]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/sched.h
dax: Fix unlock mismatch with updated API
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/psi_types.h>
29 #include <linux/mm_types_task.h>
30 #include <linux/task_io_accounting.h>
31 #include <linux/rseq.h>
32
33 /* task_struct member predeclarations (sorted alphabetically): */
34 struct audit_context;
35 struct backing_dev_info;
36 struct bio_list;
37 struct blk_plug;
38 struct cfs_rq;
39 struct fs_struct;
40 struct futex_pi_state;
41 struct io_context;
42 struct mempolicy;
43 struct nameidata;
44 struct nsproxy;
45 struct perf_event_context;
46 struct pid_namespace;
47 struct pipe_inode_info;
48 struct rcu_node;
49 struct reclaim_state;
50 struct robust_list_head;
51 struct sched_attr;
52 struct sched_param;
53 struct seq_file;
54 struct sighand_struct;
55 struct signal_struct;
56 struct task_delay_info;
57 struct task_group;
58
59 /*
60 * Task state bitmask. NOTE! These bits are also
61 * encoded in fs/proc/array.c: get_task_state().
62 *
63 * We have two separate sets of flags: task->state
64 * is about runnability, while task->exit_state are
65 * about the task exiting. Confusing, but this way
66 * modifying one set can't modify the other one by
67 * mistake.
68 */
69
70 /* Used in tsk->state: */
71 #define TASK_RUNNING 0x0000
72 #define TASK_INTERRUPTIBLE 0x0001
73 #define TASK_UNINTERRUPTIBLE 0x0002
74 #define __TASK_STOPPED 0x0004
75 #define __TASK_TRACED 0x0008
76 /* Used in tsk->exit_state: */
77 #define EXIT_DEAD 0x0010
78 #define EXIT_ZOMBIE 0x0020
79 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
80 /* Used in tsk->state again: */
81 #define TASK_PARKED 0x0040
82 #define TASK_DEAD 0x0080
83 #define TASK_WAKEKILL 0x0100
84 #define TASK_WAKING 0x0200
85 #define TASK_NOLOAD 0x0400
86 #define TASK_NEW 0x0800
87 #define TASK_STATE_MAX 0x1000
88
89 /* Convenience macros for the sake of set_current_state: */
90 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
91 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
92 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
93
94 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
95
96 /* Convenience macros for the sake of wake_up(): */
97 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
98
99 /* get_task_state(): */
100 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
103 TASK_PARKED)
104
105 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
106
107 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
108
109 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
110
111 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
112 (task->flags & PF_FROZEN) == 0 && \
113 (task->state & TASK_NOLOAD) == 0)
114
115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
116
117 /*
118 * Special states are those that do not use the normal wait-loop pattern. See
119 * the comment with set_special_state().
120 */
121 #define is_special_task_state(state) \
122 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
123
124 #define __set_current_state(state_value) \
125 do { \
126 WARN_ON_ONCE(is_special_task_state(state_value));\
127 current->task_state_change = _THIS_IP_; \
128 current->state = (state_value); \
129 } while (0)
130
131 #define set_current_state(state_value) \
132 do { \
133 WARN_ON_ONCE(is_special_task_state(state_value));\
134 current->task_state_change = _THIS_IP_; \
135 smp_store_mb(current->state, (state_value)); \
136 } while (0)
137
138 #define set_special_state(state_value) \
139 do { \
140 unsigned long flags; /* may shadow */ \
141 WARN_ON_ONCE(!is_special_task_state(state_value)); \
142 raw_spin_lock_irqsave(&current->pi_lock, flags); \
143 current->task_state_change = _THIS_IP_; \
144 current->state = (state_value); \
145 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
146 } while (0)
147 #else
148 /*
149 * set_current_state() includes a barrier so that the write of current->state
150 * is correctly serialised wrt the caller's subsequent test of whether to
151 * actually sleep:
152 *
153 * for (;;) {
154 * set_current_state(TASK_UNINTERRUPTIBLE);
155 * if (!need_sleep)
156 * break;
157 *
158 * schedule();
159 * }
160 * __set_current_state(TASK_RUNNING);
161 *
162 * If the caller does not need such serialisation (because, for instance, the
163 * condition test and condition change and wakeup are under the same lock) then
164 * use __set_current_state().
165 *
166 * The above is typically ordered against the wakeup, which does:
167 *
168 * need_sleep = false;
169 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
170 *
171 * where wake_up_state() executes a full memory barrier before accessing the
172 * task state.
173 *
174 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
175 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
176 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
177 *
178 * However, with slightly different timing the wakeup TASK_RUNNING store can
179 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
180 * a problem either because that will result in one extra go around the loop
181 * and our @cond test will save the day.
182 *
183 * Also see the comments of try_to_wake_up().
184 */
185 #define __set_current_state(state_value) \
186 current->state = (state_value)
187
188 #define set_current_state(state_value) \
189 smp_store_mb(current->state, (state_value))
190
191 /*
192 * set_special_state() should be used for those states when the blocking task
193 * can not use the regular condition based wait-loop. In that case we must
194 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
195 * will not collide with our state change.
196 */
197 #define set_special_state(state_value) \
198 do { \
199 unsigned long flags; /* may shadow */ \
200 raw_spin_lock_irqsave(&current->pi_lock, flags); \
201 current->state = (state_value); \
202 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
203 } while (0)
204
205 #endif
206
207 /* Task command name length: */
208 #define TASK_COMM_LEN 16
209
210 extern void scheduler_tick(void);
211
212 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
213
214 extern long schedule_timeout(long timeout);
215 extern long schedule_timeout_interruptible(long timeout);
216 extern long schedule_timeout_killable(long timeout);
217 extern long schedule_timeout_uninterruptible(long timeout);
218 extern long schedule_timeout_idle(long timeout);
219 asmlinkage void schedule(void);
220 extern void schedule_preempt_disabled(void);
221
222 extern int __must_check io_schedule_prepare(void);
223 extern void io_schedule_finish(int token);
224 extern long io_schedule_timeout(long timeout);
225 extern void io_schedule(void);
226
227 /**
228 * struct prev_cputime - snapshot of system and user cputime
229 * @utime: time spent in user mode
230 * @stime: time spent in system mode
231 * @lock: protects the above two fields
232 *
233 * Stores previous user/system time values such that we can guarantee
234 * monotonicity.
235 */
236 struct prev_cputime {
237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
238 u64 utime;
239 u64 stime;
240 raw_spinlock_t lock;
241 #endif
242 };
243
244 /**
245 * struct task_cputime - collected CPU time counts
246 * @utime: time spent in user mode, in nanoseconds
247 * @stime: time spent in kernel mode, in nanoseconds
248 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
249 *
250 * This structure groups together three kinds of CPU time that are tracked for
251 * threads and thread groups. Most things considering CPU time want to group
252 * these counts together and treat all three of them in parallel.
253 */
254 struct task_cputime {
255 u64 utime;
256 u64 stime;
257 unsigned long long sum_exec_runtime;
258 };
259
260 /* Alternate field names when used on cache expirations: */
261 #define virt_exp utime
262 #define prof_exp stime
263 #define sched_exp sum_exec_runtime
264
265 enum vtime_state {
266 /* Task is sleeping or running in a CPU with VTIME inactive: */
267 VTIME_INACTIVE = 0,
268 /* Task runs in userspace in a CPU with VTIME active: */
269 VTIME_USER,
270 /* Task runs in kernelspace in a CPU with VTIME active: */
271 VTIME_SYS,
272 };
273
274 struct vtime {
275 seqcount_t seqcount;
276 unsigned long long starttime;
277 enum vtime_state state;
278 u64 utime;
279 u64 stime;
280 u64 gtime;
281 };
282
283 struct sched_info {
284 #ifdef CONFIG_SCHED_INFO
285 /* Cumulative counters: */
286
287 /* # of times we have run on this CPU: */
288 unsigned long pcount;
289
290 /* Time spent waiting on a runqueue: */
291 unsigned long long run_delay;
292
293 /* Timestamps: */
294
295 /* When did we last run on a CPU? */
296 unsigned long long last_arrival;
297
298 /* When were we last queued to run? */
299 unsigned long long last_queued;
300
301 #endif /* CONFIG_SCHED_INFO */
302 };
303
304 /*
305 * Integer metrics need fixed point arithmetic, e.g., sched/fair
306 * has a few: load, load_avg, util_avg, freq, and capacity.
307 *
308 * We define a basic fixed point arithmetic range, and then formalize
309 * all these metrics based on that basic range.
310 */
311 # define SCHED_FIXEDPOINT_SHIFT 10
312 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
313
314 struct load_weight {
315 unsigned long weight;
316 u32 inv_weight;
317 };
318
319 /**
320 * struct util_est - Estimation utilization of FAIR tasks
321 * @enqueued: instantaneous estimated utilization of a task/cpu
322 * @ewma: the Exponential Weighted Moving Average (EWMA)
323 * utilization of a task
324 *
325 * Support data structure to track an Exponential Weighted Moving Average
326 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
327 * average each time a task completes an activation. Sample's weight is chosen
328 * so that the EWMA will be relatively insensitive to transient changes to the
329 * task's workload.
330 *
331 * The enqueued attribute has a slightly different meaning for tasks and cpus:
332 * - task: the task's util_avg at last task dequeue time
333 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
334 * Thus, the util_est.enqueued of a task represents the contribution on the
335 * estimated utilization of the CPU where that task is currently enqueued.
336 *
337 * Only for tasks we track a moving average of the past instantaneous
338 * estimated utilization. This allows to absorb sporadic drops in utilization
339 * of an otherwise almost periodic task.
340 */
341 struct util_est {
342 unsigned int enqueued;
343 unsigned int ewma;
344 #define UTIL_EST_WEIGHT_SHIFT 2
345 } __attribute__((__aligned__(sizeof(u64))));
346
347 /*
348 * The load_avg/util_avg accumulates an infinite geometric series
349 * (see __update_load_avg() in kernel/sched/fair.c).
350 *
351 * [load_avg definition]
352 *
353 * load_avg = runnable% * scale_load_down(load)
354 *
355 * where runnable% is the time ratio that a sched_entity is runnable.
356 * For cfs_rq, it is the aggregated load_avg of all runnable and
357 * blocked sched_entities.
358 *
359 * load_avg may also take frequency scaling into account:
360 *
361 * load_avg = runnable% * scale_load_down(load) * freq%
362 *
363 * where freq% is the CPU frequency normalized to the highest frequency.
364 *
365 * [util_avg definition]
366 *
367 * util_avg = running% * SCHED_CAPACITY_SCALE
368 *
369 * where running% is the time ratio that a sched_entity is running on
370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371 * and blocked sched_entities.
372 *
373 * util_avg may also factor frequency scaling and CPU capacity scaling:
374 *
375 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
376 *
377 * where freq% is the same as above, and capacity% is the CPU capacity
378 * normalized to the greatest capacity (due to uarch differences, etc).
379 *
380 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
381 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
382 * we therefore scale them to as large a range as necessary. This is for
383 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
384 *
385 * [Overflow issue]
386 *
387 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
388 * with the highest load (=88761), always runnable on a single cfs_rq,
389 * and should not overflow as the number already hits PID_MAX_LIMIT.
390 *
391 * For all other cases (including 32-bit kernels), struct load_weight's
392 * weight will overflow first before we do, because:
393 *
394 * Max(load_avg) <= Max(load.weight)
395 *
396 * Then it is the load_weight's responsibility to consider overflow
397 * issues.
398 */
399 struct sched_avg {
400 u64 last_update_time;
401 u64 load_sum;
402 u64 runnable_load_sum;
403 u32 util_sum;
404 u32 period_contrib;
405 unsigned long load_avg;
406 unsigned long runnable_load_avg;
407 unsigned long util_avg;
408 struct util_est util_est;
409 } ____cacheline_aligned;
410
411 struct sched_statistics {
412 #ifdef CONFIG_SCHEDSTATS
413 u64 wait_start;
414 u64 wait_max;
415 u64 wait_count;
416 u64 wait_sum;
417 u64 iowait_count;
418 u64 iowait_sum;
419
420 u64 sleep_start;
421 u64 sleep_max;
422 s64 sum_sleep_runtime;
423
424 u64 block_start;
425 u64 block_max;
426 u64 exec_max;
427 u64 slice_max;
428
429 u64 nr_migrations_cold;
430 u64 nr_failed_migrations_affine;
431 u64 nr_failed_migrations_running;
432 u64 nr_failed_migrations_hot;
433 u64 nr_forced_migrations;
434
435 u64 nr_wakeups;
436 u64 nr_wakeups_sync;
437 u64 nr_wakeups_migrate;
438 u64 nr_wakeups_local;
439 u64 nr_wakeups_remote;
440 u64 nr_wakeups_affine;
441 u64 nr_wakeups_affine_attempts;
442 u64 nr_wakeups_passive;
443 u64 nr_wakeups_idle;
444 #endif
445 };
446
447 struct sched_entity {
448 /* For load-balancing: */
449 struct load_weight load;
450 unsigned long runnable_weight;
451 struct rb_node run_node;
452 struct list_head group_node;
453 unsigned int on_rq;
454
455 u64 exec_start;
456 u64 sum_exec_runtime;
457 u64 vruntime;
458 u64 prev_sum_exec_runtime;
459
460 u64 nr_migrations;
461
462 struct sched_statistics statistics;
463
464 #ifdef CONFIG_FAIR_GROUP_SCHED
465 int depth;
466 struct sched_entity *parent;
467 /* rq on which this entity is (to be) queued: */
468 struct cfs_rq *cfs_rq;
469 /* rq "owned" by this entity/group: */
470 struct cfs_rq *my_q;
471 #endif
472
473 #ifdef CONFIG_SMP
474 /*
475 * Per entity load average tracking.
476 *
477 * Put into separate cache line so it does not
478 * collide with read-mostly values above.
479 */
480 struct sched_avg avg;
481 #endif
482 };
483
484 struct sched_rt_entity {
485 struct list_head run_list;
486 unsigned long timeout;
487 unsigned long watchdog_stamp;
488 unsigned int time_slice;
489 unsigned short on_rq;
490 unsigned short on_list;
491
492 struct sched_rt_entity *back;
493 #ifdef CONFIG_RT_GROUP_SCHED
494 struct sched_rt_entity *parent;
495 /* rq on which this entity is (to be) queued: */
496 struct rt_rq *rt_rq;
497 /* rq "owned" by this entity/group: */
498 struct rt_rq *my_q;
499 #endif
500 } __randomize_layout;
501
502 struct sched_dl_entity {
503 struct rb_node rb_node;
504
505 /*
506 * Original scheduling parameters. Copied here from sched_attr
507 * during sched_setattr(), they will remain the same until
508 * the next sched_setattr().
509 */
510 u64 dl_runtime; /* Maximum runtime for each instance */
511 u64 dl_deadline; /* Relative deadline of each instance */
512 u64 dl_period; /* Separation of two instances (period) */
513 u64 dl_bw; /* dl_runtime / dl_period */
514 u64 dl_density; /* dl_runtime / dl_deadline */
515
516 /*
517 * Actual scheduling parameters. Initialized with the values above,
518 * they are continously updated during task execution. Note that
519 * the remaining runtime could be < 0 in case we are in overrun.
520 */
521 s64 runtime; /* Remaining runtime for this instance */
522 u64 deadline; /* Absolute deadline for this instance */
523 unsigned int flags; /* Specifying the scheduler behaviour */
524
525 /*
526 * Some bool flags:
527 *
528 * @dl_throttled tells if we exhausted the runtime. If so, the
529 * task has to wait for a replenishment to be performed at the
530 * next firing of dl_timer.
531 *
532 * @dl_boosted tells if we are boosted due to DI. If so we are
533 * outside bandwidth enforcement mechanism (but only until we
534 * exit the critical section);
535 *
536 * @dl_yielded tells if task gave up the CPU before consuming
537 * all its available runtime during the last job.
538 *
539 * @dl_non_contending tells if the task is inactive while still
540 * contributing to the active utilization. In other words, it
541 * indicates if the inactive timer has been armed and its handler
542 * has not been executed yet. This flag is useful to avoid race
543 * conditions between the inactive timer handler and the wakeup
544 * code.
545 *
546 * @dl_overrun tells if the task asked to be informed about runtime
547 * overruns.
548 */
549 unsigned int dl_throttled : 1;
550 unsigned int dl_boosted : 1;
551 unsigned int dl_yielded : 1;
552 unsigned int dl_non_contending : 1;
553 unsigned int dl_overrun : 1;
554
555 /*
556 * Bandwidth enforcement timer. Each -deadline task has its
557 * own bandwidth to be enforced, thus we need one timer per task.
558 */
559 struct hrtimer dl_timer;
560
561 /*
562 * Inactive timer, responsible for decreasing the active utilization
563 * at the "0-lag time". When a -deadline task blocks, it contributes
564 * to GRUB's active utilization until the "0-lag time", hence a
565 * timer is needed to decrease the active utilization at the correct
566 * time.
567 */
568 struct hrtimer inactive_timer;
569 };
570
571 union rcu_special {
572 struct {
573 u8 blocked;
574 u8 need_qs;
575 } b; /* Bits. */
576 u16 s; /* Set of bits. */
577 };
578
579 enum perf_event_task_context {
580 perf_invalid_context = -1,
581 perf_hw_context = 0,
582 perf_sw_context,
583 perf_nr_task_contexts,
584 };
585
586 struct wake_q_node {
587 struct wake_q_node *next;
588 };
589
590 struct task_struct {
591 #ifdef CONFIG_THREAD_INFO_IN_TASK
592 /*
593 * For reasons of header soup (see current_thread_info()), this
594 * must be the first element of task_struct.
595 */
596 struct thread_info thread_info;
597 #endif
598 /* -1 unrunnable, 0 runnable, >0 stopped: */
599 volatile long state;
600
601 /*
602 * This begins the randomizable portion of task_struct. Only
603 * scheduling-critical items should be added above here.
604 */
605 randomized_struct_fields_start
606
607 void *stack;
608 atomic_t usage;
609 /* Per task flags (PF_*), defined further below: */
610 unsigned int flags;
611 unsigned int ptrace;
612
613 #ifdef CONFIG_SMP
614 struct llist_node wake_entry;
615 int on_cpu;
616 #ifdef CONFIG_THREAD_INFO_IN_TASK
617 /* Current CPU: */
618 unsigned int cpu;
619 #endif
620 unsigned int wakee_flips;
621 unsigned long wakee_flip_decay_ts;
622 struct task_struct *last_wakee;
623
624 /*
625 * recent_used_cpu is initially set as the last CPU used by a task
626 * that wakes affine another task. Waker/wakee relationships can
627 * push tasks around a CPU where each wakeup moves to the next one.
628 * Tracking a recently used CPU allows a quick search for a recently
629 * used CPU that may be idle.
630 */
631 int recent_used_cpu;
632 int wake_cpu;
633 #endif
634 int on_rq;
635
636 int prio;
637 int static_prio;
638 int normal_prio;
639 unsigned int rt_priority;
640
641 const struct sched_class *sched_class;
642 struct sched_entity se;
643 struct sched_rt_entity rt;
644 #ifdef CONFIG_CGROUP_SCHED
645 struct task_group *sched_task_group;
646 #endif
647 struct sched_dl_entity dl;
648
649 #ifdef CONFIG_PREEMPT_NOTIFIERS
650 /* List of struct preempt_notifier: */
651 struct hlist_head preempt_notifiers;
652 #endif
653
654 #ifdef CONFIG_BLK_DEV_IO_TRACE
655 unsigned int btrace_seq;
656 #endif
657
658 unsigned int policy;
659 int nr_cpus_allowed;
660 cpumask_t cpus_allowed;
661
662 #ifdef CONFIG_PREEMPT_RCU
663 int rcu_read_lock_nesting;
664 union rcu_special rcu_read_unlock_special;
665 struct list_head rcu_node_entry;
666 struct rcu_node *rcu_blocked_node;
667 #endif /* #ifdef CONFIG_PREEMPT_RCU */
668
669 #ifdef CONFIG_TASKS_RCU
670 unsigned long rcu_tasks_nvcsw;
671 u8 rcu_tasks_holdout;
672 u8 rcu_tasks_idx;
673 int rcu_tasks_idle_cpu;
674 struct list_head rcu_tasks_holdout_list;
675 #endif /* #ifdef CONFIG_TASKS_RCU */
676
677 struct sched_info sched_info;
678
679 struct list_head tasks;
680 #ifdef CONFIG_SMP
681 struct plist_node pushable_tasks;
682 struct rb_node pushable_dl_tasks;
683 #endif
684
685 struct mm_struct *mm;
686 struct mm_struct *active_mm;
687
688 /* Per-thread vma caching: */
689 struct vmacache vmacache;
690
691 #ifdef SPLIT_RSS_COUNTING
692 struct task_rss_stat rss_stat;
693 #endif
694 int exit_state;
695 int exit_code;
696 int exit_signal;
697 /* The signal sent when the parent dies: */
698 int pdeath_signal;
699 /* JOBCTL_*, siglock protected: */
700 unsigned long jobctl;
701
702 /* Used for emulating ABI behavior of previous Linux versions: */
703 unsigned int personality;
704
705 /* Scheduler bits, serialized by scheduler locks: */
706 unsigned sched_reset_on_fork:1;
707 unsigned sched_contributes_to_load:1;
708 unsigned sched_migrated:1;
709 unsigned sched_remote_wakeup:1;
710 #ifdef CONFIG_PSI
711 unsigned sched_psi_wake_requeue:1;
712 #endif
713
714 /* Force alignment to the next boundary: */
715 unsigned :0;
716
717 /* Unserialized, strictly 'current' */
718
719 /* Bit to tell LSMs we're in execve(): */
720 unsigned in_execve:1;
721 unsigned in_iowait:1;
722 #ifndef TIF_RESTORE_SIGMASK
723 unsigned restore_sigmask:1;
724 #endif
725 #ifdef CONFIG_MEMCG
726 unsigned in_user_fault:1;
727 #endif
728 #ifdef CONFIG_COMPAT_BRK
729 unsigned brk_randomized:1;
730 #endif
731 #ifdef CONFIG_CGROUPS
732 /* disallow userland-initiated cgroup migration */
733 unsigned no_cgroup_migration:1;
734 #endif
735 #ifdef CONFIG_BLK_CGROUP
736 /* to be used once the psi infrastructure lands upstream. */
737 unsigned use_memdelay:1;
738 #endif
739
740 /*
741 * May usercopy functions fault on kernel addresses?
742 * This is not just a single bit because this can potentially nest.
743 */
744 unsigned int kernel_uaccess_faults_ok;
745
746 unsigned long atomic_flags; /* Flags requiring atomic access. */
747
748 struct restart_block restart_block;
749
750 pid_t pid;
751 pid_t tgid;
752
753 #ifdef CONFIG_STACKPROTECTOR
754 /* Canary value for the -fstack-protector GCC feature: */
755 unsigned long stack_canary;
756 #endif
757 /*
758 * Pointers to the (original) parent process, youngest child, younger sibling,
759 * older sibling, respectively. (p->father can be replaced with
760 * p->real_parent->pid)
761 */
762
763 /* Real parent process: */
764 struct task_struct __rcu *real_parent;
765
766 /* Recipient of SIGCHLD, wait4() reports: */
767 struct task_struct __rcu *parent;
768
769 /*
770 * Children/sibling form the list of natural children:
771 */
772 struct list_head children;
773 struct list_head sibling;
774 struct task_struct *group_leader;
775
776 /*
777 * 'ptraced' is the list of tasks this task is using ptrace() on.
778 *
779 * This includes both natural children and PTRACE_ATTACH targets.
780 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
781 */
782 struct list_head ptraced;
783 struct list_head ptrace_entry;
784
785 /* PID/PID hash table linkage. */
786 struct pid *thread_pid;
787 struct hlist_node pid_links[PIDTYPE_MAX];
788 struct list_head thread_group;
789 struct list_head thread_node;
790
791 struct completion *vfork_done;
792
793 /* CLONE_CHILD_SETTID: */
794 int __user *set_child_tid;
795
796 /* CLONE_CHILD_CLEARTID: */
797 int __user *clear_child_tid;
798
799 u64 utime;
800 u64 stime;
801 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
802 u64 utimescaled;
803 u64 stimescaled;
804 #endif
805 u64 gtime;
806 struct prev_cputime prev_cputime;
807 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
808 struct vtime vtime;
809 #endif
810
811 #ifdef CONFIG_NO_HZ_FULL
812 atomic_t tick_dep_mask;
813 #endif
814 /* Context switch counts: */
815 unsigned long nvcsw;
816 unsigned long nivcsw;
817
818 /* Monotonic time in nsecs: */
819 u64 start_time;
820
821 /* Boot based time in nsecs: */
822 u64 real_start_time;
823
824 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
825 unsigned long min_flt;
826 unsigned long maj_flt;
827
828 #ifdef CONFIG_POSIX_TIMERS
829 struct task_cputime cputime_expires;
830 struct list_head cpu_timers[3];
831 #endif
832
833 /* Process credentials: */
834
835 /* Tracer's credentials at attach: */
836 const struct cred __rcu *ptracer_cred;
837
838 /* Objective and real subjective task credentials (COW): */
839 const struct cred __rcu *real_cred;
840
841 /* Effective (overridable) subjective task credentials (COW): */
842 const struct cred __rcu *cred;
843
844 /*
845 * executable name, excluding path.
846 *
847 * - normally initialized setup_new_exec()
848 * - access it with [gs]et_task_comm()
849 * - lock it with task_lock()
850 */
851 char comm[TASK_COMM_LEN];
852
853 struct nameidata *nameidata;
854
855 #ifdef CONFIG_SYSVIPC
856 struct sysv_sem sysvsem;
857 struct sysv_shm sysvshm;
858 #endif
859 #ifdef CONFIG_DETECT_HUNG_TASK
860 unsigned long last_switch_count;
861 unsigned long last_switch_time;
862 #endif
863 /* Filesystem information: */
864 struct fs_struct *fs;
865
866 /* Open file information: */
867 struct files_struct *files;
868
869 /* Namespaces: */
870 struct nsproxy *nsproxy;
871
872 /* Signal handlers: */
873 struct signal_struct *signal;
874 struct sighand_struct *sighand;
875 sigset_t blocked;
876 sigset_t real_blocked;
877 /* Restored if set_restore_sigmask() was used: */
878 sigset_t saved_sigmask;
879 struct sigpending pending;
880 unsigned long sas_ss_sp;
881 size_t sas_ss_size;
882 unsigned int sas_ss_flags;
883
884 struct callback_head *task_works;
885
886 struct audit_context *audit_context;
887 #ifdef CONFIG_AUDITSYSCALL
888 kuid_t loginuid;
889 unsigned int sessionid;
890 #endif
891 struct seccomp seccomp;
892
893 /* Thread group tracking: */
894 u32 parent_exec_id;
895 u32 self_exec_id;
896
897 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
898 spinlock_t alloc_lock;
899
900 /* Protection of the PI data structures: */
901 raw_spinlock_t pi_lock;
902
903 struct wake_q_node wake_q;
904
905 #ifdef CONFIG_RT_MUTEXES
906 /* PI waiters blocked on a rt_mutex held by this task: */
907 struct rb_root_cached pi_waiters;
908 /* Updated under owner's pi_lock and rq lock */
909 struct task_struct *pi_top_task;
910 /* Deadlock detection and priority inheritance handling: */
911 struct rt_mutex_waiter *pi_blocked_on;
912 #endif
913
914 #ifdef CONFIG_DEBUG_MUTEXES
915 /* Mutex deadlock detection: */
916 struct mutex_waiter *blocked_on;
917 #endif
918
919 #ifdef CONFIG_TRACE_IRQFLAGS
920 unsigned int irq_events;
921 unsigned long hardirq_enable_ip;
922 unsigned long hardirq_disable_ip;
923 unsigned int hardirq_enable_event;
924 unsigned int hardirq_disable_event;
925 int hardirqs_enabled;
926 int hardirq_context;
927 unsigned long softirq_disable_ip;
928 unsigned long softirq_enable_ip;
929 unsigned int softirq_disable_event;
930 unsigned int softirq_enable_event;
931 int softirqs_enabled;
932 int softirq_context;
933 #endif
934
935 #ifdef CONFIG_LOCKDEP
936 # define MAX_LOCK_DEPTH 48UL
937 u64 curr_chain_key;
938 int lockdep_depth;
939 unsigned int lockdep_recursion;
940 struct held_lock held_locks[MAX_LOCK_DEPTH];
941 #endif
942
943 #ifdef CONFIG_UBSAN
944 unsigned int in_ubsan;
945 #endif
946
947 /* Journalling filesystem info: */
948 void *journal_info;
949
950 /* Stacked block device info: */
951 struct bio_list *bio_list;
952
953 #ifdef CONFIG_BLOCK
954 /* Stack plugging: */
955 struct blk_plug *plug;
956 #endif
957
958 /* VM state: */
959 struct reclaim_state *reclaim_state;
960
961 struct backing_dev_info *backing_dev_info;
962
963 struct io_context *io_context;
964
965 /* Ptrace state: */
966 unsigned long ptrace_message;
967 kernel_siginfo_t *last_siginfo;
968
969 struct task_io_accounting ioac;
970 #ifdef CONFIG_PSI
971 /* Pressure stall state */
972 unsigned int psi_flags;
973 #endif
974 #ifdef CONFIG_TASK_XACCT
975 /* Accumulated RSS usage: */
976 u64 acct_rss_mem1;
977 /* Accumulated virtual memory usage: */
978 u64 acct_vm_mem1;
979 /* stime + utime since last update: */
980 u64 acct_timexpd;
981 #endif
982 #ifdef CONFIG_CPUSETS
983 /* Protected by ->alloc_lock: */
984 nodemask_t mems_allowed;
985 /* Seqence number to catch updates: */
986 seqcount_t mems_allowed_seq;
987 int cpuset_mem_spread_rotor;
988 int cpuset_slab_spread_rotor;
989 #endif
990 #ifdef CONFIG_CGROUPS
991 /* Control Group info protected by css_set_lock: */
992 struct css_set __rcu *cgroups;
993 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
994 struct list_head cg_list;
995 #endif
996 #ifdef CONFIG_INTEL_RDT
997 u32 closid;
998 u32 rmid;
999 #endif
1000 #ifdef CONFIG_FUTEX
1001 struct robust_list_head __user *robust_list;
1002 #ifdef CONFIG_COMPAT
1003 struct compat_robust_list_head __user *compat_robust_list;
1004 #endif
1005 struct list_head pi_state_list;
1006 struct futex_pi_state *pi_state_cache;
1007 #endif
1008 #ifdef CONFIG_PERF_EVENTS
1009 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1010 struct mutex perf_event_mutex;
1011 struct list_head perf_event_list;
1012 #endif
1013 #ifdef CONFIG_DEBUG_PREEMPT
1014 unsigned long preempt_disable_ip;
1015 #endif
1016 #ifdef CONFIG_NUMA
1017 /* Protected by alloc_lock: */
1018 struct mempolicy *mempolicy;
1019 short il_prev;
1020 short pref_node_fork;
1021 #endif
1022 #ifdef CONFIG_NUMA_BALANCING
1023 int numa_scan_seq;
1024 unsigned int numa_scan_period;
1025 unsigned int numa_scan_period_max;
1026 int numa_preferred_nid;
1027 unsigned long numa_migrate_retry;
1028 /* Migration stamp: */
1029 u64 node_stamp;
1030 u64 last_task_numa_placement;
1031 u64 last_sum_exec_runtime;
1032 struct callback_head numa_work;
1033
1034 struct numa_group *numa_group;
1035
1036 /*
1037 * numa_faults is an array split into four regions:
1038 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1039 * in this precise order.
1040 *
1041 * faults_memory: Exponential decaying average of faults on a per-node
1042 * basis. Scheduling placement decisions are made based on these
1043 * counts. The values remain static for the duration of a PTE scan.
1044 * faults_cpu: Track the nodes the process was running on when a NUMA
1045 * hinting fault was incurred.
1046 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1047 * during the current scan window. When the scan completes, the counts
1048 * in faults_memory and faults_cpu decay and these values are copied.
1049 */
1050 unsigned long *numa_faults;
1051 unsigned long total_numa_faults;
1052
1053 /*
1054 * numa_faults_locality tracks if faults recorded during the last
1055 * scan window were remote/local or failed to migrate. The task scan
1056 * period is adapted based on the locality of the faults with different
1057 * weights depending on whether they were shared or private faults
1058 */
1059 unsigned long numa_faults_locality[3];
1060
1061 unsigned long numa_pages_migrated;
1062 #endif /* CONFIG_NUMA_BALANCING */
1063
1064 #ifdef CONFIG_RSEQ
1065 struct rseq __user *rseq;
1066 u32 rseq_len;
1067 u32 rseq_sig;
1068 /*
1069 * RmW on rseq_event_mask must be performed atomically
1070 * with respect to preemption.
1071 */
1072 unsigned long rseq_event_mask;
1073 #endif
1074
1075 struct tlbflush_unmap_batch tlb_ubc;
1076
1077 struct rcu_head rcu;
1078
1079 /* Cache last used pipe for splice(): */
1080 struct pipe_inode_info *splice_pipe;
1081
1082 struct page_frag task_frag;
1083
1084 #ifdef CONFIG_TASK_DELAY_ACCT
1085 struct task_delay_info *delays;
1086 #endif
1087
1088 #ifdef CONFIG_FAULT_INJECTION
1089 int make_it_fail;
1090 unsigned int fail_nth;
1091 #endif
1092 /*
1093 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1094 * balance_dirty_pages() for a dirty throttling pause:
1095 */
1096 int nr_dirtied;
1097 int nr_dirtied_pause;
1098 /* Start of a write-and-pause period: */
1099 unsigned long dirty_paused_when;
1100
1101 #ifdef CONFIG_LATENCYTOP
1102 int latency_record_count;
1103 struct latency_record latency_record[LT_SAVECOUNT];
1104 #endif
1105 /*
1106 * Time slack values; these are used to round up poll() and
1107 * select() etc timeout values. These are in nanoseconds.
1108 */
1109 u64 timer_slack_ns;
1110 u64 default_timer_slack_ns;
1111
1112 #ifdef CONFIG_KASAN
1113 unsigned int kasan_depth;
1114 #endif
1115
1116 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1117 /* Index of current stored address in ret_stack: */
1118 int curr_ret_stack;
1119
1120 /* Stack of return addresses for return function tracing: */
1121 struct ftrace_ret_stack *ret_stack;
1122
1123 /* Timestamp for last schedule: */
1124 unsigned long long ftrace_timestamp;
1125
1126 /*
1127 * Number of functions that haven't been traced
1128 * because of depth overrun:
1129 */
1130 atomic_t trace_overrun;
1131
1132 /* Pause tracing: */
1133 atomic_t tracing_graph_pause;
1134 #endif
1135
1136 #ifdef CONFIG_TRACING
1137 /* State flags for use by tracers: */
1138 unsigned long trace;
1139
1140 /* Bitmask and counter of trace recursion: */
1141 unsigned long trace_recursion;
1142 #endif /* CONFIG_TRACING */
1143
1144 #ifdef CONFIG_KCOV
1145 /* Coverage collection mode enabled for this task (0 if disabled): */
1146 unsigned int kcov_mode;
1147
1148 /* Size of the kcov_area: */
1149 unsigned int kcov_size;
1150
1151 /* Buffer for coverage collection: */
1152 void *kcov_area;
1153
1154 /* KCOV descriptor wired with this task or NULL: */
1155 struct kcov *kcov;
1156 #endif
1157
1158 #ifdef CONFIG_MEMCG
1159 struct mem_cgroup *memcg_in_oom;
1160 gfp_t memcg_oom_gfp_mask;
1161 int memcg_oom_order;
1162
1163 /* Number of pages to reclaim on returning to userland: */
1164 unsigned int memcg_nr_pages_over_high;
1165
1166 /* Used by memcontrol for targeted memcg charge: */
1167 struct mem_cgroup *active_memcg;
1168 #endif
1169
1170 #ifdef CONFIG_BLK_CGROUP
1171 struct request_queue *throttle_queue;
1172 #endif
1173
1174 #ifdef CONFIG_UPROBES
1175 struct uprobe_task *utask;
1176 #endif
1177 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1178 unsigned int sequential_io;
1179 unsigned int sequential_io_avg;
1180 #endif
1181 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1182 unsigned long task_state_change;
1183 #endif
1184 int pagefault_disabled;
1185 #ifdef CONFIG_MMU
1186 struct task_struct *oom_reaper_list;
1187 #endif
1188 #ifdef CONFIG_VMAP_STACK
1189 struct vm_struct *stack_vm_area;
1190 #endif
1191 #ifdef CONFIG_THREAD_INFO_IN_TASK
1192 /* A live task holds one reference: */
1193 atomic_t stack_refcount;
1194 #endif
1195 #ifdef CONFIG_LIVEPATCH
1196 int patch_state;
1197 #endif
1198 #ifdef CONFIG_SECURITY
1199 /* Used by LSM modules for access restriction: */
1200 void *security;
1201 #endif
1202
1203 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1204 unsigned long lowest_stack;
1205 unsigned long prev_lowest_stack;
1206 #endif
1207
1208 /*
1209 * New fields for task_struct should be added above here, so that
1210 * they are included in the randomized portion of task_struct.
1211 */
1212 randomized_struct_fields_end
1213
1214 /* CPU-specific state of this task: */
1215 struct thread_struct thread;
1216
1217 /*
1218 * WARNING: on x86, 'thread_struct' contains a variable-sized
1219 * structure. It *MUST* be at the end of 'task_struct'.
1220 *
1221 * Do not put anything below here!
1222 */
1223 };
1224
1225 static inline struct pid *task_pid(struct task_struct *task)
1226 {
1227 return task->thread_pid;
1228 }
1229
1230 /*
1231 * the helpers to get the task's different pids as they are seen
1232 * from various namespaces
1233 *
1234 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1235 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1236 * current.
1237 * task_xid_nr_ns() : id seen from the ns specified;
1238 *
1239 * see also pid_nr() etc in include/linux/pid.h
1240 */
1241 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1242
1243 static inline pid_t task_pid_nr(struct task_struct *tsk)
1244 {
1245 return tsk->pid;
1246 }
1247
1248 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1249 {
1250 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1251 }
1252
1253 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1254 {
1255 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1256 }
1257
1258
1259 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1260 {
1261 return tsk->tgid;
1262 }
1263
1264 /**
1265 * pid_alive - check that a task structure is not stale
1266 * @p: Task structure to be checked.
1267 *
1268 * Test if a process is not yet dead (at most zombie state)
1269 * If pid_alive fails, then pointers within the task structure
1270 * can be stale and must not be dereferenced.
1271 *
1272 * Return: 1 if the process is alive. 0 otherwise.
1273 */
1274 static inline int pid_alive(const struct task_struct *p)
1275 {
1276 return p->thread_pid != NULL;
1277 }
1278
1279 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1280 {
1281 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1282 }
1283
1284 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1285 {
1286 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1287 }
1288
1289
1290 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1291 {
1292 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1293 }
1294
1295 static inline pid_t task_session_vnr(struct task_struct *tsk)
1296 {
1297 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1298 }
1299
1300 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1301 {
1302 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1303 }
1304
1305 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1306 {
1307 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1308 }
1309
1310 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1311 {
1312 pid_t pid = 0;
1313
1314 rcu_read_lock();
1315 if (pid_alive(tsk))
1316 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1317 rcu_read_unlock();
1318
1319 return pid;
1320 }
1321
1322 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1323 {
1324 return task_ppid_nr_ns(tsk, &init_pid_ns);
1325 }
1326
1327 /* Obsolete, do not use: */
1328 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1329 {
1330 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1331 }
1332
1333 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1334 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1335
1336 static inline unsigned int task_state_index(struct task_struct *tsk)
1337 {
1338 unsigned int tsk_state = READ_ONCE(tsk->state);
1339 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1340
1341 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1342
1343 if (tsk_state == TASK_IDLE)
1344 state = TASK_REPORT_IDLE;
1345
1346 return fls(state);
1347 }
1348
1349 static inline char task_index_to_char(unsigned int state)
1350 {
1351 static const char state_char[] = "RSDTtXZPI";
1352
1353 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1354
1355 return state_char[state];
1356 }
1357
1358 static inline char task_state_to_char(struct task_struct *tsk)
1359 {
1360 return task_index_to_char(task_state_index(tsk));
1361 }
1362
1363 /**
1364 * is_global_init - check if a task structure is init. Since init
1365 * is free to have sub-threads we need to check tgid.
1366 * @tsk: Task structure to be checked.
1367 *
1368 * Check if a task structure is the first user space task the kernel created.
1369 *
1370 * Return: 1 if the task structure is init. 0 otherwise.
1371 */
1372 static inline int is_global_init(struct task_struct *tsk)
1373 {
1374 return task_tgid_nr(tsk) == 1;
1375 }
1376
1377 extern struct pid *cad_pid;
1378
1379 /*
1380 * Per process flags
1381 */
1382 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1383 #define PF_EXITING 0x00000004 /* Getting shut down */
1384 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1385 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1386 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1387 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1388 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1389 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1390 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1391 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1392 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1393 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1394 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1395 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1396 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1397 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1398 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1399 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1400 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1401 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1402 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1403 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1404 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1405 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1406 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1407 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1408 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1409 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1410 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1411
1412 /*
1413 * Only the _current_ task can read/write to tsk->flags, but other
1414 * tasks can access tsk->flags in readonly mode for example
1415 * with tsk_used_math (like during threaded core dumping).
1416 * There is however an exception to this rule during ptrace
1417 * or during fork: the ptracer task is allowed to write to the
1418 * child->flags of its traced child (same goes for fork, the parent
1419 * can write to the child->flags), because we're guaranteed the
1420 * child is not running and in turn not changing child->flags
1421 * at the same time the parent does it.
1422 */
1423 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1424 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1425 #define clear_used_math() clear_stopped_child_used_math(current)
1426 #define set_used_math() set_stopped_child_used_math(current)
1427
1428 #define conditional_stopped_child_used_math(condition, child) \
1429 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1430
1431 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1432
1433 #define copy_to_stopped_child_used_math(child) \
1434 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1435
1436 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1437 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1438 #define used_math() tsk_used_math(current)
1439
1440 static inline bool is_percpu_thread(void)
1441 {
1442 #ifdef CONFIG_SMP
1443 return (current->flags & PF_NO_SETAFFINITY) &&
1444 (current->nr_cpus_allowed == 1);
1445 #else
1446 return true;
1447 #endif
1448 }
1449
1450 /* Per-process atomic flags. */
1451 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1452 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1453 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1454 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1455 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1456
1457 #define TASK_PFA_TEST(name, func) \
1458 static inline bool task_##func(struct task_struct *p) \
1459 { return test_bit(PFA_##name, &p->atomic_flags); }
1460
1461 #define TASK_PFA_SET(name, func) \
1462 static inline void task_set_##func(struct task_struct *p) \
1463 { set_bit(PFA_##name, &p->atomic_flags); }
1464
1465 #define TASK_PFA_CLEAR(name, func) \
1466 static inline void task_clear_##func(struct task_struct *p) \
1467 { clear_bit(PFA_##name, &p->atomic_flags); }
1468
1469 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1470 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1471
1472 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1473 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1474 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1475
1476 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1477 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1478 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1479
1480 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1481 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1482 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1483
1484 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1485 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1486
1487 static inline void
1488 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1489 {
1490 current->flags &= ~flags;
1491 current->flags |= orig_flags & flags;
1492 }
1493
1494 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1495 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1496 #ifdef CONFIG_SMP
1497 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1498 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1499 #else
1500 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1501 {
1502 }
1503 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1504 {
1505 if (!cpumask_test_cpu(0, new_mask))
1506 return -EINVAL;
1507 return 0;
1508 }
1509 #endif
1510
1511 #ifndef cpu_relax_yield
1512 #define cpu_relax_yield() cpu_relax()
1513 #endif
1514
1515 extern int yield_to(struct task_struct *p, bool preempt);
1516 extern void set_user_nice(struct task_struct *p, long nice);
1517 extern int task_prio(const struct task_struct *p);
1518
1519 /**
1520 * task_nice - return the nice value of a given task.
1521 * @p: the task in question.
1522 *
1523 * Return: The nice value [ -20 ... 0 ... 19 ].
1524 */
1525 static inline int task_nice(const struct task_struct *p)
1526 {
1527 return PRIO_TO_NICE((p)->static_prio);
1528 }
1529
1530 extern int can_nice(const struct task_struct *p, const int nice);
1531 extern int task_curr(const struct task_struct *p);
1532 extern int idle_cpu(int cpu);
1533 extern int available_idle_cpu(int cpu);
1534 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1535 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1536 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1537 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1538 extern struct task_struct *idle_task(int cpu);
1539
1540 /**
1541 * is_idle_task - is the specified task an idle task?
1542 * @p: the task in question.
1543 *
1544 * Return: 1 if @p is an idle task. 0 otherwise.
1545 */
1546 static inline bool is_idle_task(const struct task_struct *p)
1547 {
1548 return !!(p->flags & PF_IDLE);
1549 }
1550
1551 extern struct task_struct *curr_task(int cpu);
1552 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1553
1554 void yield(void);
1555
1556 union thread_union {
1557 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1558 struct task_struct task;
1559 #endif
1560 #ifndef CONFIG_THREAD_INFO_IN_TASK
1561 struct thread_info thread_info;
1562 #endif
1563 unsigned long stack[THREAD_SIZE/sizeof(long)];
1564 };
1565
1566 #ifndef CONFIG_THREAD_INFO_IN_TASK
1567 extern struct thread_info init_thread_info;
1568 #endif
1569
1570 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1571
1572 #ifdef CONFIG_THREAD_INFO_IN_TASK
1573 static inline struct thread_info *task_thread_info(struct task_struct *task)
1574 {
1575 return &task->thread_info;
1576 }
1577 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1578 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1579 #endif
1580
1581 /*
1582 * find a task by one of its numerical ids
1583 *
1584 * find_task_by_pid_ns():
1585 * finds a task by its pid in the specified namespace
1586 * find_task_by_vpid():
1587 * finds a task by its virtual pid
1588 *
1589 * see also find_vpid() etc in include/linux/pid.h
1590 */
1591
1592 extern struct task_struct *find_task_by_vpid(pid_t nr);
1593 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1594
1595 /*
1596 * find a task by its virtual pid and get the task struct
1597 */
1598 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1599
1600 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1601 extern int wake_up_process(struct task_struct *tsk);
1602 extern void wake_up_new_task(struct task_struct *tsk);
1603
1604 #ifdef CONFIG_SMP
1605 extern void kick_process(struct task_struct *tsk);
1606 #else
1607 static inline void kick_process(struct task_struct *tsk) { }
1608 #endif
1609
1610 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1611
1612 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1613 {
1614 __set_task_comm(tsk, from, false);
1615 }
1616
1617 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1618 #define get_task_comm(buf, tsk) ({ \
1619 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1620 __get_task_comm(buf, sizeof(buf), tsk); \
1621 })
1622
1623 #ifdef CONFIG_SMP
1624 void scheduler_ipi(void);
1625 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1626 #else
1627 static inline void scheduler_ipi(void) { }
1628 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1629 {
1630 return 1;
1631 }
1632 #endif
1633
1634 /*
1635 * Set thread flags in other task's structures.
1636 * See asm/thread_info.h for TIF_xxxx flags available:
1637 */
1638 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1639 {
1640 set_ti_thread_flag(task_thread_info(tsk), flag);
1641 }
1642
1643 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1644 {
1645 clear_ti_thread_flag(task_thread_info(tsk), flag);
1646 }
1647
1648 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1649 bool value)
1650 {
1651 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1652 }
1653
1654 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1655 {
1656 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1657 }
1658
1659 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1660 {
1661 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1662 }
1663
1664 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1665 {
1666 return test_ti_thread_flag(task_thread_info(tsk), flag);
1667 }
1668
1669 static inline void set_tsk_need_resched(struct task_struct *tsk)
1670 {
1671 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1672 }
1673
1674 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1675 {
1676 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1677 }
1678
1679 static inline int test_tsk_need_resched(struct task_struct *tsk)
1680 {
1681 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1682 }
1683
1684 /*
1685 * cond_resched() and cond_resched_lock(): latency reduction via
1686 * explicit rescheduling in places that are safe. The return
1687 * value indicates whether a reschedule was done in fact.
1688 * cond_resched_lock() will drop the spinlock before scheduling,
1689 */
1690 #ifndef CONFIG_PREEMPT
1691 extern int _cond_resched(void);
1692 #else
1693 static inline int _cond_resched(void) { return 0; }
1694 #endif
1695
1696 #define cond_resched() ({ \
1697 ___might_sleep(__FILE__, __LINE__, 0); \
1698 _cond_resched(); \
1699 })
1700
1701 extern int __cond_resched_lock(spinlock_t *lock);
1702
1703 #define cond_resched_lock(lock) ({ \
1704 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1705 __cond_resched_lock(lock); \
1706 })
1707
1708 static inline void cond_resched_rcu(void)
1709 {
1710 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1711 rcu_read_unlock();
1712 cond_resched();
1713 rcu_read_lock();
1714 #endif
1715 }
1716
1717 /*
1718 * Does a critical section need to be broken due to another
1719 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1720 * but a general need for low latency)
1721 */
1722 static inline int spin_needbreak(spinlock_t *lock)
1723 {
1724 #ifdef CONFIG_PREEMPT
1725 return spin_is_contended(lock);
1726 #else
1727 return 0;
1728 #endif
1729 }
1730
1731 static __always_inline bool need_resched(void)
1732 {
1733 return unlikely(tif_need_resched());
1734 }
1735
1736 /*
1737 * Wrappers for p->thread_info->cpu access. No-op on UP.
1738 */
1739 #ifdef CONFIG_SMP
1740
1741 static inline unsigned int task_cpu(const struct task_struct *p)
1742 {
1743 #ifdef CONFIG_THREAD_INFO_IN_TASK
1744 return p->cpu;
1745 #else
1746 return task_thread_info(p)->cpu;
1747 #endif
1748 }
1749
1750 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1751
1752 #else
1753
1754 static inline unsigned int task_cpu(const struct task_struct *p)
1755 {
1756 return 0;
1757 }
1758
1759 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1760 {
1761 }
1762
1763 #endif /* CONFIG_SMP */
1764
1765 /*
1766 * In order to reduce various lock holder preemption latencies provide an
1767 * interface to see if a vCPU is currently running or not.
1768 *
1769 * This allows us to terminate optimistic spin loops and block, analogous to
1770 * the native optimistic spin heuristic of testing if the lock owner task is
1771 * running or not.
1772 */
1773 #ifndef vcpu_is_preempted
1774 # define vcpu_is_preempted(cpu) false
1775 #endif
1776
1777 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1778 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1779
1780 #ifndef TASK_SIZE_OF
1781 #define TASK_SIZE_OF(tsk) TASK_SIZE
1782 #endif
1783
1784 #ifdef CONFIG_RSEQ
1785
1786 /*
1787 * Map the event mask on the user-space ABI enum rseq_cs_flags
1788 * for direct mask checks.
1789 */
1790 enum rseq_event_mask_bits {
1791 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1792 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1793 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1794 };
1795
1796 enum rseq_event_mask {
1797 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1798 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1799 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1800 };
1801
1802 static inline void rseq_set_notify_resume(struct task_struct *t)
1803 {
1804 if (t->rseq)
1805 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1806 }
1807
1808 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1809
1810 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1811 struct pt_regs *regs)
1812 {
1813 if (current->rseq)
1814 __rseq_handle_notify_resume(ksig, regs);
1815 }
1816
1817 static inline void rseq_signal_deliver(struct ksignal *ksig,
1818 struct pt_regs *regs)
1819 {
1820 preempt_disable();
1821 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1822 preempt_enable();
1823 rseq_handle_notify_resume(ksig, regs);
1824 }
1825
1826 /* rseq_preempt() requires preemption to be disabled. */
1827 static inline void rseq_preempt(struct task_struct *t)
1828 {
1829 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1830 rseq_set_notify_resume(t);
1831 }
1832
1833 /* rseq_migrate() requires preemption to be disabled. */
1834 static inline void rseq_migrate(struct task_struct *t)
1835 {
1836 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1837 rseq_set_notify_resume(t);
1838 }
1839
1840 /*
1841 * If parent process has a registered restartable sequences area, the
1842 * child inherits. Only applies when forking a process, not a thread.
1843 */
1844 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1845 {
1846 if (clone_flags & CLONE_THREAD) {
1847 t->rseq = NULL;
1848 t->rseq_len = 0;
1849 t->rseq_sig = 0;
1850 t->rseq_event_mask = 0;
1851 } else {
1852 t->rseq = current->rseq;
1853 t->rseq_len = current->rseq_len;
1854 t->rseq_sig = current->rseq_sig;
1855 t->rseq_event_mask = current->rseq_event_mask;
1856 }
1857 }
1858
1859 static inline void rseq_execve(struct task_struct *t)
1860 {
1861 t->rseq = NULL;
1862 t->rseq_len = 0;
1863 t->rseq_sig = 0;
1864 t->rseq_event_mask = 0;
1865 }
1866
1867 #else
1868
1869 static inline void rseq_set_notify_resume(struct task_struct *t)
1870 {
1871 }
1872 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1873 struct pt_regs *regs)
1874 {
1875 }
1876 static inline void rseq_signal_deliver(struct ksignal *ksig,
1877 struct pt_regs *regs)
1878 {
1879 }
1880 static inline void rseq_preempt(struct task_struct *t)
1881 {
1882 }
1883 static inline void rseq_migrate(struct task_struct *t)
1884 {
1885 }
1886 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1887 {
1888 }
1889 static inline void rseq_execve(struct task_struct *t)
1890 {
1891 }
1892
1893 #endif
1894
1895 #ifdef CONFIG_DEBUG_RSEQ
1896
1897 void rseq_syscall(struct pt_regs *regs);
1898
1899 #else
1900
1901 static inline void rseq_syscall(struct pt_regs *regs)
1902 {
1903 }
1904
1905 #endif
1906
1907 #endif