask;
2246 return res;
2247 }
2248
2249 static inline int kill_cad_pid(int sig, int priv)
2250 {
2251 return kill_pid(cad_pid, sig, priv);
2252 }
2253
2254 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2255 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2256 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2257 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2258
2259 /*
2260 * True if we are on the alternate signal stack.
2261 */
2262 static inline int on_sig_stack(unsigned long sp)
2263 {
2264 #ifdef CONFIG_STACK_GROWSUP
2265 return sp >= current->sas_ss_sp &&
2266 sp - current->sas_ss_sp < current->sas_ss_size;
2267 #else
2268 return sp > current->sas_ss_sp &&
2269 sp - current->sas_ss_sp <= current->sas_ss_size;
2270 #endif
2271 }
2272
2273 static inline int sas_ss_flags(unsigned long sp)
2274 {
2275 return (current->sas_ss_size == 0 ? SS_DISABLE
2276 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2277 }
2278
2279 /*
2280 * Routines for handling mm_structs
2281 */
2282 extern struct mm_struct * mm_alloc(void);
2283
2284 /* mmdrop drops the mm and the page tables */
2285 extern void __mmdrop(struct mm_struct *);
2286 static inline void mmdrop(struct mm_struct * mm)
2287 {
2288 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2289 __mmdrop(mm);
2290 }
2291
2292 /* mmput gets rid of the mappings and all user-space */
2293 extern void mmput(struct mm_struct *);
2294 /* Grab a reference to a task's mm, if it is not already going away */
2295 extern struct mm_struct *get_task_mm(struct task_struct *task);
2296 /*
2297 * Grab a reference to a task's mm, if it is not already going away
2298 * and ptrace_may_access with the mode parameter passed to it
2299 * succeeds.
2300 */
2301 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2302 /* Remove the current tasks stale references to the old mm_struct */
2303 extern void mm_release(struct task_struct *, struct mm_struct *);
2304 /* Allocate a new mm structure and copy contents from tsk->mm */
2305 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2306
2307 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2308 struct task_struct *, struct pt_regs *);
2309 extern void flush_thread(void);
2310 extern void exit_thread(void);
2311
2312 extern void exit_files(struct task_struct *);
2313 extern void __cleanup_sighand(struct sighand_struct *);
2314
2315 extern void exit_itimers(struct signal_struct *);
2316 extern void flush_itimer_signals(void);
2317
2318 extern void do_group_exit(int);
2319
2320 extern void daemonize(const char *, ...);
2321 extern int allow_signal(int);
2322 extern int disallow_signal(int);
2323
2324 extern int do_execve(const char *,
2325 const char __user * const __user *,
2326 const char __user * const __user *, struct pt_regs *);
2327 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2328 struct task_struct *fork_idle(int);
2329
2330 extern void set_task_comm(struct task_struct *tsk, char *from);
2331 extern char *get_task_comm(char *to, struct task_struct *tsk);
2332
2333 #ifdef CONFIG_SMP
2334 void scheduler_ipi(void);
2335 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2336 #else
2337 static inline void scheduler_ipi(void) { }
2338 static inline unsigned long wait_task_inactive(struct task_struct *p,
2339 long match_state)
2340 {
2341 return 1;
2342 }
2343 #endif
2344
2345 #define next_task(p) \
2346 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2347
2348 #define for_each_process(p) \
2349 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2350
2351 extern bool current_is_single_threaded(void);
2352
2353 /*
2354 * Careful: do_each_thread/while_each_thread is a double loop so
2355 * 'break' will not work as expected - use goto instead.
2356 */
2357 #define do_each_thread(g, t) \
2358 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2359
2360 #define while_each_thread(g, t) \
2361 while ((t = next_thread(t)) != g)
2362
2363 static inline int get_nr_threads(struct task_struct *tsk)
2364 {
2365 return tsk->signal->nr_threads;
2366 }
2367
2368 static inline bool thread_group_leader(struct task_struct *p)
2369 {
2370 return p->exit_signal >= 0;
2371 }
2372
2373 /* Do to the insanities of de_thread it is possible for a process
2374 * to have the pid of the thread group leader without actually being
2375 * the thread group leader. For iteration through the pids in proc
2376 * all we care about is that we have a task with the appropriate
2377 * pid, we don't actually care if we have the right task.
2378 */
2379 static inline int has_group_leader_pid(struct task_struct *p)
2380 {
2381 return p->pid == p->tgid;
2382 }
2383
2384 static inline
2385 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2386 {
2387 return p1->tgid == p2->tgid;
2388 }
2389
2390 static inline struct task_struct *next_thread(const struct task_struct *p)
2391 {
2392 return list_entry_rcu(p->thread_group.next,
2393 struct task_struct, thread_group);
2394 }
2395
2396 static inline int thread_group_empty(struct task_struct *p)
2397 {
2398 return list_empty(&p->thread_group);
2399 }
2400
2401 #define delay_group_leader(p) \
2402 (thread_group_leader(p) && !thread_group_empty(p))
2403
2404 /*
2405 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2406 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2407 * pins the final release of task.io_context. Also protects ->cpuset and
2408 * ->cgroup.subsys[]. And ->vfork_done.
2409 *
2410 * Nests both inside and outside of read_lock(&tasklist_lock).
2411 * It must not be nested with write_lock_irq(&tasklist_lock),
2412 * neither inside nor outside.
2413 */
2414 static inline void task_lock(struct task_struct *p)
2415 {
2416 spin_lock(&p->alloc_lock);
2417 }
2418
2419 static inline void task_unlock(struct task_struct *p)
2420 {
2421 spin_unlock(&p->alloc_lock);
2422 }
2423
2424 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2425 unsigned long *flags);
2426
2427 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2428 unsigned long *flags)
2429 {
2430 struct sighand_struct *ret;
2431
2432 ret = __lock_task_sighand(tsk, flags);
2433 (void)__cond_lock(&tsk->sighand->siglock, ret);
2434 return ret;
2435 }
2436
2437 static inline void unlock_task_sighand(struct task_struct *tsk,
2438 unsigned long *flags)
2439 {
2440 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2441 }
2442
2443 #ifdef CONFIG_CGROUPS
2444 static inline void threadgroup_change_begin(struct task_struct *tsk)
2445 {
2446 down_read(&tsk->signal->group_rwsem);
2447 }
2448 static inline void threadgroup_change_end(struct task_struct *tsk)
2449 {
2450 up_read(&tsk->signal->group_rwsem);
2451 }
2452
2453 /**
2454 * threadgroup_lock - lock threadgroup
2455 * @tsk: member task of the threadgroup to lock
2456 *
2457 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2458 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2459 * perform exec. This is useful for cases where the threadgroup needs to
2460 * stay stable across blockable operations.
2461 *
2462 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2463 * synchronization. While held, no new task will be added to threadgroup
2464 * and no existing live task will have its PF_EXITING set.
2465 *
2466 * During exec, a task goes and puts its thread group through unusual
2467 * changes. After de-threading, exclusive access is assumed to resources
2468 * which are usually shared by tasks in the same group - e.g. sighand may
2469 * be replaced with a new one. Also, the exec'ing task takes over group
2470 * leader role including its pid. Exclude these changes while locked by
2471 * grabbing cred_guard_mutex which is used to synchronize exec path.
2472 */
2473 static inline void threadgroup_lock(struct task_struct *tsk)
2474 {
2475 /*
2476 * exec uses exit for de-threading nesting group_rwsem inside
2477 * cred_guard_mutex. Grab cred_guard_mutex first.
2478 */
2479 mutex_lock(&tsk->signal->cred_guard_mutex);
2480 down_write(&tsk->signal->group_rwsem);
2481 }
2482
2483 /**
2484 * threadgroup_unlock - unlock threadgroup
2485 * @tsk: member task of the threadgroup to unlock
2486 *
2487 * Reverse threadgroup_lock().
2488 */
2489 static inline void threadgroup_unlock(struct task_struct *tsk)
2490 {
2491 up_write(&tsk->signal->group_rwsem);
2492 mutex_unlock(&tsk->signal->cred_guard_mutex);
2493 }
2494 #else
2495 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2496 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2497 static inline void threadgroup_lock(struct task_struct *tsk) {}
2498 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2499 #endif
2500
2501 #ifndef __HAVE_THREAD_FUNCTIONS
2502
2503 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2504 #define task_stack_page(task) ((task)->stack)
2505
2506 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2507 {
2508 *task_thread_info(p) = *task_thread_info(org);
2509 task_thread_info(p)->task = p;
2510 }
2511
2512 static inline unsigned long *end_of_stack(struct task_struct *p)
2513 {
2514 return (unsigned long *)(task_thread_info(p) + 1);
2515 }
2516
2517 #endif
2518
2519 static inline int object_is_on_stack(void *obj)
2520 {
2521 void *stack = task_stack_page(current);
2522
2523 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2524 }
2525
2526 extern void thread_info_cache_init(void);
2527
2528 #ifdef CONFIG_DEBUG_STACK_USAGE
2529 static inline unsigned long stack_not_used(struct task_struct *p)
2530 {
2531 unsigned long *n = end_of_stack(p);
2532
2533 do { /* Skip over canary */
2534 n++;
2535 } while (!*n);
2536
2537 return (unsigned long)n - (unsigned long)end_of_stack(p);
2538 }
2539 #endif
2540
2541 /* set thread flags in other task's structures
2542 * - see asm/thread_info.h for TIF_xxxx flags available
2543 */
2544 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2545 {
2546 set_ti_thread_flag(task_thread_info(tsk), flag);
2547 }
2548
2549 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2550 {
2551 clear_ti_thread_flag(task_thread_info(tsk), flag);
2552 }
2553
2554 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2555 {
2556 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2557 }
2558
2559 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2560 {
2561 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2562 }
2563
2564 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2565 {
2566 return test_ti_thread_flag(task_thread_info(tsk), flag);
2567 }
2568
2569 static inline void set_tsk_need_resched(struct task_struct *tsk)
2570 {
2571 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2572 }
2573
2574 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2575 {
2576 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2577 }
2578
2579 static inline int test_tsk_need_resched(struct task_struct *tsk)
2580 {
2581 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2582 }
2583
2584 static inline int restart_syscall(void)
2585 {
2586 set_tsk_thread_flag(current, TIF_SIGPENDING);
2587 return -ERESTARTNOINTR;
2588 }
2589
2590 static inline int signal_pending(struct task_struct *p)
2591 {
2592 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2593 }
2594
2595 static inline int __fatal_signal_pending(struct task_struct *p)
2596 {
2597 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2598 }
2599
2600 static inline int fatal_signal_pending(struct task_struct *p)
2601 {
2602 return signal_pending(p) && __fatal_signal_pending(p);
2603 }
2604
2605 static inline int signal_pending_state(long state, struct task_struct *p)
2606 {
2607 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2608 return 0;
2609 if (!signal_pending(p))
2610 return 0;
2611
2612 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2613 }
2614
2615 static inline int need_resched(void)
2616 {
2617 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2618 }
2619
2620 /*
2621 * cond_resched() and cond_resched_lock(): latency reduction via
2622 * explicit rescheduling in places that are safe. The return
2623 * value indicates whether a reschedule was done in fact.
2624 * cond_resched_lock() will drop the spinlock before scheduling,
2625 * cond_resched_softirq() will enable bhs before scheduling.
2626 */
2627 extern int _cond_resched(void);
2628
2629 #define cond_resched() ({ \
2630 __might_sleep(__FILE__, __LINE__, 0); \
2631 _cond_resched(); \
2632 })
2633
2634 extern int __cond_resched_lock(spinlock_t *lock);
2635
2636 #ifdef CONFIG_PREEMPT_COUNT
2637 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2638 #else
2639 #define PREEMPT_LOCK_OFFSET 0
2640 #endif
2641
2642 #define cond_resched_lock(lock) ({ \
2643 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2644 __cond_resched_lock(lock); \
2645 })
2646
2647 extern int __cond_resched_softirq(void);
2648
2649 #define cond_resched_softirq() ({ \
2650 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2651 __cond_resched_softirq(); \
2652 })
2653
2654 /*
2655 * Does a critical section need to be broken due to another
2656 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2657 * but a general need for low latency)
2658 */
2659 static inline int spin_needbreak(spinlock_t *lock)
2660 {
2661 #ifdef CONFIG_PREEMPT
2662 return spin_is_contended(lock);
2663 #else
2664 return 0;
2665 #endif
2666 }
2667
2668 /*
2669 * Thread group CPU time accounting.
2670 */
2671 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2672 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2673
2674 static inline void thread_group_cputime_init(struct signal_struct *sig)
2675 {
2676 raw_spin_lock_init(&sig->cputimer.lock);
2677 }
2678
2679 /*
2680 * Reevaluate whether the task has signals pending delivery.
2681 * Wake the task if so.
2682 * This is required every time the blocked sigset_t changes.
2683 * callers must hold sighand->siglock.
2684 */
2685 extern void recalc_sigpending_and_wake(struct task_struct *t);
2686 extern void recalc_sigpending(void);
2687
2688 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2689
2690 /*
2691 * Wrappers for p->thread_info->cpu access. No-op on UP.
2692 */
2693 #ifdef CONFIG_SMP
2694
2695 static inline unsigned int task_cpu(const struct task_struct *p)
2696 {
2697 return task_thread_info(p)->cpu;
2698 }
2699
2700 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2701
2702 #else
2703
2704 static inline unsigned int task_cpu(const struct task_struct *p)
2705 {
2706 return 0;
2707 }
2708
2709 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2710 {
2711 }
2712
2713 #endif /* CONFIG_SMP */
2714
2715 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2716 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2717
2718 extern void normalize_rt_tasks(void);
2719
2720 #ifdef CONFIG_CGROUP_SCHED
2721
2722 extern struct task_group root_task_group;
2723
2724 extern struct task_group *sched_create_group(struct task_group *parent);
2725 extern void sched_destroy_group(struct task_group *tg);
2726 extern void sched_move_task(struct task_struct *tsk);
2727 #ifdef CONFIG_FAIR_GROUP_SCHED
2728 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2729 extern unsigned long sched_group_shares(struct task_group *tg);
2730 #endif
2731 #ifdef CONFIG_RT_GROUP_SCHED
2732 extern int sched_group_set_rt_runtime(struct task_group *tg,
2733 long rt_runtime_us);
2734 extern long sched_group_rt_runtime(struct task_group *tg);
2735 extern int sched_group_set_rt_period(struct task_group *tg,
2736 long rt_period_us);
2737 extern long sched_group_rt_period(struct task_group *tg);
2738 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2739 #endif
2740 #endif /* CONFIG_CGROUP_SCHED */
2741
2742 extern int task_can_switch_user(struct user_struct *up,
2743 struct task_struct *tsk);
2744
2745 #ifdef CONFIG_TASK_XACCT
2746 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2747 {
2748 tsk->ioac.rchar += amt;
2749 }
2750
2751 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2752 {
2753 tsk->ioac.wchar += amt;
2754 }
2755
2756 static inline void inc_syscr(struct task_struct *tsk)
2757 {
2758 tsk->ioac.syscr++;
2759 }
2760
2761 static inline void inc_syscw(struct task_struct *tsk)
2762 {
2763 tsk->ioac.syscw++;
2764 }
2765 #else
2766 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2767 {
2768 }
2769
2770 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2771 {
2772 }
2773
2774 static inline void inc_syscr(struct task_struct *tsk)
2775 {
2776 }
2777
2778 static inline void inc_syscw(struct task_struct *tsk)
2779 {
2780 }
2781 #endif
2782
2783 #ifndef TASK_SIZE_OF
2784 #define TASK_SIZE_OF(tsk) TASK_SIZE
2785 #endif
2786
2787 #ifdef CONFIG_MM_OWNER
2788 extern void mm_update_next_owner(struct mm_struct *mm);
2789 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2790 #else
2791 static inline void mm_update_next_owner(struct mm_struct *mm)
2792 {
2793 }
2794
2795 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2796 {
2797 }
2798 #endif /* CONFIG_MM_OWNER */
2799
2800 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2801 unsigned int limit)
2802 {
2803 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2804 }
2805
2806 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2807 unsigned int limit)
2808 {
2809 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2810 }
2811
2812 static inline unsigned long rlimit(unsigned int limit)
2813 {
2814 return task_rlimit(current, limit);
2815 }
2816
2817 static inline unsigned long rlimit_max(unsigned int limit)
2818 {
2819 return task_rlimit_max(current, limit);
2820 }
2821
2822 #endif /* __KERNEL__ */
2823
2824 #endif