]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched: Add 'autogroup' scheduling feature: automated per session task groups
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(void);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #else
340 /* Avoid need for ifdefs elsewhere in the code */
341 enum { sysctl_hung_task_timeout_secs = 0 };
342 #endif
343
344 /* Attach to any functions which should be ignored in wchan output. */
345 #define __sched __attribute__((__section__(".sched.text")))
346
347 /* Linker adds these: start and end of __sched functions */
348 extern char __sched_text_start[], __sched_text_end[];
349
350 /* Is this address in the __sched functions? */
351 extern int in_sched_functions(unsigned long addr);
352
353 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
354 extern signed long schedule_timeout(signed long timeout);
355 extern signed long schedule_timeout_interruptible(signed long timeout);
356 extern signed long schedule_timeout_killable(signed long timeout);
357 extern signed long schedule_timeout_uninterruptible(signed long timeout);
358 asmlinkage void schedule(void);
359 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
360
361 struct nsproxy;
362 struct user_namespace;
363
364 /*
365 * Default maximum number of active map areas, this limits the number of vmas
366 * per mm struct. Users can overwrite this number by sysctl but there is a
367 * problem.
368 *
369 * When a program's coredump is generated as ELF format, a section is created
370 * per a vma. In ELF, the number of sections is represented in unsigned short.
371 * This means the number of sections should be smaller than 65535 at coredump.
372 * Because the kernel adds some informative sections to a image of program at
373 * generating coredump, we need some margin. The number of extra sections is
374 * 1-3 now and depends on arch. We use "5" as safe margin, here.
375 */
376 #define MAPCOUNT_ELF_CORE_MARGIN (5)
377 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
378
379 extern int sysctl_max_map_count;
380
381 #include <linux/aio.h>
382
383 #ifdef CONFIG_MMU
384 extern void arch_pick_mmap_layout(struct mm_struct *mm);
385 extern unsigned long
386 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
387 unsigned long, unsigned long);
388 extern unsigned long
389 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
390 unsigned long len, unsigned long pgoff,
391 unsigned long flags);
392 extern void arch_unmap_area(struct mm_struct *, unsigned long);
393 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
394 #else
395 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
396 #endif
397
398
399 extern void set_dumpable(struct mm_struct *mm, int value);
400 extern int get_dumpable(struct mm_struct *mm);
401
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
406
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
409
410 /* coredump filter bits */
411 #define MMF_DUMP_ANON_PRIVATE 2
412 #define MMF_DUMP_ANON_SHARED 3
413 #define MMF_DUMP_MAPPED_PRIVATE 4
414 #define MMF_DUMP_MAPPED_SHARED 5
415 #define MMF_DUMP_ELF_HEADERS 6
416 #define MMF_DUMP_HUGETLB_PRIVATE 7
417 #define MMF_DUMP_HUGETLB_SHARED 8
418
419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
420 #define MMF_DUMP_FILTER_BITS 7
421 #define MMF_DUMP_FILTER_MASK \
422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
423 #define MMF_DUMP_FILTER_DEFAULT \
424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
426
427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
429 #else
430 # define MMF_DUMP_MASK_DEFAULT_ELF 0
431 #endif
432 /* leave room for more dump flags */
433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
434
435 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
436
437 struct sighand_struct {
438 atomic_t count;
439 struct k_sigaction action[_NSIG];
440 spinlock_t siglock;
441 wait_queue_head_t signalfd_wqh;
442 };
443
444 struct pacct_struct {
445 int ac_flag;
446 long ac_exitcode;
447 unsigned long ac_mem;
448 cputime_t ac_utime, ac_stime;
449 unsigned long ac_minflt, ac_majflt;
450 };
451
452 struct cpu_itimer {
453 cputime_t expires;
454 cputime_t incr;
455 u32 error;
456 u32 incr_error;
457 };
458
459 /**
460 * struct task_cputime - collected CPU time counts
461 * @utime: time spent in user mode, in &cputime_t units
462 * @stime: time spent in kernel mode, in &cputime_t units
463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
464 *
465 * This structure groups together three kinds of CPU time that are
466 * tracked for threads and thread groups. Most things considering
467 * CPU time want to group these counts together and treat all three
468 * of them in parallel.
469 */
470 struct task_cputime {
471 cputime_t utime;
472 cputime_t stime;
473 unsigned long long sum_exec_runtime;
474 };
475 /* Alternate field names when used to cache expirations. */
476 #define prof_exp stime
477 #define virt_exp utime
478 #define sched_exp sum_exec_runtime
479
480 #define INIT_CPUTIME \
481 (struct task_cputime) { \
482 .utime = cputime_zero, \
483 .stime = cputime_zero, \
484 .sum_exec_runtime = 0, \
485 }
486
487 /*
488 * Disable preemption until the scheduler is running.
489 * Reset by start_kernel()->sched_init()->init_idle().
490 *
491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
492 * before the scheduler is active -- see should_resched().
493 */
494 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
495
496 /**
497 * struct thread_group_cputimer - thread group interval timer counts
498 * @cputime: thread group interval timers.
499 * @running: non-zero when there are timers running and
500 * @cputime receives updates.
501 * @lock: lock for fields in this struct.
502 *
503 * This structure contains the version of task_cputime, above, that is
504 * used for thread group CPU timer calculations.
505 */
506 struct thread_group_cputimer {
507 struct task_cputime cputime;
508 int running;
509 spinlock_t lock;
510 };
511
512 struct autogroup;
513
514 /*
515 * NOTE! "signal_struct" does not have it's own
516 * locking, because a shared signal_struct always
517 * implies a shared sighand_struct, so locking
518 * sighand_struct is always a proper superset of
519 * the locking of signal_struct.
520 */
521 struct signal_struct {
522 atomic_t sigcnt;
523 atomic_t live;
524 int nr_threads;
525
526 wait_queue_head_t wait_chldexit; /* for wait4() */
527
528 /* current thread group signal load-balancing target: */
529 struct task_struct *curr_target;
530
531 /* shared signal handling: */
532 struct sigpending shared_pending;
533
534 /* thread group exit support */
535 int group_exit_code;
536 /* overloaded:
537 * - notify group_exit_task when ->count is equal to notify_count
538 * - everyone except group_exit_task is stopped during signal delivery
539 * of fatal signals, group_exit_task processes the signal.
540 */
541 int notify_count;
542 struct task_struct *group_exit_task;
543
544 /* thread group stop support, overloads group_exit_code too */
545 int group_stop_count;
546 unsigned int flags; /* see SIGNAL_* flags below */
547
548 /* POSIX.1b Interval Timers */
549 struct list_head posix_timers;
550
551 /* ITIMER_REAL timer for the process */
552 struct hrtimer real_timer;
553 struct pid *leader_pid;
554 ktime_t it_real_incr;
555
556 /*
557 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
558 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
559 * values are defined to 0 and 1 respectively
560 */
561 struct cpu_itimer it[2];
562
563 /*
564 * Thread group totals for process CPU timers.
565 * See thread_group_cputimer(), et al, for details.
566 */
567 struct thread_group_cputimer cputimer;
568
569 /* Earliest-expiration cache. */
570 struct task_cputime cputime_expires;
571
572 struct list_head cpu_timers[3];
573
574 struct pid *tty_old_pgrp;
575
576 /* boolean value for session group leader */
577 int leader;
578
579 struct tty_struct *tty; /* NULL if no tty */
580
581 #ifdef CONFIG_SCHED_AUTOGROUP
582 struct autogroup *autogroup;
583 #endif
584 /*
585 * Cumulative resource counters for dead threads in the group,
586 * and for reaped dead child processes forked by this group.
587 * Live threads maintain their own counters and add to these
588 * in __exit_signal, except for the group leader.
589 */
590 cputime_t utime, stime, cutime, cstime;
591 cputime_t gtime;
592 cputime_t cgtime;
593 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
594 cputime_t prev_utime, prev_stime;
595 #endif
596 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
597 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
598 unsigned long inblock, oublock, cinblock, coublock;
599 unsigned long maxrss, cmaxrss;
600 struct task_io_accounting ioac;
601
602 /*
603 * Cumulative ns of schedule CPU time fo dead threads in the
604 * group, not including a zombie group leader, (This only differs
605 * from jiffies_to_ns(utime + stime) if sched_clock uses something
606 * other than jiffies.)
607 */
608 unsigned long long sum_sched_runtime;
609
610 /*
611 * We don't bother to synchronize most readers of this at all,
612 * because there is no reader checking a limit that actually needs
613 * to get both rlim_cur and rlim_max atomically, and either one
614 * alone is a single word that can safely be read normally.
615 * getrlimit/setrlimit use task_lock(current->group_leader) to
616 * protect this instead of the siglock, because they really
617 * have no need to disable irqs.
618 */
619 struct rlimit rlim[RLIM_NLIMITS];
620
621 #ifdef CONFIG_BSD_PROCESS_ACCT
622 struct pacct_struct pacct; /* per-process accounting information */
623 #endif
624 #ifdef CONFIG_TASKSTATS
625 struct taskstats *stats;
626 #endif
627 #ifdef CONFIG_AUDIT
628 unsigned audit_tty;
629 struct tty_audit_buf *tty_audit_buf;
630 #endif
631
632 int oom_adj; /* OOM kill score adjustment (bit shift) */
633 int oom_score_adj; /* OOM kill score adjustment */
634
635 struct mutex cred_guard_mutex; /* guard against foreign influences on
636 * credential calculations
637 * (notably. ptrace) */
638 };
639
640 /* Context switch must be unlocked if interrupts are to be enabled */
641 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
642 # define __ARCH_WANT_UNLOCKED_CTXSW
643 #endif
644
645 /*
646 * Bits in flags field of signal_struct.
647 */
648 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
649 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
650 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
651 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
652 /*
653 * Pending notifications to parent.
654 */
655 #define SIGNAL_CLD_STOPPED 0x00000010
656 #define SIGNAL_CLD_CONTINUED 0x00000020
657 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
658
659 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
660
661 /* If true, all threads except ->group_exit_task have pending SIGKILL */
662 static inline int signal_group_exit(const struct signal_struct *sig)
663 {
664 return (sig->flags & SIGNAL_GROUP_EXIT) ||
665 (sig->group_exit_task != NULL);
666 }
667
668 /*
669 * Some day this will be a full-fledged user tracking system..
670 */
671 struct user_struct {
672 atomic_t __count; /* reference count */
673 atomic_t processes; /* How many processes does this user have? */
674 atomic_t files; /* How many open files does this user have? */
675 atomic_t sigpending; /* How many pending signals does this user have? */
676 #ifdef CONFIG_INOTIFY_USER
677 atomic_t inotify_watches; /* How many inotify watches does this user have? */
678 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
679 #endif
680 #ifdef CONFIG_FANOTIFY
681 atomic_t fanotify_listeners;
682 #endif
683 #ifdef CONFIG_EPOLL
684 atomic_t epoll_watches; /* The number of file descriptors currently watched */
685 #endif
686 #ifdef CONFIG_POSIX_MQUEUE
687 /* protected by mq_lock */
688 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
689 #endif
690 unsigned long locked_shm; /* How many pages of mlocked shm ? */
691
692 #ifdef CONFIG_KEYS
693 struct key *uid_keyring; /* UID specific keyring */
694 struct key *session_keyring; /* UID's default session keyring */
695 #endif
696
697 /* Hash table maintenance information */
698 struct hlist_node uidhash_node;
699 uid_t uid;
700 struct user_namespace *user_ns;
701
702 #ifdef CONFIG_PERF_EVENTS
703 atomic_long_t locked_vm;
704 #endif
705 };
706
707 extern int uids_sysfs_init(void);
708
709 extern struct user_struct *find_user(uid_t);
710
711 extern struct user_struct root_user;
712 #define INIT_USER (&root_user)
713
714
715 struct backing_dev_info;
716 struct reclaim_state;
717
718 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
719 struct sched_info {
720 /* cumulative counters */
721 unsigned long pcount; /* # of times run on this cpu */
722 unsigned long long run_delay; /* time spent waiting on a runqueue */
723
724 /* timestamps */
725 unsigned long long last_arrival,/* when we last ran on a cpu */
726 last_queued; /* when we were last queued to run */
727 #ifdef CONFIG_SCHEDSTATS
728 /* BKL stats */
729 unsigned int bkl_count;
730 #endif
731 };
732 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
733
734 #ifdef CONFIG_TASK_DELAY_ACCT
735 struct task_delay_info {
736 spinlock_t lock;
737 unsigned int flags; /* Private per-task flags */
738
739 /* For each stat XXX, add following, aligned appropriately
740 *
741 * struct timespec XXX_start, XXX_end;
742 * u64 XXX_delay;
743 * u32 XXX_count;
744 *
745 * Atomicity of updates to XXX_delay, XXX_count protected by
746 * single lock above (split into XXX_lock if contention is an issue).
747 */
748
749 /*
750 * XXX_count is incremented on every XXX operation, the delay
751 * associated with the operation is added to XXX_delay.
752 * XXX_delay contains the accumulated delay time in nanoseconds.
753 */
754 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
755 u64 blkio_delay; /* wait for sync block io completion */
756 u64 swapin_delay; /* wait for swapin block io completion */
757 u32 blkio_count; /* total count of the number of sync block */
758 /* io operations performed */
759 u32 swapin_count; /* total count of the number of swapin block */
760 /* io operations performed */
761
762 struct timespec freepages_start, freepages_end;
763 u64 freepages_delay; /* wait for memory reclaim */
764 u32 freepages_count; /* total count of memory reclaim */
765 };
766 #endif /* CONFIG_TASK_DELAY_ACCT */
767
768 static inline int sched_info_on(void)
769 {
770 #ifdef CONFIG_SCHEDSTATS
771 return 1;
772 #elif defined(CONFIG_TASK_DELAY_ACCT)
773 extern int delayacct_on;
774 return delayacct_on;
775 #else
776 return 0;
777 #endif
778 }
779
780 enum cpu_idle_type {
781 CPU_IDLE,
782 CPU_NOT_IDLE,
783 CPU_NEWLY_IDLE,
784 CPU_MAX_IDLE_TYPES
785 };
786
787 /*
788 * sched-domains (multiprocessor balancing) declarations:
789 */
790
791 /*
792 * Increase resolution of nice-level calculations:
793 */
794 #define SCHED_LOAD_SHIFT 10
795 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
796
797 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
798
799 #ifdef CONFIG_SMP
800 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
801 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
802 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
803 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
804 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
805 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
806 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
807 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
808 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
809 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
810 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
811 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
812 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
813
814 enum powersavings_balance_level {
815 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
816 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
817 * first for long running threads
818 */
819 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
820 * cpu package for power savings
821 */
822 MAX_POWERSAVINGS_BALANCE_LEVELS
823 };
824
825 extern int sched_mc_power_savings, sched_smt_power_savings;
826
827 static inline int sd_balance_for_mc_power(void)
828 {
829 if (sched_smt_power_savings)
830 return SD_POWERSAVINGS_BALANCE;
831
832 if (!sched_mc_power_savings)
833 return SD_PREFER_SIBLING;
834
835 return 0;
836 }
837
838 static inline int sd_balance_for_package_power(void)
839 {
840 if (sched_mc_power_savings | sched_smt_power_savings)
841 return SD_POWERSAVINGS_BALANCE;
842
843 return SD_PREFER_SIBLING;
844 }
845
846 extern int __weak arch_sd_sibiling_asym_packing(void);
847
848 /*
849 * Optimise SD flags for power savings:
850 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
851 * Keep default SD flags if sched_{smt,mc}_power_saving=0
852 */
853
854 static inline int sd_power_saving_flags(void)
855 {
856 if (sched_mc_power_savings | sched_smt_power_savings)
857 return SD_BALANCE_NEWIDLE;
858
859 return 0;
860 }
861
862 struct sched_group {
863 struct sched_group *next; /* Must be a circular list */
864
865 /*
866 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
867 * single CPU.
868 */
869 unsigned int cpu_power, cpu_power_orig;
870 unsigned int group_weight;
871
872 /*
873 * The CPUs this group covers.
874 *
875 * NOTE: this field is variable length. (Allocated dynamically
876 * by attaching extra space to the end of the structure,
877 * depending on how many CPUs the kernel has booted up with)
878 *
879 * It is also be embedded into static data structures at build
880 * time. (See 'struct static_sched_group' in kernel/sched.c)
881 */
882 unsigned long cpumask[0];
883 };
884
885 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
886 {
887 return to_cpumask(sg->cpumask);
888 }
889
890 enum sched_domain_level {
891 SD_LV_NONE = 0,
892 SD_LV_SIBLING,
893 SD_LV_MC,
894 SD_LV_BOOK,
895 SD_LV_CPU,
896 SD_LV_NODE,
897 SD_LV_ALLNODES,
898 SD_LV_MAX
899 };
900
901 struct sched_domain_attr {
902 int relax_domain_level;
903 };
904
905 #define SD_ATTR_INIT (struct sched_domain_attr) { \
906 .relax_domain_level = -1, \
907 }
908
909 struct sched_domain {
910 /* These fields must be setup */
911 struct sched_domain *parent; /* top domain must be null terminated */
912 struct sched_domain *child; /* bottom domain must be null terminated */
913 struct sched_group *groups; /* the balancing groups of the domain */
914 unsigned long min_interval; /* Minimum balance interval ms */
915 unsigned long max_interval; /* Maximum balance interval ms */
916 unsigned int busy_factor; /* less balancing by factor if busy */
917 unsigned int imbalance_pct; /* No balance until over watermark */
918 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
919 unsigned int busy_idx;
920 unsigned int idle_idx;
921 unsigned int newidle_idx;
922 unsigned int wake_idx;
923 unsigned int forkexec_idx;
924 unsigned int smt_gain;
925 int flags; /* See SD_* */
926 enum sched_domain_level level;
927
928 /* Runtime fields. */
929 unsigned long last_balance; /* init to jiffies. units in jiffies */
930 unsigned int balance_interval; /* initialise to 1. units in ms. */
931 unsigned int nr_balance_failed; /* initialise to 0 */
932
933 u64 last_update;
934
935 #ifdef CONFIG_SCHEDSTATS
936 /* load_balance() stats */
937 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
941 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
942 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
943 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
944 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
945
946 /* Active load balancing */
947 unsigned int alb_count;
948 unsigned int alb_failed;
949 unsigned int alb_pushed;
950
951 /* SD_BALANCE_EXEC stats */
952 unsigned int sbe_count;
953 unsigned int sbe_balanced;
954 unsigned int sbe_pushed;
955
956 /* SD_BALANCE_FORK stats */
957 unsigned int sbf_count;
958 unsigned int sbf_balanced;
959 unsigned int sbf_pushed;
960
961 /* try_to_wake_up() stats */
962 unsigned int ttwu_wake_remote;
963 unsigned int ttwu_move_affine;
964 unsigned int ttwu_move_balance;
965 #endif
966 #ifdef CONFIG_SCHED_DEBUG
967 char *name;
968 #endif
969
970 unsigned int span_weight;
971 /*
972 * Span of all CPUs in this domain.
973 *
974 * NOTE: this field is variable length. (Allocated dynamically
975 * by attaching extra space to the end of the structure,
976 * depending on how many CPUs the kernel has booted up with)
977 *
978 * It is also be embedded into static data structures at build
979 * time. (See 'struct static_sched_domain' in kernel/sched.c)
980 */
981 unsigned long span[0];
982 };
983
984 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
985 {
986 return to_cpumask(sd->span);
987 }
988
989 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
990 struct sched_domain_attr *dattr_new);
991
992 /* Allocate an array of sched domains, for partition_sched_domains(). */
993 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
994 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
995
996 /* Test a flag in parent sched domain */
997 static inline int test_sd_parent(struct sched_domain *sd, int flag)
998 {
999 if (sd->parent && (sd->parent->flags & flag))
1000 return 1;
1001
1002 return 0;
1003 }
1004
1005 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1006 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1007
1008 #else /* CONFIG_SMP */
1009
1010 struct sched_domain_attr;
1011
1012 static inline void
1013 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1014 struct sched_domain_attr *dattr_new)
1015 {
1016 }
1017 #endif /* !CONFIG_SMP */
1018
1019
1020 struct io_context; /* See blkdev.h */
1021
1022
1023 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1024 extern void prefetch_stack(struct task_struct *t);
1025 #else
1026 static inline void prefetch_stack(struct task_struct *t) { }
1027 #endif
1028
1029 struct audit_context; /* See audit.c */
1030 struct mempolicy;
1031 struct pipe_inode_info;
1032 struct uts_namespace;
1033
1034 struct rq;
1035 struct sched_domain;
1036
1037 /*
1038 * wake flags
1039 */
1040 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1041 #define WF_FORK 0x02 /* child wakeup after fork */
1042
1043 #define ENQUEUE_WAKEUP 1
1044 #define ENQUEUE_WAKING 2
1045 #define ENQUEUE_HEAD 4
1046
1047 #define DEQUEUE_SLEEP 1
1048
1049 struct sched_class {
1050 const struct sched_class *next;
1051
1052 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1053 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1054 void (*yield_task) (struct rq *rq);
1055
1056 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1057
1058 struct task_struct * (*pick_next_task) (struct rq *rq);
1059 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1060
1061 #ifdef CONFIG_SMP
1062 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1063 int sd_flag, int flags);
1064
1065 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1066 void (*post_schedule) (struct rq *this_rq);
1067 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1068 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1069
1070 void (*set_cpus_allowed)(struct task_struct *p,
1071 const struct cpumask *newmask);
1072
1073 void (*rq_online)(struct rq *rq);
1074 void (*rq_offline)(struct rq *rq);
1075 #endif
1076
1077 void (*set_curr_task) (struct rq *rq);
1078 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1079 void (*task_fork) (struct task_struct *p);
1080
1081 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1082 int running);
1083 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1084 int running);
1085 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1086 int oldprio, int running);
1087
1088 unsigned int (*get_rr_interval) (struct rq *rq,
1089 struct task_struct *task);
1090
1091 #ifdef CONFIG_FAIR_GROUP_SCHED
1092 void (*task_move_group) (struct task_struct *p, int on_rq);
1093 #endif
1094 };
1095
1096 struct load_weight {
1097 unsigned long weight, inv_weight;
1098 };
1099
1100 #ifdef CONFIG_SCHEDSTATS
1101 struct sched_statistics {
1102 u64 wait_start;
1103 u64 wait_max;
1104 u64 wait_count;
1105 u64 wait_sum;
1106 u64 iowait_count;
1107 u64 iowait_sum;
1108
1109 u64 sleep_start;
1110 u64 sleep_max;
1111 s64 sum_sleep_runtime;
1112
1113 u64 block_start;
1114 u64 block_max;
1115 u64 exec_max;
1116 u64 slice_max;
1117
1118 u64 nr_migrations_cold;
1119 u64 nr_failed_migrations_affine;
1120 u64 nr_failed_migrations_running;
1121 u64 nr_failed_migrations_hot;
1122 u64 nr_forced_migrations;
1123
1124 u64 nr_wakeups;
1125 u64 nr_wakeups_sync;
1126 u64 nr_wakeups_migrate;
1127 u64 nr_wakeups_local;
1128 u64 nr_wakeups_remote;
1129 u64 nr_wakeups_affine;
1130 u64 nr_wakeups_affine_attempts;
1131 u64 nr_wakeups_passive;
1132 u64 nr_wakeups_idle;
1133 };
1134 #endif
1135
1136 struct sched_entity {
1137 struct load_weight load; /* for load-balancing */
1138 struct rb_node run_node;
1139 struct list_head group_node;
1140 unsigned int on_rq;
1141
1142 u64 exec_start;
1143 u64 sum_exec_runtime;
1144 u64 vruntime;
1145 u64 prev_sum_exec_runtime;
1146
1147 u64 nr_migrations;
1148
1149 #ifdef CONFIG_SCHEDSTATS
1150 struct sched_statistics statistics;
1151 #endif
1152
1153 #ifdef CONFIG_FAIR_GROUP_SCHED
1154 struct sched_entity *parent;
1155 /* rq on which this entity is (to be) queued: */
1156 struct cfs_rq *cfs_rq;
1157 /* rq "owned" by this entity/group: */
1158 struct cfs_rq *my_q;
1159 #endif
1160 };
1161
1162 struct sched_rt_entity {
1163 struct list_head run_list;
1164 unsigned long timeout;
1165 unsigned int time_slice;
1166 int nr_cpus_allowed;
1167
1168 struct sched_rt_entity *back;
1169 #ifdef CONFIG_RT_GROUP_SCHED
1170 struct sched_rt_entity *parent;
1171 /* rq on which this entity is (to be) queued: */
1172 struct rt_rq *rt_rq;
1173 /* rq "owned" by this entity/group: */
1174 struct rt_rq *my_q;
1175 #endif
1176 };
1177
1178 struct rcu_node;
1179
1180 enum perf_event_task_context {
1181 perf_invalid_context = -1,
1182 perf_hw_context = 0,
1183 perf_sw_context,
1184 perf_nr_task_contexts,
1185 };
1186
1187 struct task_struct {
1188 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1189 void *stack;
1190 atomic_t usage;
1191 unsigned int flags; /* per process flags, defined below */
1192 unsigned int ptrace;
1193
1194 int lock_depth; /* BKL lock depth */
1195
1196 #ifdef CONFIG_SMP
1197 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1198 int oncpu;
1199 #endif
1200 #endif
1201
1202 int prio, static_prio, normal_prio;
1203 unsigned int rt_priority;
1204 const struct sched_class *sched_class;
1205 struct sched_entity se;
1206 struct sched_rt_entity rt;
1207
1208 #ifdef CONFIG_PREEMPT_NOTIFIERS
1209 /* list of struct preempt_notifier: */
1210 struct hlist_head preempt_notifiers;
1211 #endif
1212
1213 /*
1214 * fpu_counter contains the number of consecutive context switches
1215 * that the FPU is used. If this is over a threshold, the lazy fpu
1216 * saving becomes unlazy to save the trap. This is an unsigned char
1217 * so that after 256 times the counter wraps and the behavior turns
1218 * lazy again; this to deal with bursty apps that only use FPU for
1219 * a short time
1220 */
1221 unsigned char fpu_counter;
1222 #ifdef CONFIG_BLK_DEV_IO_TRACE
1223 unsigned int btrace_seq;
1224 #endif
1225
1226 unsigned int policy;
1227 cpumask_t cpus_allowed;
1228
1229 #ifdef CONFIG_PREEMPT_RCU
1230 int rcu_read_lock_nesting;
1231 char rcu_read_unlock_special;
1232 struct list_head rcu_node_entry;
1233 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1234 #ifdef CONFIG_TREE_PREEMPT_RCU
1235 struct rcu_node *rcu_blocked_node;
1236 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1237
1238 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1239 struct sched_info sched_info;
1240 #endif
1241
1242 struct list_head tasks;
1243 struct plist_node pushable_tasks;
1244
1245 struct mm_struct *mm, *active_mm;
1246 #if defined(SPLIT_RSS_COUNTING)
1247 struct task_rss_stat rss_stat;
1248 #endif
1249 /* task state */
1250 int exit_state;
1251 int exit_code, exit_signal;
1252 int pdeath_signal; /* The signal sent when the parent dies */
1253 /* ??? */
1254 unsigned int personality;
1255 unsigned did_exec:1;
1256 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1257 * execve */
1258 unsigned in_iowait:1;
1259
1260
1261 /* Revert to default priority/policy when forking */
1262 unsigned sched_reset_on_fork:1;
1263
1264 pid_t pid;
1265 pid_t tgid;
1266
1267 #ifdef CONFIG_CC_STACKPROTECTOR
1268 /* Canary value for the -fstack-protector gcc feature */
1269 unsigned long stack_canary;
1270 #endif
1271
1272 /*
1273 * pointers to (original) parent process, youngest child, younger sibling,
1274 * older sibling, respectively. (p->father can be replaced with
1275 * p->real_parent->pid)
1276 */
1277 struct task_struct *real_parent; /* real parent process */
1278 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1279 /*
1280 * children/sibling forms the list of my natural children
1281 */
1282 struct list_head children; /* list of my children */
1283 struct list_head sibling; /* linkage in my parent's children list */
1284 struct task_struct *group_leader; /* threadgroup leader */
1285
1286 /*
1287 * ptraced is the list of tasks this task is using ptrace on.
1288 * This includes both natural children and PTRACE_ATTACH targets.
1289 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1290 */
1291 struct list_head ptraced;
1292 struct list_head ptrace_entry;
1293
1294 /* PID/PID hash table linkage. */
1295 struct pid_link pids[PIDTYPE_MAX];
1296 struct list_head thread_group;
1297
1298 struct completion *vfork_done; /* for vfork() */
1299 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1300 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1301
1302 cputime_t utime, stime, utimescaled, stimescaled;
1303 cputime_t gtime;
1304 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1305 cputime_t prev_utime, prev_stime;
1306 #endif
1307 unsigned long nvcsw, nivcsw; /* context switch counts */
1308 struct timespec start_time; /* monotonic time */
1309 struct timespec real_start_time; /* boot based time */
1310 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1311 unsigned long min_flt, maj_flt;
1312
1313 struct task_cputime cputime_expires;
1314 struct list_head cpu_timers[3];
1315
1316 /* process credentials */
1317 const struct cred __rcu *real_cred; /* objective and real subjective task
1318 * credentials (COW) */
1319 const struct cred __rcu *cred; /* effective (overridable) subjective task
1320 * credentials (COW) */
1321 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1322
1323 char comm[TASK_COMM_LEN]; /* executable name excluding path
1324 - access with [gs]et_task_comm (which lock
1325 it with task_lock())
1326 - initialized normally by setup_new_exec */
1327 /* file system info */
1328 int link_count, total_link_count;
1329 #ifdef CONFIG_SYSVIPC
1330 /* ipc stuff */
1331 struct sysv_sem sysvsem;
1332 #endif
1333 #ifdef CONFIG_DETECT_HUNG_TASK
1334 /* hung task detection */
1335 unsigned long last_switch_count;
1336 #endif
1337 /* CPU-specific state of this task */
1338 struct thread_struct thread;
1339 /* filesystem information */
1340 struct fs_struct *fs;
1341 /* open file information */
1342 struct files_struct *files;
1343 /* namespaces */
1344 struct nsproxy *nsproxy;
1345 /* signal handlers */
1346 struct signal_struct *signal;
1347 struct sighand_struct *sighand;
1348
1349 sigset_t blocked, real_blocked;
1350 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1351 struct sigpending pending;
1352
1353 unsigned long sas_ss_sp;
1354 size_t sas_ss_size;
1355 int (*notifier)(void *priv);
1356 void *notifier_data;
1357 sigset_t *notifier_mask;
1358 struct audit_context *audit_context;
1359 #ifdef CONFIG_AUDITSYSCALL
1360 uid_t loginuid;
1361 unsigned int sessionid;
1362 #endif
1363 seccomp_t seccomp;
1364
1365 /* Thread group tracking */
1366 u32 parent_exec_id;
1367 u32 self_exec_id;
1368 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1369 * mempolicy */
1370 spinlock_t alloc_lock;
1371
1372 #ifdef CONFIG_GENERIC_HARDIRQS
1373 /* IRQ handler threads */
1374 struct irqaction *irqaction;
1375 #endif
1376
1377 /* Protection of the PI data structures: */
1378 raw_spinlock_t pi_lock;
1379
1380 #ifdef CONFIG_RT_MUTEXES
1381 /* PI waiters blocked on a rt_mutex held by this task */
1382 struct plist_head pi_waiters;
1383 /* Deadlock detection and priority inheritance handling */
1384 struct rt_mutex_waiter *pi_blocked_on;
1385 #endif
1386
1387 #ifdef CONFIG_DEBUG_MUTEXES
1388 /* mutex deadlock detection */
1389 struct mutex_waiter *blocked_on;
1390 #endif
1391 #ifdef CONFIG_TRACE_IRQFLAGS
1392 unsigned int irq_events;
1393 unsigned long hardirq_enable_ip;
1394 unsigned long hardirq_disable_ip;
1395 unsigned int hardirq_enable_event;
1396 unsigned int hardirq_disable_event;
1397 int hardirqs_enabled;
1398 int hardirq_context;
1399 unsigned long softirq_disable_ip;
1400 unsigned long softirq_enable_ip;
1401 unsigned int softirq_disable_event;
1402 unsigned int softirq_enable_event;
1403 int softirqs_enabled;
1404 int softirq_context;
1405 #endif
1406 #ifdef CONFIG_LOCKDEP
1407 # define MAX_LOCK_DEPTH 48UL
1408 u64 curr_chain_key;
1409 int lockdep_depth;
1410 unsigned int lockdep_recursion;
1411 struct held_lock held_locks[MAX_LOCK_DEPTH];
1412 gfp_t lockdep_reclaim_gfp;
1413 #endif
1414
1415 /* journalling filesystem info */
1416 void *journal_info;
1417
1418 /* stacked block device info */
1419 struct bio_list *bio_list;
1420
1421 /* VM state */
1422 struct reclaim_state *reclaim_state;
1423
1424 struct backing_dev_info *backing_dev_info;
1425
1426 struct io_context *io_context;
1427
1428 unsigned long ptrace_message;
1429 siginfo_t *last_siginfo; /* For ptrace use. */
1430 struct task_io_accounting ioac;
1431 #if defined(CONFIG_TASK_XACCT)
1432 u64 acct_rss_mem1; /* accumulated rss usage */
1433 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1434 cputime_t acct_timexpd; /* stime + utime since last update */
1435 #endif
1436 #ifdef CONFIG_CPUSETS
1437 nodemask_t mems_allowed; /* Protected by alloc_lock */
1438 int mems_allowed_change_disable;
1439 int cpuset_mem_spread_rotor;
1440 int cpuset_slab_spread_rotor;
1441 #endif
1442 #ifdef CONFIG_CGROUPS
1443 /* Control Group info protected by css_set_lock */
1444 struct css_set __rcu *cgroups;
1445 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1446 struct list_head cg_list;
1447 #endif
1448 #ifdef CONFIG_FUTEX
1449 struct robust_list_head __user *robust_list;
1450 #ifdef CONFIG_COMPAT
1451 struct compat_robust_list_head __user *compat_robust_list;
1452 #endif
1453 struct list_head pi_state_list;
1454 struct futex_pi_state *pi_state_cache;
1455 #endif
1456 #ifdef CONFIG_PERF_EVENTS
1457 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1458 struct mutex perf_event_mutex;
1459 struct list_head perf_event_list;
1460 #endif
1461 #ifdef CONFIG_NUMA
1462 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1463 short il_next;
1464 #endif
1465 atomic_t fs_excl; /* holding fs exclusive resources */
1466 struct rcu_head rcu;
1467
1468 /*
1469 * cache last used pipe for splice
1470 */
1471 struct pipe_inode_info *splice_pipe;
1472 #ifdef CONFIG_TASK_DELAY_ACCT
1473 struct task_delay_info *delays;
1474 #endif
1475 #ifdef CONFIG_FAULT_INJECTION
1476 int make_it_fail;
1477 #endif
1478 struct prop_local_single dirties;
1479 #ifdef CONFIG_LATENCYTOP
1480 int latency_record_count;
1481 struct latency_record latency_record[LT_SAVECOUNT];
1482 #endif
1483 /*
1484 * time slack values; these are used to round up poll() and
1485 * select() etc timeout values. These are in nanoseconds.
1486 */
1487 unsigned long timer_slack_ns;
1488 unsigned long default_timer_slack_ns;
1489
1490 struct list_head *scm_work_list;
1491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1492 /* Index of current stored address in ret_stack */
1493 int curr_ret_stack;
1494 /* Stack of return addresses for return function tracing */
1495 struct ftrace_ret_stack *ret_stack;
1496 /* time stamp for last schedule */
1497 unsigned long long ftrace_timestamp;
1498 /*
1499 * Number of functions that haven't been traced
1500 * because of depth overrun.
1501 */
1502 atomic_t trace_overrun;
1503 /* Pause for the tracing */
1504 atomic_t tracing_graph_pause;
1505 #endif
1506 #ifdef CONFIG_TRACING
1507 /* state flags for use by tracers */
1508 unsigned long trace;
1509 /* bitmask of trace recursion */
1510 unsigned long trace_recursion;
1511 #endif /* CONFIG_TRACING */
1512 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1513 struct memcg_batch_info {
1514 int do_batch; /* incremented when batch uncharge started */
1515 struct mem_cgroup *memcg; /* target memcg of uncharge */
1516 unsigned long bytes; /* uncharged usage */
1517 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1518 } memcg_batch;
1519 #endif
1520 };
1521
1522 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1523 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1524
1525 /*
1526 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1527 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1528 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1529 * values are inverted: lower p->prio value means higher priority.
1530 *
1531 * The MAX_USER_RT_PRIO value allows the actual maximum
1532 * RT priority to be separate from the value exported to
1533 * user-space. This allows kernel threads to set their
1534 * priority to a value higher than any user task. Note:
1535 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1536 */
1537
1538 #define MAX_USER_RT_PRIO 100
1539 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1540
1541 #define MAX_PRIO (MAX_RT_PRIO + 40)
1542 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1543
1544 static inline int rt_prio(int prio)
1545 {
1546 if (unlikely(prio < MAX_RT_PRIO))
1547 return 1;
1548 return 0;
1549 }
1550
1551 static inline int rt_task(struct task_struct *p)
1552 {
1553 return rt_prio(p->prio);
1554 }
1555
1556 static inline struct pid *task_pid(struct task_struct *task)
1557 {
1558 return task->pids[PIDTYPE_PID].pid;
1559 }
1560
1561 static inline struct pid *task_tgid(struct task_struct *task)
1562 {
1563 return task->group_leader->pids[PIDTYPE_PID].pid;
1564 }
1565
1566 /*
1567 * Without tasklist or rcu lock it is not safe to dereference
1568 * the result of task_pgrp/task_session even if task == current,
1569 * we can race with another thread doing sys_setsid/sys_setpgid.
1570 */
1571 static inline struct pid *task_pgrp(struct task_struct *task)
1572 {
1573 return task->group_leader->pids[PIDTYPE_PGID].pid;
1574 }
1575
1576 static inline struct pid *task_session(struct task_struct *task)
1577 {
1578 return task->group_leader->pids[PIDTYPE_SID].pid;
1579 }
1580
1581 struct pid_namespace;
1582
1583 /*
1584 * the helpers to get the task's different pids as they are seen
1585 * from various namespaces
1586 *
1587 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1588 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1589 * current.
1590 * task_xid_nr_ns() : id seen from the ns specified;
1591 *
1592 * set_task_vxid() : assigns a virtual id to a task;
1593 *
1594 * see also pid_nr() etc in include/linux/pid.h
1595 */
1596 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1597 struct pid_namespace *ns);
1598
1599 static inline pid_t task_pid_nr(struct task_struct *tsk)
1600 {
1601 return tsk->pid;
1602 }
1603
1604 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1605 struct pid_namespace *ns)
1606 {
1607 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1608 }
1609
1610 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1611 {
1612 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1613 }
1614
1615
1616 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1617 {
1618 return tsk->tgid;
1619 }
1620
1621 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1622
1623 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1624 {
1625 return pid_vnr(task_tgid(tsk));
1626 }
1627
1628
1629 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1630 struct pid_namespace *ns)
1631 {
1632 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1633 }
1634
1635 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1636 {
1637 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1638 }
1639
1640
1641 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1642 struct pid_namespace *ns)
1643 {
1644 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1645 }
1646
1647 static inline pid_t task_session_vnr(struct task_struct *tsk)
1648 {
1649 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1650 }
1651
1652 /* obsolete, do not use */
1653 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1654 {
1655 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1656 }
1657
1658 /**
1659 * pid_alive - check that a task structure is not stale
1660 * @p: Task structure to be checked.
1661 *
1662 * Test if a process is not yet dead (at most zombie state)
1663 * If pid_alive fails, then pointers within the task structure
1664 * can be stale and must not be dereferenced.
1665 */
1666 static inline int pid_alive(struct task_struct *p)
1667 {
1668 return p->pids[PIDTYPE_PID].pid != NULL;
1669 }
1670
1671 /**
1672 * is_global_init - check if a task structure is init
1673 * @tsk: Task structure to be checked.
1674 *
1675 * Check if a task structure is the first user space task the kernel created.
1676 */
1677 static inline int is_global_init(struct task_struct *tsk)
1678 {
1679 return tsk->pid == 1;
1680 }
1681
1682 /*
1683 * is_container_init:
1684 * check whether in the task is init in its own pid namespace.
1685 */
1686 extern int is_container_init(struct task_struct *tsk);
1687
1688 extern struct pid *cad_pid;
1689
1690 extern void free_task(struct task_struct *tsk);
1691 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1692
1693 extern void __put_task_struct(struct task_struct *t);
1694
1695 static inline void put_task_struct(struct task_struct *t)
1696 {
1697 if (atomic_dec_and_test(&t->usage))
1698 __put_task_struct(t);
1699 }
1700
1701 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1702 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1703
1704 /*
1705 * Per process flags
1706 */
1707 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1708 #define PF_STARTING 0x00000002 /* being created */
1709 #define PF_EXITING 0x00000004 /* getting shut down */
1710 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1711 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1712 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1713 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1714 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1715 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1716 #define PF_DUMPCORE 0x00000200 /* dumped core */
1717 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1718 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1719 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1720 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1721 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1722 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1723 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1724 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1725 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1726 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1727 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1728 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1729 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1730 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1731 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1732 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1733 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1734 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1735 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1736 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1737 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1738
1739 /*
1740 * Only the _current_ task can read/write to tsk->flags, but other
1741 * tasks can access tsk->flags in readonly mode for example
1742 * with tsk_used_math (like during threaded core dumping).
1743 * There is however an exception to this rule during ptrace
1744 * or during fork: the ptracer task is allowed to write to the
1745 * child->flags of its traced child (same goes for fork, the parent
1746 * can write to the child->flags), because we're guaranteed the
1747 * child is not running and in turn not changing child->flags
1748 * at the same time the parent does it.
1749 */
1750 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1751 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1752 #define clear_used_math() clear_stopped_child_used_math(current)
1753 #define set_used_math() set_stopped_child_used_math(current)
1754 #define conditional_stopped_child_used_math(condition, child) \
1755 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1756 #define conditional_used_math(condition) \
1757 conditional_stopped_child_used_math(condition, current)
1758 #define copy_to_stopped_child_used_math(child) \
1759 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1760 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1761 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1762 #define used_math() tsk_used_math(current)
1763
1764 #ifdef CONFIG_PREEMPT_RCU
1765
1766 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1767 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1768
1769 static inline void rcu_copy_process(struct task_struct *p)
1770 {
1771 p->rcu_read_lock_nesting = 0;
1772 p->rcu_read_unlock_special = 0;
1773 #ifdef CONFIG_TREE_PREEMPT_RCU
1774 p->rcu_blocked_node = NULL;
1775 #endif
1776 INIT_LIST_HEAD(&p->rcu_node_entry);
1777 }
1778
1779 #else
1780
1781 static inline void rcu_copy_process(struct task_struct *p)
1782 {
1783 }
1784
1785 #endif
1786
1787 #ifdef CONFIG_SMP
1788 extern int set_cpus_allowed_ptr(struct task_struct *p,
1789 const struct cpumask *new_mask);
1790 #else
1791 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1792 const struct cpumask *new_mask)
1793 {
1794 if (!cpumask_test_cpu(0, new_mask))
1795 return -EINVAL;
1796 return 0;
1797 }
1798 #endif
1799
1800 #ifndef CONFIG_CPUMASK_OFFSTACK
1801 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1802 {
1803 return set_cpus_allowed_ptr(p, &new_mask);
1804 }
1805 #endif
1806
1807 /*
1808 * Do not use outside of architecture code which knows its limitations.
1809 *
1810 * sched_clock() has no promise of monotonicity or bounded drift between
1811 * CPUs, use (which you should not) requires disabling IRQs.
1812 *
1813 * Please use one of the three interfaces below.
1814 */
1815 extern unsigned long long notrace sched_clock(void);
1816 /*
1817 * See the comment in kernel/sched_clock.c
1818 */
1819 extern u64 cpu_clock(int cpu);
1820 extern u64 local_clock(void);
1821 extern u64 sched_clock_cpu(int cpu);
1822
1823
1824 extern void sched_clock_init(void);
1825
1826 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1827 static inline void sched_clock_tick(void)
1828 {
1829 }
1830
1831 static inline void sched_clock_idle_sleep_event(void)
1832 {
1833 }
1834
1835 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1836 {
1837 }
1838 #else
1839 /*
1840 * Architectures can set this to 1 if they have specified
1841 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1842 * but then during bootup it turns out that sched_clock()
1843 * is reliable after all:
1844 */
1845 extern int sched_clock_stable;
1846
1847 extern void sched_clock_tick(void);
1848 extern void sched_clock_idle_sleep_event(void);
1849 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1850 #endif
1851
1852 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1853 /*
1854 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1855 * The reason for this explicit opt-in is not to have perf penalty with
1856 * slow sched_clocks.
1857 */
1858 extern void enable_sched_clock_irqtime(void);
1859 extern void disable_sched_clock_irqtime(void);
1860 #else
1861 static inline void enable_sched_clock_irqtime(void) {}
1862 static inline void disable_sched_clock_irqtime(void) {}
1863 #endif
1864
1865 extern unsigned long long
1866 task_sched_runtime(struct task_struct *task);
1867 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1868
1869 /* sched_exec is called by processes performing an exec */
1870 #ifdef CONFIG_SMP
1871 extern void sched_exec(void);
1872 #else
1873 #define sched_exec() {}
1874 #endif
1875
1876 extern void sched_clock_idle_sleep_event(void);
1877 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1878
1879 #ifdef CONFIG_HOTPLUG_CPU
1880 extern void idle_task_exit(void);
1881 #else
1882 static inline void idle_task_exit(void) {}
1883 #endif
1884
1885 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1886 extern void wake_up_idle_cpu(int cpu);
1887 #else
1888 static inline void wake_up_idle_cpu(int cpu) { }
1889 #endif
1890
1891 extern unsigned int sysctl_sched_latency;
1892 extern unsigned int sysctl_sched_min_granularity;
1893 extern unsigned int sysctl_sched_wakeup_granularity;
1894 extern unsigned int sysctl_sched_child_runs_first;
1895
1896 enum sched_tunable_scaling {
1897 SCHED_TUNABLESCALING_NONE,
1898 SCHED_TUNABLESCALING_LOG,
1899 SCHED_TUNABLESCALING_LINEAR,
1900 SCHED_TUNABLESCALING_END,
1901 };
1902 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1903
1904 #ifdef CONFIG_SCHED_DEBUG
1905 extern unsigned int sysctl_sched_migration_cost;
1906 extern unsigned int sysctl_sched_nr_migrate;
1907 extern unsigned int sysctl_sched_time_avg;
1908 extern unsigned int sysctl_timer_migration;
1909 extern unsigned int sysctl_sched_shares_window;
1910
1911 int sched_proc_update_handler(struct ctl_table *table, int write,
1912 void __user *buffer, size_t *length,
1913 loff_t *ppos);
1914 #endif
1915 #ifdef CONFIG_SCHED_DEBUG
1916 static inline unsigned int get_sysctl_timer_migration(void)
1917 {
1918 return sysctl_timer_migration;
1919 }
1920 #else
1921 static inline unsigned int get_sysctl_timer_migration(void)
1922 {
1923 return 1;
1924 }
1925 #endif
1926 extern unsigned int sysctl_sched_rt_period;
1927 extern int sysctl_sched_rt_runtime;
1928
1929 int sched_rt_handler(struct ctl_table *table, int write,
1930 void __user *buffer, size_t *lenp,
1931 loff_t *ppos);
1932
1933 extern unsigned int sysctl_sched_compat_yield;
1934
1935 #ifdef CONFIG_SCHED_AUTOGROUP
1936 extern unsigned int sysctl_sched_autogroup_enabled;
1937
1938 extern void sched_autogroup_create_attach(struct task_struct *p);
1939 extern void sched_autogroup_detach(struct task_struct *p);
1940 extern void sched_autogroup_fork(struct signal_struct *sig);
1941 extern void sched_autogroup_exit(struct signal_struct *sig);
1942 #ifdef CONFIG_PROC_FS
1943 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1944 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1945 #endif
1946 #else
1947 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1948 static inline void sched_autogroup_detach(struct task_struct *p) { }
1949 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1950 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1951 #endif
1952
1953 #ifdef CONFIG_RT_MUTEXES
1954 extern int rt_mutex_getprio(struct task_struct *p);
1955 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1956 extern void rt_mutex_adjust_pi(struct task_struct *p);
1957 #else
1958 static inline int rt_mutex_getprio(struct task_struct *p)
1959 {
1960 return p->normal_prio;
1961 }
1962 # define rt_mutex_adjust_pi(p) do { } while (0)
1963 #endif
1964
1965 extern void set_user_nice(struct task_struct *p, long nice);
1966 extern int task_prio(const struct task_struct *p);
1967 extern int task_nice(const struct task_struct *p);
1968 extern int can_nice(const struct task_struct *p, const int nice);
1969 extern int task_curr(const struct task_struct *p);
1970 extern int idle_cpu(int cpu);
1971 extern int sched_setscheduler(struct task_struct *, int,
1972 const struct sched_param *);
1973 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1974 const struct sched_param *);
1975 extern struct task_struct *idle_task(int cpu);
1976 extern struct task_struct *curr_task(int cpu);
1977 extern void set_curr_task(int cpu, struct task_struct *p);
1978
1979 void yield(void);
1980
1981 /*
1982 * The default (Linux) execution domain.
1983 */
1984 extern struct exec_domain default_exec_domain;
1985
1986 union thread_union {
1987 struct thread_info thread_info;
1988 unsigned long stack[THREAD_SIZE/sizeof(long)];
1989 };
1990
1991 #ifndef __HAVE_ARCH_KSTACK_END
1992 static inline int kstack_end(void *addr)
1993 {
1994 /* Reliable end of stack detection:
1995 * Some APM bios versions misalign the stack
1996 */
1997 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1998 }
1999 #endif
2000
2001 extern union thread_union init_thread_union;
2002 extern struct task_struct init_task;
2003
2004 extern struct mm_struct init_mm;
2005
2006 extern struct pid_namespace init_pid_ns;
2007
2008 /*
2009 * find a task by one of its numerical ids
2010 *
2011 * find_task_by_pid_ns():
2012 * finds a task by its pid in the specified namespace
2013 * find_task_by_vpid():
2014 * finds a task by its virtual pid
2015 *
2016 * see also find_vpid() etc in include/linux/pid.h
2017 */
2018
2019 extern struct task_struct *find_task_by_vpid(pid_t nr);
2020 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2021 struct pid_namespace *ns);
2022
2023 extern void __set_special_pids(struct pid *pid);
2024
2025 /* per-UID process charging. */
2026 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2027 static inline struct user_struct *get_uid(struct user_struct *u)
2028 {
2029 atomic_inc(&u->__count);
2030 return u;
2031 }
2032 extern void free_uid(struct user_struct *);
2033 extern void release_uids(struct user_namespace *ns);
2034
2035 #include <asm/current.h>
2036
2037 extern void do_timer(unsigned long ticks);
2038
2039 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2040 extern int wake_up_process(struct task_struct *tsk);
2041 extern void wake_up_new_task(struct task_struct *tsk,
2042 unsigned long clone_flags);
2043 #ifdef CONFIG_SMP
2044 extern void kick_process(struct task_struct *tsk);
2045 #else
2046 static inline void kick_process(struct task_struct *tsk) { }
2047 #endif
2048 extern void sched_fork(struct task_struct *p, int clone_flags);
2049 extern void sched_dead(struct task_struct *p);
2050
2051 extern void proc_caches_init(void);
2052 extern void flush_signals(struct task_struct *);
2053 extern void __flush_signals(struct task_struct *);
2054 extern void ignore_signals(struct task_struct *);
2055 extern void flush_signal_handlers(struct task_struct *, int force_default);
2056 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2057
2058 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2059 {
2060 unsigned long flags;
2061 int ret;
2062
2063 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2064 ret = dequeue_signal(tsk, mask, info);
2065 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2066
2067 return ret;
2068 }
2069
2070 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2071 sigset_t *mask);
2072 extern void unblock_all_signals(void);
2073 extern void release_task(struct task_struct * p);
2074 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2075 extern int force_sigsegv(int, struct task_struct *);
2076 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2077 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2078 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2079 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2080 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2081 extern int kill_pid(struct pid *pid, int sig, int priv);
2082 extern int kill_proc_info(int, struct siginfo *, pid_t);
2083 extern int do_notify_parent(struct task_struct *, int);
2084 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2085 extern void force_sig(int, struct task_struct *);
2086 extern int send_sig(int, struct task_struct *, int);
2087 extern int zap_other_threads(struct task_struct *p);
2088 extern struct sigqueue *sigqueue_alloc(void);
2089 extern void sigqueue_free(struct sigqueue *);
2090 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2091 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2092 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2093
2094 static inline int kill_cad_pid(int sig, int priv)
2095 {
2096 return kill_pid(cad_pid, sig, priv);
2097 }
2098
2099 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2100 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2101 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2102 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2103
2104 /*
2105 * True if we are on the alternate signal stack.
2106 */
2107 static inline int on_sig_stack(unsigned long sp)
2108 {
2109 #ifdef CONFIG_STACK_GROWSUP
2110 return sp >= current->sas_ss_sp &&
2111 sp - current->sas_ss_sp < current->sas_ss_size;
2112 #else
2113 return sp > current->sas_ss_sp &&
2114 sp - current->sas_ss_sp <= current->sas_ss_size;
2115 #endif
2116 }
2117
2118 static inline int sas_ss_flags(unsigned long sp)
2119 {
2120 return (current->sas_ss_size == 0 ? SS_DISABLE
2121 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2122 }
2123
2124 /*
2125 * Routines for handling mm_structs
2126 */
2127 extern struct mm_struct * mm_alloc(void);
2128
2129 /* mmdrop drops the mm and the page tables */
2130 extern void __mmdrop(struct mm_struct *);
2131 static inline void mmdrop(struct mm_struct * mm)
2132 {
2133 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2134 __mmdrop(mm);
2135 }
2136
2137 /* mmput gets rid of the mappings and all user-space */
2138 extern void mmput(struct mm_struct *);
2139 /* Grab a reference to a task's mm, if it is not already going away */
2140 extern struct mm_struct *get_task_mm(struct task_struct *task);
2141 /* Remove the current tasks stale references to the old mm_struct */
2142 extern void mm_release(struct task_struct *, struct mm_struct *);
2143 /* Allocate a new mm structure and copy contents from tsk->mm */
2144 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2145
2146 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2147 struct task_struct *, struct pt_regs *);
2148 extern void flush_thread(void);
2149 extern void exit_thread(void);
2150
2151 extern void exit_files(struct task_struct *);
2152 extern void __cleanup_sighand(struct sighand_struct *);
2153
2154 extern void exit_itimers(struct signal_struct *);
2155 extern void flush_itimer_signals(void);
2156
2157 extern NORET_TYPE void do_group_exit(int);
2158
2159 extern void daemonize(const char *, ...);
2160 extern int allow_signal(int);
2161 extern int disallow_signal(int);
2162
2163 extern int do_execve(const char *,
2164 const char __user * const __user *,
2165 const char __user * const __user *, struct pt_regs *);
2166 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2167 struct task_struct *fork_idle(int);
2168
2169 extern void set_task_comm(struct task_struct *tsk, char *from);
2170 extern char *get_task_comm(char *to, struct task_struct *tsk);
2171
2172 #ifdef CONFIG_SMP
2173 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2174 #else
2175 static inline unsigned long wait_task_inactive(struct task_struct *p,
2176 long match_state)
2177 {
2178 return 1;
2179 }
2180 #endif
2181
2182 #define next_task(p) \
2183 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2184
2185 #define for_each_process(p) \
2186 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2187
2188 extern bool current_is_single_threaded(void);
2189
2190 /*
2191 * Careful: do_each_thread/while_each_thread is a double loop so
2192 * 'break' will not work as expected - use goto instead.
2193 */
2194 #define do_each_thread(g, t) \
2195 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2196
2197 #define while_each_thread(g, t) \
2198 while ((t = next_thread(t)) != g)
2199
2200 static inline int get_nr_threads(struct task_struct *tsk)
2201 {
2202 return tsk->signal->nr_threads;
2203 }
2204
2205 /* de_thread depends on thread_group_leader not being a pid based check */
2206 #define thread_group_leader(p) (p == p->group_leader)
2207
2208 /* Do to the insanities of de_thread it is possible for a process
2209 * to have the pid of the thread group leader without actually being
2210 * the thread group leader. For iteration through the pids in proc
2211 * all we care about is that we have a task with the appropriate
2212 * pid, we don't actually care if we have the right task.
2213 */
2214 static inline int has_group_leader_pid(struct task_struct *p)
2215 {
2216 return p->pid == p->tgid;
2217 }
2218
2219 static inline
2220 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2221 {
2222 return p1->tgid == p2->tgid;
2223 }
2224
2225 static inline struct task_struct *next_thread(const struct task_struct *p)
2226 {
2227 return list_entry_rcu(p->thread_group.next,
2228 struct task_struct, thread_group);
2229 }
2230
2231 static inline int thread_group_empty(struct task_struct *p)
2232 {
2233 return list_empty(&p->thread_group);
2234 }
2235
2236 #define delay_group_leader(p) \
2237 (thread_group_leader(p) && !thread_group_empty(p))
2238
2239 static inline int task_detached(struct task_struct *p)
2240 {
2241 return p->exit_signal == -1;
2242 }
2243
2244 /*
2245 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2246 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2247 * pins the final release of task.io_context. Also protects ->cpuset and
2248 * ->cgroup.subsys[].
2249 *
2250 * Nests both inside and outside of read_lock(&tasklist_lock).
2251 * It must not be nested with write_lock_irq(&tasklist_lock),
2252 * neither inside nor outside.
2253 */
2254 static inline void task_lock(struct task_struct *p)
2255 {
2256 spin_lock(&p->alloc_lock);
2257 }
2258
2259 static inline void task_unlock(struct task_struct *p)
2260 {
2261 spin_unlock(&p->alloc_lock);
2262 }
2263
2264 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2265 unsigned long *flags);
2266
2267 #define lock_task_sighand(tsk, flags) \
2268 ({ struct sighand_struct *__ss; \
2269 __cond_lock(&(tsk)->sighand->siglock, \
2270 (__ss = __lock_task_sighand(tsk, flags))); \
2271 __ss; \
2272 }) \
2273
2274 static inline void unlock_task_sighand(struct task_struct *tsk,
2275 unsigned long *flags)
2276 {
2277 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2278 }
2279
2280 #ifndef __HAVE_THREAD_FUNCTIONS
2281
2282 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2283 #define task_stack_page(task) ((task)->stack)
2284
2285 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2286 {
2287 *task_thread_info(p) = *task_thread_info(org);
2288 task_thread_info(p)->task = p;
2289 }
2290
2291 static inline unsigned long *end_of_stack(struct task_struct *p)
2292 {
2293 return (unsigned long *)(task_thread_info(p) + 1);
2294 }
2295
2296 #endif
2297
2298 static inline int object_is_on_stack(void *obj)
2299 {
2300 void *stack = task_stack_page(current);
2301
2302 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2303 }
2304
2305 extern void thread_info_cache_init(void);
2306
2307 #ifdef CONFIG_DEBUG_STACK_USAGE
2308 static inline unsigned long stack_not_used(struct task_struct *p)
2309 {
2310 unsigned long *n = end_of_stack(p);
2311
2312 do { /* Skip over canary */
2313 n++;
2314 } while (!*n);
2315
2316 return (unsigned long)n - (unsigned long)end_of_stack(p);
2317 }
2318 #endif
2319
2320 /* set thread flags in other task's structures
2321 * - see asm/thread_info.h for TIF_xxxx flags available
2322 */
2323 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2324 {
2325 set_ti_thread_flag(task_thread_info(tsk), flag);
2326 }
2327
2328 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2329 {
2330 clear_ti_thread_flag(task_thread_info(tsk), flag);
2331 }
2332
2333 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2334 {
2335 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2336 }
2337
2338 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2339 {
2340 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2341 }
2342
2343 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2344 {
2345 return test_ti_thread_flag(task_thread_info(tsk), flag);
2346 }
2347
2348 static inline void set_tsk_need_resched(struct task_struct *tsk)
2349 {
2350 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2351 }
2352
2353 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2354 {
2355 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2356 }
2357
2358 static inline int test_tsk_need_resched(struct task_struct *tsk)
2359 {
2360 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2361 }
2362
2363 static inline int restart_syscall(void)
2364 {
2365 set_tsk_thread_flag(current, TIF_SIGPENDING);
2366 return -ERESTARTNOINTR;
2367 }
2368
2369 static inline int signal_pending(struct task_struct *p)
2370 {
2371 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2372 }
2373
2374 static inline int __fatal_signal_pending(struct task_struct *p)
2375 {
2376 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2377 }
2378
2379 static inline int fatal_signal_pending(struct task_struct *p)
2380 {
2381 return signal_pending(p) && __fatal_signal_pending(p);
2382 }
2383
2384 static inline int signal_pending_state(long state, struct task_struct *p)
2385 {
2386 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2387 return 0;
2388 if (!signal_pending(p))
2389 return 0;
2390
2391 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2392 }
2393
2394 static inline int need_resched(void)
2395 {
2396 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2397 }
2398
2399 /*
2400 * cond_resched() and cond_resched_lock(): latency reduction via
2401 * explicit rescheduling in places that are safe. The return
2402 * value indicates whether a reschedule was done in fact.
2403 * cond_resched_lock() will drop the spinlock before scheduling,
2404 * cond_resched_softirq() will enable bhs before scheduling.
2405 */
2406 extern int _cond_resched(void);
2407
2408 #define cond_resched() ({ \
2409 __might_sleep(__FILE__, __LINE__, 0); \
2410 _cond_resched(); \
2411 })
2412
2413 extern int __cond_resched_lock(spinlock_t *lock);
2414
2415 #ifdef CONFIG_PREEMPT
2416 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2417 #else
2418 #define PREEMPT_LOCK_OFFSET 0
2419 #endif
2420
2421 #define cond_resched_lock(lock) ({ \
2422 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2423 __cond_resched_lock(lock); \
2424 })
2425
2426 extern int __cond_resched_softirq(void);
2427
2428 #define cond_resched_softirq() ({ \
2429 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2430 __cond_resched_softirq(); \
2431 })
2432
2433 /*
2434 * Does a critical section need to be broken due to another
2435 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2436 * but a general need for low latency)
2437 */
2438 static inline int spin_needbreak(spinlock_t *lock)
2439 {
2440 #ifdef CONFIG_PREEMPT
2441 return spin_is_contended(lock);
2442 #else
2443 return 0;
2444 #endif
2445 }
2446
2447 /*
2448 * Thread group CPU time accounting.
2449 */
2450 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2451 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2452
2453 static inline void thread_group_cputime_init(struct signal_struct *sig)
2454 {
2455 spin_lock_init(&sig->cputimer.lock);
2456 }
2457
2458 /*
2459 * Reevaluate whether the task has signals pending delivery.
2460 * Wake the task if so.
2461 * This is required every time the blocked sigset_t changes.
2462 * callers must hold sighand->siglock.
2463 */
2464 extern void recalc_sigpending_and_wake(struct task_struct *t);
2465 extern void recalc_sigpending(void);
2466
2467 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2468
2469 /*
2470 * Wrappers for p->thread_info->cpu access. No-op on UP.
2471 */
2472 #ifdef CONFIG_SMP
2473
2474 static inline unsigned int task_cpu(const struct task_struct *p)
2475 {
2476 return task_thread_info(p)->cpu;
2477 }
2478
2479 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2480
2481 #else
2482
2483 static inline unsigned int task_cpu(const struct task_struct *p)
2484 {
2485 return 0;
2486 }
2487
2488 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2489 {
2490 }
2491
2492 #endif /* CONFIG_SMP */
2493
2494 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2495 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2496
2497 extern void normalize_rt_tasks(void);
2498
2499 #ifdef CONFIG_CGROUP_SCHED
2500
2501 extern struct task_group init_task_group;
2502
2503 extern struct task_group *sched_create_group(struct task_group *parent);
2504 extern void sched_destroy_group(struct task_group *tg);
2505 extern void sched_move_task(struct task_struct *tsk);
2506 #ifdef CONFIG_FAIR_GROUP_SCHED
2507 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2508 extern unsigned long sched_group_shares(struct task_group *tg);
2509 #endif
2510 #ifdef CONFIG_RT_GROUP_SCHED
2511 extern int sched_group_set_rt_runtime(struct task_group *tg,
2512 long rt_runtime_us);
2513 extern long sched_group_rt_runtime(struct task_group *tg);
2514 extern int sched_group_set_rt_period(struct task_group *tg,
2515 long rt_period_us);
2516 extern long sched_group_rt_period(struct task_group *tg);
2517 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2518 #endif
2519 #endif
2520
2521 extern int task_can_switch_user(struct user_struct *up,
2522 struct task_struct *tsk);
2523
2524 #ifdef CONFIG_TASK_XACCT
2525 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2526 {
2527 tsk->ioac.rchar += amt;
2528 }
2529
2530 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2531 {
2532 tsk->ioac.wchar += amt;
2533 }
2534
2535 static inline void inc_syscr(struct task_struct *tsk)
2536 {
2537 tsk->ioac.syscr++;
2538 }
2539
2540 static inline void inc_syscw(struct task_struct *tsk)
2541 {
2542 tsk->ioac.syscw++;
2543 }
2544 #else
2545 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2546 {
2547 }
2548
2549 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2550 {
2551 }
2552
2553 static inline void inc_syscr(struct task_struct *tsk)
2554 {
2555 }
2556
2557 static inline void inc_syscw(struct task_struct *tsk)
2558 {
2559 }
2560 #endif
2561
2562 #ifndef TASK_SIZE_OF
2563 #define TASK_SIZE_OF(tsk) TASK_SIZE
2564 #endif
2565
2566 /*
2567 * Call the function if the target task is executing on a CPU right now:
2568 */
2569 extern void task_oncpu_function_call(struct task_struct *p,
2570 void (*func) (void *info), void *info);
2571
2572
2573 #ifdef CONFIG_MM_OWNER
2574 extern void mm_update_next_owner(struct mm_struct *mm);
2575 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2576 #else
2577 static inline void mm_update_next_owner(struct mm_struct *mm)
2578 {
2579 }
2580
2581 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2582 {
2583 }
2584 #endif /* CONFIG_MM_OWNER */
2585
2586 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2587 unsigned int limit)
2588 {
2589 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2590 }
2591
2592 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2593 unsigned int limit)
2594 {
2595 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2596 }
2597
2598 static inline unsigned long rlimit(unsigned int limit)
2599 {
2600 return task_rlimit(current, limit);
2601 }
2602
2603 static inline unsigned long rlimit_max(unsigned int limit)
2604 {
2605 return task_rlimit_max(current, limit);
2606 }
2607
2608 #endif /* __KERNEL__ */
2609
2610 #endif