]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * Define 'struct task_struct' and provide the main scheduler
6 * APIs (schedule(), wakeup variants, etc.)
7 */
8
9 #include <uapi/linux/sched.h>
10
11 #include <asm/current.h>
12
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55
56 /*
57 * Task state bitmask. NOTE! These bits are also
58 * encoded in fs/proc/array.c: get_task_state().
59 *
60 * We have two separate sets of flags: task->state
61 * is about runnability, while task->exit_state are
62 * about the task exiting. Confusing, but this way
63 * modifying one set can't modify the other one by
64 * mistake.
65 */
66
67 /* Used in tsk->state: */
68 #define TASK_RUNNING 0
69 #define TASK_INTERRUPTIBLE 1
70 #define TASK_UNINTERRUPTIBLE 2
71 #define __TASK_STOPPED 4
72 #define __TASK_TRACED 8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD 16
75 #define EXIT_ZOMBIE 32
76 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD 64
79 #define TASK_WAKEKILL 128
80 #define TASK_WAKING 256
81 #define TASK_PARKED 512
82 #define TASK_NOLOAD 1024
83 #define TASK_NEW 2048
84 #define TASK_STATE_MAX 4096
85
86 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
87
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98
99 /* get_task_state(): */
100 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 #define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121 #define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
124 smp_store_mb(current->state, (state_value)); \
125 } while (0)
126
127 #else
128 /*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
133 * for (;;) {
134 * set_current_state(TASK_UNINTERRUPTIBLE);
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157 *
158 * This is obviously fine, since they both store the exact same value.
159 *
160 * Also see the comments of try_to_wake_up().
161 */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value) smp_store_mb(current->state, (state_value))
164 #endif
165
166 /* Task command name length: */
167 #define TASK_COMM_LEN 16
168
169 extern cpumask_var_t cpu_isolated_map;
170
171 extern void scheduler_tick(void);
172
173 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
174
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187
188 /**
189 * struct prev_cputime - snapshot of system and user cputime
190 * @utime: time spent in user mode
191 * @stime: time spent in system mode
192 * @lock: protects the above two fields
193 *
194 * Stores previous user/system time values such that we can guarantee
195 * monotonicity.
196 */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 u64 utime;
200 u64 stime;
201 raw_spinlock_t lock;
202 #endif
203 };
204
205 /**
206 * struct task_cputime - collected CPU time counts
207 * @utime: time spent in user mode, in nanoseconds
208 * @stime: time spent in kernel mode, in nanoseconds
209 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
210 *
211 * This structure groups together three kinds of CPU time that are tracked for
212 * threads and thread groups. Most things considering CPU time want to group
213 * these counts together and treat all three of them in parallel.
214 */
215 struct task_cputime {
216 u64 utime;
217 u64 stime;
218 unsigned long long sum_exec_runtime;
219 };
220
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp utime
223 #define prof_exp stime
224 #define sched_exp sum_exec_runtime
225
226 struct sched_info {
227 #ifdef CONFIG_SCHED_INFO
228 /* Cumulative counters: */
229
230 /* # of times we have run on this CPU: */
231 unsigned long pcount;
232
233 /* Time spent waiting on a runqueue: */
234 unsigned long long run_delay;
235
236 /* Timestamps: */
237
238 /* When did we last run on a CPU? */
239 unsigned long long last_arrival;
240
241 /* When were we last queued to run? */
242 unsigned long long last_queued;
243
244 #endif /* CONFIG_SCHED_INFO */
245 };
246
247 /*
248 * Integer metrics need fixed point arithmetic, e.g., sched/fair
249 * has a few: load, load_avg, util_avg, freq, and capacity.
250 *
251 * We define a basic fixed point arithmetic range, and then formalize
252 * all these metrics based on that basic range.
253 */
254 # define SCHED_FIXEDPOINT_SHIFT 10
255 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
256
257 struct load_weight {
258 unsigned long weight;
259 u32 inv_weight;
260 };
261
262 /*
263 * The load_avg/util_avg accumulates an infinite geometric series
264 * (see __update_load_avg() in kernel/sched/fair.c).
265 *
266 * [load_avg definition]
267 *
268 * load_avg = runnable% * scale_load_down(load)
269 *
270 * where runnable% is the time ratio that a sched_entity is runnable.
271 * For cfs_rq, it is the aggregated load_avg of all runnable and
272 * blocked sched_entities.
273 *
274 * load_avg may also take frequency scaling into account:
275 *
276 * load_avg = runnable% * scale_load_down(load) * freq%
277 *
278 * where freq% is the CPU frequency normalized to the highest frequency.
279 *
280 * [util_avg definition]
281 *
282 * util_avg = running% * SCHED_CAPACITY_SCALE
283 *
284 * where running% is the time ratio that a sched_entity is running on
285 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
286 * and blocked sched_entities.
287 *
288 * util_avg may also factor frequency scaling and CPU capacity scaling:
289 *
290 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
291 *
292 * where freq% is the same as above, and capacity% is the CPU capacity
293 * normalized to the greatest capacity (due to uarch differences, etc).
294 *
295 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
296 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
297 * we therefore scale them to as large a range as necessary. This is for
298 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
299 *
300 * [Overflow issue]
301 *
302 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
303 * with the highest load (=88761), always runnable on a single cfs_rq,
304 * and should not overflow as the number already hits PID_MAX_LIMIT.
305 *
306 * For all other cases (including 32-bit kernels), struct load_weight's
307 * weight will overflow first before we do, because:
308 *
309 * Max(load_avg) <= Max(load.weight)
310 *
311 * Then it is the load_weight's responsibility to consider overflow
312 * issues.
313 */
314 struct sched_avg {
315 u64 last_update_time;
316 u64 load_sum;
317 u32 util_sum;
318 u32 period_contrib;
319 unsigned long load_avg;
320 unsigned long util_avg;
321 };
322
323 struct sched_statistics {
324 #ifdef CONFIG_SCHEDSTATS
325 u64 wait_start;
326 u64 wait_max;
327 u64 wait_count;
328 u64 wait_sum;
329 u64 iowait_count;
330 u64 iowait_sum;
331
332 u64 sleep_start;
333 u64 sleep_max;
334 s64 sum_sleep_runtime;
335
336 u64 block_start;
337 u64 block_max;
338 u64 exec_max;
339 u64 slice_max;
340
341 u64 nr_migrations_cold;
342 u64 nr_failed_migrations_affine;
343 u64 nr_failed_migrations_running;
344 u64 nr_failed_migrations_hot;
345 u64 nr_forced_migrations;
346
347 u64 nr_wakeups;
348 u64 nr_wakeups_sync;
349 u64 nr_wakeups_migrate;
350 u64 nr_wakeups_local;
351 u64 nr_wakeups_remote;
352 u64 nr_wakeups_affine;
353 u64 nr_wakeups_affine_attempts;
354 u64 nr_wakeups_passive;
355 u64 nr_wakeups_idle;
356 #endif
357 };
358
359 struct sched_entity {
360 /* For load-balancing: */
361 struct load_weight load;
362 struct rb_node run_node;
363 struct list_head group_node;
364 unsigned int on_rq;
365
366 u64 exec_start;
367 u64 sum_exec_runtime;
368 u64 vruntime;
369 u64 prev_sum_exec_runtime;
370
371 u64 nr_migrations;
372
373 struct sched_statistics statistics;
374
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 int depth;
377 struct sched_entity *parent;
378 /* rq on which this entity is (to be) queued: */
379 struct cfs_rq *cfs_rq;
380 /* rq "owned" by this entity/group: */
381 struct cfs_rq *my_q;
382 #endif
383
384 #ifdef CONFIG_SMP
385 /*
386 * Per entity load average tracking.
387 *
388 * Put into separate cache line so it does not
389 * collide with read-mostly values above.
390 */
391 struct sched_avg avg ____cacheline_aligned_in_smp;
392 #endif
393 };
394
395 struct sched_rt_entity {
396 struct list_head run_list;
397 unsigned long timeout;
398 unsigned long watchdog_stamp;
399 unsigned int time_slice;
400 unsigned short on_rq;
401 unsigned short on_list;
402
403 struct sched_rt_entity *back;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 struct sched_rt_entity *parent;
406 /* rq on which this entity is (to be) queued: */
407 struct rt_rq *rt_rq;
408 /* rq "owned" by this entity/group: */
409 struct rt_rq *my_q;
410 #endif
411 };
412
413 struct sched_dl_entity {
414 struct rb_node rb_node;
415
416 /*
417 * Original scheduling parameters. Copied here from sched_attr
418 * during sched_setattr(), they will remain the same until
419 * the next sched_setattr().
420 */
421 u64 dl_runtime; /* Maximum runtime for each instance */
422 u64 dl_deadline; /* Relative deadline of each instance */
423 u64 dl_period; /* Separation of two instances (period) */
424 u64 dl_bw; /* dl_runtime / dl_period */
425 u64 dl_density; /* dl_runtime / dl_deadline */
426
427 /*
428 * Actual scheduling parameters. Initialized with the values above,
429 * they are continously updated during task execution. Note that
430 * the remaining runtime could be < 0 in case we are in overrun.
431 */
432 s64 runtime; /* Remaining runtime for this instance */
433 u64 deadline; /* Absolute deadline for this instance */
434 unsigned int flags; /* Specifying the scheduler behaviour */
435
436 /*
437 * Some bool flags:
438 *
439 * @dl_throttled tells if we exhausted the runtime. If so, the
440 * task has to wait for a replenishment to be performed at the
441 * next firing of dl_timer.
442 *
443 * @dl_boosted tells if we are boosted due to DI. If so we are
444 * outside bandwidth enforcement mechanism (but only until we
445 * exit the critical section);
446 *
447 * @dl_yielded tells if task gave up the CPU before consuming
448 * all its available runtime during the last job.
449 *
450 * @dl_non_contending tells if the task is inactive while still
451 * contributing to the active utilization. In other words, it
452 * indicates if the inactive timer has been armed and its handler
453 * has not been executed yet. This flag is useful to avoid race
454 * conditions between the inactive timer handler and the wakeup
455 * code.
456 */
457 int dl_throttled;
458 int dl_boosted;
459 int dl_yielded;
460 int dl_non_contending;
461
462 /*
463 * Bandwidth enforcement timer. Each -deadline task has its
464 * own bandwidth to be enforced, thus we need one timer per task.
465 */
466 struct hrtimer dl_timer;
467
468 /*
469 * Inactive timer, responsible for decreasing the active utilization
470 * at the "0-lag time". When a -deadline task blocks, it contributes
471 * to GRUB's active utilization until the "0-lag time", hence a
472 * timer is needed to decrease the active utilization at the correct
473 * time.
474 */
475 struct hrtimer inactive_timer;
476 };
477
478 union rcu_special {
479 struct {
480 u8 blocked;
481 u8 need_qs;
482 u8 exp_need_qs;
483
484 /* Otherwise the compiler can store garbage here: */
485 u8 pad;
486 } b; /* Bits. */
487 u32 s; /* Set of bits. */
488 };
489
490 enum perf_event_task_context {
491 perf_invalid_context = -1,
492 perf_hw_context = 0,
493 perf_sw_context,
494 perf_nr_task_contexts,
495 };
496
497 struct wake_q_node {
498 struct wake_q_node *next;
499 };
500
501 struct task_struct {
502 #ifdef CONFIG_THREAD_INFO_IN_TASK
503 /*
504 * For reasons of header soup (see current_thread_info()), this
505 * must be the first element of task_struct.
506 */
507 struct thread_info thread_info;
508 #endif
509 /* -1 unrunnable, 0 runnable, >0 stopped: */
510 volatile long state;
511 void *stack;
512 atomic_t usage;
513 /* Per task flags (PF_*), defined further below: */
514 unsigned int flags;
515 unsigned int ptrace;
516
517 #ifdef CONFIG_SMP
518 struct llist_node wake_entry;
519 int on_cpu;
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
521 /* Current CPU: */
522 unsigned int cpu;
523 #endif
524 unsigned int wakee_flips;
525 unsigned long wakee_flip_decay_ts;
526 struct task_struct *last_wakee;
527
528 int wake_cpu;
529 #endif
530 int on_rq;
531
532 int prio;
533 int static_prio;
534 int normal_prio;
535 unsigned int rt_priority;
536
537 const struct sched_class *sched_class;
538 struct sched_entity se;
539 struct sched_rt_entity rt;
540 #ifdef CONFIG_CGROUP_SCHED
541 struct task_group *sched_task_group;
542 #endif
543 struct sched_dl_entity dl;
544
545 #ifdef CONFIG_PREEMPT_NOTIFIERS
546 /* List of struct preempt_notifier: */
547 struct hlist_head preempt_notifiers;
548 #endif
549
550 #ifdef CONFIG_BLK_DEV_IO_TRACE
551 unsigned int btrace_seq;
552 #endif
553
554 unsigned int policy;
555 int nr_cpus_allowed;
556 cpumask_t cpus_allowed;
557
558 #ifdef CONFIG_PREEMPT_RCU
559 int rcu_read_lock_nesting;
560 union rcu_special rcu_read_unlock_special;
561 struct list_head rcu_node_entry;
562 struct rcu_node *rcu_blocked_node;
563 #endif /* #ifdef CONFIG_PREEMPT_RCU */
564
565 #ifdef CONFIG_TASKS_RCU
566 unsigned long rcu_tasks_nvcsw;
567 bool rcu_tasks_holdout;
568 struct list_head rcu_tasks_holdout_list;
569 int rcu_tasks_idle_cpu;
570 #endif /* #ifdef CONFIG_TASKS_RCU */
571
572 struct sched_info sched_info;
573
574 struct list_head tasks;
575 #ifdef CONFIG_SMP
576 struct plist_node pushable_tasks;
577 struct rb_node pushable_dl_tasks;
578 #endif
579
580 struct mm_struct *mm;
581 struct mm_struct *active_mm;
582
583 /* Per-thread vma caching: */
584 struct vmacache vmacache;
585
586 #ifdef SPLIT_RSS_COUNTING
587 struct task_rss_stat rss_stat;
588 #endif
589 int exit_state;
590 int exit_code;
591 int exit_signal;
592 /* The signal sent when the parent dies: */
593 int pdeath_signal;
594 /* JOBCTL_*, siglock protected: */
595 unsigned long jobctl;
596
597 /* Used for emulating ABI behavior of previous Linux versions: */
598 unsigned int personality;
599
600 /* Scheduler bits, serialized by scheduler locks: */
601 unsigned sched_reset_on_fork:1;
602 unsigned sched_contributes_to_load:1;
603 unsigned sched_migrated:1;
604 unsigned sched_remote_wakeup:1;
605 /* Force alignment to the next boundary: */
606 unsigned :0;
607
608 /* Unserialized, strictly 'current' */
609
610 /* Bit to tell LSMs we're in execve(): */
611 unsigned in_execve:1;
612 unsigned in_iowait:1;
613 #ifndef TIF_RESTORE_SIGMASK
614 unsigned restore_sigmask:1;
615 #endif
616 #ifdef CONFIG_MEMCG
617 unsigned memcg_may_oom:1;
618 #ifndef CONFIG_SLOB
619 unsigned memcg_kmem_skip_account:1;
620 #endif
621 #endif
622 #ifdef CONFIG_COMPAT_BRK
623 unsigned brk_randomized:1;
624 #endif
625 #ifdef CONFIG_CGROUPS
626 /* disallow userland-initiated cgroup migration */
627 unsigned no_cgroup_migration:1;
628 #endif
629
630 unsigned long atomic_flags; /* Flags requiring atomic access. */
631
632 struct restart_block restart_block;
633
634 pid_t pid;
635 pid_t tgid;
636
637 #ifdef CONFIG_CC_STACKPROTECTOR
638 /* Canary value for the -fstack-protector GCC feature: */
639 unsigned long stack_canary;
640 #endif
641 /*
642 * Pointers to the (original) parent process, youngest child, younger sibling,
643 * older sibling, respectively. (p->father can be replaced with
644 * p->real_parent->pid)
645 */
646
647 /* Real parent process: */
648 struct task_struct __rcu *real_parent;
649
650 /* Recipient of SIGCHLD, wait4() reports: */
651 struct task_struct __rcu *parent;
652
653 /*
654 * Children/sibling form the list of natural children:
655 */
656 struct list_head children;
657 struct list_head sibling;
658 struct task_struct *group_leader;
659
660 /*
661 * 'ptraced' is the list of tasks this task is using ptrace() on.
662 *
663 * This includes both natural children and PTRACE_ATTACH targets.
664 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
665 */
666 struct list_head ptraced;
667 struct list_head ptrace_entry;
668
669 /* PID/PID hash table linkage. */
670 struct pid_link pids[PIDTYPE_MAX];
671 struct list_head thread_group;
672 struct list_head thread_node;
673
674 struct completion *vfork_done;
675
676 /* CLONE_CHILD_SETTID: */
677 int __user *set_child_tid;
678
679 /* CLONE_CHILD_CLEARTID: */
680 int __user *clear_child_tid;
681
682 u64 utime;
683 u64 stime;
684 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
685 u64 utimescaled;
686 u64 stimescaled;
687 #endif
688 u64 gtime;
689 struct prev_cputime prev_cputime;
690 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
691 seqcount_t vtime_seqcount;
692 unsigned long long vtime_snap;
693 enum {
694 /* Task is sleeping or running in a CPU with VTIME inactive: */
695 VTIME_INACTIVE = 0,
696 /* Task runs in userspace in a CPU with VTIME active: */
697 VTIME_USER,
698 /* Task runs in kernelspace in a CPU with VTIME active: */
699 VTIME_SYS,
700 } vtime_snap_whence;
701 #endif
702
703 #ifdef CONFIG_NO_HZ_FULL
704 atomic_t tick_dep_mask;
705 #endif
706 /* Context switch counts: */
707 unsigned long nvcsw;
708 unsigned long nivcsw;
709
710 /* Monotonic time in nsecs: */
711 u64 start_time;
712
713 /* Boot based time in nsecs: */
714 u64 real_start_time;
715
716 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
717 unsigned long min_flt;
718 unsigned long maj_flt;
719
720 #ifdef CONFIG_POSIX_TIMERS
721 struct task_cputime cputime_expires;
722 struct list_head cpu_timers[3];
723 #endif
724
725 /* Process credentials: */
726
727 /* Tracer's credentials at attach: */
728 const struct cred __rcu *ptracer_cred;
729
730 /* Objective and real subjective task credentials (COW): */
731 const struct cred __rcu *real_cred;
732
733 /* Effective (overridable) subjective task credentials (COW): */
734 const struct cred __rcu *cred;
735
736 /*
737 * executable name, excluding path.
738 *
739 * - normally initialized setup_new_exec()
740 * - access it with [gs]et_task_comm()
741 * - lock it with task_lock()
742 */
743 char comm[TASK_COMM_LEN];
744
745 struct nameidata *nameidata;
746
747 #ifdef CONFIG_SYSVIPC
748 struct sysv_sem sysvsem;
749 struct sysv_shm sysvshm;
750 #endif
751 #ifdef CONFIG_DETECT_HUNG_TASK
752 unsigned long last_switch_count;
753 #endif
754 /* Filesystem information: */
755 struct fs_struct *fs;
756
757 /* Open file information: */
758 struct files_struct *files;
759
760 /* Namespaces: */
761 struct nsproxy *nsproxy;
762
763 /* Signal handlers: */
764 struct signal_struct *signal;
765 struct sighand_struct *sighand;
766 sigset_t blocked;
767 sigset_t real_blocked;
768 /* Restored if set_restore_sigmask() was used: */
769 sigset_t saved_sigmask;
770 struct sigpending pending;
771 unsigned long sas_ss_sp;
772 size_t sas_ss_size;
773 unsigned int sas_ss_flags;
774
775 struct callback_head *task_works;
776
777 struct audit_context *audit_context;
778 #ifdef CONFIG_AUDITSYSCALL
779 kuid_t loginuid;
780 unsigned int sessionid;
781 #endif
782 struct seccomp seccomp;
783
784 /* Thread group tracking: */
785 u32 parent_exec_id;
786 u32 self_exec_id;
787
788 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
789 spinlock_t alloc_lock;
790
791 /* Protection of the PI data structures: */
792 raw_spinlock_t pi_lock;
793
794 struct wake_q_node wake_q;
795
796 #ifdef CONFIG_RT_MUTEXES
797 /* PI waiters blocked on a rt_mutex held by this task: */
798 struct rb_root pi_waiters;
799 struct rb_node *pi_waiters_leftmost;
800 /* Updated under owner's pi_lock and rq lock */
801 struct task_struct *pi_top_task;
802 /* Deadlock detection and priority inheritance handling: */
803 struct rt_mutex_waiter *pi_blocked_on;
804 #endif
805
806 #ifdef CONFIG_DEBUG_MUTEXES
807 /* Mutex deadlock detection: */
808 struct mutex_waiter *blocked_on;
809 #endif
810
811 #ifdef CONFIG_TRACE_IRQFLAGS
812 unsigned int irq_events;
813 unsigned long hardirq_enable_ip;
814 unsigned long hardirq_disable_ip;
815 unsigned int hardirq_enable_event;
816 unsigned int hardirq_disable_event;
817 int hardirqs_enabled;
818 int hardirq_context;
819 unsigned long softirq_disable_ip;
820 unsigned long softirq_enable_ip;
821 unsigned int softirq_disable_event;
822 unsigned int softirq_enable_event;
823 int softirqs_enabled;
824 int softirq_context;
825 #endif
826
827 #ifdef CONFIG_LOCKDEP
828 # define MAX_LOCK_DEPTH 48UL
829 u64 curr_chain_key;
830 int lockdep_depth;
831 unsigned int lockdep_recursion;
832 struct held_lock held_locks[MAX_LOCK_DEPTH];
833 gfp_t lockdep_reclaim_gfp;
834 #endif
835
836 #ifdef CONFIG_UBSAN
837 unsigned int in_ubsan;
838 #endif
839
840 /* Journalling filesystem info: */
841 void *journal_info;
842
843 /* Stacked block device info: */
844 struct bio_list *bio_list;
845
846 #ifdef CONFIG_BLOCK
847 /* Stack plugging: */
848 struct blk_plug *plug;
849 #endif
850
851 /* VM state: */
852 struct reclaim_state *reclaim_state;
853
854 struct backing_dev_info *backing_dev_info;
855
856 struct io_context *io_context;
857
858 /* Ptrace state: */
859 unsigned long ptrace_message;
860 siginfo_t *last_siginfo;
861
862 struct task_io_accounting ioac;
863 #ifdef CONFIG_TASK_XACCT
864 /* Accumulated RSS usage: */
865 u64 acct_rss_mem1;
866 /* Accumulated virtual memory usage: */
867 u64 acct_vm_mem1;
868 /* stime + utime since last update: */
869 u64 acct_timexpd;
870 #endif
871 #ifdef CONFIG_CPUSETS
872 /* Protected by ->alloc_lock: */
873 nodemask_t mems_allowed;
874 /* Seqence number to catch updates: */
875 seqcount_t mems_allowed_seq;
876 int cpuset_mem_spread_rotor;
877 int cpuset_slab_spread_rotor;
878 #endif
879 #ifdef CONFIG_CGROUPS
880 /* Control Group info protected by css_set_lock: */
881 struct css_set __rcu *cgroups;
882 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
883 struct list_head cg_list;
884 #endif
885 #ifdef CONFIG_INTEL_RDT_A
886 int closid;
887 #endif
888 #ifdef CONFIG_FUTEX
889 struct robust_list_head __user *robust_list;
890 #ifdef CONFIG_COMPAT
891 struct compat_robust_list_head __user *compat_robust_list;
892 #endif
893 struct list_head pi_state_list;
894 struct futex_pi_state *pi_state_cache;
895 #endif
896 #ifdef CONFIG_PERF_EVENTS
897 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
898 struct mutex perf_event_mutex;
899 struct list_head perf_event_list;
900 #endif
901 #ifdef CONFIG_DEBUG_PREEMPT
902 unsigned long preempt_disable_ip;
903 #endif
904 #ifdef CONFIG_NUMA
905 /* Protected by alloc_lock: */
906 struct mempolicy *mempolicy;
907 short il_next;
908 short pref_node_fork;
909 #endif
910 #ifdef CONFIG_NUMA_BALANCING
911 int numa_scan_seq;
912 unsigned int numa_scan_period;
913 unsigned int numa_scan_period_max;
914 int numa_preferred_nid;
915 unsigned long numa_migrate_retry;
916 /* Migration stamp: */
917 u64 node_stamp;
918 u64 last_task_numa_placement;
919 u64 last_sum_exec_runtime;
920 struct callback_head numa_work;
921
922 struct list_head numa_entry;
923 struct numa_group *numa_group;
924
925 /*
926 * numa_faults is an array split into four regions:
927 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
928 * in this precise order.
929 *
930 * faults_memory: Exponential decaying average of faults on a per-node
931 * basis. Scheduling placement decisions are made based on these
932 * counts. The values remain static for the duration of a PTE scan.
933 * faults_cpu: Track the nodes the process was running on when a NUMA
934 * hinting fault was incurred.
935 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
936 * during the current scan window. When the scan completes, the counts
937 * in faults_memory and faults_cpu decay and these values are copied.
938 */
939 unsigned long *numa_faults;
940 unsigned long total_numa_faults;
941
942 /*
943 * numa_faults_locality tracks if faults recorded during the last
944 * scan window were remote/local or failed to migrate. The task scan
945 * period is adapted based on the locality of the faults with different
946 * weights depending on whether they were shared or private faults
947 */
948 unsigned long numa_faults_locality[3];
949
950 unsigned long numa_pages_migrated;
951 #endif /* CONFIG_NUMA_BALANCING */
952
953 struct tlbflush_unmap_batch tlb_ubc;
954
955 struct rcu_head rcu;
956
957 /* Cache last used pipe for splice(): */
958 struct pipe_inode_info *splice_pipe;
959
960 struct page_frag task_frag;
961
962 #ifdef CONFIG_TASK_DELAY_ACCT
963 struct task_delay_info *delays;
964 #endif
965
966 #ifdef CONFIG_FAULT_INJECTION
967 int make_it_fail;
968 #endif
969 /*
970 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
971 * balance_dirty_pages() for a dirty throttling pause:
972 */
973 int nr_dirtied;
974 int nr_dirtied_pause;
975 /* Start of a write-and-pause period: */
976 unsigned long dirty_paused_when;
977
978 #ifdef CONFIG_LATENCYTOP
979 int latency_record_count;
980 struct latency_record latency_record[LT_SAVECOUNT];
981 #endif
982 /*
983 * Time slack values; these are used to round up poll() and
984 * select() etc timeout values. These are in nanoseconds.
985 */
986 u64 timer_slack_ns;
987 u64 default_timer_slack_ns;
988
989 #ifdef CONFIG_KASAN
990 unsigned int kasan_depth;
991 #endif
992
993 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
994 /* Index of current stored address in ret_stack: */
995 int curr_ret_stack;
996
997 /* Stack of return addresses for return function tracing: */
998 struct ftrace_ret_stack *ret_stack;
999
1000 /* Timestamp for last schedule: */
1001 unsigned long long ftrace_timestamp;
1002
1003 /*
1004 * Number of functions that haven't been traced
1005 * because of depth overrun:
1006 */
1007 atomic_t trace_overrun;
1008
1009 /* Pause tracing: */
1010 atomic_t tracing_graph_pause;
1011 #endif
1012
1013 #ifdef CONFIG_TRACING
1014 /* State flags for use by tracers: */
1015 unsigned long trace;
1016
1017 /* Bitmask and counter of trace recursion: */
1018 unsigned long trace_recursion;
1019 #endif /* CONFIG_TRACING */
1020
1021 #ifdef CONFIG_KCOV
1022 /* Coverage collection mode enabled for this task (0 if disabled): */
1023 enum kcov_mode kcov_mode;
1024
1025 /* Size of the kcov_area: */
1026 unsigned int kcov_size;
1027
1028 /* Buffer for coverage collection: */
1029 void *kcov_area;
1030
1031 /* KCOV descriptor wired with this task or NULL: */
1032 struct kcov *kcov;
1033 #endif
1034
1035 #ifdef CONFIG_MEMCG
1036 struct mem_cgroup *memcg_in_oom;
1037 gfp_t memcg_oom_gfp_mask;
1038 int memcg_oom_order;
1039
1040 /* Number of pages to reclaim on returning to userland: */
1041 unsigned int memcg_nr_pages_over_high;
1042 #endif
1043
1044 #ifdef CONFIG_UPROBES
1045 struct uprobe_task *utask;
1046 #endif
1047 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1048 unsigned int sequential_io;
1049 unsigned int sequential_io_avg;
1050 #endif
1051 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1052 unsigned long task_state_change;
1053 #endif
1054 int pagefault_disabled;
1055 #ifdef CONFIG_MMU
1056 struct task_struct *oom_reaper_list;
1057 #endif
1058 #ifdef CONFIG_VMAP_STACK
1059 struct vm_struct *stack_vm_area;
1060 #endif
1061 #ifdef CONFIG_THREAD_INFO_IN_TASK
1062 /* A live task holds one reference: */
1063 atomic_t stack_refcount;
1064 #endif
1065 #ifdef CONFIG_LIVEPATCH
1066 int patch_state;
1067 #endif
1068 #ifdef CONFIG_SECURITY
1069 /* Used by LSM modules for access restriction: */
1070 void *security;
1071 #endif
1072 /* CPU-specific state of this task: */
1073 struct thread_struct thread;
1074
1075 /*
1076 * WARNING: on x86, 'thread_struct' contains a variable-sized
1077 * structure. It *MUST* be at the end of 'task_struct'.
1078 *
1079 * Do not put anything below here!
1080 */
1081 };
1082
1083 static inline struct pid *task_pid(struct task_struct *task)
1084 {
1085 return task->pids[PIDTYPE_PID].pid;
1086 }
1087
1088 static inline struct pid *task_tgid(struct task_struct *task)
1089 {
1090 return task->group_leader->pids[PIDTYPE_PID].pid;
1091 }
1092
1093 /*
1094 * Without tasklist or RCU lock it is not safe to dereference
1095 * the result of task_pgrp/task_session even if task == current,
1096 * we can race with another thread doing sys_setsid/sys_setpgid.
1097 */
1098 static inline struct pid *task_pgrp(struct task_struct *task)
1099 {
1100 return task->group_leader->pids[PIDTYPE_PGID].pid;
1101 }
1102
1103 static inline struct pid *task_session(struct task_struct *task)
1104 {
1105 return task->group_leader->pids[PIDTYPE_SID].pid;
1106 }
1107
1108 /*
1109 * the helpers to get the task's different pids as they are seen
1110 * from various namespaces
1111 *
1112 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1113 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1114 * current.
1115 * task_xid_nr_ns() : id seen from the ns specified;
1116 *
1117 * see also pid_nr() etc in include/linux/pid.h
1118 */
1119 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1120
1121 static inline pid_t task_pid_nr(struct task_struct *tsk)
1122 {
1123 return tsk->pid;
1124 }
1125
1126 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1127 {
1128 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1129 }
1130
1131 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1132 {
1133 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1134 }
1135
1136
1137 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1138 {
1139 return tsk->tgid;
1140 }
1141
1142 extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1143
1144 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1145 {
1146 return pid_vnr(task_tgid(tsk));
1147 }
1148
1149 /**
1150 * pid_alive - check that a task structure is not stale
1151 * @p: Task structure to be checked.
1152 *
1153 * Test if a process is not yet dead (at most zombie state)
1154 * If pid_alive fails, then pointers within the task structure
1155 * can be stale and must not be dereferenced.
1156 *
1157 * Return: 1 if the process is alive. 0 otherwise.
1158 */
1159 static inline int pid_alive(const struct task_struct *p)
1160 {
1161 return p->pids[PIDTYPE_PID].pid != NULL;
1162 }
1163
1164 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1165 {
1166 pid_t pid = 0;
1167
1168 rcu_read_lock();
1169 if (pid_alive(tsk))
1170 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1171 rcu_read_unlock();
1172
1173 return pid;
1174 }
1175
1176 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1177 {
1178 return task_ppid_nr_ns(tsk, &init_pid_ns);
1179 }
1180
1181 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1182 {
1183 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1184 }
1185
1186 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1187 {
1188 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1189 }
1190
1191
1192 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1193 {
1194 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1195 }
1196
1197 static inline pid_t task_session_vnr(struct task_struct *tsk)
1198 {
1199 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1200 }
1201
1202 /* Obsolete, do not use: */
1203 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1204 {
1205 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1206 }
1207
1208 /**
1209 * is_global_init - check if a task structure is init. Since init
1210 * is free to have sub-threads we need to check tgid.
1211 * @tsk: Task structure to be checked.
1212 *
1213 * Check if a task structure is the first user space task the kernel created.
1214 *
1215 * Return: 1 if the task structure is init. 0 otherwise.
1216 */
1217 static inline int is_global_init(struct task_struct *tsk)
1218 {
1219 return task_tgid_nr(tsk) == 1;
1220 }
1221
1222 extern struct pid *cad_pid;
1223
1224 /*
1225 * Per process flags
1226 */
1227 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1228 #define PF_EXITING 0x00000004 /* Getting shut down */
1229 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1230 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1231 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1232 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1233 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1234 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1235 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1236 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1237 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1238 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1239 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1240 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1241 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1242 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1243 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1244 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1245 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1246 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1247 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1248 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1249 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1250 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1251 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1252 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1253 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1254 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1255
1256 /*
1257 * Only the _current_ task can read/write to tsk->flags, but other
1258 * tasks can access tsk->flags in readonly mode for example
1259 * with tsk_used_math (like during threaded core dumping).
1260 * There is however an exception to this rule during ptrace
1261 * or during fork: the ptracer task is allowed to write to the
1262 * child->flags of its traced child (same goes for fork, the parent
1263 * can write to the child->flags), because we're guaranteed the
1264 * child is not running and in turn not changing child->flags
1265 * at the same time the parent does it.
1266 */
1267 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1268 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1269 #define clear_used_math() clear_stopped_child_used_math(current)
1270 #define set_used_math() set_stopped_child_used_math(current)
1271
1272 #define conditional_stopped_child_used_math(condition, child) \
1273 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1274
1275 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1276
1277 #define copy_to_stopped_child_used_math(child) \
1278 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1279
1280 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1281 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1282 #define used_math() tsk_used_math(current)
1283
1284 static inline bool is_percpu_thread(void)
1285 {
1286 #ifdef CONFIG_SMP
1287 return (current->flags & PF_NO_SETAFFINITY) &&
1288 (current->nr_cpus_allowed == 1);
1289 #else
1290 return true;
1291 #endif
1292 }
1293
1294 /* Per-process atomic flags. */
1295 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1296 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1297 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1298
1299
1300 #define TASK_PFA_TEST(name, func) \
1301 static inline bool task_##func(struct task_struct *p) \
1302 { return test_bit(PFA_##name, &p->atomic_flags); }
1303
1304 #define TASK_PFA_SET(name, func) \
1305 static inline void task_set_##func(struct task_struct *p) \
1306 { set_bit(PFA_##name, &p->atomic_flags); }
1307
1308 #define TASK_PFA_CLEAR(name, func) \
1309 static inline void task_clear_##func(struct task_struct *p) \
1310 { clear_bit(PFA_##name, &p->atomic_flags); }
1311
1312 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1313 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1314
1315 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1316 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1317 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1318
1319 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1320 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1321 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1322
1323 static inline void
1324 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1325 {
1326 current->flags &= ~flags;
1327 current->flags |= orig_flags & flags;
1328 }
1329
1330 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1331 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1332 #ifdef CONFIG_SMP
1333 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1334 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1335 #else
1336 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1337 {
1338 }
1339 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1340 {
1341 if (!cpumask_test_cpu(0, new_mask))
1342 return -EINVAL;
1343 return 0;
1344 }
1345 #endif
1346
1347 #ifndef cpu_relax_yield
1348 #define cpu_relax_yield() cpu_relax()
1349 #endif
1350
1351 extern int yield_to(struct task_struct *p, bool preempt);
1352 extern void set_user_nice(struct task_struct *p, long nice);
1353 extern int task_prio(const struct task_struct *p);
1354
1355 /**
1356 * task_nice - return the nice value of a given task.
1357 * @p: the task in question.
1358 *
1359 * Return: The nice value [ -20 ... 0 ... 19 ].
1360 */
1361 static inline int task_nice(const struct task_struct *p)
1362 {
1363 return PRIO_TO_NICE((p)->static_prio);
1364 }
1365
1366 extern int can_nice(const struct task_struct *p, const int nice);
1367 extern int task_curr(const struct task_struct *p);
1368 extern int idle_cpu(int cpu);
1369 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1370 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1371 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1372 extern struct task_struct *idle_task(int cpu);
1373
1374 /**
1375 * is_idle_task - is the specified task an idle task?
1376 * @p: the task in question.
1377 *
1378 * Return: 1 if @p is an idle task. 0 otherwise.
1379 */
1380 static inline bool is_idle_task(const struct task_struct *p)
1381 {
1382 return !!(p->flags & PF_IDLE);
1383 }
1384
1385 extern struct task_struct *curr_task(int cpu);
1386 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1387
1388 void yield(void);
1389
1390 union thread_union {
1391 #ifndef CONFIG_THREAD_INFO_IN_TASK
1392 struct thread_info thread_info;
1393 #endif
1394 unsigned long stack[THREAD_SIZE/sizeof(long)];
1395 };
1396
1397 #ifdef CONFIG_THREAD_INFO_IN_TASK
1398 static inline struct thread_info *task_thread_info(struct task_struct *task)
1399 {
1400 return &task->thread_info;
1401 }
1402 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1403 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1404 #endif
1405
1406 /*
1407 * find a task by one of its numerical ids
1408 *
1409 * find_task_by_pid_ns():
1410 * finds a task by its pid in the specified namespace
1411 * find_task_by_vpid():
1412 * finds a task by its virtual pid
1413 *
1414 * see also find_vpid() etc in include/linux/pid.h
1415 */
1416
1417 extern struct task_struct *find_task_by_vpid(pid_t nr);
1418 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1419
1420 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1421 extern int wake_up_process(struct task_struct *tsk);
1422 extern void wake_up_new_task(struct task_struct *tsk);
1423
1424 #ifdef CONFIG_SMP
1425 extern void kick_process(struct task_struct *tsk);
1426 #else
1427 static inline void kick_process(struct task_struct *tsk) { }
1428 #endif
1429
1430 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1431
1432 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1433 {
1434 __set_task_comm(tsk, from, false);
1435 }
1436
1437 extern char *get_task_comm(char *to, struct task_struct *tsk);
1438
1439 #ifdef CONFIG_SMP
1440 void scheduler_ipi(void);
1441 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1442 #else
1443 static inline void scheduler_ipi(void) { }
1444 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1445 {
1446 return 1;
1447 }
1448 #endif
1449
1450 /*
1451 * Set thread flags in other task's structures.
1452 * See asm/thread_info.h for TIF_xxxx flags available:
1453 */
1454 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1455 {
1456 set_ti_thread_flag(task_thread_info(tsk), flag);
1457 }
1458
1459 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1460 {
1461 clear_ti_thread_flag(task_thread_info(tsk), flag);
1462 }
1463
1464 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1465 {
1466 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1467 }
1468
1469 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1470 {
1471 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1472 }
1473
1474 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1475 {
1476 return test_ti_thread_flag(task_thread_info(tsk), flag);
1477 }
1478
1479 static inline void set_tsk_need_resched(struct task_struct *tsk)
1480 {
1481 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1482 }
1483
1484 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1485 {
1486 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1487 }
1488
1489 static inline int test_tsk_need_resched(struct task_struct *tsk)
1490 {
1491 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1492 }
1493
1494 /*
1495 * cond_resched() and cond_resched_lock(): latency reduction via
1496 * explicit rescheduling in places that are safe. The return
1497 * value indicates whether a reschedule was done in fact.
1498 * cond_resched_lock() will drop the spinlock before scheduling,
1499 * cond_resched_softirq() will enable bhs before scheduling.
1500 */
1501 #ifndef CONFIG_PREEMPT
1502 extern int _cond_resched(void);
1503 #else
1504 static inline int _cond_resched(void) { return 0; }
1505 #endif
1506
1507 #define cond_resched() ({ \
1508 ___might_sleep(__FILE__, __LINE__, 0); \
1509 _cond_resched(); \
1510 })
1511
1512 extern int __cond_resched_lock(spinlock_t *lock);
1513
1514 #define cond_resched_lock(lock) ({ \
1515 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1516 __cond_resched_lock(lock); \
1517 })
1518
1519 extern int __cond_resched_softirq(void);
1520
1521 #define cond_resched_softirq() ({ \
1522 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1523 __cond_resched_softirq(); \
1524 })
1525
1526 static inline void cond_resched_rcu(void)
1527 {
1528 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1529 rcu_read_unlock();
1530 cond_resched();
1531 rcu_read_lock();
1532 #endif
1533 }
1534
1535 /*
1536 * Does a critical section need to be broken due to another
1537 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1538 * but a general need for low latency)
1539 */
1540 static inline int spin_needbreak(spinlock_t *lock)
1541 {
1542 #ifdef CONFIG_PREEMPT
1543 return spin_is_contended(lock);
1544 #else
1545 return 0;
1546 #endif
1547 }
1548
1549 static __always_inline bool need_resched(void)
1550 {
1551 return unlikely(tif_need_resched());
1552 }
1553
1554 /*
1555 * Wrappers for p->thread_info->cpu access. No-op on UP.
1556 */
1557 #ifdef CONFIG_SMP
1558
1559 static inline unsigned int task_cpu(const struct task_struct *p)
1560 {
1561 #ifdef CONFIG_THREAD_INFO_IN_TASK
1562 return p->cpu;
1563 #else
1564 return task_thread_info(p)->cpu;
1565 #endif
1566 }
1567
1568 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1569
1570 #else
1571
1572 static inline unsigned int task_cpu(const struct task_struct *p)
1573 {
1574 return 0;
1575 }
1576
1577 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1578 {
1579 }
1580
1581 #endif /* CONFIG_SMP */
1582
1583 /*
1584 * In order to reduce various lock holder preemption latencies provide an
1585 * interface to see if a vCPU is currently running or not.
1586 *
1587 * This allows us to terminate optimistic spin loops and block, analogous to
1588 * the native optimistic spin heuristic of testing if the lock owner task is
1589 * running or not.
1590 */
1591 #ifndef vcpu_is_preempted
1592 # define vcpu_is_preempted(cpu) false
1593 #endif
1594
1595 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1596 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1597
1598 #ifndef TASK_SIZE_OF
1599 #define TASK_SIZE_OF(tsk) TASK_SIZE
1600 #endif
1601
1602 #endif