]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/sched.h
rcu: Changes from reviews: avoid casts, fix/add warnings, improve comments
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rculist.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92
93 #include <asm/processor.h>
94
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct fs_struct;
100 struct bts_context;
101 struct perf_counter_context;
102
103 /*
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
106 */
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
108
109 /*
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
118 */
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
121
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
128
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
133
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern void calc_global_load(void);
142 extern u64 cpu_nr_migrations(int cpu);
143
144 extern unsigned long get_parent_ip(unsigned long addr);
145
146 struct seq_file;
147 struct cfs_rq;
148 struct task_group;
149 #ifdef CONFIG_SCHED_DEBUG
150 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
151 extern void proc_sched_set_task(struct task_struct *p);
152 extern void
153 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
154 #else
155 static inline void
156 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
157 {
158 }
159 static inline void proc_sched_set_task(struct task_struct *p)
160 {
161 }
162 static inline void
163 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
164 {
165 }
166 #endif
167
168 extern unsigned long long time_sync_thresh;
169
170 /*
171 * Task state bitmask. NOTE! These bits are also
172 * encoded in fs/proc/array.c: get_task_state().
173 *
174 * We have two separate sets of flags: task->state
175 * is about runnability, while task->exit_state are
176 * about the task exiting. Confusing, but this way
177 * modifying one set can't modify the other one by
178 * mistake.
179 */
180 #define TASK_RUNNING 0
181 #define TASK_INTERRUPTIBLE 1
182 #define TASK_UNINTERRUPTIBLE 2
183 #define __TASK_STOPPED 4
184 #define __TASK_TRACED 8
185 /* in tsk->exit_state */
186 #define EXIT_ZOMBIE 16
187 #define EXIT_DEAD 32
188 /* in tsk->state again */
189 #define TASK_DEAD 64
190 #define TASK_WAKEKILL 128
191
192 /* Convenience macros for the sake of set_task_state */
193 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
194 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
195 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
196
197 /* Convenience macros for the sake of wake_up */
198 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
199 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
200
201 /* get_task_state() */
202 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
203 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
204 __TASK_TRACED)
205
206 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
207 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
208 #define task_is_stopped_or_traced(task) \
209 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
210 #define task_contributes_to_load(task) \
211 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
212 (task->flags & PF_FREEZING) == 0)
213
214 #define __set_task_state(tsk, state_value) \
215 do { (tsk)->state = (state_value); } while (0)
216 #define set_task_state(tsk, state_value) \
217 set_mb((tsk)->state, (state_value))
218
219 /*
220 * set_current_state() includes a barrier so that the write of current->state
221 * is correctly serialised wrt the caller's subsequent test of whether to
222 * actually sleep:
223 *
224 * set_current_state(TASK_UNINTERRUPTIBLE);
225 * if (do_i_need_to_sleep())
226 * schedule();
227 *
228 * If the caller does not need such serialisation then use __set_current_state()
229 */
230 #define __set_current_state(state_value) \
231 do { current->state = (state_value); } while (0)
232 #define set_current_state(state_value) \
233 set_mb(current->state, (state_value))
234
235 /* Task command name length */
236 #define TASK_COMM_LEN 16
237
238 #include <linux/spinlock.h>
239
240 /*
241 * This serializes "schedule()" and also protects
242 * the run-queue from deletions/modifications (but
243 * _adding_ to the beginning of the run-queue has
244 * a separate lock).
245 */
246 extern rwlock_t tasklist_lock;
247 extern spinlock_t mmlist_lock;
248
249 struct task_struct;
250
251 extern void sched_init(void);
252 extern void sched_init_smp(void);
253 extern asmlinkage void schedule_tail(struct task_struct *prev);
254 extern void init_idle(struct task_struct *idle, int cpu);
255 extern void init_idle_bootup_task(struct task_struct *idle);
256
257 extern int runqueue_is_locked(void);
258 extern void task_rq_unlock_wait(struct task_struct *p);
259
260 extern cpumask_var_t nohz_cpu_mask;
261 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
262 extern int select_nohz_load_balancer(int cpu);
263 extern int get_nohz_load_balancer(void);
264 #else
265 static inline int select_nohz_load_balancer(int cpu)
266 {
267 return 0;
268 }
269 #endif
270
271 /*
272 * Only dump TASK_* tasks. (0 for all tasks)
273 */
274 extern void show_state_filter(unsigned long state_filter);
275
276 static inline void show_state(void)
277 {
278 show_state_filter(0);
279 }
280
281 extern void show_regs(struct pt_regs *);
282
283 /*
284 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
285 * task), SP is the stack pointer of the first frame that should be shown in the back
286 * trace (or NULL if the entire call-chain of the task should be shown).
287 */
288 extern void show_stack(struct task_struct *task, unsigned long *sp);
289
290 void io_schedule(void);
291 long io_schedule_timeout(long timeout);
292
293 extern void cpu_init (void);
294 extern void trap_init(void);
295 extern void update_process_times(int user);
296 extern void scheduler_tick(void);
297
298 extern void sched_show_task(struct task_struct *p);
299
300 #ifdef CONFIG_DETECT_SOFTLOCKUP
301 extern void softlockup_tick(void);
302 extern void touch_softlockup_watchdog(void);
303 extern void touch_all_softlockup_watchdogs(void);
304 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
305 struct file *filp, void __user *buffer,
306 size_t *lenp, loff_t *ppos);
307 extern unsigned int softlockup_panic;
308 extern int softlockup_thresh;
309 #else
310 static inline void softlockup_tick(void)
311 {
312 }
313 static inline void touch_softlockup_watchdog(void)
314 {
315 }
316 static inline void touch_all_softlockup_watchdogs(void)
317 {
318 }
319 #endif
320
321 #ifdef CONFIG_DETECT_HUNG_TASK
322 extern unsigned int sysctl_hung_task_panic;
323 extern unsigned long sysctl_hung_task_check_count;
324 extern unsigned long sysctl_hung_task_timeout_secs;
325 extern unsigned long sysctl_hung_task_warnings;
326 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
327 struct file *filp, void __user *buffer,
328 size_t *lenp, loff_t *ppos);
329 #endif
330
331 /* Attach to any functions which should be ignored in wchan output. */
332 #define __sched __attribute__((__section__(".sched.text")))
333
334 /* Linker adds these: start and end of __sched functions */
335 extern char __sched_text_start[], __sched_text_end[];
336
337 /* Is this address in the __sched functions? */
338 extern int in_sched_functions(unsigned long addr);
339
340 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
341 extern signed long schedule_timeout(signed long timeout);
342 extern signed long schedule_timeout_interruptible(signed long timeout);
343 extern signed long schedule_timeout_killable(signed long timeout);
344 extern signed long schedule_timeout_uninterruptible(signed long timeout);
345 asmlinkage void __schedule(void);
346 asmlinkage void schedule(void);
347 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
348
349 struct nsproxy;
350 struct user_namespace;
351
352 /*
353 * Default maximum number of active map areas, this limits the number of vmas
354 * per mm struct. Users can overwrite this number by sysctl but there is a
355 * problem.
356 *
357 * When a program's coredump is generated as ELF format, a section is created
358 * per a vma. In ELF, the number of sections is represented in unsigned short.
359 * This means the number of sections should be smaller than 65535 at coredump.
360 * Because the kernel adds some informative sections to a image of program at
361 * generating coredump, we need some margin. The number of extra sections is
362 * 1-3 now and depends on arch. We use "5" as safe margin, here.
363 */
364 #define MAPCOUNT_ELF_CORE_MARGIN (5)
365 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
366
367 extern int sysctl_max_map_count;
368
369 #include <linux/aio.h>
370
371 extern unsigned long
372 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
373 unsigned long, unsigned long);
374 extern unsigned long
375 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
376 unsigned long len, unsigned long pgoff,
377 unsigned long flags);
378 extern void arch_unmap_area(struct mm_struct *, unsigned long);
379 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
380
381 #if USE_SPLIT_PTLOCKS
382 /*
383 * The mm counters are not protected by its page_table_lock,
384 * so must be incremented atomically.
385 */
386 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
387 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
388 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
389 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
390 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
391
392 #else /* !USE_SPLIT_PTLOCKS */
393 /*
394 * The mm counters are protected by its page_table_lock,
395 * so can be incremented directly.
396 */
397 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
398 #define get_mm_counter(mm, member) ((mm)->_##member)
399 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
400 #define inc_mm_counter(mm, member) (mm)->_##member++
401 #define dec_mm_counter(mm, member) (mm)->_##member--
402
403 #endif /* !USE_SPLIT_PTLOCKS */
404
405 #define get_mm_rss(mm) \
406 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
407 #define update_hiwater_rss(mm) do { \
408 unsigned long _rss = get_mm_rss(mm); \
409 if ((mm)->hiwater_rss < _rss) \
410 (mm)->hiwater_rss = _rss; \
411 } while (0)
412 #define update_hiwater_vm(mm) do { \
413 if ((mm)->hiwater_vm < (mm)->total_vm) \
414 (mm)->hiwater_vm = (mm)->total_vm; \
415 } while (0)
416
417 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
418 {
419 return max(mm->hiwater_rss, get_mm_rss(mm));
420 }
421
422 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
423 {
424 return max(mm->hiwater_vm, mm->total_vm);
425 }
426
427 extern void set_dumpable(struct mm_struct *mm, int value);
428 extern int get_dumpable(struct mm_struct *mm);
429
430 /* mm flags */
431 /* dumpable bits */
432 #define MMF_DUMPABLE 0 /* core dump is permitted */
433 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
434 #define MMF_DUMPABLE_BITS 2
435
436 /* coredump filter bits */
437 #define MMF_DUMP_ANON_PRIVATE 2
438 #define MMF_DUMP_ANON_SHARED 3
439 #define MMF_DUMP_MAPPED_PRIVATE 4
440 #define MMF_DUMP_MAPPED_SHARED 5
441 #define MMF_DUMP_ELF_HEADERS 6
442 #define MMF_DUMP_HUGETLB_PRIVATE 7
443 #define MMF_DUMP_HUGETLB_SHARED 8
444 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
445 #define MMF_DUMP_FILTER_BITS 7
446 #define MMF_DUMP_FILTER_MASK \
447 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
448 #define MMF_DUMP_FILTER_DEFAULT \
449 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
450 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
451
452 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
453 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
454 #else
455 # define MMF_DUMP_MASK_DEFAULT_ELF 0
456 #endif
457
458 struct sighand_struct {
459 atomic_t count;
460 struct k_sigaction action[_NSIG];
461 spinlock_t siglock;
462 wait_queue_head_t signalfd_wqh;
463 };
464
465 struct pacct_struct {
466 int ac_flag;
467 long ac_exitcode;
468 unsigned long ac_mem;
469 cputime_t ac_utime, ac_stime;
470 unsigned long ac_minflt, ac_majflt;
471 };
472
473 /**
474 * struct task_cputime - collected CPU time counts
475 * @utime: time spent in user mode, in &cputime_t units
476 * @stime: time spent in kernel mode, in &cputime_t units
477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
478 *
479 * This structure groups together three kinds of CPU time that are
480 * tracked for threads and thread groups. Most things considering
481 * CPU time want to group these counts together and treat all three
482 * of them in parallel.
483 */
484 struct task_cputime {
485 cputime_t utime;
486 cputime_t stime;
487 unsigned long long sum_exec_runtime;
488 };
489 /* Alternate field names when used to cache expirations. */
490 #define prof_exp stime
491 #define virt_exp utime
492 #define sched_exp sum_exec_runtime
493
494 #define INIT_CPUTIME \
495 (struct task_cputime) { \
496 .utime = cputime_zero, \
497 .stime = cputime_zero, \
498 .sum_exec_runtime = 0, \
499 }
500
501 /*
502 * Disable preemption until the scheduler is running.
503 * Reset by start_kernel()->sched_init()->init_idle().
504 *
505 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
506 * before the scheduler is active -- see should_resched().
507 */
508 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
509
510 /**
511 * struct thread_group_cputimer - thread group interval timer counts
512 * @cputime: thread group interval timers.
513 * @running: non-zero when there are timers running and
514 * @cputime receives updates.
515 * @lock: lock for fields in this struct.
516 *
517 * This structure contains the version of task_cputime, above, that is
518 * used for thread group CPU timer calculations.
519 */
520 struct thread_group_cputimer {
521 struct task_cputime cputime;
522 int running;
523 spinlock_t lock;
524 };
525
526 /*
527 * NOTE! "signal_struct" does not have it's own
528 * locking, because a shared signal_struct always
529 * implies a shared sighand_struct, so locking
530 * sighand_struct is always a proper superset of
531 * the locking of signal_struct.
532 */
533 struct signal_struct {
534 atomic_t count;
535 atomic_t live;
536
537 wait_queue_head_t wait_chldexit; /* for wait4() */
538
539 /* current thread group signal load-balancing target: */
540 struct task_struct *curr_target;
541
542 /* shared signal handling: */
543 struct sigpending shared_pending;
544
545 /* thread group exit support */
546 int group_exit_code;
547 /* overloaded:
548 * - notify group_exit_task when ->count is equal to notify_count
549 * - everyone except group_exit_task is stopped during signal delivery
550 * of fatal signals, group_exit_task processes the signal.
551 */
552 int notify_count;
553 struct task_struct *group_exit_task;
554
555 /* thread group stop support, overloads group_exit_code too */
556 int group_stop_count;
557 unsigned int flags; /* see SIGNAL_* flags below */
558
559 /* POSIX.1b Interval Timers */
560 struct list_head posix_timers;
561
562 /* ITIMER_REAL timer for the process */
563 struct hrtimer real_timer;
564 struct pid *leader_pid;
565 ktime_t it_real_incr;
566
567 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
568 cputime_t it_prof_expires, it_virt_expires;
569 cputime_t it_prof_incr, it_virt_incr;
570
571 /*
572 * Thread group totals for process CPU timers.
573 * See thread_group_cputimer(), et al, for details.
574 */
575 struct thread_group_cputimer cputimer;
576
577 /* Earliest-expiration cache. */
578 struct task_cputime cputime_expires;
579
580 struct list_head cpu_timers[3];
581
582 struct pid *tty_old_pgrp;
583
584 /* boolean value for session group leader */
585 int leader;
586
587 struct tty_struct *tty; /* NULL if no tty */
588
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
599 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
600 unsigned long inblock, oublock, cinblock, coublock;
601 struct task_io_accounting ioac;
602
603 /*
604 * Cumulative ns of schedule CPU time fo dead threads in the
605 * group, not including a zombie group leader, (This only differs
606 * from jiffies_to_ns(utime + stime) if sched_clock uses something
607 * other than jiffies.)
608 */
609 unsigned long long sum_sched_runtime;
610
611 /*
612 * We don't bother to synchronize most readers of this at all,
613 * because there is no reader checking a limit that actually needs
614 * to get both rlim_cur and rlim_max atomically, and either one
615 * alone is a single word that can safely be read normally.
616 * getrlimit/setrlimit use task_lock(current->group_leader) to
617 * protect this instead of the siglock, because they really
618 * have no need to disable irqs.
619 */
620 struct rlimit rlim[RLIM_NLIMITS];
621
622 #ifdef CONFIG_BSD_PROCESS_ACCT
623 struct pacct_struct pacct; /* per-process accounting information */
624 #endif
625 #ifdef CONFIG_TASKSTATS
626 struct taskstats *stats;
627 #endif
628 #ifdef CONFIG_AUDIT
629 unsigned audit_tty;
630 struct tty_audit_buf *tty_audit_buf;
631 #endif
632 };
633
634 /* Context switch must be unlocked if interrupts are to be enabled */
635 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
636 # define __ARCH_WANT_UNLOCKED_CTXSW
637 #endif
638
639 /*
640 * Bits in flags field of signal_struct.
641 */
642 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
643 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
644 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
645 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
646 /*
647 * Pending notifications to parent.
648 */
649 #define SIGNAL_CLD_STOPPED 0x00000010
650 #define SIGNAL_CLD_CONTINUED 0x00000020
651 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
652
653 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
654
655 /* If true, all threads except ->group_exit_task have pending SIGKILL */
656 static inline int signal_group_exit(const struct signal_struct *sig)
657 {
658 return (sig->flags & SIGNAL_GROUP_EXIT) ||
659 (sig->group_exit_task != NULL);
660 }
661
662 /*
663 * Some day this will be a full-fledged user tracking system..
664 */
665 struct user_struct {
666 atomic_t __count; /* reference count */
667 atomic_t processes; /* How many processes does this user have? */
668 atomic_t files; /* How many open files does this user have? */
669 atomic_t sigpending; /* How many pending signals does this user have? */
670 #ifdef CONFIG_INOTIFY_USER
671 atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
673 #endif
674 #ifdef CONFIG_EPOLL
675 atomic_t epoll_watches; /* The number of file descriptors currently watched */
676 #endif
677 #ifdef CONFIG_POSIX_MQUEUE
678 /* protected by mq_lock */
679 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
680 #endif
681 unsigned long locked_shm; /* How many pages of mlocked shm ? */
682
683 #ifdef CONFIG_KEYS
684 struct key *uid_keyring; /* UID specific keyring */
685 struct key *session_keyring; /* UID's default session keyring */
686 #endif
687
688 /* Hash table maintenance information */
689 struct hlist_node uidhash_node;
690 uid_t uid;
691 struct user_namespace *user_ns;
692
693 #ifdef CONFIG_USER_SCHED
694 struct task_group *tg;
695 #ifdef CONFIG_SYSFS
696 struct kobject kobj;
697 struct delayed_work work;
698 #endif
699 #endif
700
701 #ifdef CONFIG_PERF_COUNTERS
702 atomic_long_t locked_vm;
703 #endif
704 };
705
706 extern int uids_sysfs_init(void);
707
708 extern struct user_struct *find_user(uid_t);
709
710 extern struct user_struct root_user;
711 #define INIT_USER (&root_user)
712
713
714 struct backing_dev_info;
715 struct reclaim_state;
716
717 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
718 struct sched_info {
719 /* cumulative counters */
720 unsigned long pcount; /* # of times run on this cpu */
721 unsigned long long run_delay; /* time spent waiting on a runqueue */
722
723 /* timestamps */
724 unsigned long long last_arrival,/* when we last ran on a cpu */
725 last_queued; /* when we were last queued to run */
726 #ifdef CONFIG_SCHEDSTATS
727 /* BKL stats */
728 unsigned int bkl_count;
729 #endif
730 };
731 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
732
733 #ifdef CONFIG_TASK_DELAY_ACCT
734 struct task_delay_info {
735 spinlock_t lock;
736 unsigned int flags; /* Private per-task flags */
737
738 /* For each stat XXX, add following, aligned appropriately
739 *
740 * struct timespec XXX_start, XXX_end;
741 * u64 XXX_delay;
742 * u32 XXX_count;
743 *
744 * Atomicity of updates to XXX_delay, XXX_count protected by
745 * single lock above (split into XXX_lock if contention is an issue).
746 */
747
748 /*
749 * XXX_count is incremented on every XXX operation, the delay
750 * associated with the operation is added to XXX_delay.
751 * XXX_delay contains the accumulated delay time in nanoseconds.
752 */
753 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
754 u64 blkio_delay; /* wait for sync block io completion */
755 u64 swapin_delay; /* wait for swapin block io completion */
756 u32 blkio_count; /* total count of the number of sync block */
757 /* io operations performed */
758 u32 swapin_count; /* total count of the number of swapin block */
759 /* io operations performed */
760
761 struct timespec freepages_start, freepages_end;
762 u64 freepages_delay; /* wait for memory reclaim */
763 u32 freepages_count; /* total count of memory reclaim */
764 };
765 #endif /* CONFIG_TASK_DELAY_ACCT */
766
767 static inline int sched_info_on(void)
768 {
769 #ifdef CONFIG_SCHEDSTATS
770 return 1;
771 #elif defined(CONFIG_TASK_DELAY_ACCT)
772 extern int delayacct_on;
773 return delayacct_on;
774 #else
775 return 0;
776 #endif
777 }
778
779 enum cpu_idle_type {
780 CPU_IDLE,
781 CPU_NOT_IDLE,
782 CPU_NEWLY_IDLE,
783 CPU_MAX_IDLE_TYPES
784 };
785
786 /*
787 * sched-domains (multiprocessor balancing) declarations:
788 */
789
790 /*
791 * Increase resolution of nice-level calculations:
792 */
793 #define SCHED_LOAD_SHIFT 10
794 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
795
796 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
797
798 #ifdef CONFIG_SMP
799 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
800 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
801 #define SD_BALANCE_EXEC 4 /* Balance on exec */
802 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
803 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
804 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
805 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
806 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
807 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
808 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
809 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
810 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
811
812 enum powersavings_balance_level {
813 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
814 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
815 * first for long running threads
816 */
817 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
818 * cpu package for power savings
819 */
820 MAX_POWERSAVINGS_BALANCE_LEVELS
821 };
822
823 extern int sched_mc_power_savings, sched_smt_power_savings;
824
825 static inline int sd_balance_for_mc_power(void)
826 {
827 if (sched_smt_power_savings)
828 return SD_POWERSAVINGS_BALANCE;
829
830 return 0;
831 }
832
833 static inline int sd_balance_for_package_power(void)
834 {
835 if (sched_mc_power_savings | sched_smt_power_savings)
836 return SD_POWERSAVINGS_BALANCE;
837
838 return 0;
839 }
840
841 /*
842 * Optimise SD flags for power savings:
843 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
844 * Keep default SD flags if sched_{smt,mc}_power_saving=0
845 */
846
847 static inline int sd_power_saving_flags(void)
848 {
849 if (sched_mc_power_savings | sched_smt_power_savings)
850 return SD_BALANCE_NEWIDLE;
851
852 return 0;
853 }
854
855 struct sched_group {
856 struct sched_group *next; /* Must be a circular list */
857
858 /*
859 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
860 * single CPU. This is read only (except for setup, hotplug CPU).
861 * Note : Never change cpu_power without recompute its reciprocal
862 */
863 unsigned int __cpu_power;
864 /*
865 * reciprocal value of cpu_power to avoid expensive divides
866 * (see include/linux/reciprocal_div.h)
867 */
868 u32 reciprocal_cpu_power;
869
870 /*
871 * The CPUs this group covers.
872 *
873 * NOTE: this field is variable length. (Allocated dynamically
874 * by attaching extra space to the end of the structure,
875 * depending on how many CPUs the kernel has booted up with)
876 *
877 * It is also be embedded into static data structures at build
878 * time. (See 'struct static_sched_group' in kernel/sched.c)
879 */
880 unsigned long cpumask[0];
881 };
882
883 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
884 {
885 return to_cpumask(sg->cpumask);
886 }
887
888 enum sched_domain_level {
889 SD_LV_NONE = 0,
890 SD_LV_SIBLING,
891 SD_LV_MC,
892 SD_LV_CPU,
893 SD_LV_NODE,
894 SD_LV_ALLNODES,
895 SD_LV_MAX
896 };
897
898 struct sched_domain_attr {
899 int relax_domain_level;
900 };
901
902 #define SD_ATTR_INIT (struct sched_domain_attr) { \
903 .relax_domain_level = -1, \
904 }
905
906 struct sched_domain {
907 /* These fields must be setup */
908 struct sched_domain *parent; /* top domain must be null terminated */
909 struct sched_domain *child; /* bottom domain must be null terminated */
910 struct sched_group *groups; /* the balancing groups of the domain */
911 unsigned long min_interval; /* Minimum balance interval ms */
912 unsigned long max_interval; /* Maximum balance interval ms */
913 unsigned int busy_factor; /* less balancing by factor if busy */
914 unsigned int imbalance_pct; /* No balance until over watermark */
915 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
916 unsigned int busy_idx;
917 unsigned int idle_idx;
918 unsigned int newidle_idx;
919 unsigned int wake_idx;
920 unsigned int forkexec_idx;
921 int flags; /* See SD_* */
922 enum sched_domain_level level;
923
924 /* Runtime fields. */
925 unsigned long last_balance; /* init to jiffies. units in jiffies */
926 unsigned int balance_interval; /* initialise to 1. units in ms. */
927 unsigned int nr_balance_failed; /* initialise to 0 */
928
929 u64 last_update;
930
931 #ifdef CONFIG_SCHEDSTATS
932 /* load_balance() stats */
933 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
941
942 /* Active load balancing */
943 unsigned int alb_count;
944 unsigned int alb_failed;
945 unsigned int alb_pushed;
946
947 /* SD_BALANCE_EXEC stats */
948 unsigned int sbe_count;
949 unsigned int sbe_balanced;
950 unsigned int sbe_pushed;
951
952 /* SD_BALANCE_FORK stats */
953 unsigned int sbf_count;
954 unsigned int sbf_balanced;
955 unsigned int sbf_pushed;
956
957 /* try_to_wake_up() stats */
958 unsigned int ttwu_wake_remote;
959 unsigned int ttwu_move_affine;
960 unsigned int ttwu_move_balance;
961 #endif
962 #ifdef CONFIG_SCHED_DEBUG
963 char *name;
964 #endif
965
966 /*
967 * Span of all CPUs in this domain.
968 *
969 * NOTE: this field is variable length. (Allocated dynamically
970 * by attaching extra space to the end of the structure,
971 * depending on how many CPUs the kernel has booted up with)
972 *
973 * It is also be embedded into static data structures at build
974 * time. (See 'struct static_sched_domain' in kernel/sched.c)
975 */
976 unsigned long span[0];
977 };
978
979 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
980 {
981 return to_cpumask(sd->span);
982 }
983
984 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
985 struct sched_domain_attr *dattr_new);
986
987 /* Test a flag in parent sched domain */
988 static inline int test_sd_parent(struct sched_domain *sd, int flag)
989 {
990 if (sd->parent && (sd->parent->flags & flag))
991 return 1;
992
993 return 0;
994 }
995
996 #else /* CONFIG_SMP */
997
998 struct sched_domain_attr;
999
1000 static inline void
1001 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1002 struct sched_domain_attr *dattr_new)
1003 {
1004 }
1005 #endif /* !CONFIG_SMP */
1006
1007 struct io_context; /* See blkdev.h */
1008
1009
1010 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011 extern void prefetch_stack(struct task_struct *t);
1012 #else
1013 static inline void prefetch_stack(struct task_struct *t) { }
1014 #endif
1015
1016 struct audit_context; /* See audit.c */
1017 struct mempolicy;
1018 struct pipe_inode_info;
1019 struct uts_namespace;
1020
1021 struct rq;
1022 struct sched_domain;
1023
1024 struct sched_class {
1025 const struct sched_class *next;
1026
1027 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1028 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1029 void (*yield_task) (struct rq *rq);
1030
1031 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1032
1033 struct task_struct * (*pick_next_task) (struct rq *rq);
1034 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1035
1036 #ifdef CONFIG_SMP
1037 int (*select_task_rq)(struct task_struct *p, int sync);
1038
1039 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1040 struct rq *busiest, unsigned long max_load_move,
1041 struct sched_domain *sd, enum cpu_idle_type idle,
1042 int *all_pinned, int *this_best_prio);
1043
1044 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1045 struct rq *busiest, struct sched_domain *sd,
1046 enum cpu_idle_type idle);
1047 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1048 int (*needs_post_schedule) (struct rq *this_rq);
1049 void (*post_schedule) (struct rq *this_rq);
1050 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1051
1052 void (*set_cpus_allowed)(struct task_struct *p,
1053 const struct cpumask *newmask);
1054
1055 void (*rq_online)(struct rq *rq);
1056 void (*rq_offline)(struct rq *rq);
1057 #endif
1058
1059 void (*set_curr_task) (struct rq *rq);
1060 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1061 void (*task_new) (struct rq *rq, struct task_struct *p);
1062
1063 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1064 int running);
1065 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1066 int running);
1067 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1068 int oldprio, int running);
1069
1070 #ifdef CONFIG_FAIR_GROUP_SCHED
1071 void (*moved_group) (struct task_struct *p);
1072 #endif
1073 };
1074
1075 struct load_weight {
1076 unsigned long weight, inv_weight;
1077 };
1078
1079 /*
1080 * CFS stats for a schedulable entity (task, task-group etc)
1081 *
1082 * Current field usage histogram:
1083 *
1084 * 4 se->block_start
1085 * 4 se->run_node
1086 * 4 se->sleep_start
1087 * 6 se->load.weight
1088 */
1089 struct sched_entity {
1090 struct load_weight load; /* for load-balancing */
1091 struct rb_node run_node;
1092 struct list_head group_node;
1093 unsigned int on_rq;
1094
1095 u64 exec_start;
1096 u64 sum_exec_runtime;
1097 u64 vruntime;
1098 u64 prev_sum_exec_runtime;
1099
1100 u64 last_wakeup;
1101 u64 avg_overlap;
1102
1103 u64 nr_migrations;
1104
1105 u64 start_runtime;
1106 u64 avg_wakeup;
1107
1108 #ifdef CONFIG_SCHEDSTATS
1109 u64 wait_start;
1110 u64 wait_max;
1111 u64 wait_count;
1112 u64 wait_sum;
1113
1114 u64 sleep_start;
1115 u64 sleep_max;
1116 s64 sum_sleep_runtime;
1117
1118 u64 block_start;
1119 u64 block_max;
1120 u64 exec_max;
1121 u64 slice_max;
1122
1123 u64 nr_migrations_cold;
1124 u64 nr_failed_migrations_affine;
1125 u64 nr_failed_migrations_running;
1126 u64 nr_failed_migrations_hot;
1127 u64 nr_forced_migrations;
1128 u64 nr_forced2_migrations;
1129
1130 u64 nr_wakeups;
1131 u64 nr_wakeups_sync;
1132 u64 nr_wakeups_migrate;
1133 u64 nr_wakeups_local;
1134 u64 nr_wakeups_remote;
1135 u64 nr_wakeups_affine;
1136 u64 nr_wakeups_affine_attempts;
1137 u64 nr_wakeups_passive;
1138 u64 nr_wakeups_idle;
1139 #endif
1140
1141 #ifdef CONFIG_FAIR_GROUP_SCHED
1142 struct sched_entity *parent;
1143 /* rq on which this entity is (to be) queued: */
1144 struct cfs_rq *cfs_rq;
1145 /* rq "owned" by this entity/group: */
1146 struct cfs_rq *my_q;
1147 #endif
1148 };
1149
1150 struct sched_rt_entity {
1151 struct list_head run_list;
1152 unsigned long timeout;
1153 unsigned int time_slice;
1154 int nr_cpus_allowed;
1155
1156 struct sched_rt_entity *back;
1157 #ifdef CONFIG_RT_GROUP_SCHED
1158 struct sched_rt_entity *parent;
1159 /* rq on which this entity is (to be) queued: */
1160 struct rt_rq *rt_rq;
1161 /* rq "owned" by this entity/group: */
1162 struct rt_rq *my_q;
1163 #endif
1164 };
1165
1166 struct rcu_node;
1167
1168 struct task_struct {
1169 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1170 void *stack;
1171 atomic_t usage;
1172 unsigned int flags; /* per process flags, defined below */
1173 unsigned int ptrace;
1174
1175 int lock_depth; /* BKL lock depth */
1176
1177 #ifdef CONFIG_SMP
1178 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1179 int oncpu;
1180 #endif
1181 #endif
1182
1183 int prio, static_prio, normal_prio;
1184 unsigned int rt_priority;
1185 const struct sched_class *sched_class;
1186 struct sched_entity se;
1187 struct sched_rt_entity rt;
1188
1189 #ifdef CONFIG_PREEMPT_NOTIFIERS
1190 /* list of struct preempt_notifier: */
1191 struct hlist_head preempt_notifiers;
1192 #endif
1193
1194 /*
1195 * fpu_counter contains the number of consecutive context switches
1196 * that the FPU is used. If this is over a threshold, the lazy fpu
1197 * saving becomes unlazy to save the trap. This is an unsigned char
1198 * so that after 256 times the counter wraps and the behavior turns
1199 * lazy again; this to deal with bursty apps that only use FPU for
1200 * a short time
1201 */
1202 unsigned char fpu_counter;
1203 #ifdef CONFIG_BLK_DEV_IO_TRACE
1204 unsigned int btrace_seq;
1205 #endif
1206
1207 unsigned int policy;
1208 cpumask_t cpus_allowed;
1209
1210 #ifdef CONFIG_TREE_PREEMPT_RCU
1211 int rcu_read_lock_nesting;
1212 char rcu_read_unlock_special;
1213 struct rcu_node *rcu_blocked_node;
1214 struct list_head rcu_node_entry;
1215 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1216
1217 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1218 struct sched_info sched_info;
1219 #endif
1220
1221 struct list_head tasks;
1222 struct plist_node pushable_tasks;
1223
1224 struct mm_struct *mm, *active_mm;
1225
1226 /* task state */
1227 struct linux_binfmt *binfmt;
1228 int exit_state;
1229 int exit_code, exit_signal;
1230 int pdeath_signal; /* The signal sent when the parent dies */
1231 /* ??? */
1232 unsigned int personality;
1233 unsigned did_exec:1;
1234 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1235 * execve */
1236 pid_t pid;
1237 pid_t tgid;
1238
1239 /* Canary value for the -fstack-protector gcc feature */
1240 unsigned long stack_canary;
1241
1242 /*
1243 * pointers to (original) parent process, youngest child, younger sibling,
1244 * older sibling, respectively. (p->father can be replaced with
1245 * p->real_parent->pid)
1246 */
1247 struct task_struct *real_parent; /* real parent process */
1248 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1249 /*
1250 * children/sibling forms the list of my natural children
1251 */
1252 struct list_head children; /* list of my children */
1253 struct list_head sibling; /* linkage in my parent's children list */
1254 struct task_struct *group_leader; /* threadgroup leader */
1255
1256 /*
1257 * ptraced is the list of tasks this task is using ptrace on.
1258 * This includes both natural children and PTRACE_ATTACH targets.
1259 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1260 */
1261 struct list_head ptraced;
1262 struct list_head ptrace_entry;
1263
1264 /*
1265 * This is the tracer handle for the ptrace BTS extension.
1266 * This field actually belongs to the ptracer task.
1267 */
1268 struct bts_context *bts;
1269
1270 /* PID/PID hash table linkage. */
1271 struct pid_link pids[PIDTYPE_MAX];
1272 struct list_head thread_group;
1273
1274 struct completion *vfork_done; /* for vfork() */
1275 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1276 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1277
1278 cputime_t utime, stime, utimescaled, stimescaled;
1279 cputime_t gtime;
1280 cputime_t prev_utime, prev_stime;
1281 unsigned long nvcsw, nivcsw; /* context switch counts */
1282 struct timespec start_time; /* monotonic time */
1283 struct timespec real_start_time; /* boot based time */
1284 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1285 unsigned long min_flt, maj_flt;
1286
1287 struct task_cputime cputime_expires;
1288 struct list_head cpu_timers[3];
1289
1290 /* process credentials */
1291 const struct cred *real_cred; /* objective and real subjective task
1292 * credentials (COW) */
1293 const struct cred *cred; /* effective (overridable) subjective task
1294 * credentials (COW) */
1295 struct mutex cred_guard_mutex; /* guard against foreign influences on
1296 * credential calculations
1297 * (notably. ptrace) */
1298
1299 char comm[TASK_COMM_LEN]; /* executable name excluding path
1300 - access with [gs]et_task_comm (which lock
1301 it with task_lock())
1302 - initialized normally by flush_old_exec */
1303 /* file system info */
1304 int link_count, total_link_count;
1305 #ifdef CONFIG_SYSVIPC
1306 /* ipc stuff */
1307 struct sysv_sem sysvsem;
1308 #endif
1309 #ifdef CONFIG_DETECT_HUNG_TASK
1310 /* hung task detection */
1311 unsigned long last_switch_count;
1312 #endif
1313 /* CPU-specific state of this task */
1314 struct thread_struct thread;
1315 /* filesystem information */
1316 struct fs_struct *fs;
1317 /* open file information */
1318 struct files_struct *files;
1319 /* namespaces */
1320 struct nsproxy *nsproxy;
1321 /* signal handlers */
1322 struct signal_struct *signal;
1323 struct sighand_struct *sighand;
1324
1325 sigset_t blocked, real_blocked;
1326 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1327 struct sigpending pending;
1328
1329 unsigned long sas_ss_sp;
1330 size_t sas_ss_size;
1331 int (*notifier)(void *priv);
1332 void *notifier_data;
1333 sigset_t *notifier_mask;
1334 struct audit_context *audit_context;
1335 #ifdef CONFIG_AUDITSYSCALL
1336 uid_t loginuid;
1337 unsigned int sessionid;
1338 #endif
1339 seccomp_t seccomp;
1340
1341 /* Thread group tracking */
1342 u32 parent_exec_id;
1343 u32 self_exec_id;
1344 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1345 * mempolicy */
1346 spinlock_t alloc_lock;
1347
1348 #ifdef CONFIG_GENERIC_HARDIRQS
1349 /* IRQ handler threads */
1350 struct irqaction *irqaction;
1351 #endif
1352
1353 /* Protection of the PI data structures: */
1354 spinlock_t pi_lock;
1355
1356 #ifdef CONFIG_RT_MUTEXES
1357 /* PI waiters blocked on a rt_mutex held by this task */
1358 struct plist_head pi_waiters;
1359 /* Deadlock detection and priority inheritance handling */
1360 struct rt_mutex_waiter *pi_blocked_on;
1361 #endif
1362
1363 #ifdef CONFIG_DEBUG_MUTEXES
1364 /* mutex deadlock detection */
1365 struct mutex_waiter *blocked_on;
1366 #endif
1367 #ifdef CONFIG_TRACE_IRQFLAGS
1368 unsigned int irq_events;
1369 int hardirqs_enabled;
1370 unsigned long hardirq_enable_ip;
1371 unsigned int hardirq_enable_event;
1372 unsigned long hardirq_disable_ip;
1373 unsigned int hardirq_disable_event;
1374 int softirqs_enabled;
1375 unsigned long softirq_disable_ip;
1376 unsigned int softirq_disable_event;
1377 unsigned long softirq_enable_ip;
1378 unsigned int softirq_enable_event;
1379 int hardirq_context;
1380 int softirq_context;
1381 #endif
1382 #ifdef CONFIG_LOCKDEP
1383 # define MAX_LOCK_DEPTH 48UL
1384 u64 curr_chain_key;
1385 int lockdep_depth;
1386 unsigned int lockdep_recursion;
1387 struct held_lock held_locks[MAX_LOCK_DEPTH];
1388 gfp_t lockdep_reclaim_gfp;
1389 #endif
1390
1391 /* journalling filesystem info */
1392 void *journal_info;
1393
1394 /* stacked block device info */
1395 struct bio *bio_list, **bio_tail;
1396
1397 /* VM state */
1398 struct reclaim_state *reclaim_state;
1399
1400 struct backing_dev_info *backing_dev_info;
1401
1402 struct io_context *io_context;
1403
1404 unsigned long ptrace_message;
1405 siginfo_t *last_siginfo; /* For ptrace use. */
1406 struct task_io_accounting ioac;
1407 #if defined(CONFIG_TASK_XACCT)
1408 u64 acct_rss_mem1; /* accumulated rss usage */
1409 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1410 cputime_t acct_timexpd; /* stime + utime since last update */
1411 #endif
1412 #ifdef CONFIG_CPUSETS
1413 nodemask_t mems_allowed; /* Protected by alloc_lock */
1414 int cpuset_mem_spread_rotor;
1415 #endif
1416 #ifdef CONFIG_CGROUPS
1417 /* Control Group info protected by css_set_lock */
1418 struct css_set *cgroups;
1419 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1420 struct list_head cg_list;
1421 #endif
1422 #ifdef CONFIG_FUTEX
1423 struct robust_list_head __user *robust_list;
1424 #ifdef CONFIG_COMPAT
1425 struct compat_robust_list_head __user *compat_robust_list;
1426 #endif
1427 struct list_head pi_state_list;
1428 struct futex_pi_state *pi_state_cache;
1429 #endif
1430 #ifdef CONFIG_PERF_COUNTERS
1431 struct perf_counter_context *perf_counter_ctxp;
1432 struct mutex perf_counter_mutex;
1433 struct list_head perf_counter_list;
1434 #endif
1435 #ifdef CONFIG_NUMA
1436 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1437 short il_next;
1438 #endif
1439 atomic_t fs_excl; /* holding fs exclusive resources */
1440 struct rcu_head rcu;
1441
1442 /*
1443 * cache last used pipe for splice
1444 */
1445 struct pipe_inode_info *splice_pipe;
1446 #ifdef CONFIG_TASK_DELAY_ACCT
1447 struct task_delay_info *delays;
1448 #endif
1449 #ifdef CONFIG_FAULT_INJECTION
1450 int make_it_fail;
1451 #endif
1452 struct prop_local_single dirties;
1453 #ifdef CONFIG_LATENCYTOP
1454 int latency_record_count;
1455 struct latency_record latency_record[LT_SAVECOUNT];
1456 #endif
1457 /*
1458 * time slack values; these are used to round up poll() and
1459 * select() etc timeout values. These are in nanoseconds.
1460 */
1461 unsigned long timer_slack_ns;
1462 unsigned long default_timer_slack_ns;
1463
1464 struct list_head *scm_work_list;
1465 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1466 /* Index of current stored adress in ret_stack */
1467 int curr_ret_stack;
1468 /* Stack of return addresses for return function tracing */
1469 struct ftrace_ret_stack *ret_stack;
1470 /* time stamp for last schedule */
1471 unsigned long long ftrace_timestamp;
1472 /*
1473 * Number of functions that haven't been traced
1474 * because of depth overrun.
1475 */
1476 atomic_t trace_overrun;
1477 /* Pause for the tracing */
1478 atomic_t tracing_graph_pause;
1479 #endif
1480 #ifdef CONFIG_TRACING
1481 /* state flags for use by tracers */
1482 unsigned long trace;
1483 /* bitmask of trace recursion */
1484 unsigned long trace_recursion;
1485 #endif /* CONFIG_TRACING */
1486 };
1487
1488 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1489 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1490
1491 /*
1492 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1493 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1494 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1495 * values are inverted: lower p->prio value means higher priority.
1496 *
1497 * The MAX_USER_RT_PRIO value allows the actual maximum
1498 * RT priority to be separate from the value exported to
1499 * user-space. This allows kernel threads to set their
1500 * priority to a value higher than any user task. Note:
1501 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1502 */
1503
1504 #define MAX_USER_RT_PRIO 100
1505 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1506
1507 #define MAX_PRIO (MAX_RT_PRIO + 40)
1508 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1509
1510 static inline int rt_prio(int prio)
1511 {
1512 if (unlikely(prio < MAX_RT_PRIO))
1513 return 1;
1514 return 0;
1515 }
1516
1517 static inline int rt_task(struct task_struct *p)
1518 {
1519 return rt_prio(p->prio);
1520 }
1521
1522 static inline struct pid *task_pid(struct task_struct *task)
1523 {
1524 return task->pids[PIDTYPE_PID].pid;
1525 }
1526
1527 static inline struct pid *task_tgid(struct task_struct *task)
1528 {
1529 return task->group_leader->pids[PIDTYPE_PID].pid;
1530 }
1531
1532 /*
1533 * Without tasklist or rcu lock it is not safe to dereference
1534 * the result of task_pgrp/task_session even if task == current,
1535 * we can race with another thread doing sys_setsid/sys_setpgid.
1536 */
1537 static inline struct pid *task_pgrp(struct task_struct *task)
1538 {
1539 return task->group_leader->pids[PIDTYPE_PGID].pid;
1540 }
1541
1542 static inline struct pid *task_session(struct task_struct *task)
1543 {
1544 return task->group_leader->pids[PIDTYPE_SID].pid;
1545 }
1546
1547 struct pid_namespace;
1548
1549 /*
1550 * the helpers to get the task's different pids as they are seen
1551 * from various namespaces
1552 *
1553 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1554 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1555 * current.
1556 * task_xid_nr_ns() : id seen from the ns specified;
1557 *
1558 * set_task_vxid() : assigns a virtual id to a task;
1559 *
1560 * see also pid_nr() etc in include/linux/pid.h
1561 */
1562 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1563 struct pid_namespace *ns);
1564
1565 static inline pid_t task_pid_nr(struct task_struct *tsk)
1566 {
1567 return tsk->pid;
1568 }
1569
1570 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1571 struct pid_namespace *ns)
1572 {
1573 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1574 }
1575
1576 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1577 {
1578 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1579 }
1580
1581
1582 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1583 {
1584 return tsk->tgid;
1585 }
1586
1587 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1588
1589 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1590 {
1591 return pid_vnr(task_tgid(tsk));
1592 }
1593
1594
1595 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1596 struct pid_namespace *ns)
1597 {
1598 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1599 }
1600
1601 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1602 {
1603 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1604 }
1605
1606
1607 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1608 struct pid_namespace *ns)
1609 {
1610 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1611 }
1612
1613 static inline pid_t task_session_vnr(struct task_struct *tsk)
1614 {
1615 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1616 }
1617
1618 /* obsolete, do not use */
1619 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1620 {
1621 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1622 }
1623
1624 /**
1625 * pid_alive - check that a task structure is not stale
1626 * @p: Task structure to be checked.
1627 *
1628 * Test if a process is not yet dead (at most zombie state)
1629 * If pid_alive fails, then pointers within the task structure
1630 * can be stale and must not be dereferenced.
1631 */
1632 static inline int pid_alive(struct task_struct *p)
1633 {
1634 return p->pids[PIDTYPE_PID].pid != NULL;
1635 }
1636
1637 /**
1638 * is_global_init - check if a task structure is init
1639 * @tsk: Task structure to be checked.
1640 *
1641 * Check if a task structure is the first user space task the kernel created.
1642 */
1643 static inline int is_global_init(struct task_struct *tsk)
1644 {
1645 return tsk->pid == 1;
1646 }
1647
1648 /*
1649 * is_container_init:
1650 * check whether in the task is init in its own pid namespace.
1651 */
1652 extern int is_container_init(struct task_struct *tsk);
1653
1654 extern struct pid *cad_pid;
1655
1656 extern void free_task(struct task_struct *tsk);
1657 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1658
1659 extern void __put_task_struct(struct task_struct *t);
1660
1661 static inline void put_task_struct(struct task_struct *t)
1662 {
1663 if (atomic_dec_and_test(&t->usage))
1664 __put_task_struct(t);
1665 }
1666
1667 extern cputime_t task_utime(struct task_struct *p);
1668 extern cputime_t task_stime(struct task_struct *p);
1669 extern cputime_t task_gtime(struct task_struct *p);
1670
1671 /*
1672 * Per process flags
1673 */
1674 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1675 /* Not implemented yet, only for 486*/
1676 #define PF_STARTING 0x00000002 /* being created */
1677 #define PF_EXITING 0x00000004 /* getting shut down */
1678 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1679 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1680 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1681 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1682 #define PF_DUMPCORE 0x00000200 /* dumped core */
1683 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1684 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1685 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1686 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1687 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1688 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1689 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1690 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1691 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1692 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1693 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1694 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1695 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1696 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1697 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1698 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1699 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1700 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1701 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1702 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1703 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1704
1705 /*
1706 * Only the _current_ task can read/write to tsk->flags, but other
1707 * tasks can access tsk->flags in readonly mode for example
1708 * with tsk_used_math (like during threaded core dumping).
1709 * There is however an exception to this rule during ptrace
1710 * or during fork: the ptracer task is allowed to write to the
1711 * child->flags of its traced child (same goes for fork, the parent
1712 * can write to the child->flags), because we're guaranteed the
1713 * child is not running and in turn not changing child->flags
1714 * at the same time the parent does it.
1715 */
1716 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1717 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1718 #define clear_used_math() clear_stopped_child_used_math(current)
1719 #define set_used_math() set_stopped_child_used_math(current)
1720 #define conditional_stopped_child_used_math(condition, child) \
1721 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1722 #define conditional_used_math(condition) \
1723 conditional_stopped_child_used_math(condition, current)
1724 #define copy_to_stopped_child_used_math(child) \
1725 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1726 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1727 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1728 #define used_math() tsk_used_math(current)
1729
1730 #ifdef CONFIG_TREE_PREEMPT_RCU
1731
1732 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1733 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1734 #define RCU_READ_UNLOCK_GOT_QS (1 << 2) /* CPU has responded to RCU core. */
1735
1736 static inline void rcu_copy_process(struct task_struct *p)
1737 {
1738 p->rcu_read_lock_nesting = 0;
1739 p->rcu_read_unlock_special = 0;
1740 p->rcu_blocked_node = NULL;
1741 INIT_LIST_HEAD(&p->rcu_node_entry);
1742 }
1743
1744 #else
1745
1746 static inline void rcu_copy_process(struct task_struct *p)
1747 {
1748 }
1749
1750 #endif
1751
1752 #ifdef CONFIG_SMP
1753 extern int set_cpus_allowed_ptr(struct task_struct *p,
1754 const struct cpumask *new_mask);
1755 #else
1756 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1757 const struct cpumask *new_mask)
1758 {
1759 if (!cpumask_test_cpu(0, new_mask))
1760 return -EINVAL;
1761 return 0;
1762 }
1763 #endif
1764 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1765 {
1766 return set_cpus_allowed_ptr(p, &new_mask);
1767 }
1768
1769 /*
1770 * Architectures can set this to 1 if they have specified
1771 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1772 * but then during bootup it turns out that sched_clock()
1773 * is reliable after all:
1774 */
1775 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1776 extern int sched_clock_stable;
1777 #endif
1778
1779 extern unsigned long long sched_clock(void);
1780
1781 extern void sched_clock_init(void);
1782 extern u64 sched_clock_cpu(int cpu);
1783
1784 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1785 static inline void sched_clock_tick(void)
1786 {
1787 }
1788
1789 static inline void sched_clock_idle_sleep_event(void)
1790 {
1791 }
1792
1793 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1794 {
1795 }
1796 #else
1797 extern void sched_clock_tick(void);
1798 extern void sched_clock_idle_sleep_event(void);
1799 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1800 #endif
1801
1802 /*
1803 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1804 * clock constructed from sched_clock():
1805 */
1806 extern unsigned long long cpu_clock(int cpu);
1807
1808 extern unsigned long long
1809 task_sched_runtime(struct task_struct *task);
1810 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1811
1812 /* sched_exec is called by processes performing an exec */
1813 #ifdef CONFIG_SMP
1814 extern void sched_exec(void);
1815 #else
1816 #define sched_exec() {}
1817 #endif
1818
1819 extern void sched_clock_idle_sleep_event(void);
1820 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1821
1822 #ifdef CONFIG_HOTPLUG_CPU
1823 extern void idle_task_exit(void);
1824 #else
1825 static inline void idle_task_exit(void) {}
1826 #endif
1827
1828 extern void sched_idle_next(void);
1829
1830 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1831 extern void wake_up_idle_cpu(int cpu);
1832 #else
1833 static inline void wake_up_idle_cpu(int cpu) { }
1834 #endif
1835
1836 extern unsigned int sysctl_sched_latency;
1837 extern unsigned int sysctl_sched_min_granularity;
1838 extern unsigned int sysctl_sched_wakeup_granularity;
1839 extern unsigned int sysctl_sched_shares_ratelimit;
1840 extern unsigned int sysctl_sched_shares_thresh;
1841 #ifdef CONFIG_SCHED_DEBUG
1842 extern unsigned int sysctl_sched_child_runs_first;
1843 extern unsigned int sysctl_sched_features;
1844 extern unsigned int sysctl_sched_migration_cost;
1845 extern unsigned int sysctl_sched_nr_migrate;
1846 extern unsigned int sysctl_timer_migration;
1847
1848 int sched_nr_latency_handler(struct ctl_table *table, int write,
1849 struct file *file, void __user *buffer, size_t *length,
1850 loff_t *ppos);
1851 #endif
1852 #ifdef CONFIG_SCHED_DEBUG
1853 static inline unsigned int get_sysctl_timer_migration(void)
1854 {
1855 return sysctl_timer_migration;
1856 }
1857 #else
1858 static inline unsigned int get_sysctl_timer_migration(void)
1859 {
1860 return 1;
1861 }
1862 #endif
1863 extern unsigned int sysctl_sched_rt_period;
1864 extern int sysctl_sched_rt_runtime;
1865
1866 int sched_rt_handler(struct ctl_table *table, int write,
1867 struct file *filp, void __user *buffer, size_t *lenp,
1868 loff_t *ppos);
1869
1870 extern unsigned int sysctl_sched_compat_yield;
1871
1872 #ifdef CONFIG_RT_MUTEXES
1873 extern int rt_mutex_getprio(struct task_struct *p);
1874 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1875 extern void rt_mutex_adjust_pi(struct task_struct *p);
1876 #else
1877 static inline int rt_mutex_getprio(struct task_struct *p)
1878 {
1879 return p->normal_prio;
1880 }
1881 # define rt_mutex_adjust_pi(p) do { } while (0)
1882 #endif
1883
1884 extern void set_user_nice(struct task_struct *p, long nice);
1885 extern int task_prio(const struct task_struct *p);
1886 extern int task_nice(const struct task_struct *p);
1887 extern int can_nice(const struct task_struct *p, const int nice);
1888 extern int task_curr(const struct task_struct *p);
1889 extern int idle_cpu(int cpu);
1890 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1891 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1892 struct sched_param *);
1893 extern struct task_struct *idle_task(int cpu);
1894 extern struct task_struct *curr_task(int cpu);
1895 extern void set_curr_task(int cpu, struct task_struct *p);
1896
1897 void yield(void);
1898
1899 /*
1900 * The default (Linux) execution domain.
1901 */
1902 extern struct exec_domain default_exec_domain;
1903
1904 union thread_union {
1905 struct thread_info thread_info;
1906 unsigned long stack[THREAD_SIZE/sizeof(long)];
1907 };
1908
1909 #ifndef __HAVE_ARCH_KSTACK_END
1910 static inline int kstack_end(void *addr)
1911 {
1912 /* Reliable end of stack detection:
1913 * Some APM bios versions misalign the stack
1914 */
1915 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1916 }
1917 #endif
1918
1919 extern union thread_union init_thread_union;
1920 extern struct task_struct init_task;
1921
1922 extern struct mm_struct init_mm;
1923
1924 extern struct pid_namespace init_pid_ns;
1925
1926 /*
1927 * find a task by one of its numerical ids
1928 *
1929 * find_task_by_pid_ns():
1930 * finds a task by its pid in the specified namespace
1931 * find_task_by_vpid():
1932 * finds a task by its virtual pid
1933 *
1934 * see also find_vpid() etc in include/linux/pid.h
1935 */
1936
1937 extern struct task_struct *find_task_by_vpid(pid_t nr);
1938 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1939 struct pid_namespace *ns);
1940
1941 extern void __set_special_pids(struct pid *pid);
1942
1943 /* per-UID process charging. */
1944 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1945 static inline struct user_struct *get_uid(struct user_struct *u)
1946 {
1947 atomic_inc(&u->__count);
1948 return u;
1949 }
1950 extern void free_uid(struct user_struct *);
1951 extern void release_uids(struct user_namespace *ns);
1952
1953 #include <asm/current.h>
1954
1955 extern void do_timer(unsigned long ticks);
1956
1957 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1958 extern int wake_up_process(struct task_struct *tsk);
1959 extern void wake_up_new_task(struct task_struct *tsk,
1960 unsigned long clone_flags);
1961 #ifdef CONFIG_SMP
1962 extern void kick_process(struct task_struct *tsk);
1963 #else
1964 static inline void kick_process(struct task_struct *tsk) { }
1965 #endif
1966 extern void sched_fork(struct task_struct *p, int clone_flags);
1967 extern void sched_dead(struct task_struct *p);
1968
1969 extern void proc_caches_init(void);
1970 extern void flush_signals(struct task_struct *);
1971 extern void __flush_signals(struct task_struct *);
1972 extern void ignore_signals(struct task_struct *);
1973 extern void flush_signal_handlers(struct task_struct *, int force_default);
1974 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1975
1976 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1977 {
1978 unsigned long flags;
1979 int ret;
1980
1981 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1982 ret = dequeue_signal(tsk, mask, info);
1983 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1984
1985 return ret;
1986 }
1987
1988 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1989 sigset_t *mask);
1990 extern void unblock_all_signals(void);
1991 extern void release_task(struct task_struct * p);
1992 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1993 extern int force_sigsegv(int, struct task_struct *);
1994 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1995 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1996 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1997 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1998 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1999 extern int kill_pid(struct pid *pid, int sig, int priv);
2000 extern int kill_proc_info(int, struct siginfo *, pid_t);
2001 extern int do_notify_parent(struct task_struct *, int);
2002 extern void force_sig(int, struct task_struct *);
2003 extern void force_sig_specific(int, struct task_struct *);
2004 extern int send_sig(int, struct task_struct *, int);
2005 extern void zap_other_threads(struct task_struct *p);
2006 extern struct sigqueue *sigqueue_alloc(void);
2007 extern void sigqueue_free(struct sigqueue *);
2008 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2009 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2010 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2011
2012 static inline int kill_cad_pid(int sig, int priv)
2013 {
2014 return kill_pid(cad_pid, sig, priv);
2015 }
2016
2017 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2018 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2019 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2020 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2021
2022 static inline int is_si_special(const struct siginfo *info)
2023 {
2024 return info <= SEND_SIG_FORCED;
2025 }
2026
2027 /* True if we are on the alternate signal stack. */
2028
2029 static inline int on_sig_stack(unsigned long sp)
2030 {
2031 return (sp - current->sas_ss_sp < current->sas_ss_size);
2032 }
2033
2034 static inline int sas_ss_flags(unsigned long sp)
2035 {
2036 return (current->sas_ss_size == 0 ? SS_DISABLE
2037 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2038 }
2039
2040 /*
2041 * Routines for handling mm_structs
2042 */
2043 extern struct mm_struct * mm_alloc(void);
2044
2045 /* mmdrop drops the mm and the page tables */
2046 extern void __mmdrop(struct mm_struct *);
2047 static inline void mmdrop(struct mm_struct * mm)
2048 {
2049 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2050 __mmdrop(mm);
2051 }
2052
2053 /* mmput gets rid of the mappings and all user-space */
2054 extern void mmput(struct mm_struct *);
2055 /* Grab a reference to a task's mm, if it is not already going away */
2056 extern struct mm_struct *get_task_mm(struct task_struct *task);
2057 /* Remove the current tasks stale references to the old mm_struct */
2058 extern void mm_release(struct task_struct *, struct mm_struct *);
2059 /* Allocate a new mm structure and copy contents from tsk->mm */
2060 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2061
2062 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2063 struct task_struct *, struct pt_regs *);
2064 extern void flush_thread(void);
2065 extern void exit_thread(void);
2066
2067 extern void exit_files(struct task_struct *);
2068 extern void __cleanup_signal(struct signal_struct *);
2069 extern void __cleanup_sighand(struct sighand_struct *);
2070
2071 extern void exit_itimers(struct signal_struct *);
2072 extern void flush_itimer_signals(void);
2073
2074 extern NORET_TYPE void do_group_exit(int);
2075
2076 extern void daemonize(const char *, ...);
2077 extern int allow_signal(int);
2078 extern int disallow_signal(int);
2079
2080 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2081 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2082 struct task_struct *fork_idle(int);
2083
2084 extern void set_task_comm(struct task_struct *tsk, char *from);
2085 extern char *get_task_comm(char *to, struct task_struct *tsk);
2086
2087 #ifdef CONFIG_SMP
2088 extern void wait_task_context_switch(struct task_struct *p);
2089 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2090 #else
2091 static inline void wait_task_context_switch(struct task_struct *p) {}
2092 static inline unsigned long wait_task_inactive(struct task_struct *p,
2093 long match_state)
2094 {
2095 return 1;
2096 }
2097 #endif
2098
2099 #define next_task(p) \
2100 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2101
2102 #define for_each_process(p) \
2103 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2104
2105 extern bool is_single_threaded(struct task_struct *);
2106
2107 /*
2108 * Careful: do_each_thread/while_each_thread is a double loop so
2109 * 'break' will not work as expected - use goto instead.
2110 */
2111 #define do_each_thread(g, t) \
2112 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2113
2114 #define while_each_thread(g, t) \
2115 while ((t = next_thread(t)) != g)
2116
2117 /* de_thread depends on thread_group_leader not being a pid based check */
2118 #define thread_group_leader(p) (p == p->group_leader)
2119
2120 /* Do to the insanities of de_thread it is possible for a process
2121 * to have the pid of the thread group leader without actually being
2122 * the thread group leader. For iteration through the pids in proc
2123 * all we care about is that we have a task with the appropriate
2124 * pid, we don't actually care if we have the right task.
2125 */
2126 static inline int has_group_leader_pid(struct task_struct *p)
2127 {
2128 return p->pid == p->tgid;
2129 }
2130
2131 static inline
2132 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2133 {
2134 return p1->tgid == p2->tgid;
2135 }
2136
2137 static inline struct task_struct *next_thread(const struct task_struct *p)
2138 {
2139 return list_entry_rcu(p->thread_group.next,
2140 struct task_struct, thread_group);
2141 }
2142
2143 static inline int thread_group_empty(struct task_struct *p)
2144 {
2145 return list_empty(&p->thread_group);
2146 }
2147
2148 #define delay_group_leader(p) \
2149 (thread_group_leader(p) && !thread_group_empty(p))
2150
2151 static inline int task_detached(struct task_struct *p)
2152 {
2153 return p->exit_signal == -1;
2154 }
2155
2156 /*
2157 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2158 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2159 * pins the final release of task.io_context. Also protects ->cpuset and
2160 * ->cgroup.subsys[].
2161 *
2162 * Nests both inside and outside of read_lock(&tasklist_lock).
2163 * It must not be nested with write_lock_irq(&tasklist_lock),
2164 * neither inside nor outside.
2165 */
2166 static inline void task_lock(struct task_struct *p)
2167 {
2168 spin_lock(&p->alloc_lock);
2169 }
2170
2171 static inline void task_unlock(struct task_struct *p)
2172 {
2173 spin_unlock(&p->alloc_lock);
2174 }
2175
2176 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2177 unsigned long *flags);
2178
2179 static inline void unlock_task_sighand(struct task_struct *tsk,
2180 unsigned long *flags)
2181 {
2182 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2183 }
2184
2185 #ifndef __HAVE_THREAD_FUNCTIONS
2186
2187 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2188 #define task_stack_page(task) ((task)->stack)
2189
2190 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2191 {
2192 *task_thread_info(p) = *task_thread_info(org);
2193 task_thread_info(p)->task = p;
2194 }
2195
2196 static inline unsigned long *end_of_stack(struct task_struct *p)
2197 {
2198 return (unsigned long *)(task_thread_info(p) + 1);
2199 }
2200
2201 #endif
2202
2203 static inline int object_is_on_stack(void *obj)
2204 {
2205 void *stack = task_stack_page(current);
2206
2207 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2208 }
2209
2210 extern void thread_info_cache_init(void);
2211
2212 #ifdef CONFIG_DEBUG_STACK_USAGE
2213 static inline unsigned long stack_not_used(struct task_struct *p)
2214 {
2215 unsigned long *n = end_of_stack(p);
2216
2217 do { /* Skip over canary */
2218 n++;
2219 } while (!*n);
2220
2221 return (unsigned long)n - (unsigned long)end_of_stack(p);
2222 }
2223 #endif
2224
2225 /* set thread flags in other task's structures
2226 * - see asm/thread_info.h for TIF_xxxx flags available
2227 */
2228 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2229 {
2230 set_ti_thread_flag(task_thread_info(tsk), flag);
2231 }
2232
2233 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2234 {
2235 clear_ti_thread_flag(task_thread_info(tsk), flag);
2236 }
2237
2238 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2239 {
2240 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2241 }
2242
2243 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2244 {
2245 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2246 }
2247
2248 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2249 {
2250 return test_ti_thread_flag(task_thread_info(tsk), flag);
2251 }
2252
2253 static inline void set_tsk_need_resched(struct task_struct *tsk)
2254 {
2255 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2256 }
2257
2258 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2259 {
2260 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2261 }
2262
2263 static inline int test_tsk_need_resched(struct task_struct *tsk)
2264 {
2265 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2266 }
2267
2268 static inline int restart_syscall(void)
2269 {
2270 set_tsk_thread_flag(current, TIF_SIGPENDING);
2271 return -ERESTARTNOINTR;
2272 }
2273
2274 static inline int signal_pending(struct task_struct *p)
2275 {
2276 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2277 }
2278
2279 extern int __fatal_signal_pending(struct task_struct *p);
2280
2281 static inline int fatal_signal_pending(struct task_struct *p)
2282 {
2283 return signal_pending(p) && __fatal_signal_pending(p);
2284 }
2285
2286 static inline int signal_pending_state(long state, struct task_struct *p)
2287 {
2288 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2289 return 0;
2290 if (!signal_pending(p))
2291 return 0;
2292
2293 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2294 }
2295
2296 static inline int need_resched(void)
2297 {
2298 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2299 }
2300
2301 /*
2302 * cond_resched() and cond_resched_lock(): latency reduction via
2303 * explicit rescheduling in places that are safe. The return
2304 * value indicates whether a reschedule was done in fact.
2305 * cond_resched_lock() will drop the spinlock before scheduling,
2306 * cond_resched_softirq() will enable bhs before scheduling.
2307 */
2308 extern int _cond_resched(void);
2309 #ifdef CONFIG_PREEMPT_BKL
2310 static inline int cond_resched(void)
2311 {
2312 return 0;
2313 }
2314 #else
2315 static inline int cond_resched(void)
2316 {
2317 return _cond_resched();
2318 }
2319 #endif
2320 extern int cond_resched_lock(spinlock_t * lock);
2321 extern int cond_resched_softirq(void);
2322 static inline int cond_resched_bkl(void)
2323 {
2324 return _cond_resched();
2325 }
2326
2327 /*
2328 * Does a critical section need to be broken due to another
2329 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2330 * but a general need for low latency)
2331 */
2332 static inline int spin_needbreak(spinlock_t *lock)
2333 {
2334 #ifdef CONFIG_PREEMPT
2335 return spin_is_contended(lock);
2336 #else
2337 return 0;
2338 #endif
2339 }
2340
2341 /*
2342 * Thread group CPU time accounting.
2343 */
2344 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2345 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2346
2347 static inline void thread_group_cputime_init(struct signal_struct *sig)
2348 {
2349 sig->cputimer.cputime = INIT_CPUTIME;
2350 spin_lock_init(&sig->cputimer.lock);
2351 sig->cputimer.running = 0;
2352 }
2353
2354 static inline void thread_group_cputime_free(struct signal_struct *sig)
2355 {
2356 }
2357
2358 /*
2359 * Reevaluate whether the task has signals pending delivery.
2360 * Wake the task if so.
2361 * This is required every time the blocked sigset_t changes.
2362 * callers must hold sighand->siglock.
2363 */
2364 extern void recalc_sigpending_and_wake(struct task_struct *t);
2365 extern void recalc_sigpending(void);
2366
2367 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2368
2369 /*
2370 * Wrappers for p->thread_info->cpu access. No-op on UP.
2371 */
2372 #ifdef CONFIG_SMP
2373
2374 static inline unsigned int task_cpu(const struct task_struct *p)
2375 {
2376 return task_thread_info(p)->cpu;
2377 }
2378
2379 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2380
2381 #else
2382
2383 static inline unsigned int task_cpu(const struct task_struct *p)
2384 {
2385 return 0;
2386 }
2387
2388 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2389 {
2390 }
2391
2392 #endif /* CONFIG_SMP */
2393
2394 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2395
2396 #ifdef CONFIG_TRACING
2397 extern void
2398 __trace_special(void *__tr, void *__data,
2399 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2400 #else
2401 static inline void
2402 __trace_special(void *__tr, void *__data,
2403 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2404 {
2405 }
2406 #endif
2407
2408 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2409 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2410
2411 extern void normalize_rt_tasks(void);
2412
2413 #ifdef CONFIG_GROUP_SCHED
2414
2415 extern struct task_group init_task_group;
2416 #ifdef CONFIG_USER_SCHED
2417 extern struct task_group root_task_group;
2418 extern void set_tg_uid(struct user_struct *user);
2419 #endif
2420
2421 extern struct task_group *sched_create_group(struct task_group *parent);
2422 extern void sched_destroy_group(struct task_group *tg);
2423 extern void sched_move_task(struct task_struct *tsk);
2424 #ifdef CONFIG_FAIR_GROUP_SCHED
2425 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2426 extern unsigned long sched_group_shares(struct task_group *tg);
2427 #endif
2428 #ifdef CONFIG_RT_GROUP_SCHED
2429 extern int sched_group_set_rt_runtime(struct task_group *tg,
2430 long rt_runtime_us);
2431 extern long sched_group_rt_runtime(struct task_group *tg);
2432 extern int sched_group_set_rt_period(struct task_group *tg,
2433 long rt_period_us);
2434 extern long sched_group_rt_period(struct task_group *tg);
2435 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2436 #endif
2437 #endif
2438
2439 extern int task_can_switch_user(struct user_struct *up,
2440 struct task_struct *tsk);
2441
2442 #ifdef CONFIG_TASK_XACCT
2443 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2444 {
2445 tsk->ioac.rchar += amt;
2446 }
2447
2448 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2449 {
2450 tsk->ioac.wchar += amt;
2451 }
2452
2453 static inline void inc_syscr(struct task_struct *tsk)
2454 {
2455 tsk->ioac.syscr++;
2456 }
2457
2458 static inline void inc_syscw(struct task_struct *tsk)
2459 {
2460 tsk->ioac.syscw++;
2461 }
2462 #else
2463 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2464 {
2465 }
2466
2467 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2468 {
2469 }
2470
2471 static inline void inc_syscr(struct task_struct *tsk)
2472 {
2473 }
2474
2475 static inline void inc_syscw(struct task_struct *tsk)
2476 {
2477 }
2478 #endif
2479
2480 #ifndef TASK_SIZE_OF
2481 #define TASK_SIZE_OF(tsk) TASK_SIZE
2482 #endif
2483
2484 /*
2485 * Call the function if the target task is executing on a CPU right now:
2486 */
2487 extern void task_oncpu_function_call(struct task_struct *p,
2488 void (*func) (void *info), void *info);
2489
2490
2491 #ifdef CONFIG_MM_OWNER
2492 extern void mm_update_next_owner(struct mm_struct *mm);
2493 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2494 #else
2495 static inline void mm_update_next_owner(struct mm_struct *mm)
2496 {
2497 }
2498
2499 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2500 {
2501 }
2502 #endif /* CONFIG_MM_OWNER */
2503
2504 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2505
2506 #endif /* __KERNEL__ */
2507
2508 #endif