]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/sched.h
Merge branch 'timers/range-hrtimers' into v28-range-hrtimers-for-linus-v2
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250
251 extern cpumask_t nohz_cpu_mask;
252 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
253 extern int select_nohz_load_balancer(int cpu);
254 #else
255 static inline int select_nohz_load_balancer(int cpu)
256 {
257 return 0;
258 }
259 #endif
260
261 extern unsigned long rt_needs_cpu(int cpu);
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void account_process_tick(struct task_struct *task, int user);
288 extern void update_process_times(int user);
289 extern void scheduler_tick(void);
290 extern void hrtick_resched(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned int softlockup_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int softlockup_thresh;
303 #else
304 static inline void softlockup_tick(void)
305 {
306 }
307 static inline void spawn_softlockup_task(void)
308 {
309 }
310 static inline void touch_softlockup_watchdog(void)
311 {
312 }
313 static inline void touch_all_softlockup_watchdogs(void)
314 {
315 }
316 #endif
317
318
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
321
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
324
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
327
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
334
335 struct nsproxy;
336 struct user_namespace;
337
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
340
341 extern int sysctl_max_map_count;
342
343 #include <linux/aio.h>
344
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355 #if USE_SPLIT_PTLOCKS
356 /*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366 #else /* !USE_SPLIT_PTLOCKS */
367 /*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
376
377 #endif /* !USE_SPLIT_PTLOCKS */
378
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
390
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
393
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
399
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_HUGETLB_PRIVATE 7
407 #define MMF_DUMP_HUGETLB_SHARED 8
408 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
409 #define MMF_DUMP_FILTER_BITS 7
410 #define MMF_DUMP_FILTER_MASK \
411 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
412 #define MMF_DUMP_FILTER_DEFAULT \
413 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
414 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
415
416 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
417 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
418 #else
419 # define MMF_DUMP_MASK_DEFAULT_ELF 0
420 #endif
421
422 struct sighand_struct {
423 atomic_t count;
424 struct k_sigaction action[_NSIG];
425 spinlock_t siglock;
426 wait_queue_head_t signalfd_wqh;
427 };
428
429 struct pacct_struct {
430 int ac_flag;
431 long ac_exitcode;
432 unsigned long ac_mem;
433 cputime_t ac_utime, ac_stime;
434 unsigned long ac_minflt, ac_majflt;
435 };
436
437 /**
438 * struct task_cputime - collected CPU time counts
439 * @utime: time spent in user mode, in &cputime_t units
440 * @stime: time spent in kernel mode, in &cputime_t units
441 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
442 *
443 * This structure groups together three kinds of CPU time that are
444 * tracked for threads and thread groups. Most things considering
445 * CPU time want to group these counts together and treat all three
446 * of them in parallel.
447 */
448 struct task_cputime {
449 cputime_t utime;
450 cputime_t stime;
451 unsigned long long sum_exec_runtime;
452 };
453 /* Alternate field names when used to cache expirations. */
454 #define prof_exp stime
455 #define virt_exp utime
456 #define sched_exp sum_exec_runtime
457
458 /**
459 * struct thread_group_cputime - thread group interval timer counts
460 * @totals: thread group interval timers; substructure for
461 * uniprocessor kernel, per-cpu for SMP kernel.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU clock calculations.
465 */
466 struct thread_group_cputime {
467 struct task_cputime *totals;
468 };
469
470 /*
471 * NOTE! "signal_struct" does not have it's own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477 struct signal_struct {
478 atomic_t count;
479 atomic_t live;
480
481 wait_queue_head_t wait_chldexit; /* for wait4() */
482
483 /* current thread group signal load-balancing target: */
484 struct task_struct *curr_target;
485
486 /* shared signal handling: */
487 struct sigpending shared_pending;
488
489 /* thread group exit support */
490 int group_exit_code;
491 /* overloaded:
492 * - notify group_exit_task when ->count is equal to notify_count
493 * - everyone except group_exit_task is stopped during signal delivery
494 * of fatal signals, group_exit_task processes the signal.
495 */
496 int notify_count;
497 struct task_struct *group_exit_task;
498
499 /* thread group stop support, overloads group_exit_code too */
500 int group_stop_count;
501 unsigned int flags; /* see SIGNAL_* flags below */
502
503 /* POSIX.1b Interval Timers */
504 struct list_head posix_timers;
505
506 /* ITIMER_REAL timer for the process */
507 struct hrtimer real_timer;
508 struct pid *leader_pid;
509 ktime_t it_real_incr;
510
511 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
512 cputime_t it_prof_expires, it_virt_expires;
513 cputime_t it_prof_incr, it_virt_incr;
514
515 /*
516 * Thread group totals for process CPU clocks.
517 * See thread_group_cputime(), et al, for details.
518 */
519 struct thread_group_cputime cputime;
520
521 /* Earliest-expiration cache. */
522 struct task_cputime cputime_expires;
523
524 struct list_head cpu_timers[3];
525
526 /* job control IDs */
527
528 /*
529 * pgrp and session fields are deprecated.
530 * use the task_session_Xnr and task_pgrp_Xnr routines below
531 */
532
533 union {
534 pid_t pgrp __deprecated;
535 pid_t __pgrp;
536 };
537
538 struct pid *tty_old_pgrp;
539
540 union {
541 pid_t session __deprecated;
542 pid_t __session;
543 };
544
545 /* boolean value for session group leader */
546 int leader;
547
548 struct tty_struct *tty; /* NULL if no tty */
549
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
560 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
561 unsigned long inblock, oublock, cinblock, coublock;
562 struct task_io_accounting ioac;
563
564 /*
565 * We don't bother to synchronize most readers of this at all,
566 * because there is no reader checking a limit that actually needs
567 * to get both rlim_cur and rlim_max atomically, and either one
568 * alone is a single word that can safely be read normally.
569 * getrlimit/setrlimit use task_lock(current->group_leader) to
570 * protect this instead of the siglock, because they really
571 * have no need to disable irqs.
572 */
573 struct rlimit rlim[RLIM_NLIMITS];
574
575 /* keep the process-shared keyrings here so that they do the right
576 * thing in threads created with CLONE_THREAD */
577 #ifdef CONFIG_KEYS
578 struct key *session_keyring; /* keyring inherited over fork */
579 struct key *process_keyring; /* keyring private to this process */
580 #endif
581 #ifdef CONFIG_BSD_PROCESS_ACCT
582 struct pacct_struct pacct; /* per-process accounting information */
583 #endif
584 #ifdef CONFIG_TASKSTATS
585 struct taskstats *stats;
586 #endif
587 #ifdef CONFIG_AUDIT
588 unsigned audit_tty;
589 struct tty_audit_buf *tty_audit_buf;
590 #endif
591 };
592
593 /* Context switch must be unlocked if interrupts are to be enabled */
594 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
595 # define __ARCH_WANT_UNLOCKED_CTXSW
596 #endif
597
598 /*
599 * Bits in flags field of signal_struct.
600 */
601 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
602 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
603 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
604 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
605 /*
606 * Pending notifications to parent.
607 */
608 #define SIGNAL_CLD_STOPPED 0x00000010
609 #define SIGNAL_CLD_CONTINUED 0x00000020
610 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
611
612 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
613
614 /* If true, all threads except ->group_exit_task have pending SIGKILL */
615 static inline int signal_group_exit(const struct signal_struct *sig)
616 {
617 return (sig->flags & SIGNAL_GROUP_EXIT) ||
618 (sig->group_exit_task != NULL);
619 }
620
621 /*
622 * Some day this will be a full-fledged user tracking system..
623 */
624 struct user_struct {
625 atomic_t __count; /* reference count */
626 atomic_t processes; /* How many processes does this user have? */
627 atomic_t files; /* How many open files does this user have? */
628 atomic_t sigpending; /* How many pending signals does this user have? */
629 #ifdef CONFIG_INOTIFY_USER
630 atomic_t inotify_watches; /* How many inotify watches does this user have? */
631 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
632 #endif
633 #ifdef CONFIG_POSIX_MQUEUE
634 /* protected by mq_lock */
635 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
636 #endif
637 unsigned long locked_shm; /* How many pages of mlocked shm ? */
638
639 #ifdef CONFIG_KEYS
640 struct key *uid_keyring; /* UID specific keyring */
641 struct key *session_keyring; /* UID's default session keyring */
642 #endif
643
644 /* Hash table maintenance information */
645 struct hlist_node uidhash_node;
646 uid_t uid;
647
648 #ifdef CONFIG_USER_SCHED
649 struct task_group *tg;
650 #ifdef CONFIG_SYSFS
651 struct kobject kobj;
652 struct work_struct work;
653 #endif
654 #endif
655 };
656
657 extern int uids_sysfs_init(void);
658
659 extern struct user_struct *find_user(uid_t);
660
661 extern struct user_struct root_user;
662 #define INIT_USER (&root_user)
663
664 struct backing_dev_info;
665 struct reclaim_state;
666
667 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
668 struct sched_info {
669 /* cumulative counters */
670 unsigned long pcount; /* # of times run on this cpu */
671 unsigned long long cpu_time, /* time spent on the cpu */
672 run_delay; /* time spent waiting on a runqueue */
673
674 /* timestamps */
675 unsigned long long last_arrival,/* when we last ran on a cpu */
676 last_queued; /* when we were last queued to run */
677 #ifdef CONFIG_SCHEDSTATS
678 /* BKL stats */
679 unsigned int bkl_count;
680 #endif
681 };
682 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
683
684 #ifdef CONFIG_SCHEDSTATS
685 extern const struct file_operations proc_schedstat_operations;
686 #endif /* CONFIG_SCHEDSTATS */
687
688 #ifdef CONFIG_TASK_DELAY_ACCT
689 struct task_delay_info {
690 spinlock_t lock;
691 unsigned int flags; /* Private per-task flags */
692
693 /* For each stat XXX, add following, aligned appropriately
694 *
695 * struct timespec XXX_start, XXX_end;
696 * u64 XXX_delay;
697 * u32 XXX_count;
698 *
699 * Atomicity of updates to XXX_delay, XXX_count protected by
700 * single lock above (split into XXX_lock if contention is an issue).
701 */
702
703 /*
704 * XXX_count is incremented on every XXX operation, the delay
705 * associated with the operation is added to XXX_delay.
706 * XXX_delay contains the accumulated delay time in nanoseconds.
707 */
708 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
709 u64 blkio_delay; /* wait for sync block io completion */
710 u64 swapin_delay; /* wait for swapin block io completion */
711 u32 blkio_count; /* total count of the number of sync block */
712 /* io operations performed */
713 u32 swapin_count; /* total count of the number of swapin block */
714 /* io operations performed */
715
716 struct timespec freepages_start, freepages_end;
717 u64 freepages_delay; /* wait for memory reclaim */
718 u32 freepages_count; /* total count of memory reclaim */
719 };
720 #endif /* CONFIG_TASK_DELAY_ACCT */
721
722 static inline int sched_info_on(void)
723 {
724 #ifdef CONFIG_SCHEDSTATS
725 return 1;
726 #elif defined(CONFIG_TASK_DELAY_ACCT)
727 extern int delayacct_on;
728 return delayacct_on;
729 #else
730 return 0;
731 #endif
732 }
733
734 enum cpu_idle_type {
735 CPU_IDLE,
736 CPU_NOT_IDLE,
737 CPU_NEWLY_IDLE,
738 CPU_MAX_IDLE_TYPES
739 };
740
741 /*
742 * sched-domains (multiprocessor balancing) declarations:
743 */
744
745 /*
746 * Increase resolution of nice-level calculations:
747 */
748 #define SCHED_LOAD_SHIFT 10
749 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
750
751 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
752
753 #ifdef CONFIG_SMP
754 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
755 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
756 #define SD_BALANCE_EXEC 4 /* Balance on exec */
757 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
758 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
759 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
760 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
761 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
762 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
763 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
764 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
765 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
766
767 #define BALANCE_FOR_MC_POWER \
768 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
769
770 #define BALANCE_FOR_PKG_POWER \
771 ((sched_mc_power_savings || sched_smt_power_savings) ? \
772 SD_POWERSAVINGS_BALANCE : 0)
773
774 #define test_sd_parent(sd, flag) ((sd->parent && \
775 (sd->parent->flags & flag)) ? 1 : 0)
776
777
778 struct sched_group {
779 struct sched_group *next; /* Must be a circular list */
780 cpumask_t cpumask;
781
782 /*
783 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
784 * single CPU. This is read only (except for setup, hotplug CPU).
785 * Note : Never change cpu_power without recompute its reciprocal
786 */
787 unsigned int __cpu_power;
788 /*
789 * reciprocal value of cpu_power to avoid expensive divides
790 * (see include/linux/reciprocal_div.h)
791 */
792 u32 reciprocal_cpu_power;
793 };
794
795 enum sched_domain_level {
796 SD_LV_NONE = 0,
797 SD_LV_SIBLING,
798 SD_LV_MC,
799 SD_LV_CPU,
800 SD_LV_NODE,
801 SD_LV_ALLNODES,
802 SD_LV_MAX
803 };
804
805 struct sched_domain_attr {
806 int relax_domain_level;
807 };
808
809 #define SD_ATTR_INIT (struct sched_domain_attr) { \
810 .relax_domain_level = -1, \
811 }
812
813 struct sched_domain {
814 /* These fields must be setup */
815 struct sched_domain *parent; /* top domain must be null terminated */
816 struct sched_domain *child; /* bottom domain must be null terminated */
817 struct sched_group *groups; /* the balancing groups of the domain */
818 cpumask_t span; /* span of all CPUs in this domain */
819 unsigned long min_interval; /* Minimum balance interval ms */
820 unsigned long max_interval; /* Maximum balance interval ms */
821 unsigned int busy_factor; /* less balancing by factor if busy */
822 unsigned int imbalance_pct; /* No balance until over watermark */
823 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
824 unsigned int busy_idx;
825 unsigned int idle_idx;
826 unsigned int newidle_idx;
827 unsigned int wake_idx;
828 unsigned int forkexec_idx;
829 int flags; /* See SD_* */
830 enum sched_domain_level level;
831
832 /* Runtime fields. */
833 unsigned long last_balance; /* init to jiffies. units in jiffies */
834 unsigned int balance_interval; /* initialise to 1. units in ms. */
835 unsigned int nr_balance_failed; /* initialise to 0 */
836
837 u64 last_update;
838
839 #ifdef CONFIG_SCHEDSTATS
840 /* load_balance() stats */
841 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
842 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
845 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
846 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
847 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
848 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
849
850 /* Active load balancing */
851 unsigned int alb_count;
852 unsigned int alb_failed;
853 unsigned int alb_pushed;
854
855 /* SD_BALANCE_EXEC stats */
856 unsigned int sbe_count;
857 unsigned int sbe_balanced;
858 unsigned int sbe_pushed;
859
860 /* SD_BALANCE_FORK stats */
861 unsigned int sbf_count;
862 unsigned int sbf_balanced;
863 unsigned int sbf_pushed;
864
865 /* try_to_wake_up() stats */
866 unsigned int ttwu_wake_remote;
867 unsigned int ttwu_move_affine;
868 unsigned int ttwu_move_balance;
869 #endif
870 #ifdef CONFIG_SCHED_DEBUG
871 char *name;
872 #endif
873 };
874
875 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
876 struct sched_domain_attr *dattr_new);
877 extern int arch_reinit_sched_domains(void);
878
879 #else /* CONFIG_SMP */
880
881 struct sched_domain_attr;
882
883 static inline void
884 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
885 struct sched_domain_attr *dattr_new)
886 {
887 }
888 #endif /* !CONFIG_SMP */
889
890 struct io_context; /* See blkdev.h */
891 #define NGROUPS_SMALL 32
892 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
893 struct group_info {
894 int ngroups;
895 atomic_t usage;
896 gid_t small_block[NGROUPS_SMALL];
897 int nblocks;
898 gid_t *blocks[0];
899 };
900
901 /*
902 * get_group_info() must be called with the owning task locked (via task_lock())
903 * when task != current. The reason being that the vast majority of callers are
904 * looking at current->group_info, which can not be changed except by the
905 * current task. Changing current->group_info requires the task lock, too.
906 */
907 #define get_group_info(group_info) do { \
908 atomic_inc(&(group_info)->usage); \
909 } while (0)
910
911 #define put_group_info(group_info) do { \
912 if (atomic_dec_and_test(&(group_info)->usage)) \
913 groups_free(group_info); \
914 } while (0)
915
916 extern struct group_info *groups_alloc(int gidsetsize);
917 extern void groups_free(struct group_info *group_info);
918 extern int set_current_groups(struct group_info *group_info);
919 extern int groups_search(struct group_info *group_info, gid_t grp);
920 /* access the groups "array" with this macro */
921 #define GROUP_AT(gi, i) \
922 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
923
924 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
925 extern void prefetch_stack(struct task_struct *t);
926 #else
927 static inline void prefetch_stack(struct task_struct *t) { }
928 #endif
929
930 struct audit_context; /* See audit.c */
931 struct mempolicy;
932 struct pipe_inode_info;
933 struct uts_namespace;
934
935 struct rq;
936 struct sched_domain;
937
938 struct sched_class {
939 const struct sched_class *next;
940
941 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
942 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
943 void (*yield_task) (struct rq *rq);
944 int (*select_task_rq)(struct task_struct *p, int sync);
945
946 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
947
948 struct task_struct * (*pick_next_task) (struct rq *rq);
949 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
950
951 #ifdef CONFIG_SMP
952 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
953 struct rq *busiest, unsigned long max_load_move,
954 struct sched_domain *sd, enum cpu_idle_type idle,
955 int *all_pinned, int *this_best_prio);
956
957 int (*move_one_task) (struct rq *this_rq, int this_cpu,
958 struct rq *busiest, struct sched_domain *sd,
959 enum cpu_idle_type idle);
960 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
961 void (*post_schedule) (struct rq *this_rq);
962 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
963 #endif
964
965 void (*set_curr_task) (struct rq *rq);
966 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
967 void (*task_new) (struct rq *rq, struct task_struct *p);
968 void (*set_cpus_allowed)(struct task_struct *p,
969 const cpumask_t *newmask);
970
971 void (*rq_online)(struct rq *rq);
972 void (*rq_offline)(struct rq *rq);
973
974 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
975 int running);
976 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
977 int running);
978 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
979 int oldprio, int running);
980
981 #ifdef CONFIG_FAIR_GROUP_SCHED
982 void (*moved_group) (struct task_struct *p);
983 #endif
984 };
985
986 struct load_weight {
987 unsigned long weight, inv_weight;
988 };
989
990 /*
991 * CFS stats for a schedulable entity (task, task-group etc)
992 *
993 * Current field usage histogram:
994 *
995 * 4 se->block_start
996 * 4 se->run_node
997 * 4 se->sleep_start
998 * 6 se->load.weight
999 */
1000 struct sched_entity {
1001 struct load_weight load; /* for load-balancing */
1002 struct rb_node run_node;
1003 struct list_head group_node;
1004 unsigned int on_rq;
1005
1006 u64 exec_start;
1007 u64 sum_exec_runtime;
1008 u64 vruntime;
1009 u64 prev_sum_exec_runtime;
1010
1011 u64 last_wakeup;
1012 u64 avg_overlap;
1013
1014 #ifdef CONFIG_SCHEDSTATS
1015 u64 wait_start;
1016 u64 wait_max;
1017 u64 wait_count;
1018 u64 wait_sum;
1019
1020 u64 sleep_start;
1021 u64 sleep_max;
1022 s64 sum_sleep_runtime;
1023
1024 u64 block_start;
1025 u64 block_max;
1026 u64 exec_max;
1027 u64 slice_max;
1028
1029 u64 nr_migrations;
1030 u64 nr_migrations_cold;
1031 u64 nr_failed_migrations_affine;
1032 u64 nr_failed_migrations_running;
1033 u64 nr_failed_migrations_hot;
1034 u64 nr_forced_migrations;
1035 u64 nr_forced2_migrations;
1036
1037 u64 nr_wakeups;
1038 u64 nr_wakeups_sync;
1039 u64 nr_wakeups_migrate;
1040 u64 nr_wakeups_local;
1041 u64 nr_wakeups_remote;
1042 u64 nr_wakeups_affine;
1043 u64 nr_wakeups_affine_attempts;
1044 u64 nr_wakeups_passive;
1045 u64 nr_wakeups_idle;
1046 #endif
1047
1048 #ifdef CONFIG_FAIR_GROUP_SCHED
1049 struct sched_entity *parent;
1050 /* rq on which this entity is (to be) queued: */
1051 struct cfs_rq *cfs_rq;
1052 /* rq "owned" by this entity/group: */
1053 struct cfs_rq *my_q;
1054 #endif
1055 };
1056
1057 struct sched_rt_entity {
1058 struct list_head run_list;
1059 unsigned long timeout;
1060 unsigned int time_slice;
1061 int nr_cpus_allowed;
1062
1063 struct sched_rt_entity *back;
1064 #ifdef CONFIG_RT_GROUP_SCHED
1065 struct sched_rt_entity *parent;
1066 /* rq on which this entity is (to be) queued: */
1067 struct rt_rq *rt_rq;
1068 /* rq "owned" by this entity/group: */
1069 struct rt_rq *my_q;
1070 #endif
1071 };
1072
1073 struct task_struct {
1074 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1075 void *stack;
1076 atomic_t usage;
1077 unsigned int flags; /* per process flags, defined below */
1078 unsigned int ptrace;
1079
1080 int lock_depth; /* BKL lock depth */
1081
1082 #ifdef CONFIG_SMP
1083 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1084 int oncpu;
1085 #endif
1086 #endif
1087
1088 int prio, static_prio, normal_prio;
1089 unsigned int rt_priority;
1090 const struct sched_class *sched_class;
1091 struct sched_entity se;
1092 struct sched_rt_entity rt;
1093
1094 #ifdef CONFIG_PREEMPT_NOTIFIERS
1095 /* list of struct preempt_notifier: */
1096 struct hlist_head preempt_notifiers;
1097 #endif
1098
1099 /*
1100 * fpu_counter contains the number of consecutive context switches
1101 * that the FPU is used. If this is over a threshold, the lazy fpu
1102 * saving becomes unlazy to save the trap. This is an unsigned char
1103 * so that after 256 times the counter wraps and the behavior turns
1104 * lazy again; this to deal with bursty apps that only use FPU for
1105 * a short time
1106 */
1107 unsigned char fpu_counter;
1108 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1109 #ifdef CONFIG_BLK_DEV_IO_TRACE
1110 unsigned int btrace_seq;
1111 #endif
1112
1113 unsigned int policy;
1114 cpumask_t cpus_allowed;
1115
1116 #ifdef CONFIG_PREEMPT_RCU
1117 int rcu_read_lock_nesting;
1118 int rcu_flipctr_idx;
1119 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1120
1121 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1122 struct sched_info sched_info;
1123 #endif
1124
1125 struct list_head tasks;
1126
1127 struct mm_struct *mm, *active_mm;
1128
1129 /* task state */
1130 struct linux_binfmt *binfmt;
1131 int exit_state;
1132 int exit_code, exit_signal;
1133 int pdeath_signal; /* The signal sent when the parent dies */
1134 /* ??? */
1135 unsigned int personality;
1136 unsigned did_exec:1;
1137 pid_t pid;
1138 pid_t tgid;
1139
1140 #ifdef CONFIG_CC_STACKPROTECTOR
1141 /* Canary value for the -fstack-protector gcc feature */
1142 unsigned long stack_canary;
1143 #endif
1144 /*
1145 * pointers to (original) parent process, youngest child, younger sibling,
1146 * older sibling, respectively. (p->father can be replaced with
1147 * p->real_parent->pid)
1148 */
1149 struct task_struct *real_parent; /* real parent process */
1150 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1151 /*
1152 * children/sibling forms the list of my natural children
1153 */
1154 struct list_head children; /* list of my children */
1155 struct list_head sibling; /* linkage in my parent's children list */
1156 struct task_struct *group_leader; /* threadgroup leader */
1157
1158 /*
1159 * ptraced is the list of tasks this task is using ptrace on.
1160 * This includes both natural children and PTRACE_ATTACH targets.
1161 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1162 */
1163 struct list_head ptraced;
1164 struct list_head ptrace_entry;
1165
1166 /* PID/PID hash table linkage. */
1167 struct pid_link pids[PIDTYPE_MAX];
1168 struct list_head thread_group;
1169
1170 struct completion *vfork_done; /* for vfork() */
1171 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1172 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1173
1174 cputime_t utime, stime, utimescaled, stimescaled;
1175 cputime_t gtime;
1176 cputime_t prev_utime, prev_stime;
1177 unsigned long nvcsw, nivcsw; /* context switch counts */
1178 struct timespec start_time; /* monotonic time */
1179 struct timespec real_start_time; /* boot based time */
1180 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1181 unsigned long min_flt, maj_flt;
1182
1183 struct task_cputime cputime_expires;
1184 struct list_head cpu_timers[3];
1185
1186 /* process credentials */
1187 uid_t uid,euid,suid,fsuid;
1188 gid_t gid,egid,sgid,fsgid;
1189 struct group_info *group_info;
1190 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1191 struct user_struct *user;
1192 unsigned securebits;
1193 #ifdef CONFIG_KEYS
1194 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1195 struct key *request_key_auth; /* assumed request_key authority */
1196 struct key *thread_keyring; /* keyring private to this thread */
1197 #endif
1198 char comm[TASK_COMM_LEN]; /* executable name excluding path
1199 - access with [gs]et_task_comm (which lock
1200 it with task_lock())
1201 - initialized normally by flush_old_exec */
1202 /* file system info */
1203 int link_count, total_link_count;
1204 #ifdef CONFIG_SYSVIPC
1205 /* ipc stuff */
1206 struct sysv_sem sysvsem;
1207 #endif
1208 #ifdef CONFIG_DETECT_SOFTLOCKUP
1209 /* hung task detection */
1210 unsigned long last_switch_timestamp;
1211 unsigned long last_switch_count;
1212 #endif
1213 /* CPU-specific state of this task */
1214 struct thread_struct thread;
1215 /* filesystem information */
1216 struct fs_struct *fs;
1217 /* open file information */
1218 struct files_struct *files;
1219 /* namespaces */
1220 struct nsproxy *nsproxy;
1221 /* signal handlers */
1222 struct signal_struct *signal;
1223 struct sighand_struct *sighand;
1224
1225 sigset_t blocked, real_blocked;
1226 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1227 struct sigpending pending;
1228
1229 unsigned long sas_ss_sp;
1230 size_t sas_ss_size;
1231 int (*notifier)(void *priv);
1232 void *notifier_data;
1233 sigset_t *notifier_mask;
1234 #ifdef CONFIG_SECURITY
1235 void *security;
1236 #endif
1237 struct audit_context *audit_context;
1238 #ifdef CONFIG_AUDITSYSCALL
1239 uid_t loginuid;
1240 unsigned int sessionid;
1241 #endif
1242 seccomp_t seccomp;
1243
1244 /* Thread group tracking */
1245 u32 parent_exec_id;
1246 u32 self_exec_id;
1247 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1248 spinlock_t alloc_lock;
1249
1250 /* Protection of the PI data structures: */
1251 spinlock_t pi_lock;
1252
1253 #ifdef CONFIG_RT_MUTEXES
1254 /* PI waiters blocked on a rt_mutex held by this task */
1255 struct plist_head pi_waiters;
1256 /* Deadlock detection and priority inheritance handling */
1257 struct rt_mutex_waiter *pi_blocked_on;
1258 #endif
1259
1260 #ifdef CONFIG_DEBUG_MUTEXES
1261 /* mutex deadlock detection */
1262 struct mutex_waiter *blocked_on;
1263 #endif
1264 #ifdef CONFIG_TRACE_IRQFLAGS
1265 unsigned int irq_events;
1266 int hardirqs_enabled;
1267 unsigned long hardirq_enable_ip;
1268 unsigned int hardirq_enable_event;
1269 unsigned long hardirq_disable_ip;
1270 unsigned int hardirq_disable_event;
1271 int softirqs_enabled;
1272 unsigned long softirq_disable_ip;
1273 unsigned int softirq_disable_event;
1274 unsigned long softirq_enable_ip;
1275 unsigned int softirq_enable_event;
1276 int hardirq_context;
1277 int softirq_context;
1278 #endif
1279 #ifdef CONFIG_LOCKDEP
1280 # define MAX_LOCK_DEPTH 48UL
1281 u64 curr_chain_key;
1282 int lockdep_depth;
1283 unsigned int lockdep_recursion;
1284 struct held_lock held_locks[MAX_LOCK_DEPTH];
1285 #endif
1286
1287 /* journalling filesystem info */
1288 void *journal_info;
1289
1290 /* stacked block device info */
1291 struct bio *bio_list, **bio_tail;
1292
1293 /* VM state */
1294 struct reclaim_state *reclaim_state;
1295
1296 struct backing_dev_info *backing_dev_info;
1297
1298 struct io_context *io_context;
1299
1300 unsigned long ptrace_message;
1301 siginfo_t *last_siginfo; /* For ptrace use. */
1302 struct task_io_accounting ioac;
1303 #if defined(CONFIG_TASK_XACCT)
1304 u64 acct_rss_mem1; /* accumulated rss usage */
1305 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1306 cputime_t acct_timexpd; /* stime + utime since last update */
1307 #endif
1308 #ifdef CONFIG_CPUSETS
1309 nodemask_t mems_allowed;
1310 int cpuset_mems_generation;
1311 int cpuset_mem_spread_rotor;
1312 #endif
1313 #ifdef CONFIG_CGROUPS
1314 /* Control Group info protected by css_set_lock */
1315 struct css_set *cgroups;
1316 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1317 struct list_head cg_list;
1318 #endif
1319 #ifdef CONFIG_FUTEX
1320 struct robust_list_head __user *robust_list;
1321 #ifdef CONFIG_COMPAT
1322 struct compat_robust_list_head __user *compat_robust_list;
1323 #endif
1324 struct list_head pi_state_list;
1325 struct futex_pi_state *pi_state_cache;
1326 #endif
1327 #ifdef CONFIG_NUMA
1328 struct mempolicy *mempolicy;
1329 short il_next;
1330 #endif
1331 atomic_t fs_excl; /* holding fs exclusive resources */
1332 struct rcu_head rcu;
1333
1334 /*
1335 * cache last used pipe for splice
1336 */
1337 struct pipe_inode_info *splice_pipe;
1338 #ifdef CONFIG_TASK_DELAY_ACCT
1339 struct task_delay_info *delays;
1340 #endif
1341 #ifdef CONFIG_FAULT_INJECTION
1342 int make_it_fail;
1343 #endif
1344 struct prop_local_single dirties;
1345 #ifdef CONFIG_LATENCYTOP
1346 int latency_record_count;
1347 struct latency_record latency_record[LT_SAVECOUNT];
1348 #endif
1349 /*
1350 * time slack values; these are used to round up poll() and
1351 * select() etc timeout values. These are in nanoseconds.
1352 */
1353 unsigned long timer_slack_ns;
1354 unsigned long default_timer_slack_ns;
1355 };
1356
1357 /*
1358 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1359 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1360 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1361 * values are inverted: lower p->prio value means higher priority.
1362 *
1363 * The MAX_USER_RT_PRIO value allows the actual maximum
1364 * RT priority to be separate from the value exported to
1365 * user-space. This allows kernel threads to set their
1366 * priority to a value higher than any user task. Note:
1367 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1368 */
1369
1370 #define MAX_USER_RT_PRIO 100
1371 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1372
1373 #define MAX_PRIO (MAX_RT_PRIO + 40)
1374 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1375
1376 static inline int rt_prio(int prio)
1377 {
1378 if (unlikely(prio < MAX_RT_PRIO))
1379 return 1;
1380 return 0;
1381 }
1382
1383 static inline int rt_task(struct task_struct *p)
1384 {
1385 return rt_prio(p->prio);
1386 }
1387
1388 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1389 {
1390 tsk->signal->__session = session;
1391 }
1392
1393 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1394 {
1395 tsk->signal->__pgrp = pgrp;
1396 }
1397
1398 static inline struct pid *task_pid(struct task_struct *task)
1399 {
1400 return task->pids[PIDTYPE_PID].pid;
1401 }
1402
1403 static inline struct pid *task_tgid(struct task_struct *task)
1404 {
1405 return task->group_leader->pids[PIDTYPE_PID].pid;
1406 }
1407
1408 static inline struct pid *task_pgrp(struct task_struct *task)
1409 {
1410 return task->group_leader->pids[PIDTYPE_PGID].pid;
1411 }
1412
1413 static inline struct pid *task_session(struct task_struct *task)
1414 {
1415 return task->group_leader->pids[PIDTYPE_SID].pid;
1416 }
1417
1418 struct pid_namespace;
1419
1420 /*
1421 * the helpers to get the task's different pids as they are seen
1422 * from various namespaces
1423 *
1424 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1425 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1426 * current.
1427 * task_xid_nr_ns() : id seen from the ns specified;
1428 *
1429 * set_task_vxid() : assigns a virtual id to a task;
1430 *
1431 * see also pid_nr() etc in include/linux/pid.h
1432 */
1433
1434 static inline pid_t task_pid_nr(struct task_struct *tsk)
1435 {
1436 return tsk->pid;
1437 }
1438
1439 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1440
1441 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1442 {
1443 return pid_vnr(task_pid(tsk));
1444 }
1445
1446
1447 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1448 {
1449 return tsk->tgid;
1450 }
1451
1452 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1453
1454 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1455 {
1456 return pid_vnr(task_tgid(tsk));
1457 }
1458
1459
1460 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1461 {
1462 return tsk->signal->__pgrp;
1463 }
1464
1465 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1466
1467 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1468 {
1469 return pid_vnr(task_pgrp(tsk));
1470 }
1471
1472
1473 static inline pid_t task_session_nr(struct task_struct *tsk)
1474 {
1475 return tsk->signal->__session;
1476 }
1477
1478 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1479
1480 static inline pid_t task_session_vnr(struct task_struct *tsk)
1481 {
1482 return pid_vnr(task_session(tsk));
1483 }
1484
1485
1486 /**
1487 * pid_alive - check that a task structure is not stale
1488 * @p: Task structure to be checked.
1489 *
1490 * Test if a process is not yet dead (at most zombie state)
1491 * If pid_alive fails, then pointers within the task structure
1492 * can be stale and must not be dereferenced.
1493 */
1494 static inline int pid_alive(struct task_struct *p)
1495 {
1496 return p->pids[PIDTYPE_PID].pid != NULL;
1497 }
1498
1499 /**
1500 * is_global_init - check if a task structure is init
1501 * @tsk: Task structure to be checked.
1502 *
1503 * Check if a task structure is the first user space task the kernel created.
1504 */
1505 static inline int is_global_init(struct task_struct *tsk)
1506 {
1507 return tsk->pid == 1;
1508 }
1509
1510 /*
1511 * is_container_init:
1512 * check whether in the task is init in its own pid namespace.
1513 */
1514 extern int is_container_init(struct task_struct *tsk);
1515
1516 extern struct pid *cad_pid;
1517
1518 extern void free_task(struct task_struct *tsk);
1519 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1520
1521 extern void __put_task_struct(struct task_struct *t);
1522
1523 static inline void put_task_struct(struct task_struct *t)
1524 {
1525 if (atomic_dec_and_test(&t->usage))
1526 __put_task_struct(t);
1527 }
1528
1529 extern cputime_t task_utime(struct task_struct *p);
1530 extern cputime_t task_stime(struct task_struct *p);
1531 extern cputime_t task_gtime(struct task_struct *p);
1532
1533 /*
1534 * Per process flags
1535 */
1536 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1537 /* Not implemented yet, only for 486*/
1538 #define PF_STARTING 0x00000002 /* being created */
1539 #define PF_EXITING 0x00000004 /* getting shut down */
1540 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1541 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1542 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1543 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1544 #define PF_DUMPCORE 0x00000200 /* dumped core */
1545 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1546 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1547 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1548 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1549 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1550 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1551 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1552 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1553 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1554 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1555 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1556 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1557 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1558 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1559 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1560 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1561 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1562 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1563 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1564 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1565
1566 /*
1567 * Only the _current_ task can read/write to tsk->flags, but other
1568 * tasks can access tsk->flags in readonly mode for example
1569 * with tsk_used_math (like during threaded core dumping).
1570 * There is however an exception to this rule during ptrace
1571 * or during fork: the ptracer task is allowed to write to the
1572 * child->flags of its traced child (same goes for fork, the parent
1573 * can write to the child->flags), because we're guaranteed the
1574 * child is not running and in turn not changing child->flags
1575 * at the same time the parent does it.
1576 */
1577 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1578 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1579 #define clear_used_math() clear_stopped_child_used_math(current)
1580 #define set_used_math() set_stopped_child_used_math(current)
1581 #define conditional_stopped_child_used_math(condition, child) \
1582 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1583 #define conditional_used_math(condition) \
1584 conditional_stopped_child_used_math(condition, current)
1585 #define copy_to_stopped_child_used_math(child) \
1586 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1587 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1588 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1589 #define used_math() tsk_used_math(current)
1590
1591 #ifdef CONFIG_SMP
1592 extern int set_cpus_allowed_ptr(struct task_struct *p,
1593 const cpumask_t *new_mask);
1594 #else
1595 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1596 const cpumask_t *new_mask)
1597 {
1598 if (!cpu_isset(0, *new_mask))
1599 return -EINVAL;
1600 return 0;
1601 }
1602 #endif
1603 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1604 {
1605 return set_cpus_allowed_ptr(p, &new_mask);
1606 }
1607
1608 extern unsigned long long sched_clock(void);
1609
1610 extern void sched_clock_init(void);
1611 extern u64 sched_clock_cpu(int cpu);
1612
1613 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1614 static inline void sched_clock_tick(void)
1615 {
1616 }
1617
1618 static inline void sched_clock_idle_sleep_event(void)
1619 {
1620 }
1621
1622 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1623 {
1624 }
1625 #else
1626 extern void sched_clock_tick(void);
1627 extern void sched_clock_idle_sleep_event(void);
1628 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1629 #endif
1630
1631 /*
1632 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1633 * clock constructed from sched_clock():
1634 */
1635 extern unsigned long long cpu_clock(int cpu);
1636
1637 extern unsigned long long
1638 task_sched_runtime(struct task_struct *task);
1639 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1640
1641 /* sched_exec is called by processes performing an exec */
1642 #ifdef CONFIG_SMP
1643 extern void sched_exec(void);
1644 #else
1645 #define sched_exec() {}
1646 #endif
1647
1648 extern void sched_clock_idle_sleep_event(void);
1649 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1650
1651 #ifdef CONFIG_HOTPLUG_CPU
1652 extern void idle_task_exit(void);
1653 #else
1654 static inline void idle_task_exit(void) {}
1655 #endif
1656
1657 extern void sched_idle_next(void);
1658
1659 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1660 extern void wake_up_idle_cpu(int cpu);
1661 #else
1662 static inline void wake_up_idle_cpu(int cpu) { }
1663 #endif
1664
1665 #ifdef CONFIG_SCHED_DEBUG
1666 extern unsigned int sysctl_sched_latency;
1667 extern unsigned int sysctl_sched_min_granularity;
1668 extern unsigned int sysctl_sched_wakeup_granularity;
1669 extern unsigned int sysctl_sched_child_runs_first;
1670 extern unsigned int sysctl_sched_features;
1671 extern unsigned int sysctl_sched_migration_cost;
1672 extern unsigned int sysctl_sched_nr_migrate;
1673 extern unsigned int sysctl_sched_shares_ratelimit;
1674
1675 int sched_nr_latency_handler(struct ctl_table *table, int write,
1676 struct file *file, void __user *buffer, size_t *length,
1677 loff_t *ppos);
1678 #endif
1679 extern unsigned int sysctl_sched_rt_period;
1680 extern int sysctl_sched_rt_runtime;
1681
1682 int sched_rt_handler(struct ctl_table *table, int write,
1683 struct file *filp, void __user *buffer, size_t *lenp,
1684 loff_t *ppos);
1685
1686 extern unsigned int sysctl_sched_compat_yield;
1687
1688 #ifdef CONFIG_RT_MUTEXES
1689 extern int rt_mutex_getprio(struct task_struct *p);
1690 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1691 extern void rt_mutex_adjust_pi(struct task_struct *p);
1692 #else
1693 static inline int rt_mutex_getprio(struct task_struct *p)
1694 {
1695 return p->normal_prio;
1696 }
1697 # define rt_mutex_adjust_pi(p) do { } while (0)
1698 #endif
1699
1700 extern void set_user_nice(struct task_struct *p, long nice);
1701 extern int task_prio(const struct task_struct *p);
1702 extern int task_nice(const struct task_struct *p);
1703 extern int can_nice(const struct task_struct *p, const int nice);
1704 extern int task_curr(const struct task_struct *p);
1705 extern int idle_cpu(int cpu);
1706 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1707 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1708 struct sched_param *);
1709 extern struct task_struct *idle_task(int cpu);
1710 extern struct task_struct *curr_task(int cpu);
1711 extern void set_curr_task(int cpu, struct task_struct *p);
1712
1713 void yield(void);
1714
1715 /*
1716 * The default (Linux) execution domain.
1717 */
1718 extern struct exec_domain default_exec_domain;
1719
1720 union thread_union {
1721 struct thread_info thread_info;
1722 unsigned long stack[THREAD_SIZE/sizeof(long)];
1723 };
1724
1725 #ifndef __HAVE_ARCH_KSTACK_END
1726 static inline int kstack_end(void *addr)
1727 {
1728 /* Reliable end of stack detection:
1729 * Some APM bios versions misalign the stack
1730 */
1731 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1732 }
1733 #endif
1734
1735 extern union thread_union init_thread_union;
1736 extern struct task_struct init_task;
1737
1738 extern struct mm_struct init_mm;
1739
1740 extern struct pid_namespace init_pid_ns;
1741
1742 /*
1743 * find a task by one of its numerical ids
1744 *
1745 * find_task_by_pid_type_ns():
1746 * it is the most generic call - it finds a task by all id,
1747 * type and namespace specified
1748 * find_task_by_pid_ns():
1749 * finds a task by its pid in the specified namespace
1750 * find_task_by_vpid():
1751 * finds a task by its virtual pid
1752 *
1753 * see also find_vpid() etc in include/linux/pid.h
1754 */
1755
1756 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1757 struct pid_namespace *ns);
1758
1759 extern struct task_struct *find_task_by_vpid(pid_t nr);
1760 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1761 struct pid_namespace *ns);
1762
1763 extern void __set_special_pids(struct pid *pid);
1764
1765 /* per-UID process charging. */
1766 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1767 static inline struct user_struct *get_uid(struct user_struct *u)
1768 {
1769 atomic_inc(&u->__count);
1770 return u;
1771 }
1772 extern void free_uid(struct user_struct *);
1773 extern void switch_uid(struct user_struct *);
1774 extern void release_uids(struct user_namespace *ns);
1775
1776 #include <asm/current.h>
1777
1778 extern void do_timer(unsigned long ticks);
1779
1780 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1781 extern int wake_up_process(struct task_struct *tsk);
1782 extern void wake_up_new_task(struct task_struct *tsk,
1783 unsigned long clone_flags);
1784 #ifdef CONFIG_SMP
1785 extern void kick_process(struct task_struct *tsk);
1786 #else
1787 static inline void kick_process(struct task_struct *tsk) { }
1788 #endif
1789 extern void sched_fork(struct task_struct *p, int clone_flags);
1790 extern void sched_dead(struct task_struct *p);
1791
1792 extern int in_group_p(gid_t);
1793 extern int in_egroup_p(gid_t);
1794
1795 extern void proc_caches_init(void);
1796 extern void flush_signals(struct task_struct *);
1797 extern void ignore_signals(struct task_struct *);
1798 extern void flush_signal_handlers(struct task_struct *, int force_default);
1799 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1800
1801 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1802 {
1803 unsigned long flags;
1804 int ret;
1805
1806 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1807 ret = dequeue_signal(tsk, mask, info);
1808 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1809
1810 return ret;
1811 }
1812
1813 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1814 sigset_t *mask);
1815 extern void unblock_all_signals(void);
1816 extern void release_task(struct task_struct * p);
1817 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1818 extern int force_sigsegv(int, struct task_struct *);
1819 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1820 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1821 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1822 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1823 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1824 extern int kill_pid(struct pid *pid, int sig, int priv);
1825 extern int kill_proc_info(int, struct siginfo *, pid_t);
1826 extern int do_notify_parent(struct task_struct *, int);
1827 extern void force_sig(int, struct task_struct *);
1828 extern void force_sig_specific(int, struct task_struct *);
1829 extern int send_sig(int, struct task_struct *, int);
1830 extern void zap_other_threads(struct task_struct *p);
1831 extern struct sigqueue *sigqueue_alloc(void);
1832 extern void sigqueue_free(struct sigqueue *);
1833 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1834 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1835 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1836
1837 static inline int kill_cad_pid(int sig, int priv)
1838 {
1839 return kill_pid(cad_pid, sig, priv);
1840 }
1841
1842 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1843 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1844 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1845 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1846
1847 static inline int is_si_special(const struct siginfo *info)
1848 {
1849 return info <= SEND_SIG_FORCED;
1850 }
1851
1852 /* True if we are on the alternate signal stack. */
1853
1854 static inline int on_sig_stack(unsigned long sp)
1855 {
1856 return (sp - current->sas_ss_sp < current->sas_ss_size);
1857 }
1858
1859 static inline int sas_ss_flags(unsigned long sp)
1860 {
1861 return (current->sas_ss_size == 0 ? SS_DISABLE
1862 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1863 }
1864
1865 /*
1866 * Routines for handling mm_structs
1867 */
1868 extern struct mm_struct * mm_alloc(void);
1869
1870 /* mmdrop drops the mm and the page tables */
1871 extern void __mmdrop(struct mm_struct *);
1872 static inline void mmdrop(struct mm_struct * mm)
1873 {
1874 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1875 __mmdrop(mm);
1876 }
1877
1878 /* mmput gets rid of the mappings and all user-space */
1879 extern void mmput(struct mm_struct *);
1880 /* Grab a reference to a task's mm, if it is not already going away */
1881 extern struct mm_struct *get_task_mm(struct task_struct *task);
1882 /* Remove the current tasks stale references to the old mm_struct */
1883 extern void mm_release(struct task_struct *, struct mm_struct *);
1884 /* Allocate a new mm structure and copy contents from tsk->mm */
1885 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1886
1887 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1888 extern void flush_thread(void);
1889 extern void exit_thread(void);
1890
1891 extern void exit_files(struct task_struct *);
1892 extern void __cleanup_signal(struct signal_struct *);
1893 extern void __cleanup_sighand(struct sighand_struct *);
1894
1895 extern void exit_itimers(struct signal_struct *);
1896 extern void flush_itimer_signals(void);
1897
1898 extern NORET_TYPE void do_group_exit(int);
1899
1900 extern void daemonize(const char *, ...);
1901 extern int allow_signal(int);
1902 extern int disallow_signal(int);
1903
1904 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1905 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1906 struct task_struct *fork_idle(int);
1907
1908 extern void set_task_comm(struct task_struct *tsk, char *from);
1909 extern char *get_task_comm(char *to, struct task_struct *tsk);
1910
1911 #ifdef CONFIG_SMP
1912 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1913 #else
1914 static inline unsigned long wait_task_inactive(struct task_struct *p,
1915 long match_state)
1916 {
1917 return 1;
1918 }
1919 #endif
1920
1921 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1922
1923 #define for_each_process(p) \
1924 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1925
1926 /*
1927 * Careful: do_each_thread/while_each_thread is a double loop so
1928 * 'break' will not work as expected - use goto instead.
1929 */
1930 #define do_each_thread(g, t) \
1931 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1932
1933 #define while_each_thread(g, t) \
1934 while ((t = next_thread(t)) != g)
1935
1936 /* de_thread depends on thread_group_leader not being a pid based check */
1937 #define thread_group_leader(p) (p == p->group_leader)
1938
1939 /* Do to the insanities of de_thread it is possible for a process
1940 * to have the pid of the thread group leader without actually being
1941 * the thread group leader. For iteration through the pids in proc
1942 * all we care about is that we have a task with the appropriate
1943 * pid, we don't actually care if we have the right task.
1944 */
1945 static inline int has_group_leader_pid(struct task_struct *p)
1946 {
1947 return p->pid == p->tgid;
1948 }
1949
1950 static inline
1951 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1952 {
1953 return p1->tgid == p2->tgid;
1954 }
1955
1956 static inline struct task_struct *next_thread(const struct task_struct *p)
1957 {
1958 return list_entry(rcu_dereference(p->thread_group.next),
1959 struct task_struct, thread_group);
1960 }
1961
1962 static inline int thread_group_empty(struct task_struct *p)
1963 {
1964 return list_empty(&p->thread_group);
1965 }
1966
1967 #define delay_group_leader(p) \
1968 (thread_group_leader(p) && !thread_group_empty(p))
1969
1970 /*
1971 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1972 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1973 * pins the final release of task.io_context. Also protects ->cpuset and
1974 * ->cgroup.subsys[].
1975 *
1976 * Nests both inside and outside of read_lock(&tasklist_lock).
1977 * It must not be nested with write_lock_irq(&tasklist_lock),
1978 * neither inside nor outside.
1979 */
1980 static inline void task_lock(struct task_struct *p)
1981 {
1982 spin_lock(&p->alloc_lock);
1983 }
1984
1985 static inline void task_unlock(struct task_struct *p)
1986 {
1987 spin_unlock(&p->alloc_lock);
1988 }
1989
1990 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1991 unsigned long *flags);
1992
1993 static inline void unlock_task_sighand(struct task_struct *tsk,
1994 unsigned long *flags)
1995 {
1996 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1997 }
1998
1999 #ifndef __HAVE_THREAD_FUNCTIONS
2000
2001 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2002 #define task_stack_page(task) ((task)->stack)
2003
2004 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2005 {
2006 *task_thread_info(p) = *task_thread_info(org);
2007 task_thread_info(p)->task = p;
2008 }
2009
2010 static inline unsigned long *end_of_stack(struct task_struct *p)
2011 {
2012 return (unsigned long *)(task_thread_info(p) + 1);
2013 }
2014
2015 #endif
2016
2017 static inline int object_is_on_stack(void *obj)
2018 {
2019 void *stack = task_stack_page(current);
2020
2021 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2022 }
2023
2024 extern void thread_info_cache_init(void);
2025
2026 /* set thread flags in other task's structures
2027 * - see asm/thread_info.h for TIF_xxxx flags available
2028 */
2029 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2030 {
2031 set_ti_thread_flag(task_thread_info(tsk), flag);
2032 }
2033
2034 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2035 {
2036 clear_ti_thread_flag(task_thread_info(tsk), flag);
2037 }
2038
2039 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 {
2041 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2042 }
2043
2044 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 {
2046 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2047 }
2048
2049 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2050 {
2051 return test_ti_thread_flag(task_thread_info(tsk), flag);
2052 }
2053
2054 static inline void set_tsk_need_resched(struct task_struct *tsk)
2055 {
2056 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 }
2058
2059 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2060 {
2061 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2062 }
2063
2064 static inline int test_tsk_need_resched(struct task_struct *tsk)
2065 {
2066 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2067 }
2068
2069 static inline int signal_pending(struct task_struct *p)
2070 {
2071 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2072 }
2073
2074 extern int __fatal_signal_pending(struct task_struct *p);
2075
2076 static inline int fatal_signal_pending(struct task_struct *p)
2077 {
2078 return signal_pending(p) && __fatal_signal_pending(p);
2079 }
2080
2081 static inline int signal_pending_state(long state, struct task_struct *p)
2082 {
2083 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2084 return 0;
2085 if (!signal_pending(p))
2086 return 0;
2087
2088 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2089 }
2090
2091 static inline int need_resched(void)
2092 {
2093 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2094 }
2095
2096 /*
2097 * cond_resched() and cond_resched_lock(): latency reduction via
2098 * explicit rescheduling in places that are safe. The return
2099 * value indicates whether a reschedule was done in fact.
2100 * cond_resched_lock() will drop the spinlock before scheduling,
2101 * cond_resched_softirq() will enable bhs before scheduling.
2102 */
2103 extern int _cond_resched(void);
2104 #ifdef CONFIG_PREEMPT_BKL
2105 static inline int cond_resched(void)
2106 {
2107 return 0;
2108 }
2109 #else
2110 static inline int cond_resched(void)
2111 {
2112 return _cond_resched();
2113 }
2114 #endif
2115 extern int cond_resched_lock(spinlock_t * lock);
2116 extern int cond_resched_softirq(void);
2117 static inline int cond_resched_bkl(void)
2118 {
2119 return _cond_resched();
2120 }
2121
2122 /*
2123 * Does a critical section need to be broken due to another
2124 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2125 * but a general need for low latency)
2126 */
2127 static inline int spin_needbreak(spinlock_t *lock)
2128 {
2129 #ifdef CONFIG_PREEMPT
2130 return spin_is_contended(lock);
2131 #else
2132 return 0;
2133 #endif
2134 }
2135
2136 /*
2137 * Thread group CPU time accounting.
2138 */
2139
2140 extern int thread_group_cputime_alloc(struct task_struct *);
2141 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2142
2143 static inline void thread_group_cputime_init(struct signal_struct *sig)
2144 {
2145 sig->cputime.totals = NULL;
2146 }
2147
2148 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2149 {
2150 if (curr->signal->cputime.totals)
2151 return 0;
2152 return thread_group_cputime_alloc(curr);
2153 }
2154
2155 static inline void thread_group_cputime_free(struct signal_struct *sig)
2156 {
2157 free_percpu(sig->cputime.totals);
2158 }
2159
2160 /*
2161 * Reevaluate whether the task has signals pending delivery.
2162 * Wake the task if so.
2163 * This is required every time the blocked sigset_t changes.
2164 * callers must hold sighand->siglock.
2165 */
2166 extern void recalc_sigpending_and_wake(struct task_struct *t);
2167 extern void recalc_sigpending(void);
2168
2169 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2170
2171 /*
2172 * Wrappers for p->thread_info->cpu access. No-op on UP.
2173 */
2174 #ifdef CONFIG_SMP
2175
2176 static inline unsigned int task_cpu(const struct task_struct *p)
2177 {
2178 return task_thread_info(p)->cpu;
2179 }
2180
2181 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2182
2183 #else
2184
2185 static inline unsigned int task_cpu(const struct task_struct *p)
2186 {
2187 return 0;
2188 }
2189
2190 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2191 {
2192 }
2193
2194 #endif /* CONFIG_SMP */
2195
2196 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2197
2198 #ifdef CONFIG_TRACING
2199 extern void
2200 __trace_special(void *__tr, void *__data,
2201 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2202 #else
2203 static inline void
2204 __trace_special(void *__tr, void *__data,
2205 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2206 {
2207 }
2208 #endif
2209
2210 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2211 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2212
2213 extern int sched_mc_power_savings, sched_smt_power_savings;
2214
2215 extern void normalize_rt_tasks(void);
2216
2217 #ifdef CONFIG_GROUP_SCHED
2218
2219 extern struct task_group init_task_group;
2220 #ifdef CONFIG_USER_SCHED
2221 extern struct task_group root_task_group;
2222 #endif
2223
2224 extern struct task_group *sched_create_group(struct task_group *parent);
2225 extern void sched_destroy_group(struct task_group *tg);
2226 extern void sched_move_task(struct task_struct *tsk);
2227 #ifdef CONFIG_FAIR_GROUP_SCHED
2228 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2229 extern unsigned long sched_group_shares(struct task_group *tg);
2230 #endif
2231 #ifdef CONFIG_RT_GROUP_SCHED
2232 extern int sched_group_set_rt_runtime(struct task_group *tg,
2233 long rt_runtime_us);
2234 extern long sched_group_rt_runtime(struct task_group *tg);
2235 extern int sched_group_set_rt_period(struct task_group *tg,
2236 long rt_period_us);
2237 extern long sched_group_rt_period(struct task_group *tg);
2238 #endif
2239 #endif
2240
2241 #ifdef CONFIG_TASK_XACCT
2242 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2243 {
2244 tsk->ioac.rchar += amt;
2245 }
2246
2247 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2248 {
2249 tsk->ioac.wchar += amt;
2250 }
2251
2252 static inline void inc_syscr(struct task_struct *tsk)
2253 {
2254 tsk->ioac.syscr++;
2255 }
2256
2257 static inline void inc_syscw(struct task_struct *tsk)
2258 {
2259 tsk->ioac.syscw++;
2260 }
2261 #else
2262 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2263 {
2264 }
2265
2266 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2267 {
2268 }
2269
2270 static inline void inc_syscr(struct task_struct *tsk)
2271 {
2272 }
2273
2274 static inline void inc_syscw(struct task_struct *tsk)
2275 {
2276 }
2277 #endif
2278
2279 #ifndef TASK_SIZE_OF
2280 #define TASK_SIZE_OF(tsk) TASK_SIZE
2281 #endif
2282
2283 #ifdef CONFIG_MM_OWNER
2284 extern void mm_update_next_owner(struct mm_struct *mm);
2285 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2286 #else
2287 static inline void mm_update_next_owner(struct mm_struct *mm)
2288 {
2289 }
2290
2291 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2292 {
2293 }
2294 #endif /* CONFIG_MM_OWNER */
2295
2296 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2297
2298 #endif /* __KERNEL__ */
2299
2300 #endif