]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
8c38df07ac3aaf0f231aff7b8d7ae30322e515f4
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93 #include <linux/uidgid.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148 extern void update_cpu_load_nohz(void);
149
150 extern unsigned long get_parent_ip(unsigned long addr);
151
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 {
164 }
165 static inline void proc_sched_set_task(struct task_struct *p)
166 {
167 }
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 {
171 }
172 #endif
173
174 /*
175 * Task state bitmask. NOTE! These bits are also
176 * encoded in fs/proc/array.c: get_task_state().
177 *
178 * We have two separate sets of flags: task->state
179 * is about runnability, while task->exit_state are
180 * about the task exiting. Confusing, but this way
181 * modifying one set can't modify the other one by
182 * mistake.
183 */
184 #define TASK_RUNNING 0
185 #define TASK_INTERRUPTIBLE 1
186 #define TASK_UNINTERRUPTIBLE 2
187 #define __TASK_STOPPED 4
188 #define __TASK_TRACED 8
189 /* in tsk->exit_state */
190 #define EXIT_ZOMBIE 16
191 #define EXIT_DEAD 32
192 /* in tsk->state again */
193 #define TASK_DEAD 64
194 #define TASK_WAKEKILL 128
195 #define TASK_WAKING 256
196 #define TASK_STATE_MAX 512
197
198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199
200 extern char ___assert_task_state[1 - 2*!!(
201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
202
203 /* Convenience macros for the sake of set_task_state */
204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
207
208 /* Convenience macros for the sake of wake_up */
209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211
212 /* get_task_state() */
213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
215 __TASK_TRACED)
216
217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
219 #define task_is_dead(task) ((task)->exit_state != 0)
220 #define task_is_stopped_or_traced(task) \
221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
222 #define task_contributes_to_load(task) \
223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
224 (task->flags & PF_FROZEN) == 0)
225
226 #define __set_task_state(tsk, state_value) \
227 do { (tsk)->state = (state_value); } while (0)
228 #define set_task_state(tsk, state_value) \
229 set_mb((tsk)->state, (state_value))
230
231 /*
232 * set_current_state() includes a barrier so that the write of current->state
233 * is correctly serialised wrt the caller's subsequent test of whether to
234 * actually sleep:
235 *
236 * set_current_state(TASK_UNINTERRUPTIBLE);
237 * if (do_i_need_to_sleep())
238 * schedule();
239 *
240 * If the caller does not need such serialisation then use __set_current_state()
241 */
242 #define __set_current_state(state_value) \
243 do { current->state = (state_value); } while (0)
244 #define set_current_state(state_value) \
245 set_mb(current->state, (state_value))
246
247 /* Task command name length */
248 #define TASK_COMM_LEN 16
249
250 #include <linux/spinlock.h>
251
252 /*
253 * This serializes "schedule()" and also protects
254 * the run-queue from deletions/modifications (but
255 * _adding_ to the beginning of the run-queue has
256 * a separate lock).
257 */
258 extern rwlock_t tasklist_lock;
259 extern spinlock_t mmlist_lock;
260
261 struct task_struct;
262
263 #ifdef CONFIG_PROVE_RCU
264 extern int lockdep_tasklist_lock_is_held(void);
265 #endif /* #ifdef CONFIG_PROVE_RCU */
266
267 extern void sched_init(void);
268 extern void sched_init_smp(void);
269 extern asmlinkage void schedule_tail(struct task_struct *prev);
270 extern void init_idle(struct task_struct *idle, int cpu);
271 extern void init_idle_bootup_task(struct task_struct *idle);
272
273 extern int runqueue_is_locked(int cpu);
274
275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
276 extern void nohz_balance_enter_idle(int cpu);
277 extern void set_cpu_sd_state_idle(void);
278 extern int get_nohz_timer_target(void);
279 #else
280 static inline void nohz_balance_enter_idle(int cpu) { }
281 static inline void set_cpu_sd_state_idle(void) { }
282 #endif
283
284 /*
285 * Only dump TASK_* tasks. (0 for all tasks)
286 */
287 extern void show_state_filter(unsigned long state_filter);
288
289 static inline void show_state(void)
290 {
291 show_state_filter(0);
292 }
293
294 extern void show_regs(struct pt_regs *);
295
296 /*
297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
298 * task), SP is the stack pointer of the first frame that should be shown in the back
299 * trace (or NULL if the entire call-chain of the task should be shown).
300 */
301 extern void show_stack(struct task_struct *task, unsigned long *sp);
302
303 void io_schedule(void);
304 long io_schedule_timeout(long timeout);
305
306 extern void cpu_init (void);
307 extern void trap_init(void);
308 extern void update_process_times(int user);
309 extern void scheduler_tick(void);
310
311 extern void sched_show_task(struct task_struct *p);
312
313 #ifdef CONFIG_LOCKUP_DETECTOR
314 extern void touch_softlockup_watchdog(void);
315 extern void touch_softlockup_watchdog_sync(void);
316 extern void touch_all_softlockup_watchdogs(void);
317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
318 void __user *buffer,
319 size_t *lenp, loff_t *ppos);
320 extern unsigned int softlockup_panic;
321 void lockup_detector_init(void);
322 #else
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_softlockup_watchdog_sync(void)
327 {
328 }
329 static inline void touch_all_softlockup_watchdogs(void)
330 {
331 }
332 static inline void lockup_detector_init(void)
333 {
334 }
335 #endif
336
337 #ifdef CONFIG_DETECT_HUNG_TASK
338 extern unsigned int sysctl_hung_task_panic;
339 extern unsigned long sysctl_hung_task_check_count;
340 extern unsigned long sysctl_hung_task_timeout_secs;
341 extern unsigned long sysctl_hung_task_warnings;
342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
343 void __user *buffer,
344 size_t *lenp, loff_t *ppos);
345 #else
346 /* Avoid need for ifdefs elsewhere in the code */
347 enum { sysctl_hung_task_timeout_secs = 0 };
348 #endif
349
350 /* Attach to any functions which should be ignored in wchan output. */
351 #define __sched __attribute__((__section__(".sched.text")))
352
353 /* Linker adds these: start and end of __sched functions */
354 extern char __sched_text_start[], __sched_text_end[];
355
356 /* Is this address in the __sched functions? */
357 extern int in_sched_functions(unsigned long addr);
358
359 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
360 extern signed long schedule_timeout(signed long timeout);
361 extern signed long schedule_timeout_interruptible(signed long timeout);
362 extern signed long schedule_timeout_killable(signed long timeout);
363 extern signed long schedule_timeout_uninterruptible(signed long timeout);
364 asmlinkage void schedule(void);
365 extern void schedule_preempt_disabled(void);
366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
367
368 struct nsproxy;
369 struct user_namespace;
370
371 /*
372 * Default maximum number of active map areas, this limits the number of vmas
373 * per mm struct. Users can overwrite this number by sysctl but there is a
374 * problem.
375 *
376 * When a program's coredump is generated as ELF format, a section is created
377 * per a vma. In ELF, the number of sections is represented in unsigned short.
378 * This means the number of sections should be smaller than 65535 at coredump.
379 * Because the kernel adds some informative sections to a image of program at
380 * generating coredump, we need some margin. The number of extra sections is
381 * 1-3 now and depends on arch. We use "5" as safe margin, here.
382 */
383 #define MAPCOUNT_ELF_CORE_MARGIN (5)
384 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
385
386 extern int sysctl_max_map_count;
387
388 #include <linux/aio.h>
389
390 #ifdef CONFIG_MMU
391 extern void arch_pick_mmap_layout(struct mm_struct *mm);
392 extern unsigned long
393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
394 unsigned long, unsigned long);
395 extern unsigned long
396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
397 unsigned long len, unsigned long pgoff,
398 unsigned long flags);
399 extern void arch_unmap_area(struct mm_struct *, unsigned long);
400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
401 #else
402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
403 #endif
404
405
406 extern void set_dumpable(struct mm_struct *mm, int value);
407 extern int get_dumpable(struct mm_struct *mm);
408
409 /* get/set_dumpable() values */
410 #define SUID_DUMPABLE_DISABLED 0
411 #define SUID_DUMPABLE_ENABLED 1
412 #define SUID_DUMPABLE_SAFE 2
413
414 /* mm flags */
415 /* dumpable bits */
416 #define MMF_DUMPABLE 0 /* core dump is permitted */
417 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
418
419 #define MMF_DUMPABLE_BITS 2
420 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
421
422 /* coredump filter bits */
423 #define MMF_DUMP_ANON_PRIVATE 2
424 #define MMF_DUMP_ANON_SHARED 3
425 #define MMF_DUMP_MAPPED_PRIVATE 4
426 #define MMF_DUMP_MAPPED_SHARED 5
427 #define MMF_DUMP_ELF_HEADERS 6
428 #define MMF_DUMP_HUGETLB_PRIVATE 7
429 #define MMF_DUMP_HUGETLB_SHARED 8
430
431 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
432 #define MMF_DUMP_FILTER_BITS 7
433 #define MMF_DUMP_FILTER_MASK \
434 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
435 #define MMF_DUMP_FILTER_DEFAULT \
436 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
437 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
438
439 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
440 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
441 #else
442 # define MMF_DUMP_MASK_DEFAULT_ELF 0
443 #endif
444 /* leave room for more dump flags */
445 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
446 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
447 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
448
449 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
450
451 struct sighand_struct {
452 atomic_t count;
453 struct k_sigaction action[_NSIG];
454 spinlock_t siglock;
455 wait_queue_head_t signalfd_wqh;
456 };
457
458 struct pacct_struct {
459 int ac_flag;
460 long ac_exitcode;
461 unsigned long ac_mem;
462 cputime_t ac_utime, ac_stime;
463 unsigned long ac_minflt, ac_majflt;
464 };
465
466 struct cpu_itimer {
467 cputime_t expires;
468 cputime_t incr;
469 u32 error;
470 u32 incr_error;
471 };
472
473 /**
474 * struct task_cputime - collected CPU time counts
475 * @utime: time spent in user mode, in &cputime_t units
476 * @stime: time spent in kernel mode, in &cputime_t units
477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
478 *
479 * This structure groups together three kinds of CPU time that are
480 * tracked for threads and thread groups. Most things considering
481 * CPU time want to group these counts together and treat all three
482 * of them in parallel.
483 */
484 struct task_cputime {
485 cputime_t utime;
486 cputime_t stime;
487 unsigned long long sum_exec_runtime;
488 };
489 /* Alternate field names when used to cache expirations. */
490 #define prof_exp stime
491 #define virt_exp utime
492 #define sched_exp sum_exec_runtime
493
494 #define INIT_CPUTIME \
495 (struct task_cputime) { \
496 .utime = 0, \
497 .stime = 0, \
498 .sum_exec_runtime = 0, \
499 }
500
501 /*
502 * Disable preemption until the scheduler is running.
503 * Reset by start_kernel()->sched_init()->init_idle().
504 *
505 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
506 * before the scheduler is active -- see should_resched().
507 */
508 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
509
510 /**
511 * struct thread_group_cputimer - thread group interval timer counts
512 * @cputime: thread group interval timers.
513 * @running: non-zero when there are timers running and
514 * @cputime receives updates.
515 * @lock: lock for fields in this struct.
516 *
517 * This structure contains the version of task_cputime, above, that is
518 * used for thread group CPU timer calculations.
519 */
520 struct thread_group_cputimer {
521 struct task_cputime cputime;
522 int running;
523 raw_spinlock_t lock;
524 };
525
526 #include <linux/rwsem.h>
527 struct autogroup;
528
529 /*
530 * NOTE! "signal_struct" does not have its own
531 * locking, because a shared signal_struct always
532 * implies a shared sighand_struct, so locking
533 * sighand_struct is always a proper superset of
534 * the locking of signal_struct.
535 */
536 struct signal_struct {
537 atomic_t sigcnt;
538 atomic_t live;
539 int nr_threads;
540
541 wait_queue_head_t wait_chldexit; /* for wait4() */
542
543 /* current thread group signal load-balancing target: */
544 struct task_struct *curr_target;
545
546 /* shared signal handling: */
547 struct sigpending shared_pending;
548
549 /* thread group exit support */
550 int group_exit_code;
551 /* overloaded:
552 * - notify group_exit_task when ->count is equal to notify_count
553 * - everyone except group_exit_task is stopped during signal delivery
554 * of fatal signals, group_exit_task processes the signal.
555 */
556 int notify_count;
557 struct task_struct *group_exit_task;
558
559 /* thread group stop support, overloads group_exit_code too */
560 int group_stop_count;
561 unsigned int flags; /* see SIGNAL_* flags below */
562
563 /*
564 * PR_SET_CHILD_SUBREAPER marks a process, like a service
565 * manager, to re-parent orphan (double-forking) child processes
566 * to this process instead of 'init'. The service manager is
567 * able to receive SIGCHLD signals and is able to investigate
568 * the process until it calls wait(). All children of this
569 * process will inherit a flag if they should look for a
570 * child_subreaper process at exit.
571 */
572 unsigned int is_child_subreaper:1;
573 unsigned int has_child_subreaper:1;
574
575 /* POSIX.1b Interval Timers */
576 struct list_head posix_timers;
577
578 /* ITIMER_REAL timer for the process */
579 struct hrtimer real_timer;
580 struct pid *leader_pid;
581 ktime_t it_real_incr;
582
583 /*
584 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
585 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
586 * values are defined to 0 and 1 respectively
587 */
588 struct cpu_itimer it[2];
589
590 /*
591 * Thread group totals for process CPU timers.
592 * See thread_group_cputimer(), et al, for details.
593 */
594 struct thread_group_cputimer cputimer;
595
596 /* Earliest-expiration cache. */
597 struct task_cputime cputime_expires;
598
599 struct list_head cpu_timers[3];
600
601 struct pid *tty_old_pgrp;
602
603 /* boolean value for session group leader */
604 int leader;
605
606 struct tty_struct *tty; /* NULL if no tty */
607
608 #ifdef CONFIG_SCHED_AUTOGROUP
609 struct autogroup *autogroup;
610 #endif
611 /*
612 * Cumulative resource counters for dead threads in the group,
613 * and for reaped dead child processes forked by this group.
614 * Live threads maintain their own counters and add to these
615 * in __exit_signal, except for the group leader.
616 */
617 cputime_t utime, stime, cutime, cstime;
618 cputime_t gtime;
619 cputime_t cgtime;
620 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
621 cputime_t prev_utime, prev_stime;
622 #endif
623 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
624 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
625 unsigned long inblock, oublock, cinblock, coublock;
626 unsigned long maxrss, cmaxrss;
627 struct task_io_accounting ioac;
628
629 /*
630 * Cumulative ns of schedule CPU time fo dead threads in the
631 * group, not including a zombie group leader, (This only differs
632 * from jiffies_to_ns(utime + stime) if sched_clock uses something
633 * other than jiffies.)
634 */
635 unsigned long long sum_sched_runtime;
636
637 /*
638 * We don't bother to synchronize most readers of this at all,
639 * because there is no reader checking a limit that actually needs
640 * to get both rlim_cur and rlim_max atomically, and either one
641 * alone is a single word that can safely be read normally.
642 * getrlimit/setrlimit use task_lock(current->group_leader) to
643 * protect this instead of the siglock, because they really
644 * have no need to disable irqs.
645 */
646 struct rlimit rlim[RLIM_NLIMITS];
647
648 #ifdef CONFIG_BSD_PROCESS_ACCT
649 struct pacct_struct pacct; /* per-process accounting information */
650 #endif
651 #ifdef CONFIG_TASKSTATS
652 struct taskstats *stats;
653 #endif
654 #ifdef CONFIG_AUDIT
655 unsigned audit_tty;
656 struct tty_audit_buf *tty_audit_buf;
657 #endif
658 #ifdef CONFIG_CGROUPS
659 /*
660 * group_rwsem prevents new tasks from entering the threadgroup and
661 * member tasks from exiting,a more specifically, setting of
662 * PF_EXITING. fork and exit paths are protected with this rwsem
663 * using threadgroup_change_begin/end(). Users which require
664 * threadgroup to remain stable should use threadgroup_[un]lock()
665 * which also takes care of exec path. Currently, cgroup is the
666 * only user.
667 */
668 struct rw_semaphore group_rwsem;
669 #endif
670
671 int oom_adj; /* OOM kill score adjustment (bit shift) */
672 int oom_score_adj; /* OOM kill score adjustment */
673 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
674 * Only settable by CAP_SYS_RESOURCE. */
675
676 struct mutex cred_guard_mutex; /* guard against foreign influences on
677 * credential calculations
678 * (notably. ptrace) */
679 };
680
681 /*
682 * Bits in flags field of signal_struct.
683 */
684 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
685 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
686 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
687 /*
688 * Pending notifications to parent.
689 */
690 #define SIGNAL_CLD_STOPPED 0x00000010
691 #define SIGNAL_CLD_CONTINUED 0x00000020
692 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
693
694 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
695
696 /* If true, all threads except ->group_exit_task have pending SIGKILL */
697 static inline int signal_group_exit(const struct signal_struct *sig)
698 {
699 return (sig->flags & SIGNAL_GROUP_EXIT) ||
700 (sig->group_exit_task != NULL);
701 }
702
703 /*
704 * Some day this will be a full-fledged user tracking system..
705 */
706 struct user_struct {
707 atomic_t __count; /* reference count */
708 atomic_t processes; /* How many processes does this user have? */
709 atomic_t files; /* How many open files does this user have? */
710 atomic_t sigpending; /* How many pending signals does this user have? */
711 #ifdef CONFIG_INOTIFY_USER
712 atomic_t inotify_watches; /* How many inotify watches does this user have? */
713 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
714 #endif
715 #ifdef CONFIG_FANOTIFY
716 atomic_t fanotify_listeners;
717 #endif
718 #ifdef CONFIG_EPOLL
719 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
720 #endif
721 #ifdef CONFIG_POSIX_MQUEUE
722 /* protected by mq_lock */
723 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
724 #endif
725 unsigned long locked_shm; /* How many pages of mlocked shm ? */
726
727 #ifdef CONFIG_KEYS
728 struct key *uid_keyring; /* UID specific keyring */
729 struct key *session_keyring; /* UID's default session keyring */
730 #endif
731
732 /* Hash table maintenance information */
733 struct hlist_node uidhash_node;
734 kuid_t uid;
735
736 #ifdef CONFIG_PERF_EVENTS
737 atomic_long_t locked_vm;
738 #endif
739 };
740
741 extern int uids_sysfs_init(void);
742
743 extern struct user_struct *find_user(kuid_t);
744
745 extern struct user_struct root_user;
746 #define INIT_USER (&root_user)
747
748
749 struct backing_dev_info;
750 struct reclaim_state;
751
752 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
753 struct sched_info {
754 /* cumulative counters */
755 unsigned long pcount; /* # of times run on this cpu */
756 unsigned long long run_delay; /* time spent waiting on a runqueue */
757
758 /* timestamps */
759 unsigned long long last_arrival,/* when we last ran on a cpu */
760 last_queued; /* when we were last queued to run */
761 };
762 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
763
764 #ifdef CONFIG_TASK_DELAY_ACCT
765 struct task_delay_info {
766 spinlock_t lock;
767 unsigned int flags; /* Private per-task flags */
768
769 /* For each stat XXX, add following, aligned appropriately
770 *
771 * struct timespec XXX_start, XXX_end;
772 * u64 XXX_delay;
773 * u32 XXX_count;
774 *
775 * Atomicity of updates to XXX_delay, XXX_count protected by
776 * single lock above (split into XXX_lock if contention is an issue).
777 */
778
779 /*
780 * XXX_count is incremented on every XXX operation, the delay
781 * associated with the operation is added to XXX_delay.
782 * XXX_delay contains the accumulated delay time in nanoseconds.
783 */
784 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
785 u64 blkio_delay; /* wait for sync block io completion */
786 u64 swapin_delay; /* wait for swapin block io completion */
787 u32 blkio_count; /* total count of the number of sync block */
788 /* io operations performed */
789 u32 swapin_count; /* total count of the number of swapin block */
790 /* io operations performed */
791
792 struct timespec freepages_start, freepages_end;
793 u64 freepages_delay; /* wait for memory reclaim */
794 u32 freepages_count; /* total count of memory reclaim */
795 };
796 #endif /* CONFIG_TASK_DELAY_ACCT */
797
798 static inline int sched_info_on(void)
799 {
800 #ifdef CONFIG_SCHEDSTATS
801 return 1;
802 #elif defined(CONFIG_TASK_DELAY_ACCT)
803 extern int delayacct_on;
804 return delayacct_on;
805 #else
806 return 0;
807 #endif
808 }
809
810 enum cpu_idle_type {
811 CPU_IDLE,
812 CPU_NOT_IDLE,
813 CPU_NEWLY_IDLE,
814 CPU_MAX_IDLE_TYPES
815 };
816
817 /*
818 * Increase resolution of nice-level calculations for 64-bit architectures.
819 * The extra resolution improves shares distribution and load balancing of
820 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
821 * hierarchies, especially on larger systems. This is not a user-visible change
822 * and does not change the user-interface for setting shares/weights.
823 *
824 * We increase resolution only if we have enough bits to allow this increased
825 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
826 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
827 * increased costs.
828 */
829 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
830 # define SCHED_LOAD_RESOLUTION 10
831 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
832 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
833 #else
834 # define SCHED_LOAD_RESOLUTION 0
835 # define scale_load(w) (w)
836 # define scale_load_down(w) (w)
837 #endif
838
839 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
840 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
841
842 /*
843 * Increase resolution of cpu_power calculations
844 */
845 #define SCHED_POWER_SHIFT 10
846 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
847
848 /*
849 * sched-domains (multiprocessor balancing) declarations:
850 */
851 #ifdef CONFIG_SMP
852 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
853 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
854 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
855 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
856 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
857 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
858 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
859 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
860 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
861 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
862 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
863 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
864
865 extern int __weak arch_sd_sibiling_asym_packing(void);
866
867 struct sched_group_power {
868 atomic_t ref;
869 /*
870 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
871 * single CPU.
872 */
873 unsigned int power, power_orig;
874 unsigned long next_update;
875 /*
876 * Number of busy cpus in this group.
877 */
878 atomic_t nr_busy_cpus;
879
880 unsigned long cpumask[0]; /* iteration mask */
881 };
882
883 struct sched_group {
884 struct sched_group *next; /* Must be a circular list */
885 atomic_t ref;
886
887 unsigned int group_weight;
888 struct sched_group_power *sgp;
889
890 /*
891 * The CPUs this group covers.
892 *
893 * NOTE: this field is variable length. (Allocated dynamically
894 * by attaching extra space to the end of the structure,
895 * depending on how many CPUs the kernel has booted up with)
896 */
897 unsigned long cpumask[0];
898 };
899
900 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
901 {
902 return to_cpumask(sg->cpumask);
903 }
904
905 /*
906 * cpumask masking which cpus in the group are allowed to iterate up the domain
907 * tree.
908 */
909 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
910 {
911 return to_cpumask(sg->sgp->cpumask);
912 }
913
914 /**
915 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
916 * @group: The group whose first cpu is to be returned.
917 */
918 static inline unsigned int group_first_cpu(struct sched_group *group)
919 {
920 return cpumask_first(sched_group_cpus(group));
921 }
922
923 struct sched_domain_attr {
924 int relax_domain_level;
925 };
926
927 #define SD_ATTR_INIT (struct sched_domain_attr) { \
928 .relax_domain_level = -1, \
929 }
930
931 extern int sched_domain_level_max;
932
933 struct sched_domain {
934 /* These fields must be setup */
935 struct sched_domain *parent; /* top domain must be null terminated */
936 struct sched_domain *child; /* bottom domain must be null terminated */
937 struct sched_group *groups; /* the balancing groups of the domain */
938 unsigned long min_interval; /* Minimum balance interval ms */
939 unsigned long max_interval; /* Maximum balance interval ms */
940 unsigned int busy_factor; /* less balancing by factor if busy */
941 unsigned int imbalance_pct; /* No balance until over watermark */
942 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
943 unsigned int busy_idx;
944 unsigned int idle_idx;
945 unsigned int newidle_idx;
946 unsigned int wake_idx;
947 unsigned int forkexec_idx;
948 unsigned int smt_gain;
949 int flags; /* See SD_* */
950 int level;
951 int idle_buddy; /* cpu assigned to select_idle_sibling() */
952
953 /* Runtime fields. */
954 unsigned long last_balance; /* init to jiffies. units in jiffies */
955 unsigned int balance_interval; /* initialise to 1. units in ms. */
956 unsigned int nr_balance_failed; /* initialise to 0 */
957
958 u64 last_update;
959
960 #ifdef CONFIG_SCHEDSTATS
961 /* load_balance() stats */
962 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
963 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
964 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
965 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
966 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
970
971 /* Active load balancing */
972 unsigned int alb_count;
973 unsigned int alb_failed;
974 unsigned int alb_pushed;
975
976 /* SD_BALANCE_EXEC stats */
977 unsigned int sbe_count;
978 unsigned int sbe_balanced;
979 unsigned int sbe_pushed;
980
981 /* SD_BALANCE_FORK stats */
982 unsigned int sbf_count;
983 unsigned int sbf_balanced;
984 unsigned int sbf_pushed;
985
986 /* try_to_wake_up() stats */
987 unsigned int ttwu_wake_remote;
988 unsigned int ttwu_move_affine;
989 unsigned int ttwu_move_balance;
990 #endif
991 #ifdef CONFIG_SCHED_DEBUG
992 char *name;
993 #endif
994 union {
995 void *private; /* used during construction */
996 struct rcu_head rcu; /* used during destruction */
997 };
998
999 unsigned int span_weight;
1000 /*
1001 * Span of all CPUs in this domain.
1002 *
1003 * NOTE: this field is variable length. (Allocated dynamically
1004 * by attaching extra space to the end of the structure,
1005 * depending on how many CPUs the kernel has booted up with)
1006 */
1007 unsigned long span[0];
1008 };
1009
1010 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1011 {
1012 return to_cpumask(sd->span);
1013 }
1014
1015 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1016 struct sched_domain_attr *dattr_new);
1017
1018 /* Allocate an array of sched domains, for partition_sched_domains(). */
1019 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1021
1022 /* Test a flag in parent sched domain */
1023 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1024 {
1025 if (sd->parent && (sd->parent->flags & flag))
1026 return 1;
1027
1028 return 0;
1029 }
1030
1031 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1032 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1033
1034 bool cpus_share_cache(int this_cpu, int that_cpu);
1035
1036 #else /* CONFIG_SMP */
1037
1038 struct sched_domain_attr;
1039
1040 static inline void
1041 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1042 struct sched_domain_attr *dattr_new)
1043 {
1044 }
1045
1046 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1047 {
1048 return true;
1049 }
1050
1051 #endif /* !CONFIG_SMP */
1052
1053
1054 struct io_context; /* See blkdev.h */
1055
1056
1057 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1058 extern void prefetch_stack(struct task_struct *t);
1059 #else
1060 static inline void prefetch_stack(struct task_struct *t) { }
1061 #endif
1062
1063 struct audit_context; /* See audit.c */
1064 struct mempolicy;
1065 struct pipe_inode_info;
1066 struct uts_namespace;
1067
1068 struct rq;
1069 struct sched_domain;
1070
1071 /*
1072 * wake flags
1073 */
1074 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1075 #define WF_FORK 0x02 /* child wakeup after fork */
1076 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1077
1078 #define ENQUEUE_WAKEUP 1
1079 #define ENQUEUE_HEAD 2
1080 #ifdef CONFIG_SMP
1081 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1082 #else
1083 #define ENQUEUE_WAKING 0
1084 #endif
1085
1086 #define DEQUEUE_SLEEP 1
1087
1088 struct sched_class {
1089 const struct sched_class *next;
1090
1091 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1092 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1093 void (*yield_task) (struct rq *rq);
1094 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1095
1096 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1097
1098 struct task_struct * (*pick_next_task) (struct rq *rq);
1099 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1100
1101 #ifdef CONFIG_SMP
1102 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1103
1104 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1105 void (*post_schedule) (struct rq *this_rq);
1106 void (*task_waking) (struct task_struct *task);
1107 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1108
1109 void (*set_cpus_allowed)(struct task_struct *p,
1110 const struct cpumask *newmask);
1111
1112 void (*rq_online)(struct rq *rq);
1113 void (*rq_offline)(struct rq *rq);
1114 #endif
1115
1116 void (*set_curr_task) (struct rq *rq);
1117 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1118 void (*task_fork) (struct task_struct *p);
1119
1120 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1121 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1122 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1123 int oldprio);
1124
1125 unsigned int (*get_rr_interval) (struct rq *rq,
1126 struct task_struct *task);
1127
1128 #ifdef CONFIG_FAIR_GROUP_SCHED
1129 void (*task_move_group) (struct task_struct *p, int on_rq);
1130 #endif
1131 };
1132
1133 struct load_weight {
1134 unsigned long weight, inv_weight;
1135 };
1136
1137 #ifdef CONFIG_SCHEDSTATS
1138 struct sched_statistics {
1139 u64 wait_start;
1140 u64 wait_max;
1141 u64 wait_count;
1142 u64 wait_sum;
1143 u64 iowait_count;
1144 u64 iowait_sum;
1145
1146 u64 sleep_start;
1147 u64 sleep_max;
1148 s64 sum_sleep_runtime;
1149
1150 u64 block_start;
1151 u64 block_max;
1152 u64 exec_max;
1153 u64 slice_max;
1154
1155 u64 nr_migrations_cold;
1156 u64 nr_failed_migrations_affine;
1157 u64 nr_failed_migrations_running;
1158 u64 nr_failed_migrations_hot;
1159 u64 nr_forced_migrations;
1160
1161 u64 nr_wakeups;
1162 u64 nr_wakeups_sync;
1163 u64 nr_wakeups_migrate;
1164 u64 nr_wakeups_local;
1165 u64 nr_wakeups_remote;
1166 u64 nr_wakeups_affine;
1167 u64 nr_wakeups_affine_attempts;
1168 u64 nr_wakeups_passive;
1169 u64 nr_wakeups_idle;
1170 };
1171 #endif
1172
1173 struct sched_entity {
1174 struct load_weight load; /* for load-balancing */
1175 struct rb_node run_node;
1176 struct list_head group_node;
1177 unsigned int on_rq;
1178
1179 u64 exec_start;
1180 u64 sum_exec_runtime;
1181 u64 vruntime;
1182 u64 prev_sum_exec_runtime;
1183
1184 u64 nr_migrations;
1185
1186 #ifdef CONFIG_SCHEDSTATS
1187 struct sched_statistics statistics;
1188 #endif
1189
1190 #ifdef CONFIG_FAIR_GROUP_SCHED
1191 struct sched_entity *parent;
1192 /* rq on which this entity is (to be) queued: */
1193 struct cfs_rq *cfs_rq;
1194 /* rq "owned" by this entity/group: */
1195 struct cfs_rq *my_q;
1196 #endif
1197 };
1198
1199 struct sched_rt_entity {
1200 struct list_head run_list;
1201 unsigned long timeout;
1202 unsigned int time_slice;
1203
1204 struct sched_rt_entity *back;
1205 #ifdef CONFIG_RT_GROUP_SCHED
1206 struct sched_rt_entity *parent;
1207 /* rq on which this entity is (to be) queued: */
1208 struct rt_rq *rt_rq;
1209 /* rq "owned" by this entity/group: */
1210 struct rt_rq *my_q;
1211 #endif
1212 };
1213
1214 /*
1215 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1216 * Timeslices get refilled after they expire.
1217 */
1218 #define RR_TIMESLICE (100 * HZ / 1000)
1219
1220 struct rcu_node;
1221
1222 enum perf_event_task_context {
1223 perf_invalid_context = -1,
1224 perf_hw_context = 0,
1225 perf_sw_context,
1226 perf_nr_task_contexts,
1227 };
1228
1229 struct task_struct {
1230 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1231 void *stack;
1232 atomic_t usage;
1233 unsigned int flags; /* per process flags, defined below */
1234 unsigned int ptrace;
1235
1236 #ifdef CONFIG_SMP
1237 struct llist_node wake_entry;
1238 int on_cpu;
1239 #endif
1240 int on_rq;
1241
1242 int prio, static_prio, normal_prio;
1243 unsigned int rt_priority;
1244 const struct sched_class *sched_class;
1245 struct sched_entity se;
1246 struct sched_rt_entity rt;
1247 #ifdef CONFIG_CGROUP_SCHED
1248 struct task_group *sched_task_group;
1249 #endif
1250
1251 #ifdef CONFIG_PREEMPT_NOTIFIERS
1252 /* list of struct preempt_notifier: */
1253 struct hlist_head preempt_notifiers;
1254 #endif
1255
1256 /*
1257 * fpu_counter contains the number of consecutive context switches
1258 * that the FPU is used. If this is over a threshold, the lazy fpu
1259 * saving becomes unlazy to save the trap. This is an unsigned char
1260 * so that after 256 times the counter wraps and the behavior turns
1261 * lazy again; this to deal with bursty apps that only use FPU for
1262 * a short time
1263 */
1264 unsigned char fpu_counter;
1265 #ifdef CONFIG_BLK_DEV_IO_TRACE
1266 unsigned int btrace_seq;
1267 #endif
1268
1269 unsigned int policy;
1270 int nr_cpus_allowed;
1271 cpumask_t cpus_allowed;
1272
1273 #ifdef CONFIG_PREEMPT_RCU
1274 int rcu_read_lock_nesting;
1275 char rcu_read_unlock_special;
1276 struct list_head rcu_node_entry;
1277 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1278 #ifdef CONFIG_TREE_PREEMPT_RCU
1279 struct rcu_node *rcu_blocked_node;
1280 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1281 #ifdef CONFIG_RCU_BOOST
1282 struct rt_mutex *rcu_boost_mutex;
1283 #endif /* #ifdef CONFIG_RCU_BOOST */
1284
1285 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1286 struct sched_info sched_info;
1287 #endif
1288
1289 struct list_head tasks;
1290 #ifdef CONFIG_SMP
1291 struct plist_node pushable_tasks;
1292 #endif
1293
1294 struct mm_struct *mm, *active_mm;
1295 #ifdef CONFIG_COMPAT_BRK
1296 unsigned brk_randomized:1;
1297 #endif
1298 #if defined(SPLIT_RSS_COUNTING)
1299 struct task_rss_stat rss_stat;
1300 #endif
1301 /* task state */
1302 int exit_state;
1303 int exit_code, exit_signal;
1304 int pdeath_signal; /* The signal sent when the parent dies */
1305 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1306 /* ??? */
1307 unsigned int personality;
1308 unsigned did_exec:1;
1309 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1310 * execve */
1311 unsigned in_iowait:1;
1312
1313 /* task may not gain privileges */
1314 unsigned no_new_privs:1;
1315
1316 /* Revert to default priority/policy when forking */
1317 unsigned sched_reset_on_fork:1;
1318 unsigned sched_contributes_to_load:1;
1319
1320 pid_t pid;
1321 pid_t tgid;
1322
1323 #ifdef CONFIG_CC_STACKPROTECTOR
1324 /* Canary value for the -fstack-protector gcc feature */
1325 unsigned long stack_canary;
1326 #endif
1327 /*
1328 * pointers to (original) parent process, youngest child, younger sibling,
1329 * older sibling, respectively. (p->father can be replaced with
1330 * p->real_parent->pid)
1331 */
1332 struct task_struct __rcu *real_parent; /* real parent process */
1333 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1334 /*
1335 * children/sibling forms the list of my natural children
1336 */
1337 struct list_head children; /* list of my children */
1338 struct list_head sibling; /* linkage in my parent's children list */
1339 struct task_struct *group_leader; /* threadgroup leader */
1340
1341 /*
1342 * ptraced is the list of tasks this task is using ptrace on.
1343 * This includes both natural children and PTRACE_ATTACH targets.
1344 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1345 */
1346 struct list_head ptraced;
1347 struct list_head ptrace_entry;
1348
1349 /* PID/PID hash table linkage. */
1350 struct pid_link pids[PIDTYPE_MAX];
1351 struct list_head thread_group;
1352
1353 struct completion *vfork_done; /* for vfork() */
1354 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1355 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1356
1357 cputime_t utime, stime, utimescaled, stimescaled;
1358 cputime_t gtime;
1359 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1360 cputime_t prev_utime, prev_stime;
1361 #endif
1362 unsigned long nvcsw, nivcsw; /* context switch counts */
1363 struct timespec start_time; /* monotonic time */
1364 struct timespec real_start_time; /* boot based time */
1365 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1366 unsigned long min_flt, maj_flt;
1367
1368 struct task_cputime cputime_expires;
1369 struct list_head cpu_timers[3];
1370
1371 /* process credentials */
1372 const struct cred __rcu *real_cred; /* objective and real subjective task
1373 * credentials (COW) */
1374 const struct cred __rcu *cred; /* effective (overridable) subjective task
1375 * credentials (COW) */
1376 char comm[TASK_COMM_LEN]; /* executable name excluding path
1377 - access with [gs]et_task_comm (which lock
1378 it with task_lock())
1379 - initialized normally by setup_new_exec */
1380 /* file system info */
1381 int link_count, total_link_count;
1382 #ifdef CONFIG_SYSVIPC
1383 /* ipc stuff */
1384 struct sysv_sem sysvsem;
1385 #endif
1386 #ifdef CONFIG_DETECT_HUNG_TASK
1387 /* hung task detection */
1388 unsigned long last_switch_count;
1389 #endif
1390 /* CPU-specific state of this task */
1391 struct thread_struct thread;
1392 /* filesystem information */
1393 struct fs_struct *fs;
1394 /* open file information */
1395 struct files_struct *files;
1396 /* namespaces */
1397 struct nsproxy *nsproxy;
1398 /* signal handlers */
1399 struct signal_struct *signal;
1400 struct sighand_struct *sighand;
1401
1402 sigset_t blocked, real_blocked;
1403 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1404 struct sigpending pending;
1405
1406 unsigned long sas_ss_sp;
1407 size_t sas_ss_size;
1408 int (*notifier)(void *priv);
1409 void *notifier_data;
1410 sigset_t *notifier_mask;
1411 struct callback_head *task_works;
1412
1413 struct audit_context *audit_context;
1414 #ifdef CONFIG_AUDITSYSCALL
1415 uid_t loginuid;
1416 unsigned int sessionid;
1417 #endif
1418 struct seccomp seccomp;
1419
1420 /* Thread group tracking */
1421 u32 parent_exec_id;
1422 u32 self_exec_id;
1423 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1424 * mempolicy */
1425 spinlock_t alloc_lock;
1426
1427 /* Protection of the PI data structures: */
1428 raw_spinlock_t pi_lock;
1429
1430 #ifdef CONFIG_RT_MUTEXES
1431 /* PI waiters blocked on a rt_mutex held by this task */
1432 struct plist_head pi_waiters;
1433 /* Deadlock detection and priority inheritance handling */
1434 struct rt_mutex_waiter *pi_blocked_on;
1435 #endif
1436
1437 #ifdef CONFIG_DEBUG_MUTEXES
1438 /* mutex deadlock detection */
1439 struct mutex_waiter *blocked_on;
1440 #endif
1441 #ifdef CONFIG_TRACE_IRQFLAGS
1442 unsigned int irq_events;
1443 unsigned long hardirq_enable_ip;
1444 unsigned long hardirq_disable_ip;
1445 unsigned int hardirq_enable_event;
1446 unsigned int hardirq_disable_event;
1447 int hardirqs_enabled;
1448 int hardirq_context;
1449 unsigned long softirq_disable_ip;
1450 unsigned long softirq_enable_ip;
1451 unsigned int softirq_disable_event;
1452 unsigned int softirq_enable_event;
1453 int softirqs_enabled;
1454 int softirq_context;
1455 #endif
1456 #ifdef CONFIG_LOCKDEP
1457 # define MAX_LOCK_DEPTH 48UL
1458 u64 curr_chain_key;
1459 int lockdep_depth;
1460 unsigned int lockdep_recursion;
1461 struct held_lock held_locks[MAX_LOCK_DEPTH];
1462 gfp_t lockdep_reclaim_gfp;
1463 #endif
1464
1465 /* journalling filesystem info */
1466 void *journal_info;
1467
1468 /* stacked block device info */
1469 struct bio_list *bio_list;
1470
1471 #ifdef CONFIG_BLOCK
1472 /* stack plugging */
1473 struct blk_plug *plug;
1474 #endif
1475
1476 /* VM state */
1477 struct reclaim_state *reclaim_state;
1478
1479 struct backing_dev_info *backing_dev_info;
1480
1481 struct io_context *io_context;
1482
1483 unsigned long ptrace_message;
1484 siginfo_t *last_siginfo; /* For ptrace use. */
1485 struct task_io_accounting ioac;
1486 #if defined(CONFIG_TASK_XACCT)
1487 u64 acct_rss_mem1; /* accumulated rss usage */
1488 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1489 cputime_t acct_timexpd; /* stime + utime since last update */
1490 #endif
1491 #ifdef CONFIG_CPUSETS
1492 nodemask_t mems_allowed; /* Protected by alloc_lock */
1493 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1494 int cpuset_mem_spread_rotor;
1495 int cpuset_slab_spread_rotor;
1496 #endif
1497 #ifdef CONFIG_CGROUPS
1498 /* Control Group info protected by css_set_lock */
1499 struct css_set __rcu *cgroups;
1500 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1501 struct list_head cg_list;
1502 #endif
1503 #ifdef CONFIG_FUTEX
1504 struct robust_list_head __user *robust_list;
1505 #ifdef CONFIG_COMPAT
1506 struct compat_robust_list_head __user *compat_robust_list;
1507 #endif
1508 struct list_head pi_state_list;
1509 struct futex_pi_state *pi_state_cache;
1510 #endif
1511 #ifdef CONFIG_PERF_EVENTS
1512 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1513 struct mutex perf_event_mutex;
1514 struct list_head perf_event_list;
1515 #endif
1516 #ifdef CONFIG_NUMA
1517 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1518 short il_next;
1519 short pref_node_fork;
1520 #endif
1521 struct rcu_head rcu;
1522
1523 /*
1524 * cache last used pipe for splice
1525 */
1526 struct pipe_inode_info *splice_pipe;
1527 #ifdef CONFIG_TASK_DELAY_ACCT
1528 struct task_delay_info *delays;
1529 #endif
1530 #ifdef CONFIG_FAULT_INJECTION
1531 int make_it_fail;
1532 #endif
1533 /*
1534 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1535 * balance_dirty_pages() for some dirty throttling pause
1536 */
1537 int nr_dirtied;
1538 int nr_dirtied_pause;
1539 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1540
1541 #ifdef CONFIG_LATENCYTOP
1542 int latency_record_count;
1543 struct latency_record latency_record[LT_SAVECOUNT];
1544 #endif
1545 /*
1546 * time slack values; these are used to round up poll() and
1547 * select() etc timeout values. These are in nanoseconds.
1548 */
1549 unsigned long timer_slack_ns;
1550 unsigned long default_timer_slack_ns;
1551
1552 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1553 /* Index of current stored address in ret_stack */
1554 int curr_ret_stack;
1555 /* Stack of return addresses for return function tracing */
1556 struct ftrace_ret_stack *ret_stack;
1557 /* time stamp for last schedule */
1558 unsigned long long ftrace_timestamp;
1559 /*
1560 * Number of functions that haven't been traced
1561 * because of depth overrun.
1562 */
1563 atomic_t trace_overrun;
1564 /* Pause for the tracing */
1565 atomic_t tracing_graph_pause;
1566 #endif
1567 #ifdef CONFIG_TRACING
1568 /* state flags for use by tracers */
1569 unsigned long trace;
1570 /* bitmask and counter of trace recursion */
1571 unsigned long trace_recursion;
1572 #endif /* CONFIG_TRACING */
1573 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1574 struct memcg_batch_info {
1575 int do_batch; /* incremented when batch uncharge started */
1576 struct mem_cgroup *memcg; /* target memcg of uncharge */
1577 unsigned long nr_pages; /* uncharged usage */
1578 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1579 } memcg_batch;
1580 #endif
1581 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1582 atomic_t ptrace_bp_refcnt;
1583 #endif
1584 #ifdef CONFIG_UPROBES
1585 struct uprobe_task *utask;
1586 #endif
1587 };
1588
1589 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1590 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1591
1592 /*
1593 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1594 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1595 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1596 * values are inverted: lower p->prio value means higher priority.
1597 *
1598 * The MAX_USER_RT_PRIO value allows the actual maximum
1599 * RT priority to be separate from the value exported to
1600 * user-space. This allows kernel threads to set their
1601 * priority to a value higher than any user task. Note:
1602 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1603 */
1604
1605 #define MAX_USER_RT_PRIO 100
1606 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1607
1608 #define MAX_PRIO (MAX_RT_PRIO + 40)
1609 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1610
1611 static inline int rt_prio(int prio)
1612 {
1613 if (unlikely(prio < MAX_RT_PRIO))
1614 return 1;
1615 return 0;
1616 }
1617
1618 static inline int rt_task(struct task_struct *p)
1619 {
1620 return rt_prio(p->prio);
1621 }
1622
1623 static inline struct pid *task_pid(struct task_struct *task)
1624 {
1625 return task->pids[PIDTYPE_PID].pid;
1626 }
1627
1628 static inline struct pid *task_tgid(struct task_struct *task)
1629 {
1630 return task->group_leader->pids[PIDTYPE_PID].pid;
1631 }
1632
1633 /*
1634 * Without tasklist or rcu lock it is not safe to dereference
1635 * the result of task_pgrp/task_session even if task == current,
1636 * we can race with another thread doing sys_setsid/sys_setpgid.
1637 */
1638 static inline struct pid *task_pgrp(struct task_struct *task)
1639 {
1640 return task->group_leader->pids[PIDTYPE_PGID].pid;
1641 }
1642
1643 static inline struct pid *task_session(struct task_struct *task)
1644 {
1645 return task->group_leader->pids[PIDTYPE_SID].pid;
1646 }
1647
1648 struct pid_namespace;
1649
1650 /*
1651 * the helpers to get the task's different pids as they are seen
1652 * from various namespaces
1653 *
1654 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1655 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1656 * current.
1657 * task_xid_nr_ns() : id seen from the ns specified;
1658 *
1659 * set_task_vxid() : assigns a virtual id to a task;
1660 *
1661 * see also pid_nr() etc in include/linux/pid.h
1662 */
1663 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1664 struct pid_namespace *ns);
1665
1666 static inline pid_t task_pid_nr(struct task_struct *tsk)
1667 {
1668 return tsk->pid;
1669 }
1670
1671 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1672 struct pid_namespace *ns)
1673 {
1674 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1675 }
1676
1677 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1678 {
1679 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1680 }
1681
1682
1683 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1684 {
1685 return tsk->tgid;
1686 }
1687
1688 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1689
1690 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1691 {
1692 return pid_vnr(task_tgid(tsk));
1693 }
1694
1695
1696 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1697 struct pid_namespace *ns)
1698 {
1699 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1700 }
1701
1702 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1703 {
1704 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1705 }
1706
1707
1708 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1709 struct pid_namespace *ns)
1710 {
1711 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1712 }
1713
1714 static inline pid_t task_session_vnr(struct task_struct *tsk)
1715 {
1716 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1717 }
1718
1719 /* obsolete, do not use */
1720 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1721 {
1722 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1723 }
1724
1725 /**
1726 * pid_alive - check that a task structure is not stale
1727 * @p: Task structure to be checked.
1728 *
1729 * Test if a process is not yet dead (at most zombie state)
1730 * If pid_alive fails, then pointers within the task structure
1731 * can be stale and must not be dereferenced.
1732 */
1733 static inline int pid_alive(struct task_struct *p)
1734 {
1735 return p->pids[PIDTYPE_PID].pid != NULL;
1736 }
1737
1738 /**
1739 * is_global_init - check if a task structure is init
1740 * @tsk: Task structure to be checked.
1741 *
1742 * Check if a task structure is the first user space task the kernel created.
1743 */
1744 static inline int is_global_init(struct task_struct *tsk)
1745 {
1746 return tsk->pid == 1;
1747 }
1748
1749 /*
1750 * is_container_init:
1751 * check whether in the task is init in its own pid namespace.
1752 */
1753 extern int is_container_init(struct task_struct *tsk);
1754
1755 extern struct pid *cad_pid;
1756
1757 extern void free_task(struct task_struct *tsk);
1758 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1759
1760 extern void __put_task_struct(struct task_struct *t);
1761
1762 static inline void put_task_struct(struct task_struct *t)
1763 {
1764 if (atomic_dec_and_test(&t->usage))
1765 __put_task_struct(t);
1766 }
1767
1768 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1770
1771 /*
1772 * Per process flags
1773 */
1774 #define PF_EXITING 0x00000004 /* getting shut down */
1775 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1776 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1777 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1778 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1779 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1780 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1781 #define PF_DUMPCORE 0x00000200 /* dumped core */
1782 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1783 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1784 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1785 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1786 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1787 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1788 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1789 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1790 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1791 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1792 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1793 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1794 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1795 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1796 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1797 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1798 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1799 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1800 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1801
1802 /*
1803 * Only the _current_ task can read/write to tsk->flags, but other
1804 * tasks can access tsk->flags in readonly mode for example
1805 * with tsk_used_math (like during threaded core dumping).
1806 * There is however an exception to this rule during ptrace
1807 * or during fork: the ptracer task is allowed to write to the
1808 * child->flags of its traced child (same goes for fork, the parent
1809 * can write to the child->flags), because we're guaranteed the
1810 * child is not running and in turn not changing child->flags
1811 * at the same time the parent does it.
1812 */
1813 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1814 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1815 #define clear_used_math() clear_stopped_child_used_math(current)
1816 #define set_used_math() set_stopped_child_used_math(current)
1817 #define conditional_stopped_child_used_math(condition, child) \
1818 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1819 #define conditional_used_math(condition) \
1820 conditional_stopped_child_used_math(condition, current)
1821 #define copy_to_stopped_child_used_math(child) \
1822 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1823 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1824 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1825 #define used_math() tsk_used_math(current)
1826
1827 /*
1828 * task->jobctl flags
1829 */
1830 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1831
1832 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1833 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1834 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1835 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1836 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1837 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1838 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1839
1840 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1841 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1842 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1843 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1844 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1845 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1846 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1847
1848 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1849 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1850
1851 extern bool task_set_jobctl_pending(struct task_struct *task,
1852 unsigned int mask);
1853 extern void task_clear_jobctl_trapping(struct task_struct *task);
1854 extern void task_clear_jobctl_pending(struct task_struct *task,
1855 unsigned int mask);
1856
1857 #ifdef CONFIG_PREEMPT_RCU
1858
1859 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1860 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1861
1862 static inline void rcu_copy_process(struct task_struct *p)
1863 {
1864 p->rcu_read_lock_nesting = 0;
1865 p->rcu_read_unlock_special = 0;
1866 #ifdef CONFIG_TREE_PREEMPT_RCU
1867 p->rcu_blocked_node = NULL;
1868 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1869 #ifdef CONFIG_RCU_BOOST
1870 p->rcu_boost_mutex = NULL;
1871 #endif /* #ifdef CONFIG_RCU_BOOST */
1872 INIT_LIST_HEAD(&p->rcu_node_entry);
1873 }
1874
1875 #else
1876
1877 static inline void rcu_copy_process(struct task_struct *p)
1878 {
1879 }
1880
1881 #endif
1882
1883 static inline void tsk_restore_flags(struct task_struct *task,
1884 unsigned long orig_flags, unsigned long flags)
1885 {
1886 task->flags &= ~flags;
1887 task->flags |= orig_flags & flags;
1888 }
1889
1890 #ifdef CONFIG_SMP
1891 extern void do_set_cpus_allowed(struct task_struct *p,
1892 const struct cpumask *new_mask);
1893
1894 extern int set_cpus_allowed_ptr(struct task_struct *p,
1895 const struct cpumask *new_mask);
1896 #else
1897 static inline void do_set_cpus_allowed(struct task_struct *p,
1898 const struct cpumask *new_mask)
1899 {
1900 }
1901 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1902 const struct cpumask *new_mask)
1903 {
1904 if (!cpumask_test_cpu(0, new_mask))
1905 return -EINVAL;
1906 return 0;
1907 }
1908 #endif
1909
1910 #ifdef CONFIG_NO_HZ
1911 void calc_load_enter_idle(void);
1912 void calc_load_exit_idle(void);
1913 #else
1914 static inline void calc_load_enter_idle(void) { }
1915 static inline void calc_load_exit_idle(void) { }
1916 #endif /* CONFIG_NO_HZ */
1917
1918 #ifndef CONFIG_CPUMASK_OFFSTACK
1919 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1920 {
1921 return set_cpus_allowed_ptr(p, &new_mask);
1922 }
1923 #endif
1924
1925 /*
1926 * Do not use outside of architecture code which knows its limitations.
1927 *
1928 * sched_clock() has no promise of monotonicity or bounded drift between
1929 * CPUs, use (which you should not) requires disabling IRQs.
1930 *
1931 * Please use one of the three interfaces below.
1932 */
1933 extern unsigned long long notrace sched_clock(void);
1934 /*
1935 * See the comment in kernel/sched/clock.c
1936 */
1937 extern u64 cpu_clock(int cpu);
1938 extern u64 local_clock(void);
1939 extern u64 sched_clock_cpu(int cpu);
1940
1941
1942 extern void sched_clock_init(void);
1943
1944 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1945 static inline void sched_clock_tick(void)
1946 {
1947 }
1948
1949 static inline void sched_clock_idle_sleep_event(void)
1950 {
1951 }
1952
1953 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1954 {
1955 }
1956 #else
1957 /*
1958 * Architectures can set this to 1 if they have specified
1959 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1960 * but then during bootup it turns out that sched_clock()
1961 * is reliable after all:
1962 */
1963 extern int sched_clock_stable;
1964
1965 extern void sched_clock_tick(void);
1966 extern void sched_clock_idle_sleep_event(void);
1967 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1968 #endif
1969
1970 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1971 /*
1972 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1973 * The reason for this explicit opt-in is not to have perf penalty with
1974 * slow sched_clocks.
1975 */
1976 extern void enable_sched_clock_irqtime(void);
1977 extern void disable_sched_clock_irqtime(void);
1978 #else
1979 static inline void enable_sched_clock_irqtime(void) {}
1980 static inline void disable_sched_clock_irqtime(void) {}
1981 #endif
1982
1983 extern unsigned long long
1984 task_sched_runtime(struct task_struct *task);
1985
1986 /* sched_exec is called by processes performing an exec */
1987 #ifdef CONFIG_SMP
1988 extern void sched_exec(void);
1989 #else
1990 #define sched_exec() {}
1991 #endif
1992
1993 extern void sched_clock_idle_sleep_event(void);
1994 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1995
1996 #ifdef CONFIG_HOTPLUG_CPU
1997 extern void idle_task_exit(void);
1998 #else
1999 static inline void idle_task_exit(void) {}
2000 #endif
2001
2002 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2003 extern void wake_up_idle_cpu(int cpu);
2004 #else
2005 static inline void wake_up_idle_cpu(int cpu) { }
2006 #endif
2007
2008 extern unsigned int sysctl_sched_latency;
2009 extern unsigned int sysctl_sched_min_granularity;
2010 extern unsigned int sysctl_sched_wakeup_granularity;
2011 extern unsigned int sysctl_sched_child_runs_first;
2012
2013 enum sched_tunable_scaling {
2014 SCHED_TUNABLESCALING_NONE,
2015 SCHED_TUNABLESCALING_LOG,
2016 SCHED_TUNABLESCALING_LINEAR,
2017 SCHED_TUNABLESCALING_END,
2018 };
2019 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2020
2021 #ifdef CONFIG_SCHED_DEBUG
2022 extern unsigned int sysctl_sched_migration_cost;
2023 extern unsigned int sysctl_sched_nr_migrate;
2024 extern unsigned int sysctl_sched_time_avg;
2025 extern unsigned int sysctl_timer_migration;
2026 extern unsigned int sysctl_sched_shares_window;
2027
2028 int sched_proc_update_handler(struct ctl_table *table, int write,
2029 void __user *buffer, size_t *length,
2030 loff_t *ppos);
2031 #endif
2032 #ifdef CONFIG_SCHED_DEBUG
2033 static inline unsigned int get_sysctl_timer_migration(void)
2034 {
2035 return sysctl_timer_migration;
2036 }
2037 #else
2038 static inline unsigned int get_sysctl_timer_migration(void)
2039 {
2040 return 1;
2041 }
2042 #endif
2043 extern unsigned int sysctl_sched_rt_period;
2044 extern int sysctl_sched_rt_runtime;
2045
2046 int sched_rt_handler(struct ctl_table *table, int write,
2047 void __user *buffer, size_t *lenp,
2048 loff_t *ppos);
2049
2050 #ifdef CONFIG_SCHED_AUTOGROUP
2051 extern unsigned int sysctl_sched_autogroup_enabled;
2052
2053 extern void sched_autogroup_create_attach(struct task_struct *p);
2054 extern void sched_autogroup_detach(struct task_struct *p);
2055 extern void sched_autogroup_fork(struct signal_struct *sig);
2056 extern void sched_autogroup_exit(struct signal_struct *sig);
2057 #ifdef CONFIG_PROC_FS
2058 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2059 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2060 #endif
2061 #else
2062 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2063 static inline void sched_autogroup_detach(struct task_struct *p) { }
2064 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2065 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2066 #endif
2067
2068 #ifdef CONFIG_CFS_BANDWIDTH
2069 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2070 #endif
2071
2072 #ifdef CONFIG_RT_MUTEXES
2073 extern int rt_mutex_getprio(struct task_struct *p);
2074 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2075 extern void rt_mutex_adjust_pi(struct task_struct *p);
2076 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2077 {
2078 return tsk->pi_blocked_on != NULL;
2079 }
2080 #else
2081 static inline int rt_mutex_getprio(struct task_struct *p)
2082 {
2083 return p->normal_prio;
2084 }
2085 # define rt_mutex_adjust_pi(p) do { } while (0)
2086 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2087 {
2088 return false;
2089 }
2090 #endif
2091
2092 extern bool yield_to(struct task_struct *p, bool preempt);
2093 extern void set_user_nice(struct task_struct *p, long nice);
2094 extern int task_prio(const struct task_struct *p);
2095 extern int task_nice(const struct task_struct *p);
2096 extern int can_nice(const struct task_struct *p, const int nice);
2097 extern int task_curr(const struct task_struct *p);
2098 extern int idle_cpu(int cpu);
2099 extern int sched_setscheduler(struct task_struct *, int,
2100 const struct sched_param *);
2101 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2102 const struct sched_param *);
2103 extern struct task_struct *idle_task(int cpu);
2104 /**
2105 * is_idle_task - is the specified task an idle task?
2106 * @p: the task in question.
2107 */
2108 static inline bool is_idle_task(const struct task_struct *p)
2109 {
2110 return p->pid == 0;
2111 }
2112 extern struct task_struct *curr_task(int cpu);
2113 extern void set_curr_task(int cpu, struct task_struct *p);
2114
2115 void yield(void);
2116
2117 /*
2118 * The default (Linux) execution domain.
2119 */
2120 extern struct exec_domain default_exec_domain;
2121
2122 union thread_union {
2123 struct thread_info thread_info;
2124 unsigned long stack[THREAD_SIZE/sizeof(long)];
2125 };
2126
2127 #ifndef __HAVE_ARCH_KSTACK_END
2128 static inline int kstack_end(void *addr)
2129 {
2130 /* Reliable end of stack detection:
2131 * Some APM bios versions misalign the stack
2132 */
2133 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2134 }
2135 #endif
2136
2137 extern union thread_union init_thread_union;
2138 extern struct task_struct init_task;
2139
2140 extern struct mm_struct init_mm;
2141
2142 extern struct pid_namespace init_pid_ns;
2143
2144 /*
2145 * find a task by one of its numerical ids
2146 *
2147 * find_task_by_pid_ns():
2148 * finds a task by its pid in the specified namespace
2149 * find_task_by_vpid():
2150 * finds a task by its virtual pid
2151 *
2152 * see also find_vpid() etc in include/linux/pid.h
2153 */
2154
2155 extern struct task_struct *find_task_by_vpid(pid_t nr);
2156 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2157 struct pid_namespace *ns);
2158
2159 extern void __set_special_pids(struct pid *pid);
2160
2161 /* per-UID process charging. */
2162 extern struct user_struct * alloc_uid(kuid_t);
2163 static inline struct user_struct *get_uid(struct user_struct *u)
2164 {
2165 atomic_inc(&u->__count);
2166 return u;
2167 }
2168 extern void free_uid(struct user_struct *);
2169
2170 #include <asm/current.h>
2171
2172 extern void xtime_update(unsigned long ticks);
2173
2174 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2175 extern int wake_up_process(struct task_struct *tsk);
2176 extern void wake_up_new_task(struct task_struct *tsk);
2177 #ifdef CONFIG_SMP
2178 extern void kick_process(struct task_struct *tsk);
2179 #else
2180 static inline void kick_process(struct task_struct *tsk) { }
2181 #endif
2182 extern void sched_fork(struct task_struct *p);
2183 extern void sched_dead(struct task_struct *p);
2184
2185 extern void proc_caches_init(void);
2186 extern void flush_signals(struct task_struct *);
2187 extern void __flush_signals(struct task_struct *);
2188 extern void ignore_signals(struct task_struct *);
2189 extern void flush_signal_handlers(struct task_struct *, int force_default);
2190 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2191
2192 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2193 {
2194 unsigned long flags;
2195 int ret;
2196
2197 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2198 ret = dequeue_signal(tsk, mask, info);
2199 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2200
2201 return ret;
2202 }
2203
2204 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2205 sigset_t *mask);
2206 extern void unblock_all_signals(void);
2207 extern void release_task(struct task_struct * p);
2208 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2209 extern int force_sigsegv(int, struct task_struct *);
2210 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2211 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2212 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2213 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2214 const struct cred *, u32);
2215 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2216 extern int kill_pid(struct pid *pid, int sig, int priv);
2217 extern int kill_proc_info(int, struct siginfo *, pid_t);
2218 extern __must_check bool do_notify_parent(struct task_struct *, int);
2219 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2220 extern void force_sig(int, struct task_struct *);
2221 extern int send_sig(int, struct task_struct *, int);
2222 extern int zap_other_threads(struct task_struct *p);
2223 extern struct sigqueue *sigqueue_alloc(void);
2224 extern void sigqueue_free(struct sigqueue *);
2225 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2226 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2227 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2228
2229 static inline void restore_saved_sigmask(void)
2230 {
2231 if (test_and_clear_restore_sigmask())
2232 __set_current_blocked(&current->saved_sigmask);
2233 }
2234
2235 static inline sigset_t *sigmask_to_save(void)
2236 {
2237 sigset_t *res = &current->blocked;
2238 if (unlikely(test_restore_sigmask()))
2239 res = &current->saved_sigmask;
2240 return res;
2241 }
2242
2243 static inline int kill_cad_pid(int sig, int priv)
2244 {
2245 return kill_pid(cad_pid, sig, priv);
2246 }
2247
2248 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2249 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2250 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2251 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2252
2253 /*
2254 * True if we are on the alternate signal stack.
2255 */
2256 static inline int on_sig_stack(unsigned long sp)
2257 {
2258 #ifdef CONFIG_STACK_GROWSUP
2259 return sp >= current->sas_ss_sp &&
2260 sp - current->sas_ss_sp < current->sas_ss_size;
2261 #else
2262 return sp > current->sas_ss_sp &&
2263 sp - current->sas_ss_sp <= current->sas_ss_size;
2264 #endif
2265 }
2266
2267 static inline int sas_ss_flags(unsigned long sp)
2268 {
2269 return (current->sas_ss_size == 0 ? SS_DISABLE
2270 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2271 }
2272
2273 /*
2274 * Routines for handling mm_structs
2275 */
2276 extern struct mm_struct * mm_alloc(void);
2277
2278 /* mmdrop drops the mm and the page tables */
2279 extern void __mmdrop(struct mm_struct *);
2280 static inline void mmdrop(struct mm_struct * mm)
2281 {
2282 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2283 __mmdrop(mm);
2284 }
2285
2286 /* mmput gets rid of the mappings and all user-space */
2287 extern void mmput(struct mm_struct *);
2288 /* Grab a reference to a task's mm, if it is not already going away */
2289 extern struct mm_struct *get_task_mm(struct task_struct *task);
2290 /*
2291 * Grab a reference to a task's mm, if it is not already going away
2292 * and ptrace_may_access with the mode parameter passed to it
2293 * succeeds.
2294 */
2295 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2296 /* Remove the current tasks stale references to the old mm_struct */
2297 extern void mm_release(struct task_struct *, struct mm_struct *);
2298 /* Allocate a new mm structure and copy contents from tsk->mm */
2299 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2300
2301 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2302 struct task_struct *, struct pt_regs *);
2303 extern void flush_thread(void);
2304 extern void exit_thread(void);
2305
2306 extern void exit_files(struct task_struct *);
2307 extern void __cleanup_sighand(struct sighand_struct *);
2308
2309 extern void exit_itimers(struct signal_struct *);
2310 extern void flush_itimer_signals(void);
2311
2312 extern void do_group_exit(int);
2313
2314 extern void daemonize(const char *, ...);
2315 extern int allow_signal(int);
2316 extern int disallow_signal(int);
2317
2318 extern int do_execve(const char *,
2319 const char __user * const __user *,
2320 const char __user * const __user *, struct pt_regs *);
2321 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2322 struct task_struct *fork_idle(int);
2323
2324 extern void set_task_comm(struct task_struct *tsk, char *from);
2325 extern char *get_task_comm(char *to, struct task_struct *tsk);
2326
2327 #ifdef CONFIG_SMP
2328 void scheduler_ipi(void);
2329 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2330 #else
2331 static inline void scheduler_ipi(void) { }
2332 static inline unsigned long wait_task_inactive(struct task_struct *p,
2333 long match_state)
2334 {
2335 return 1;
2336 }
2337 #endif
2338
2339 #define next_task(p) \
2340 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2341
2342 #define for_each_process(p) \
2343 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2344
2345 extern bool current_is_single_threaded(void);
2346
2347 /*
2348 * Careful: do_each_thread/while_each_thread is a double loop so
2349 * 'break' will not work as expected - use goto instead.
2350 */
2351 #define do_each_thread(g, t) \
2352 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2353
2354 #define while_each_thread(g, t) \
2355 while ((t = next_thread(t)) != g)
2356
2357 static inline int get_nr_threads(struct task_struct *tsk)
2358 {
2359 return tsk->signal->nr_threads;
2360 }
2361
2362 static inline bool thread_group_leader(struct task_struct *p)
2363 {
2364 return p->exit_signal >= 0;
2365 }
2366
2367 /* Do to the insanities of de_thread it is possible for a process
2368 * to have the pid of the thread group leader without actually being
2369 * the thread group leader. For iteration through the pids in proc
2370 * all we care about is that we have a task with the appropriate
2371 * pid, we don't actually care if we have the right task.
2372 */
2373 static inline int has_group_leader_pid(struct task_struct *p)
2374 {
2375 return p->pid == p->tgid;
2376 }
2377
2378 static inline
2379 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2380 {
2381 return p1->tgid == p2->tgid;
2382 }
2383
2384 static inline struct task_struct *next_thread(const struct task_struct *p)
2385 {
2386 return list_entry_rcu(p->thread_group.next,
2387 struct task_struct, thread_group);
2388 }
2389
2390 static inline int thread_group_empty(struct task_struct *p)
2391 {
2392 return list_empty(&p->thread_group);
2393 }
2394
2395 #define delay_group_leader(p) \
2396 (thread_group_leader(p) && !thread_group_empty(p))
2397
2398 /*
2399 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2400 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2401 * pins the final release of task.io_context. Also protects ->cpuset and
2402 * ->cgroup.subsys[]. And ->vfork_done.
2403 *
2404 * Nests both inside and outside of read_lock(&tasklist_lock).
2405 * It must not be nested with write_lock_irq(&tasklist_lock),
2406 * neither inside nor outside.
2407 */
2408 static inline void task_lock(struct task_struct *p)
2409 {
2410 spin_lock(&p->alloc_lock);
2411 }
2412
2413 static inline void task_unlock(struct task_struct *p)
2414 {
2415 spin_unlock(&p->alloc_lock);
2416 }
2417
2418 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2419 unsigned long *flags);
2420
2421 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2422 unsigned long *flags)
2423 {
2424 struct sighand_struct *ret;
2425
2426 ret = __lock_task_sighand(tsk, flags);
2427 (void)__cond_lock(&tsk->sighand->siglock, ret);
2428 return ret;
2429 }
2430
2431 static inline void unlock_task_sighand(struct task_struct *tsk,
2432 unsigned long *flags)
2433 {
2434 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2435 }
2436
2437 #ifdef CONFIG_CGROUPS
2438 static inline void threadgroup_change_begin(struct task_struct *tsk)
2439 {
2440 down_read(&tsk->signal->group_rwsem);
2441 }
2442 static inline void threadgroup_change_end(struct task_struct *tsk)
2443 {
2444 up_read(&tsk->signal->group_rwsem);
2445 }
2446
2447 /**
2448 * threadgroup_lock - lock threadgroup
2449 * @tsk: member task of the threadgroup to lock
2450 *
2451 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2452 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2453 * perform exec. This is useful for cases where the threadgroup needs to
2454 * stay stable across blockable operations.
2455 *
2456 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2457 * synchronization. While held, no new task will be added to threadgroup
2458 * and no existing live task will have its PF_EXITING set.
2459 *
2460 * During exec, a task goes and puts its thread group through unusual
2461 * changes. After de-threading, exclusive access is assumed to resources
2462 * which are usually shared by tasks in the same group - e.g. sighand may
2463 * be replaced with a new one. Also, the exec'ing task takes over group
2464 * leader role including its pid. Exclude these changes while locked by
2465 * grabbing cred_guard_mutex which is used to synchronize exec path.
2466 */
2467 static inline void threadgroup_lock(struct task_struct *tsk)
2468 {
2469 /*
2470 * exec uses exit for de-threading nesting group_rwsem inside
2471 * cred_guard_mutex. Grab cred_guard_mutex first.
2472 */
2473 mutex_lock(&tsk->signal->cred_guard_mutex);
2474 down_write(&tsk->signal->group_rwsem);
2475 }
2476
2477 /**
2478 * threadgroup_unlock - unlock threadgroup
2479 * @tsk: member task of the threadgroup to unlock
2480 *
2481 * Reverse threadgroup_lock().
2482 */
2483 static inline void threadgroup_unlock(struct task_struct *tsk)
2484 {
2485 up_write(&tsk->signal->group_rwsem);
2486 mutex_unlock(&tsk->signal->cred_guard_mutex);
2487 }
2488 #else
2489 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2490 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2491 static inline void threadgroup_lock(struct task_struct *tsk) {}
2492 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2493 #endif
2494
2495 #ifndef __HAVE_THREAD_FUNCTIONS
2496
2497 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2498 #define task_stack_page(task) ((task)->stack)
2499
2500 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2501 {
2502 *task_thread_info(p) = *task_thread_info(org);
2503 task_thread_info(p)->task = p;
2504 }
2505
2506 static inline unsigned long *end_of_stack(struct task_struct *p)
2507 {
2508 return (unsigned long *)(task_thread_info(p) + 1);
2509 }
2510
2511 #endif
2512
2513 static inline int object_is_on_stack(void *obj)
2514 {
2515 void *stack = task_stack_page(current);
2516
2517 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2518 }
2519
2520 extern void thread_info_cache_init(void);
2521
2522 #ifdef CONFIG_DEBUG_STACK_USAGE
2523 static inline unsigned long stack_not_used(struct task_struct *p)
2524 {
2525 unsigned long *n = end_of_stack(p);
2526
2527 do { /* Skip over canary */
2528 n++;
2529 } while (!*n);
2530
2531 return (unsigned long)n - (unsigned long)end_of_stack(p);
2532 }
2533 #endif
2534
2535 /* set thread flags in other task's structures
2536 * - see asm/thread_info.h for TIF_xxxx flags available
2537 */
2538 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2539 {
2540 set_ti_thread_flag(task_thread_info(tsk), flag);
2541 }
2542
2543 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2544 {
2545 clear_ti_thread_flag(task_thread_info(tsk), flag);
2546 }
2547
2548 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2549 {
2550 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2551 }
2552
2553 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2554 {
2555 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2556 }
2557
2558 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2559 {
2560 return test_ti_thread_flag(task_thread_info(tsk), flag);
2561 }
2562
2563 static inline void set_tsk_need_resched(struct task_struct *tsk)
2564 {
2565 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2566 }
2567
2568 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2569 {
2570 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2571 }
2572
2573 static inline int test_tsk_need_resched(struct task_struct *tsk)
2574 {
2575 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2576 }
2577
2578 static inline int restart_syscall(void)
2579 {
2580 set_tsk_thread_flag(current, TIF_SIGPENDING);
2581 return -ERESTARTNOINTR;
2582 }
2583
2584 static inline int signal_pending(struct task_struct *p)
2585 {
2586 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2587 }
2588
2589 static inline int __fatal_signal_pending(struct task_struct *p)
2590 {
2591 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2592 }
2593
2594 static inline int fatal_signal_pending(struct task_struct *p)
2595 {
2596 return signal_pending(p) && __fatal_signal_pending(p);
2597 }
2598
2599 static inline int signal_pending_state(long state, struct task_struct *p)
2600 {
2601 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2602 return 0;
2603 if (!signal_pending(p))
2604 return 0;
2605
2606 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2607 }
2608
2609 static inline int need_resched(void)
2610 {
2611 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2612 }
2613
2614 /*
2615 * cond_resched() and cond_resched_lock(): latency reduction via
2616 * explicit rescheduling in places that are safe. The return
2617 * value indicates whether a reschedule was done in fact.
2618 * cond_resched_lock() will drop the spinlock before scheduling,
2619 * cond_resched_softirq() will enable bhs before scheduling.
2620 */
2621 extern int _cond_resched(void);
2622
2623 #define cond_resched() ({ \
2624 __might_sleep(__FILE__, __LINE__, 0); \
2625 _cond_resched(); \
2626 })
2627
2628 extern int __cond_resched_lock(spinlock_t *lock);
2629
2630 #ifdef CONFIG_PREEMPT_COUNT
2631 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2632 #else
2633 #define PREEMPT_LOCK_OFFSET 0
2634 #endif
2635
2636 #define cond_resched_lock(lock) ({ \
2637 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2638 __cond_resched_lock(lock); \
2639 })
2640
2641 extern int __cond_resched_softirq(void);
2642
2643 #define cond_resched_softirq() ({ \
2644 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2645 __cond_resched_softirq(); \
2646 })
2647
2648 /*
2649 * Does a critical section need to be broken due to another
2650 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2651 * but a general need for low latency)
2652 */
2653 static inline int spin_needbreak(spinlock_t *lock)
2654 {
2655 #ifdef CONFIG_PREEMPT
2656 return spin_is_contended(lock);
2657 #else
2658 return 0;
2659 #endif
2660 }
2661
2662 /*
2663 * Thread group CPU time accounting.
2664 */
2665 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2666 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2667
2668 static inline void thread_group_cputime_init(struct signal_struct *sig)
2669 {
2670 raw_spin_lock_init(&sig->cputimer.lock);
2671 }
2672
2673 /*
2674 * Reevaluate whether the task has signals pending delivery.
2675 * Wake the task if so.
2676 * This is required every time the blocked sigset_t changes.
2677 * callers must hold sighand->siglock.
2678 */
2679 extern void recalc_sigpending_and_wake(struct task_struct *t);
2680 extern void recalc_sigpending(void);
2681
2682 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2683
2684 /*
2685 * Wrappers for p->thread_info->cpu access. No-op on UP.
2686 */
2687 #ifdef CONFIG_SMP
2688
2689 static inline unsigned int task_cpu(const struct task_struct *p)
2690 {
2691 return task_thread_info(p)->cpu;
2692 }
2693
2694 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2695
2696 #else
2697
2698 static inline unsigned int task_cpu(const struct task_struct *p)
2699 {
2700 return 0;
2701 }
2702
2703 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2704 {
2705 }
2706
2707 #endif /* CONFIG_SMP */
2708
2709 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2710 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2711
2712 extern void normalize_rt_tasks(void);
2713
2714 #ifdef CONFIG_CGROUP_SCHED
2715
2716 extern struct task_group root_task_group;
2717
2718 extern struct task_group *sched_create_group(struct task_group *parent);
2719 extern void sched_destroy_group(struct task_group *tg);
2720 extern void sched_move_task(struct task_struct *tsk);
2721 #ifdef CONFIG_FAIR_GROUP_SCHED
2722 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2723 extern unsigned long sched_group_shares(struct task_group *tg);
2724 #endif
2725 #ifdef CONFIG_RT_GROUP_SCHED
2726 extern int sched_group_set_rt_runtime(struct task_group *tg,
2727 long rt_runtime_us);
2728 extern long sched_group_rt_runtime(struct task_group *tg);
2729 extern int sched_group_set_rt_period(struct task_group *tg,
2730 long rt_period_us);
2731 extern long sched_group_rt_period(struct task_group *tg);
2732 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2733 #endif
2734 #endif /* CONFIG_CGROUP_SCHED */
2735
2736 extern int task_can_switch_user(struct user_struct *up,
2737 struct task_struct *tsk);
2738
2739 #ifdef CONFIG_TASK_XACCT
2740 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2741 {
2742 tsk->ioac.rchar += amt;
2743 }
2744
2745 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2746 {
2747 tsk->ioac.wchar += amt;
2748 }
2749
2750 static inline void inc_syscr(struct task_struct *tsk)
2751 {
2752 tsk->ioac.syscr++;
2753 }
2754
2755 static inline void inc_syscw(struct task_struct *tsk)
2756 {
2757 tsk->ioac.syscw++;
2758 }
2759 #else
2760 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2761 {
2762 }
2763
2764 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2765 {
2766 }
2767
2768 static inline void inc_syscr(struct task_struct *tsk)
2769 {
2770 }
2771
2772 static inline void inc_syscw(struct task_struct *tsk)
2773 {
2774 }
2775 #endif
2776
2777 #ifndef TASK_SIZE_OF
2778 #define TASK_SIZE_OF(tsk) TASK_SIZE
2779 #endif
2780
2781 #ifdef CONFIG_MM_OWNER
2782 extern void mm_update_next_owner(struct mm_struct *mm);
2783 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2784 #else
2785 static inline void mm_update_next_owner(struct mm_struct *mm)
2786 {
2787 }
2788
2789 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2790 {
2791 }
2792 #endif /* CONFIG_MM_OWNER */
2793
2794 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2795 unsigned int limit)
2796 {
2797 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2798 }
2799
2800 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2801 unsigned int limit)
2802 {
2803 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2804 }
2805
2806 static inline unsigned long rlimit(unsigned int limit)
2807 {
2808 return task_rlimit(current, limit);
2809 }
2810
2811 static inline unsigned long rlimit_max(unsigned int limit)
2812 {
2813 return task_rlimit_max(current, limit);
2814 }
2815
2816 #endif /* __KERNEL__ */
2817
2818 #endif