]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/sched.h
sched, hw-branch-tracer: add wait_task_context_switch() function to sched.h
[mirror_ubuntu-kernels.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100 struct fs_struct;
101
102 /*
103 * List of flags we want to share for kernel threads,
104 * if only because they are not used by them anyway.
105 */
106 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
107
108 /*
109 * These are the constant used to fake the fixed-point load-average
110 * counting. Some notes:
111 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
112 * a load-average precision of 10 bits integer + 11 bits fractional
113 * - if you want to count load-averages more often, you need more
114 * precision, or rounding will get you. With 2-second counting freq,
115 * the EXP_n values would be 1981, 2034 and 2043 if still using only
116 * 11 bit fractions.
117 */
118 extern unsigned long avenrun[]; /* Load averages */
119
120 #define FSHIFT 11 /* nr of bits of precision */
121 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
122 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
123 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
124 #define EXP_5 2014 /* 1/exp(5sec/5min) */
125 #define EXP_15 2037 /* 1/exp(5sec/15min) */
126
127 #define CALC_LOAD(load,exp,n) \
128 load *= exp; \
129 load += n*(FIXED_1-exp); \
130 load >>= FSHIFT;
131
132 extern unsigned long total_forks;
133 extern int nr_threads;
134 DECLARE_PER_CPU(unsigned long, process_counts);
135 extern int nr_processes(void);
136 extern unsigned long nr_running(void);
137 extern unsigned long nr_uninterruptible(void);
138 extern unsigned long nr_active(void);
139 extern unsigned long nr_iowait(void);
140
141 extern unsigned long get_parent_ip(unsigned long addr);
142
143 struct seq_file;
144 struct cfs_rq;
145 struct task_group;
146 #ifdef CONFIG_SCHED_DEBUG
147 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
148 extern void proc_sched_set_task(struct task_struct *p);
149 extern void
150 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
151 #else
152 static inline void
153 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
154 {
155 }
156 static inline void proc_sched_set_task(struct task_struct *p)
157 {
158 }
159 static inline void
160 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
161 {
162 }
163 #endif
164
165 extern unsigned long long time_sync_thresh;
166
167 /*
168 * Task state bitmask. NOTE! These bits are also
169 * encoded in fs/proc/array.c: get_task_state().
170 *
171 * We have two separate sets of flags: task->state
172 * is about runnability, while task->exit_state are
173 * about the task exiting. Confusing, but this way
174 * modifying one set can't modify the other one by
175 * mistake.
176 */
177 #define TASK_RUNNING 0
178 #define TASK_INTERRUPTIBLE 1
179 #define TASK_UNINTERRUPTIBLE 2
180 #define __TASK_STOPPED 4
181 #define __TASK_TRACED 8
182 /* in tsk->exit_state */
183 #define EXIT_ZOMBIE 16
184 #define EXIT_DEAD 32
185 /* in tsk->state again */
186 #define TASK_DEAD 64
187 #define TASK_WAKEKILL 128
188
189 /* Convenience macros for the sake of set_task_state */
190 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
191 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
192 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
193
194 /* Convenience macros for the sake of wake_up */
195 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
196 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
197
198 /* get_task_state() */
199 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
200 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
201 __TASK_TRACED)
202
203 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
204 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
205 #define task_is_stopped_or_traced(task) \
206 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
207 #define task_contributes_to_load(task) \
208 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
209
210 #define __set_task_state(tsk, state_value) \
211 do { (tsk)->state = (state_value); } while (0)
212 #define set_task_state(tsk, state_value) \
213 set_mb((tsk)->state, (state_value))
214
215 /*
216 * set_current_state() includes a barrier so that the write of current->state
217 * is correctly serialised wrt the caller's subsequent test of whether to
218 * actually sleep:
219 *
220 * set_current_state(TASK_UNINTERRUPTIBLE);
221 * if (do_i_need_to_sleep())
222 * schedule();
223 *
224 * If the caller does not need such serialisation then use __set_current_state()
225 */
226 #define __set_current_state(state_value) \
227 do { current->state = (state_value); } while (0)
228 #define set_current_state(state_value) \
229 set_mb(current->state, (state_value))
230
231 /* Task command name length */
232 #define TASK_COMM_LEN 16
233
234 #include <linux/spinlock.h>
235
236 /*
237 * This serializes "schedule()" and also protects
238 * the run-queue from deletions/modifications (but
239 * _adding_ to the beginning of the run-queue has
240 * a separate lock).
241 */
242 extern rwlock_t tasklist_lock;
243 extern spinlock_t mmlist_lock;
244
245 struct task_struct;
246
247 extern void sched_init(void);
248 extern void sched_init_smp(void);
249 extern asmlinkage void schedule_tail(struct task_struct *prev);
250 extern void init_idle(struct task_struct *idle, int cpu);
251 extern void init_idle_bootup_task(struct task_struct *idle);
252
253 extern int runqueue_is_locked(void);
254 extern void task_rq_unlock_wait(struct task_struct *p);
255
256 extern cpumask_var_t nohz_cpu_mask;
257 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
258 extern int select_nohz_load_balancer(int cpu);
259 #else
260 static inline int select_nohz_load_balancer(int cpu)
261 {
262 return 0;
263 }
264 #endif
265
266 /*
267 * Only dump TASK_* tasks. (0 for all tasks)
268 */
269 extern void show_state_filter(unsigned long state_filter);
270
271 static inline void show_state(void)
272 {
273 show_state_filter(0);
274 }
275
276 extern void show_regs(struct pt_regs *);
277
278 /*
279 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
280 * task), SP is the stack pointer of the first frame that should be shown in the back
281 * trace (or NULL if the entire call-chain of the task should be shown).
282 */
283 extern void show_stack(struct task_struct *task, unsigned long *sp);
284
285 void io_schedule(void);
286 long io_schedule_timeout(long timeout);
287
288 extern void cpu_init (void);
289 extern void trap_init(void);
290 extern void update_process_times(int user);
291 extern void scheduler_tick(void);
292
293 extern void sched_show_task(struct task_struct *p);
294
295 #ifdef CONFIG_DETECT_SOFTLOCKUP
296 extern void softlockup_tick(void);
297 extern void touch_softlockup_watchdog(void);
298 extern void touch_all_softlockup_watchdogs(void);
299 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
300 struct file *filp, void __user *buffer,
301 size_t *lenp, loff_t *ppos);
302 extern unsigned int softlockup_panic;
303 extern unsigned long sysctl_hung_task_check_count;
304 extern unsigned long sysctl_hung_task_timeout_secs;
305 extern unsigned long sysctl_hung_task_warnings;
306 extern int softlockup_thresh;
307 #else
308 static inline void softlockup_tick(void)
309 {
310 }
311 static inline void spawn_softlockup_task(void)
312 {
313 }
314 static inline void touch_softlockup_watchdog(void)
315 {
316 }
317 static inline void touch_all_softlockup_watchdogs(void)
318 {
319 }
320 #endif
321
322
323 /* Attach to any functions which should be ignored in wchan output. */
324 #define __sched __attribute__((__section__(".sched.text")))
325
326 /* Linker adds these: start and end of __sched functions */
327 extern char __sched_text_start[], __sched_text_end[];
328
329 /* Is this address in the __sched functions? */
330 extern int in_sched_functions(unsigned long addr);
331
332 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
333 extern signed long schedule_timeout(signed long timeout);
334 extern signed long schedule_timeout_interruptible(signed long timeout);
335 extern signed long schedule_timeout_killable(signed long timeout);
336 extern signed long schedule_timeout_uninterruptible(signed long timeout);
337 asmlinkage void __schedule(void);
338 asmlinkage void schedule(void);
339 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
340
341 struct nsproxy;
342 struct user_namespace;
343
344 /* Maximum number of active map areas.. This is a random (large) number */
345 #define DEFAULT_MAX_MAP_COUNT 65536
346
347 extern int sysctl_max_map_count;
348
349 #include <linux/aio.h>
350
351 extern unsigned long
352 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
353 unsigned long, unsigned long);
354 extern unsigned long
355 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
356 unsigned long len, unsigned long pgoff,
357 unsigned long flags);
358 extern void arch_unmap_area(struct mm_struct *, unsigned long);
359 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
360
361 #if USE_SPLIT_PTLOCKS
362 /*
363 * The mm counters are not protected by its page_table_lock,
364 * so must be incremented atomically.
365 */
366 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
367 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
368 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
369 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
370 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
371
372 #else /* !USE_SPLIT_PTLOCKS */
373 /*
374 * The mm counters are protected by its page_table_lock,
375 * so can be incremented directly.
376 */
377 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
378 #define get_mm_counter(mm, member) ((mm)->_##member)
379 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
380 #define inc_mm_counter(mm, member) (mm)->_##member++
381 #define dec_mm_counter(mm, member) (mm)->_##member--
382
383 #endif /* !USE_SPLIT_PTLOCKS */
384
385 #define get_mm_rss(mm) \
386 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
387 #define update_hiwater_rss(mm) do { \
388 unsigned long _rss = get_mm_rss(mm); \
389 if ((mm)->hiwater_rss < _rss) \
390 (mm)->hiwater_rss = _rss; \
391 } while (0)
392 #define update_hiwater_vm(mm) do { \
393 if ((mm)->hiwater_vm < (mm)->total_vm) \
394 (mm)->hiwater_vm = (mm)->total_vm; \
395 } while (0)
396
397 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
398 {
399 return max(mm->hiwater_rss, get_mm_rss(mm));
400 }
401
402 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
403 {
404 return max(mm->hiwater_vm, mm->total_vm);
405 }
406
407 extern void set_dumpable(struct mm_struct *mm, int value);
408 extern int get_dumpable(struct mm_struct *mm);
409
410 /* mm flags */
411 /* dumpable bits */
412 #define MMF_DUMPABLE 0 /* core dump is permitted */
413 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
414 #define MMF_DUMPABLE_BITS 2
415
416 /* coredump filter bits */
417 #define MMF_DUMP_ANON_PRIVATE 2
418 #define MMF_DUMP_ANON_SHARED 3
419 #define MMF_DUMP_MAPPED_PRIVATE 4
420 #define MMF_DUMP_MAPPED_SHARED 5
421 #define MMF_DUMP_ELF_HEADERS 6
422 #define MMF_DUMP_HUGETLB_PRIVATE 7
423 #define MMF_DUMP_HUGETLB_SHARED 8
424 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
425 #define MMF_DUMP_FILTER_BITS 7
426 #define MMF_DUMP_FILTER_MASK \
427 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
428 #define MMF_DUMP_FILTER_DEFAULT \
429 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
430 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
431
432 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
433 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
434 #else
435 # define MMF_DUMP_MASK_DEFAULT_ELF 0
436 #endif
437
438 struct sighand_struct {
439 atomic_t count;
440 struct k_sigaction action[_NSIG];
441 spinlock_t siglock;
442 wait_queue_head_t signalfd_wqh;
443 };
444
445 struct pacct_struct {
446 int ac_flag;
447 long ac_exitcode;
448 unsigned long ac_mem;
449 cputime_t ac_utime, ac_stime;
450 unsigned long ac_minflt, ac_majflt;
451 };
452
453 /**
454 * struct task_cputime - collected CPU time counts
455 * @utime: time spent in user mode, in &cputime_t units
456 * @stime: time spent in kernel mode, in &cputime_t units
457 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
458 *
459 * This structure groups together three kinds of CPU time that are
460 * tracked for threads and thread groups. Most things considering
461 * CPU time want to group these counts together and treat all three
462 * of them in parallel.
463 */
464 struct task_cputime {
465 cputime_t utime;
466 cputime_t stime;
467 unsigned long long sum_exec_runtime;
468 };
469 /* Alternate field names when used to cache expirations. */
470 #define prof_exp stime
471 #define virt_exp utime
472 #define sched_exp sum_exec_runtime
473
474 #define INIT_CPUTIME \
475 (struct task_cputime) { \
476 .utime = cputime_zero, \
477 .stime = cputime_zero, \
478 .sum_exec_runtime = 0, \
479 }
480
481 /**
482 * struct thread_group_cputimer - thread group interval timer counts
483 * @cputime: thread group interval timers.
484 * @running: non-zero when there are timers running and
485 * @cputime receives updates.
486 * @lock: lock for fields in this struct.
487 *
488 * This structure contains the version of task_cputime, above, that is
489 * used for thread group CPU timer calculations.
490 */
491 struct thread_group_cputimer {
492 struct task_cputime cputime;
493 int running;
494 spinlock_t lock;
495 };
496
497 /*
498 * NOTE! "signal_struct" does not have it's own
499 * locking, because a shared signal_struct always
500 * implies a shared sighand_struct, so locking
501 * sighand_struct is always a proper superset of
502 * the locking of signal_struct.
503 */
504 struct signal_struct {
505 atomic_t count;
506 atomic_t live;
507
508 wait_queue_head_t wait_chldexit; /* for wait4() */
509
510 /* current thread group signal load-balancing target: */
511 struct task_struct *curr_target;
512
513 /* shared signal handling: */
514 struct sigpending shared_pending;
515
516 /* thread group exit support */
517 int group_exit_code;
518 /* overloaded:
519 * - notify group_exit_task when ->count is equal to notify_count
520 * - everyone except group_exit_task is stopped during signal delivery
521 * of fatal signals, group_exit_task processes the signal.
522 */
523 int notify_count;
524 struct task_struct *group_exit_task;
525
526 /* thread group stop support, overloads group_exit_code too */
527 int group_stop_count;
528 unsigned int flags; /* see SIGNAL_* flags below */
529
530 /* POSIX.1b Interval Timers */
531 struct list_head posix_timers;
532
533 /* ITIMER_REAL timer for the process */
534 struct hrtimer real_timer;
535 struct pid *leader_pid;
536 ktime_t it_real_incr;
537
538 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
539 cputime_t it_prof_expires, it_virt_expires;
540 cputime_t it_prof_incr, it_virt_incr;
541
542 /*
543 * Thread group totals for process CPU timers.
544 * See thread_group_cputimer(), et al, for details.
545 */
546 struct thread_group_cputimer cputimer;
547
548 /* Earliest-expiration cache. */
549 struct task_cputime cputime_expires;
550
551 struct list_head cpu_timers[3];
552
553 struct pid *tty_old_pgrp;
554
555 /* boolean value for session group leader */
556 int leader;
557
558 struct tty_struct *tty; /* NULL if no tty */
559
560 /*
561 * Cumulative resource counters for dead threads in the group,
562 * and for reaped dead child processes forked by this group.
563 * Live threads maintain their own counters and add to these
564 * in __exit_signal, except for the group leader.
565 */
566 cputime_t utime, stime, cutime, cstime;
567 cputime_t gtime;
568 cputime_t cgtime;
569 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
570 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
571 unsigned long inblock, oublock, cinblock, coublock;
572 struct task_io_accounting ioac;
573
574 /*
575 * Cumulative ns of schedule CPU time fo dead threads in the
576 * group, not including a zombie group leader, (This only differs
577 * from jiffies_to_ns(utime + stime) if sched_clock uses something
578 * other than jiffies.)
579 */
580 unsigned long long sum_sched_runtime;
581
582 /*
583 * We don't bother to synchronize most readers of this at all,
584 * because there is no reader checking a limit that actually needs
585 * to get both rlim_cur and rlim_max atomically, and either one
586 * alone is a single word that can safely be read normally.
587 * getrlimit/setrlimit use task_lock(current->group_leader) to
588 * protect this instead of the siglock, because they really
589 * have no need to disable irqs.
590 */
591 struct rlimit rlim[RLIM_NLIMITS];
592
593 #ifdef CONFIG_BSD_PROCESS_ACCT
594 struct pacct_struct pacct; /* per-process accounting information */
595 #endif
596 #ifdef CONFIG_TASKSTATS
597 struct taskstats *stats;
598 #endif
599 #ifdef CONFIG_AUDIT
600 unsigned audit_tty;
601 struct tty_audit_buf *tty_audit_buf;
602 #endif
603 };
604
605 /* Context switch must be unlocked if interrupts are to be enabled */
606 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
607 # define __ARCH_WANT_UNLOCKED_CTXSW
608 #endif
609
610 /*
611 * Bits in flags field of signal_struct.
612 */
613 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
614 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
615 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
616 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
617 /*
618 * Pending notifications to parent.
619 */
620 #define SIGNAL_CLD_STOPPED 0x00000010
621 #define SIGNAL_CLD_CONTINUED 0x00000020
622 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
623
624 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
625
626 /* If true, all threads except ->group_exit_task have pending SIGKILL */
627 static inline int signal_group_exit(const struct signal_struct *sig)
628 {
629 return (sig->flags & SIGNAL_GROUP_EXIT) ||
630 (sig->group_exit_task != NULL);
631 }
632
633 /*
634 * Some day this will be a full-fledged user tracking system..
635 */
636 struct user_struct {
637 atomic_t __count; /* reference count */
638 atomic_t processes; /* How many processes does this user have? */
639 atomic_t files; /* How many open files does this user have? */
640 atomic_t sigpending; /* How many pending signals does this user have? */
641 #ifdef CONFIG_INOTIFY_USER
642 atomic_t inotify_watches; /* How many inotify watches does this user have? */
643 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
644 #endif
645 #ifdef CONFIG_EPOLL
646 atomic_t epoll_watches; /* The number of file descriptors currently watched */
647 #endif
648 #ifdef CONFIG_POSIX_MQUEUE
649 /* protected by mq_lock */
650 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
651 #endif
652 unsigned long locked_shm; /* How many pages of mlocked shm ? */
653
654 #ifdef CONFIG_KEYS
655 struct key *uid_keyring; /* UID specific keyring */
656 struct key *session_keyring; /* UID's default session keyring */
657 #endif
658
659 /* Hash table maintenance information */
660 struct hlist_node uidhash_node;
661 uid_t uid;
662 struct user_namespace *user_ns;
663
664 #ifdef CONFIG_USER_SCHED
665 struct task_group *tg;
666 #ifdef CONFIG_SYSFS
667 struct kobject kobj;
668 struct work_struct work;
669 #endif
670 #endif
671 };
672
673 extern int uids_sysfs_init(void);
674
675 extern struct user_struct *find_user(uid_t);
676
677 extern struct user_struct root_user;
678 #define INIT_USER (&root_user)
679
680
681 struct backing_dev_info;
682 struct reclaim_state;
683
684 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
685 struct sched_info {
686 /* cumulative counters */
687 unsigned long pcount; /* # of times run on this cpu */
688 unsigned long long run_delay; /* time spent waiting on a runqueue */
689
690 /* timestamps */
691 unsigned long long last_arrival,/* when we last ran on a cpu */
692 last_queued; /* when we were last queued to run */
693 #ifdef CONFIG_SCHEDSTATS
694 /* BKL stats */
695 unsigned int bkl_count;
696 #endif
697 };
698 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
699
700 #ifdef CONFIG_TASK_DELAY_ACCT
701 struct task_delay_info {
702 spinlock_t lock;
703 unsigned int flags; /* Private per-task flags */
704
705 /* For each stat XXX, add following, aligned appropriately
706 *
707 * struct timespec XXX_start, XXX_end;
708 * u64 XXX_delay;
709 * u32 XXX_count;
710 *
711 * Atomicity of updates to XXX_delay, XXX_count protected by
712 * single lock above (split into XXX_lock if contention is an issue).
713 */
714
715 /*
716 * XXX_count is incremented on every XXX operation, the delay
717 * associated with the operation is added to XXX_delay.
718 * XXX_delay contains the accumulated delay time in nanoseconds.
719 */
720 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
721 u64 blkio_delay; /* wait for sync block io completion */
722 u64 swapin_delay; /* wait for swapin block io completion */
723 u32 blkio_count; /* total count of the number of sync block */
724 /* io operations performed */
725 u32 swapin_count; /* total count of the number of swapin block */
726 /* io operations performed */
727
728 struct timespec freepages_start, freepages_end;
729 u64 freepages_delay; /* wait for memory reclaim */
730 u32 freepages_count; /* total count of memory reclaim */
731 };
732 #endif /* CONFIG_TASK_DELAY_ACCT */
733
734 static inline int sched_info_on(void)
735 {
736 #ifdef CONFIG_SCHEDSTATS
737 return 1;
738 #elif defined(CONFIG_TASK_DELAY_ACCT)
739 extern int delayacct_on;
740 return delayacct_on;
741 #else
742 return 0;
743 #endif
744 }
745
746 enum cpu_idle_type {
747 CPU_IDLE,
748 CPU_NOT_IDLE,
749 CPU_NEWLY_IDLE,
750 CPU_MAX_IDLE_TYPES
751 };
752
753 /*
754 * sched-domains (multiprocessor balancing) declarations:
755 */
756
757 /*
758 * Increase resolution of nice-level calculations:
759 */
760 #define SCHED_LOAD_SHIFT 10
761 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
762
763 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
764
765 #ifdef CONFIG_SMP
766 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
767 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
768 #define SD_BALANCE_EXEC 4 /* Balance on exec */
769 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
770 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
771 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
772 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
773 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
774 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
775 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
776 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
777 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
778
779 enum powersavings_balance_level {
780 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
781 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
782 * first for long running threads
783 */
784 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
785 * cpu package for power savings
786 */
787 MAX_POWERSAVINGS_BALANCE_LEVELS
788 };
789
790 extern int sched_mc_power_savings, sched_smt_power_savings;
791
792 static inline int sd_balance_for_mc_power(void)
793 {
794 if (sched_smt_power_savings)
795 return SD_POWERSAVINGS_BALANCE;
796
797 return 0;
798 }
799
800 static inline int sd_balance_for_package_power(void)
801 {
802 if (sched_mc_power_savings | sched_smt_power_savings)
803 return SD_POWERSAVINGS_BALANCE;
804
805 return 0;
806 }
807
808 /*
809 * Optimise SD flags for power savings:
810 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
811 * Keep default SD flags if sched_{smt,mc}_power_saving=0
812 */
813
814 static inline int sd_power_saving_flags(void)
815 {
816 if (sched_mc_power_savings | sched_smt_power_savings)
817 return SD_BALANCE_NEWIDLE;
818
819 return 0;
820 }
821
822 struct sched_group {
823 struct sched_group *next; /* Must be a circular list */
824
825 /*
826 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
827 * single CPU. This is read only (except for setup, hotplug CPU).
828 * Note : Never change cpu_power without recompute its reciprocal
829 */
830 unsigned int __cpu_power;
831 /*
832 * reciprocal value of cpu_power to avoid expensive divides
833 * (see include/linux/reciprocal_div.h)
834 */
835 u32 reciprocal_cpu_power;
836
837 unsigned long cpumask[];
838 };
839
840 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
841 {
842 return to_cpumask(sg->cpumask);
843 }
844
845 enum sched_domain_level {
846 SD_LV_NONE = 0,
847 SD_LV_SIBLING,
848 SD_LV_MC,
849 SD_LV_CPU,
850 SD_LV_NODE,
851 SD_LV_ALLNODES,
852 SD_LV_MAX
853 };
854
855 struct sched_domain_attr {
856 int relax_domain_level;
857 };
858
859 #define SD_ATTR_INIT (struct sched_domain_attr) { \
860 .relax_domain_level = -1, \
861 }
862
863 struct sched_domain {
864 /* These fields must be setup */
865 struct sched_domain *parent; /* top domain must be null terminated */
866 struct sched_domain *child; /* bottom domain must be null terminated */
867 struct sched_group *groups; /* the balancing groups of the domain */
868 unsigned long min_interval; /* Minimum balance interval ms */
869 unsigned long max_interval; /* Maximum balance interval ms */
870 unsigned int busy_factor; /* less balancing by factor if busy */
871 unsigned int imbalance_pct; /* No balance until over watermark */
872 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
873 unsigned int busy_idx;
874 unsigned int idle_idx;
875 unsigned int newidle_idx;
876 unsigned int wake_idx;
877 unsigned int forkexec_idx;
878 int flags; /* See SD_* */
879 enum sched_domain_level level;
880
881 /* Runtime fields. */
882 unsigned long last_balance; /* init to jiffies. units in jiffies */
883 unsigned int balance_interval; /* initialise to 1. units in ms. */
884 unsigned int nr_balance_failed; /* initialise to 0 */
885
886 u64 last_update;
887
888 #ifdef CONFIG_SCHEDSTATS
889 /* load_balance() stats */
890 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
891 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
892 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
893 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
894 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
895 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
896 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
897 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
898
899 /* Active load balancing */
900 unsigned int alb_count;
901 unsigned int alb_failed;
902 unsigned int alb_pushed;
903
904 /* SD_BALANCE_EXEC stats */
905 unsigned int sbe_count;
906 unsigned int sbe_balanced;
907 unsigned int sbe_pushed;
908
909 /* SD_BALANCE_FORK stats */
910 unsigned int sbf_count;
911 unsigned int sbf_balanced;
912 unsigned int sbf_pushed;
913
914 /* try_to_wake_up() stats */
915 unsigned int ttwu_wake_remote;
916 unsigned int ttwu_move_affine;
917 unsigned int ttwu_move_balance;
918 #endif
919 #ifdef CONFIG_SCHED_DEBUG
920 char *name;
921 #endif
922
923 /* span of all CPUs in this domain */
924 unsigned long span[];
925 };
926
927 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
928 {
929 return to_cpumask(sd->span);
930 }
931
932 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
933 struct sched_domain_attr *dattr_new);
934
935 /* Test a flag in parent sched domain */
936 static inline int test_sd_parent(struct sched_domain *sd, int flag)
937 {
938 if (sd->parent && (sd->parent->flags & flag))
939 return 1;
940
941 return 0;
942 }
943
944 #else /* CONFIG_SMP */
945
946 struct sched_domain_attr;
947
948 static inline void
949 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
950 struct sched_domain_attr *dattr_new)
951 {
952 }
953 #endif /* !CONFIG_SMP */
954
955 struct io_context; /* See blkdev.h */
956
957
958 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
959 extern void prefetch_stack(struct task_struct *t);
960 #else
961 static inline void prefetch_stack(struct task_struct *t) { }
962 #endif
963
964 struct audit_context; /* See audit.c */
965 struct mempolicy;
966 struct pipe_inode_info;
967 struct uts_namespace;
968
969 struct rq;
970 struct sched_domain;
971
972 struct sched_class {
973 const struct sched_class *next;
974
975 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
976 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
977 void (*yield_task) (struct rq *rq);
978
979 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
980
981 struct task_struct * (*pick_next_task) (struct rq *rq);
982 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
983
984 #ifdef CONFIG_SMP
985 int (*select_task_rq)(struct task_struct *p, int sync);
986
987 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
988 struct rq *busiest, unsigned long max_load_move,
989 struct sched_domain *sd, enum cpu_idle_type idle,
990 int *all_pinned, int *this_best_prio);
991
992 int (*move_one_task) (struct rq *this_rq, int this_cpu,
993 struct rq *busiest, struct sched_domain *sd,
994 enum cpu_idle_type idle);
995 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
996 int (*needs_post_schedule) (struct rq *this_rq);
997 void (*post_schedule) (struct rq *this_rq);
998 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
999
1000 void (*set_cpus_allowed)(struct task_struct *p,
1001 const struct cpumask *newmask);
1002
1003 void (*rq_online)(struct rq *rq);
1004 void (*rq_offline)(struct rq *rq);
1005 #endif
1006
1007 void (*set_curr_task) (struct rq *rq);
1008 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1009 void (*task_new) (struct rq *rq, struct task_struct *p);
1010
1011 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1012 int running);
1013 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1014 int running);
1015 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1016 int oldprio, int running);
1017
1018 #ifdef CONFIG_FAIR_GROUP_SCHED
1019 void (*moved_group) (struct task_struct *p);
1020 #endif
1021 };
1022
1023 struct load_weight {
1024 unsigned long weight, inv_weight;
1025 };
1026
1027 /*
1028 * CFS stats for a schedulable entity (task, task-group etc)
1029 *
1030 * Current field usage histogram:
1031 *
1032 * 4 se->block_start
1033 * 4 se->run_node
1034 * 4 se->sleep_start
1035 * 6 se->load.weight
1036 */
1037 struct sched_entity {
1038 struct load_weight load; /* for load-balancing */
1039 struct rb_node run_node;
1040 struct list_head group_node;
1041 unsigned int on_rq;
1042
1043 u64 exec_start;
1044 u64 sum_exec_runtime;
1045 u64 vruntime;
1046 u64 prev_sum_exec_runtime;
1047
1048 u64 last_wakeup;
1049 u64 avg_overlap;
1050
1051 u64 start_runtime;
1052 u64 avg_wakeup;
1053 u64 nr_migrations;
1054
1055 #ifdef CONFIG_SCHEDSTATS
1056 u64 wait_start;
1057 u64 wait_max;
1058 u64 wait_count;
1059 u64 wait_sum;
1060
1061 u64 sleep_start;
1062 u64 sleep_max;
1063 s64 sum_sleep_runtime;
1064
1065 u64 block_start;
1066 u64 block_max;
1067 u64 exec_max;
1068 u64 slice_max;
1069
1070 u64 nr_migrations_cold;
1071 u64 nr_failed_migrations_affine;
1072 u64 nr_failed_migrations_running;
1073 u64 nr_failed_migrations_hot;
1074 u64 nr_forced_migrations;
1075 u64 nr_forced2_migrations;
1076
1077 u64 nr_wakeups;
1078 u64 nr_wakeups_sync;
1079 u64 nr_wakeups_migrate;
1080 u64 nr_wakeups_local;
1081 u64 nr_wakeups_remote;
1082 u64 nr_wakeups_affine;
1083 u64 nr_wakeups_affine_attempts;
1084 u64 nr_wakeups_passive;
1085 u64 nr_wakeups_idle;
1086 #endif
1087
1088 #ifdef CONFIG_FAIR_GROUP_SCHED
1089 struct sched_entity *parent;
1090 /* rq on which this entity is (to be) queued: */
1091 struct cfs_rq *cfs_rq;
1092 /* rq "owned" by this entity/group: */
1093 struct cfs_rq *my_q;
1094 #endif
1095 };
1096
1097 struct sched_rt_entity {
1098 struct list_head run_list;
1099 unsigned long timeout;
1100 unsigned int time_slice;
1101 int nr_cpus_allowed;
1102
1103 struct sched_rt_entity *back;
1104 #ifdef CONFIG_RT_GROUP_SCHED
1105 struct sched_rt_entity *parent;
1106 /* rq on which this entity is (to be) queued: */
1107 struct rt_rq *rt_rq;
1108 /* rq "owned" by this entity/group: */
1109 struct rt_rq *my_q;
1110 #endif
1111 };
1112
1113 struct task_struct {
1114 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1115 void *stack;
1116 atomic_t usage;
1117 unsigned int flags; /* per process flags, defined below */
1118 unsigned int ptrace;
1119
1120 int lock_depth; /* BKL lock depth */
1121
1122 #ifdef CONFIG_SMP
1123 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1124 int oncpu;
1125 #endif
1126 #endif
1127
1128 int prio, static_prio, normal_prio;
1129 unsigned int rt_priority;
1130 const struct sched_class *sched_class;
1131 struct sched_entity se;
1132 struct sched_rt_entity rt;
1133
1134 #ifdef CONFIG_PREEMPT_NOTIFIERS
1135 /* list of struct preempt_notifier: */
1136 struct hlist_head preempt_notifiers;
1137 #endif
1138
1139 /*
1140 * fpu_counter contains the number of consecutive context switches
1141 * that the FPU is used. If this is over a threshold, the lazy fpu
1142 * saving becomes unlazy to save the trap. This is an unsigned char
1143 * so that after 256 times the counter wraps and the behavior turns
1144 * lazy again; this to deal with bursty apps that only use FPU for
1145 * a short time
1146 */
1147 unsigned char fpu_counter;
1148 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1149 #ifdef CONFIG_BLK_DEV_IO_TRACE
1150 unsigned int btrace_seq;
1151 #endif
1152
1153 unsigned int policy;
1154 cpumask_t cpus_allowed;
1155
1156 #ifdef CONFIG_PREEMPT_RCU
1157 int rcu_read_lock_nesting;
1158 int rcu_flipctr_idx;
1159 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1160
1161 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1162 struct sched_info sched_info;
1163 #endif
1164
1165 struct list_head tasks;
1166 struct plist_node pushable_tasks;
1167
1168 struct mm_struct *mm, *active_mm;
1169
1170 /* task state */
1171 struct linux_binfmt *binfmt;
1172 int exit_state;
1173 int exit_code, exit_signal;
1174 int pdeath_signal; /* The signal sent when the parent dies */
1175 /* ??? */
1176 unsigned int personality;
1177 unsigned did_exec:1;
1178 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1179 * execve */
1180 pid_t pid;
1181 pid_t tgid;
1182
1183 /* Canary value for the -fstack-protector gcc feature */
1184 unsigned long stack_canary;
1185
1186 /*
1187 * pointers to (original) parent process, youngest child, younger sibling,
1188 * older sibling, respectively. (p->father can be replaced with
1189 * p->real_parent->pid)
1190 */
1191 struct task_struct *real_parent; /* real parent process */
1192 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1193 /*
1194 * children/sibling forms the list of my natural children
1195 */
1196 struct list_head children; /* list of my children */
1197 struct list_head sibling; /* linkage in my parent's children list */
1198 struct task_struct *group_leader; /* threadgroup leader */
1199
1200 /*
1201 * ptraced is the list of tasks this task is using ptrace on.
1202 * This includes both natural children and PTRACE_ATTACH targets.
1203 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1204 */
1205 struct list_head ptraced;
1206 struct list_head ptrace_entry;
1207
1208 #ifdef CONFIG_X86_PTRACE_BTS
1209 /*
1210 * This is the tracer handle for the ptrace BTS extension.
1211 * This field actually belongs to the ptracer task.
1212 */
1213 struct bts_tracer *bts;
1214 /*
1215 * The buffer to hold the BTS data.
1216 */
1217 void *bts_buffer;
1218 size_t bts_size;
1219 #endif /* CONFIG_X86_PTRACE_BTS */
1220
1221 /* PID/PID hash table linkage. */
1222 struct pid_link pids[PIDTYPE_MAX];
1223 struct list_head thread_group;
1224
1225 struct completion *vfork_done; /* for vfork() */
1226 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1227 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1228
1229 cputime_t utime, stime, utimescaled, stimescaled;
1230 cputime_t gtime;
1231 cputime_t prev_utime, prev_stime;
1232 unsigned long nvcsw, nivcsw; /* context switch counts */
1233 struct timespec start_time; /* monotonic time */
1234 struct timespec real_start_time; /* boot based time */
1235 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1236 unsigned long min_flt, maj_flt;
1237
1238 struct task_cputime cputime_expires;
1239 struct list_head cpu_timers[3];
1240
1241 /* process credentials */
1242 const struct cred *real_cred; /* objective and real subjective task
1243 * credentials (COW) */
1244 const struct cred *cred; /* effective (overridable) subjective task
1245 * credentials (COW) */
1246 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1247
1248 char comm[TASK_COMM_LEN]; /* executable name excluding path
1249 - access with [gs]et_task_comm (which lock
1250 it with task_lock())
1251 - initialized normally by flush_old_exec */
1252 /* file system info */
1253 int link_count, total_link_count;
1254 #ifdef CONFIG_SYSVIPC
1255 /* ipc stuff */
1256 struct sysv_sem sysvsem;
1257 #endif
1258 #ifdef CONFIG_DETECT_SOFTLOCKUP
1259 /* hung task detection */
1260 unsigned long last_switch_timestamp;
1261 unsigned long last_switch_count;
1262 #endif
1263 /* CPU-specific state of this task */
1264 struct thread_struct thread;
1265 /* filesystem information */
1266 struct fs_struct *fs;
1267 /* open file information */
1268 struct files_struct *files;
1269 /* namespaces */
1270 struct nsproxy *nsproxy;
1271 /* signal handlers */
1272 struct signal_struct *signal;
1273 struct sighand_struct *sighand;
1274
1275 sigset_t blocked, real_blocked;
1276 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1277 struct sigpending pending;
1278
1279 unsigned long sas_ss_sp;
1280 size_t sas_ss_size;
1281 int (*notifier)(void *priv);
1282 void *notifier_data;
1283 sigset_t *notifier_mask;
1284 struct audit_context *audit_context;
1285 #ifdef CONFIG_AUDITSYSCALL
1286 uid_t loginuid;
1287 unsigned int sessionid;
1288 #endif
1289 seccomp_t seccomp;
1290
1291 /* Thread group tracking */
1292 u32 parent_exec_id;
1293 u32 self_exec_id;
1294 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1295 spinlock_t alloc_lock;
1296
1297 /* Protection of the PI data structures: */
1298 spinlock_t pi_lock;
1299
1300 #ifdef CONFIG_RT_MUTEXES
1301 /* PI waiters blocked on a rt_mutex held by this task */
1302 struct plist_head pi_waiters;
1303 /* Deadlock detection and priority inheritance handling */
1304 struct rt_mutex_waiter *pi_blocked_on;
1305 #endif
1306
1307 #ifdef CONFIG_DEBUG_MUTEXES
1308 /* mutex deadlock detection */
1309 struct mutex_waiter *blocked_on;
1310 #endif
1311 #ifdef CONFIG_TRACE_IRQFLAGS
1312 unsigned int irq_events;
1313 int hardirqs_enabled;
1314 unsigned long hardirq_enable_ip;
1315 unsigned int hardirq_enable_event;
1316 unsigned long hardirq_disable_ip;
1317 unsigned int hardirq_disable_event;
1318 int softirqs_enabled;
1319 unsigned long softirq_disable_ip;
1320 unsigned int softirq_disable_event;
1321 unsigned long softirq_enable_ip;
1322 unsigned int softirq_enable_event;
1323 int hardirq_context;
1324 int softirq_context;
1325 #endif
1326 #ifdef CONFIG_LOCKDEP
1327 # define MAX_LOCK_DEPTH 48UL
1328 u64 curr_chain_key;
1329 int lockdep_depth;
1330 unsigned int lockdep_recursion;
1331 struct held_lock held_locks[MAX_LOCK_DEPTH];
1332 gfp_t lockdep_reclaim_gfp;
1333 #endif
1334
1335 /* journalling filesystem info */
1336 void *journal_info;
1337
1338 /* stacked block device info */
1339 struct bio *bio_list, **bio_tail;
1340
1341 /* VM state */
1342 struct reclaim_state *reclaim_state;
1343
1344 struct backing_dev_info *backing_dev_info;
1345
1346 struct io_context *io_context;
1347
1348 unsigned long ptrace_message;
1349 siginfo_t *last_siginfo; /* For ptrace use. */
1350 struct task_io_accounting ioac;
1351 #if defined(CONFIG_TASK_XACCT)
1352 u64 acct_rss_mem1; /* accumulated rss usage */
1353 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1354 cputime_t acct_timexpd; /* stime + utime since last update */
1355 #endif
1356 #ifdef CONFIG_CPUSETS
1357 nodemask_t mems_allowed;
1358 int cpuset_mems_generation;
1359 int cpuset_mem_spread_rotor;
1360 #endif
1361 #ifdef CONFIG_CGROUPS
1362 /* Control Group info protected by css_set_lock */
1363 struct css_set *cgroups;
1364 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1365 struct list_head cg_list;
1366 #endif
1367 #ifdef CONFIG_FUTEX
1368 struct robust_list_head __user *robust_list;
1369 #ifdef CONFIG_COMPAT
1370 struct compat_robust_list_head __user *compat_robust_list;
1371 #endif
1372 struct list_head pi_state_list;
1373 struct futex_pi_state *pi_state_cache;
1374 #endif
1375 #ifdef CONFIG_NUMA
1376 struct mempolicy *mempolicy;
1377 short il_next;
1378 #endif
1379 atomic_t fs_excl; /* holding fs exclusive resources */
1380 struct rcu_head rcu;
1381
1382 /*
1383 * cache last used pipe for splice
1384 */
1385 struct pipe_inode_info *splice_pipe;
1386 #ifdef CONFIG_TASK_DELAY_ACCT
1387 struct task_delay_info *delays;
1388 #endif
1389 #ifdef CONFIG_FAULT_INJECTION
1390 int make_it_fail;
1391 #endif
1392 struct prop_local_single dirties;
1393 #ifdef CONFIG_LATENCYTOP
1394 int latency_record_count;
1395 struct latency_record latency_record[LT_SAVECOUNT];
1396 #endif
1397 /*
1398 * time slack values; these are used to round up poll() and
1399 * select() etc timeout values. These are in nanoseconds.
1400 */
1401 unsigned long timer_slack_ns;
1402 unsigned long default_timer_slack_ns;
1403
1404 struct list_head *scm_work_list;
1405 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1406 /* Index of current stored adress in ret_stack */
1407 int curr_ret_stack;
1408 /* Stack of return addresses for return function tracing */
1409 struct ftrace_ret_stack *ret_stack;
1410 /* time stamp for last schedule */
1411 unsigned long long ftrace_timestamp;
1412 /*
1413 * Number of functions that haven't been traced
1414 * because of depth overrun.
1415 */
1416 atomic_t trace_overrun;
1417 /* Pause for the tracing */
1418 atomic_t tracing_graph_pause;
1419 #endif
1420 #ifdef CONFIG_TRACING
1421 /* state flags for use by tracers */
1422 unsigned long trace;
1423 #endif
1424 };
1425
1426 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1427 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1428
1429 /*
1430 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1431 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1432 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1433 * values are inverted: lower p->prio value means higher priority.
1434 *
1435 * The MAX_USER_RT_PRIO value allows the actual maximum
1436 * RT priority to be separate from the value exported to
1437 * user-space. This allows kernel threads to set their
1438 * priority to a value higher than any user task. Note:
1439 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1440 */
1441
1442 #define MAX_USER_RT_PRIO 100
1443 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1444
1445 #define MAX_PRIO (MAX_RT_PRIO + 40)
1446 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1447
1448 static inline int rt_prio(int prio)
1449 {
1450 if (unlikely(prio < MAX_RT_PRIO))
1451 return 1;
1452 return 0;
1453 }
1454
1455 static inline int rt_task(struct task_struct *p)
1456 {
1457 return rt_prio(p->prio);
1458 }
1459
1460 static inline struct pid *task_pid(struct task_struct *task)
1461 {
1462 return task->pids[PIDTYPE_PID].pid;
1463 }
1464
1465 static inline struct pid *task_tgid(struct task_struct *task)
1466 {
1467 return task->group_leader->pids[PIDTYPE_PID].pid;
1468 }
1469
1470 /*
1471 * Without tasklist or rcu lock it is not safe to dereference
1472 * the result of task_pgrp/task_session even if task == current,
1473 * we can race with another thread doing sys_setsid/sys_setpgid.
1474 */
1475 static inline struct pid *task_pgrp(struct task_struct *task)
1476 {
1477 return task->group_leader->pids[PIDTYPE_PGID].pid;
1478 }
1479
1480 static inline struct pid *task_session(struct task_struct *task)
1481 {
1482 return task->group_leader->pids[PIDTYPE_SID].pid;
1483 }
1484
1485 struct pid_namespace;
1486
1487 /*
1488 * the helpers to get the task's different pids as they are seen
1489 * from various namespaces
1490 *
1491 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1492 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1493 * current.
1494 * task_xid_nr_ns() : id seen from the ns specified;
1495 *
1496 * set_task_vxid() : assigns a virtual id to a task;
1497 *
1498 * see also pid_nr() etc in include/linux/pid.h
1499 */
1500 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1501 struct pid_namespace *ns);
1502
1503 static inline pid_t task_pid_nr(struct task_struct *tsk)
1504 {
1505 return tsk->pid;
1506 }
1507
1508 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1509 struct pid_namespace *ns)
1510 {
1511 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1512 }
1513
1514 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1515 {
1516 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1517 }
1518
1519
1520 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1521 {
1522 return tsk->tgid;
1523 }
1524
1525 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1526
1527 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1528 {
1529 return pid_vnr(task_tgid(tsk));
1530 }
1531
1532
1533 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1534 struct pid_namespace *ns)
1535 {
1536 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1537 }
1538
1539 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1540 {
1541 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1542 }
1543
1544
1545 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1546 struct pid_namespace *ns)
1547 {
1548 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1549 }
1550
1551 static inline pid_t task_session_vnr(struct task_struct *tsk)
1552 {
1553 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1554 }
1555
1556 /* obsolete, do not use */
1557 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1558 {
1559 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1560 }
1561
1562 /**
1563 * pid_alive - check that a task structure is not stale
1564 * @p: Task structure to be checked.
1565 *
1566 * Test if a process is not yet dead (at most zombie state)
1567 * If pid_alive fails, then pointers within the task structure
1568 * can be stale and must not be dereferenced.
1569 */
1570 static inline int pid_alive(struct task_struct *p)
1571 {
1572 return p->pids[PIDTYPE_PID].pid != NULL;
1573 }
1574
1575 /**
1576 * is_global_init - check if a task structure is init
1577 * @tsk: Task structure to be checked.
1578 *
1579 * Check if a task structure is the first user space task the kernel created.
1580 */
1581 static inline int is_global_init(struct task_struct *tsk)
1582 {
1583 return tsk->pid == 1;
1584 }
1585
1586 /*
1587 * is_container_init:
1588 * check whether in the task is init in its own pid namespace.
1589 */
1590 extern int is_container_init(struct task_struct *tsk);
1591
1592 extern struct pid *cad_pid;
1593
1594 extern void free_task(struct task_struct *tsk);
1595 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1596
1597 extern void __put_task_struct(struct task_struct *t);
1598
1599 static inline void put_task_struct(struct task_struct *t)
1600 {
1601 if (atomic_dec_and_test(&t->usage))
1602 __put_task_struct(t);
1603 }
1604
1605 extern cputime_t task_utime(struct task_struct *p);
1606 extern cputime_t task_stime(struct task_struct *p);
1607 extern cputime_t task_gtime(struct task_struct *p);
1608
1609 /*
1610 * Per process flags
1611 */
1612 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1613 /* Not implemented yet, only for 486*/
1614 #define PF_STARTING 0x00000002 /* being created */
1615 #define PF_EXITING 0x00000004 /* getting shut down */
1616 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1617 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1618 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1619 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1620 #define PF_DUMPCORE 0x00000200 /* dumped core */
1621 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1622 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1623 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1624 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1625 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1626 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1627 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1628 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1629 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1630 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1631 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1632 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1633 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1634 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1635 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1636 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1637 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1638 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1639 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1640 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1641
1642 /*
1643 * Only the _current_ task can read/write to tsk->flags, but other
1644 * tasks can access tsk->flags in readonly mode for example
1645 * with tsk_used_math (like during threaded core dumping).
1646 * There is however an exception to this rule during ptrace
1647 * or during fork: the ptracer task is allowed to write to the
1648 * child->flags of its traced child (same goes for fork, the parent
1649 * can write to the child->flags), because we're guaranteed the
1650 * child is not running and in turn not changing child->flags
1651 * at the same time the parent does it.
1652 */
1653 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1654 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1655 #define clear_used_math() clear_stopped_child_used_math(current)
1656 #define set_used_math() set_stopped_child_used_math(current)
1657 #define conditional_stopped_child_used_math(condition, child) \
1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1659 #define conditional_used_math(condition) \
1660 conditional_stopped_child_used_math(condition, current)
1661 #define copy_to_stopped_child_used_math(child) \
1662 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1663 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1664 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1665 #define used_math() tsk_used_math(current)
1666
1667 #ifdef CONFIG_SMP
1668 extern int set_cpus_allowed_ptr(struct task_struct *p,
1669 const struct cpumask *new_mask);
1670 #else
1671 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1672 const struct cpumask *new_mask)
1673 {
1674 if (!cpumask_test_cpu(0, new_mask))
1675 return -EINVAL;
1676 return 0;
1677 }
1678 #endif
1679 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1680 {
1681 return set_cpus_allowed_ptr(p, &new_mask);
1682 }
1683
1684 /*
1685 * Architectures can set this to 1 if they have specified
1686 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1687 * but then during bootup it turns out that sched_clock()
1688 * is reliable after all:
1689 */
1690 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1691 extern int sched_clock_stable;
1692 #endif
1693
1694 extern unsigned long long sched_clock(void);
1695
1696 extern void sched_clock_init(void);
1697 extern u64 sched_clock_cpu(int cpu);
1698
1699 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1700 static inline void sched_clock_tick(void)
1701 {
1702 }
1703
1704 static inline void sched_clock_idle_sleep_event(void)
1705 {
1706 }
1707
1708 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1709 {
1710 }
1711 #else
1712 extern void sched_clock_tick(void);
1713 extern void sched_clock_idle_sleep_event(void);
1714 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1715 #endif
1716
1717 /*
1718 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1719 * clock constructed from sched_clock():
1720 */
1721 extern unsigned long long cpu_clock(int cpu);
1722
1723 extern unsigned long long
1724 task_sched_runtime(struct task_struct *task);
1725 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1726
1727 /* sched_exec is called by processes performing an exec */
1728 #ifdef CONFIG_SMP
1729 extern void sched_exec(void);
1730 #else
1731 #define sched_exec() {}
1732 #endif
1733
1734 extern void sched_clock_idle_sleep_event(void);
1735 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1736
1737 #ifdef CONFIG_HOTPLUG_CPU
1738 extern void idle_task_exit(void);
1739 #else
1740 static inline void idle_task_exit(void) {}
1741 #endif
1742
1743 extern void sched_idle_next(void);
1744
1745 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1746 extern void wake_up_idle_cpu(int cpu);
1747 #else
1748 static inline void wake_up_idle_cpu(int cpu) { }
1749 #endif
1750
1751 extern unsigned int sysctl_sched_latency;
1752 extern unsigned int sysctl_sched_min_granularity;
1753 extern unsigned int sysctl_sched_wakeup_granularity;
1754 extern unsigned int sysctl_sched_shares_ratelimit;
1755 extern unsigned int sysctl_sched_shares_thresh;
1756 #ifdef CONFIG_SCHED_DEBUG
1757 extern unsigned int sysctl_sched_child_runs_first;
1758 extern unsigned int sysctl_sched_features;
1759 extern unsigned int sysctl_sched_migration_cost;
1760 extern unsigned int sysctl_sched_nr_migrate;
1761
1762 int sched_nr_latency_handler(struct ctl_table *table, int write,
1763 struct file *file, void __user *buffer, size_t *length,
1764 loff_t *ppos);
1765 #endif
1766 extern unsigned int sysctl_sched_rt_period;
1767 extern int sysctl_sched_rt_runtime;
1768
1769 int sched_rt_handler(struct ctl_table *table, int write,
1770 struct file *filp, void __user *buffer, size_t *lenp,
1771 loff_t *ppos);
1772
1773 extern unsigned int sysctl_sched_compat_yield;
1774
1775 #ifdef CONFIG_RT_MUTEXES
1776 extern int rt_mutex_getprio(struct task_struct *p);
1777 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1778 extern void rt_mutex_adjust_pi(struct task_struct *p);
1779 #else
1780 static inline int rt_mutex_getprio(struct task_struct *p)
1781 {
1782 return p->normal_prio;
1783 }
1784 # define rt_mutex_adjust_pi(p) do { } while (0)
1785 #endif
1786
1787 extern void set_user_nice(struct task_struct *p, long nice);
1788 extern int task_prio(const struct task_struct *p);
1789 extern int task_nice(const struct task_struct *p);
1790 extern int can_nice(const struct task_struct *p, const int nice);
1791 extern int task_curr(const struct task_struct *p);
1792 extern int idle_cpu(int cpu);
1793 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1794 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1795 struct sched_param *);
1796 extern struct task_struct *idle_task(int cpu);
1797 extern struct task_struct *curr_task(int cpu);
1798 extern void set_curr_task(int cpu, struct task_struct *p);
1799
1800 void yield(void);
1801
1802 /*
1803 * The default (Linux) execution domain.
1804 */
1805 extern struct exec_domain default_exec_domain;
1806
1807 union thread_union {
1808 struct thread_info thread_info;
1809 unsigned long stack[THREAD_SIZE/sizeof(long)];
1810 };
1811
1812 #ifndef __HAVE_ARCH_KSTACK_END
1813 static inline int kstack_end(void *addr)
1814 {
1815 /* Reliable end of stack detection:
1816 * Some APM bios versions misalign the stack
1817 */
1818 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1819 }
1820 #endif
1821
1822 extern union thread_union init_thread_union;
1823 extern struct task_struct init_task;
1824
1825 extern struct mm_struct init_mm;
1826
1827 extern struct pid_namespace init_pid_ns;
1828
1829 /*
1830 * find a task by one of its numerical ids
1831 *
1832 * find_task_by_pid_type_ns():
1833 * it is the most generic call - it finds a task by all id,
1834 * type and namespace specified
1835 * find_task_by_pid_ns():
1836 * finds a task by its pid in the specified namespace
1837 * find_task_by_vpid():
1838 * finds a task by its virtual pid
1839 *
1840 * see also find_vpid() etc in include/linux/pid.h
1841 */
1842
1843 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1844 struct pid_namespace *ns);
1845
1846 extern struct task_struct *find_task_by_vpid(pid_t nr);
1847 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1848 struct pid_namespace *ns);
1849
1850 extern void __set_special_pids(struct pid *pid);
1851
1852 /* per-UID process charging. */
1853 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1854 static inline struct user_struct *get_uid(struct user_struct *u)
1855 {
1856 atomic_inc(&u->__count);
1857 return u;
1858 }
1859 extern void free_uid(struct user_struct *);
1860 extern void release_uids(struct user_namespace *ns);
1861
1862 #include <asm/current.h>
1863
1864 extern void do_timer(unsigned long ticks);
1865
1866 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1867 extern int wake_up_process(struct task_struct *tsk);
1868 extern void wake_up_new_task(struct task_struct *tsk,
1869 unsigned long clone_flags);
1870 #ifdef CONFIG_SMP
1871 extern void kick_process(struct task_struct *tsk);
1872 #else
1873 static inline void kick_process(struct task_struct *tsk) { }
1874 #endif
1875 extern void sched_fork(struct task_struct *p, int clone_flags);
1876 extern void sched_dead(struct task_struct *p);
1877
1878 extern void proc_caches_init(void);
1879 extern void flush_signals(struct task_struct *);
1880 extern void ignore_signals(struct task_struct *);
1881 extern void flush_signal_handlers(struct task_struct *, int force_default);
1882 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1883
1884 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1885 {
1886 unsigned long flags;
1887 int ret;
1888
1889 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1890 ret = dequeue_signal(tsk, mask, info);
1891 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1892
1893 return ret;
1894 }
1895
1896 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1897 sigset_t *mask);
1898 extern void unblock_all_signals(void);
1899 extern void release_task(struct task_struct * p);
1900 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1901 extern int force_sigsegv(int, struct task_struct *);
1902 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1903 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1904 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1905 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1906 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1907 extern int kill_pid(struct pid *pid, int sig, int priv);
1908 extern int kill_proc_info(int, struct siginfo *, pid_t);
1909 extern int do_notify_parent(struct task_struct *, int);
1910 extern void force_sig(int, struct task_struct *);
1911 extern void force_sig_specific(int, struct task_struct *);
1912 extern int send_sig(int, struct task_struct *, int);
1913 extern void zap_other_threads(struct task_struct *p);
1914 extern struct sigqueue *sigqueue_alloc(void);
1915 extern void sigqueue_free(struct sigqueue *);
1916 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1917 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1918 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1919
1920 static inline int kill_cad_pid(int sig, int priv)
1921 {
1922 return kill_pid(cad_pid, sig, priv);
1923 }
1924
1925 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1926 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1927 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1928 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1929
1930 static inline int is_si_special(const struct siginfo *info)
1931 {
1932 return info <= SEND_SIG_FORCED;
1933 }
1934
1935 /* True if we are on the alternate signal stack. */
1936
1937 static inline int on_sig_stack(unsigned long sp)
1938 {
1939 return (sp - current->sas_ss_sp < current->sas_ss_size);
1940 }
1941
1942 static inline int sas_ss_flags(unsigned long sp)
1943 {
1944 return (current->sas_ss_size == 0 ? SS_DISABLE
1945 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1946 }
1947
1948 /*
1949 * Routines for handling mm_structs
1950 */
1951 extern struct mm_struct * mm_alloc(void);
1952
1953 /* mmdrop drops the mm and the page tables */
1954 extern void __mmdrop(struct mm_struct *);
1955 static inline void mmdrop(struct mm_struct * mm)
1956 {
1957 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1958 __mmdrop(mm);
1959 }
1960
1961 /* mmput gets rid of the mappings and all user-space */
1962 extern void mmput(struct mm_struct *);
1963 /* Grab a reference to a task's mm, if it is not already going away */
1964 extern struct mm_struct *get_task_mm(struct task_struct *task);
1965 /* Remove the current tasks stale references to the old mm_struct */
1966 extern void mm_release(struct task_struct *, struct mm_struct *);
1967 /* Allocate a new mm structure and copy contents from tsk->mm */
1968 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1969
1970 extern int copy_thread(unsigned long, unsigned long, unsigned long,
1971 struct task_struct *, struct pt_regs *);
1972 extern void flush_thread(void);
1973 extern void exit_thread(void);
1974
1975 extern void exit_files(struct task_struct *);
1976 extern void __cleanup_signal(struct signal_struct *);
1977 extern void __cleanup_sighand(struct sighand_struct *);
1978
1979 extern void exit_itimers(struct signal_struct *);
1980 extern void flush_itimer_signals(void);
1981
1982 extern NORET_TYPE void do_group_exit(int);
1983
1984 extern void daemonize(const char *, ...);
1985 extern int allow_signal(int);
1986 extern int disallow_signal(int);
1987
1988 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1989 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1990 struct task_struct *fork_idle(int);
1991
1992 extern void set_task_comm(struct task_struct *tsk, char *from);
1993 extern char *get_task_comm(char *to, struct task_struct *tsk);
1994
1995 #ifdef CONFIG_SMP
1996 extern void wait_task_context_switch(struct task_struct *p);
1997 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1998 #else
1999 static inline void wait_task_context_switch(struct task_struct *p) {}
2000 static inline unsigned long wait_task_inactive(struct task_struct *p,
2001 long match_state)
2002 {
2003 return 1;
2004 }
2005 #endif
2006
2007 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
2008
2009 #define for_each_process(p) \
2010 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2011
2012 extern bool is_single_threaded(struct task_struct *);
2013
2014 /*
2015 * Careful: do_each_thread/while_each_thread is a double loop so
2016 * 'break' will not work as expected - use goto instead.
2017 */
2018 #define do_each_thread(g, t) \
2019 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2020
2021 #define while_each_thread(g, t) \
2022 while ((t = next_thread(t)) != g)
2023
2024 /* de_thread depends on thread_group_leader not being a pid based check */
2025 #define thread_group_leader(p) (p == p->group_leader)
2026
2027 /* Do to the insanities of de_thread it is possible for a process
2028 * to have the pid of the thread group leader without actually being
2029 * the thread group leader. For iteration through the pids in proc
2030 * all we care about is that we have a task with the appropriate
2031 * pid, we don't actually care if we have the right task.
2032 */
2033 static inline int has_group_leader_pid(struct task_struct *p)
2034 {
2035 return p->pid == p->tgid;
2036 }
2037
2038 static inline
2039 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2040 {
2041 return p1->tgid == p2->tgid;
2042 }
2043
2044 static inline struct task_struct *next_thread(const struct task_struct *p)
2045 {
2046 return list_entry(rcu_dereference(p->thread_group.next),
2047 struct task_struct, thread_group);
2048 }
2049
2050 static inline int thread_group_empty(struct task_struct *p)
2051 {
2052 return list_empty(&p->thread_group);
2053 }
2054
2055 #define delay_group_leader(p) \
2056 (thread_group_leader(p) && !thread_group_empty(p))
2057
2058 static inline int task_detached(struct task_struct *p)
2059 {
2060 return p->exit_signal == -1;
2061 }
2062
2063 /*
2064 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2065 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2066 * pins the final release of task.io_context. Also protects ->cpuset and
2067 * ->cgroup.subsys[].
2068 *
2069 * Nests both inside and outside of read_lock(&tasklist_lock).
2070 * It must not be nested with write_lock_irq(&tasklist_lock),
2071 * neither inside nor outside.
2072 */
2073 static inline void task_lock(struct task_struct *p)
2074 {
2075 spin_lock(&p->alloc_lock);
2076 }
2077
2078 static inline void task_unlock(struct task_struct *p)
2079 {
2080 spin_unlock(&p->alloc_lock);
2081 }
2082
2083 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2084 unsigned long *flags);
2085
2086 static inline void unlock_task_sighand(struct task_struct *tsk,
2087 unsigned long *flags)
2088 {
2089 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2090 }
2091
2092 #ifndef __HAVE_THREAD_FUNCTIONS
2093
2094 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2095 #define task_stack_page(task) ((task)->stack)
2096
2097 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2098 {
2099 *task_thread_info(p) = *task_thread_info(org);
2100 task_thread_info(p)->task = p;
2101 }
2102
2103 static inline unsigned long *end_of_stack(struct task_struct *p)
2104 {
2105 return (unsigned long *)(task_thread_info(p) + 1);
2106 }
2107
2108 #endif
2109
2110 static inline int object_is_on_stack(void *obj)
2111 {
2112 void *stack = task_stack_page(current);
2113
2114 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2115 }
2116
2117 extern void thread_info_cache_init(void);
2118
2119 #ifdef CONFIG_DEBUG_STACK_USAGE
2120 static inline unsigned long stack_not_used(struct task_struct *p)
2121 {
2122 unsigned long *n = end_of_stack(p);
2123
2124 do { /* Skip over canary */
2125 n++;
2126 } while (!*n);
2127
2128 return (unsigned long)n - (unsigned long)end_of_stack(p);
2129 }
2130 #endif
2131
2132 /* set thread flags in other task's structures
2133 * - see asm/thread_info.h for TIF_xxxx flags available
2134 */
2135 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2136 {
2137 set_ti_thread_flag(task_thread_info(tsk), flag);
2138 }
2139
2140 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2141 {
2142 clear_ti_thread_flag(task_thread_info(tsk), flag);
2143 }
2144
2145 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2146 {
2147 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2148 }
2149
2150 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2151 {
2152 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2153 }
2154
2155 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2156 {
2157 return test_ti_thread_flag(task_thread_info(tsk), flag);
2158 }
2159
2160 static inline void set_tsk_need_resched(struct task_struct *tsk)
2161 {
2162 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2163 }
2164
2165 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2166 {
2167 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2168 }
2169
2170 static inline int test_tsk_need_resched(struct task_struct *tsk)
2171 {
2172 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2173 }
2174
2175 static inline int signal_pending(struct task_struct *p)
2176 {
2177 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2178 }
2179
2180 extern int __fatal_signal_pending(struct task_struct *p);
2181
2182 static inline int fatal_signal_pending(struct task_struct *p)
2183 {
2184 return signal_pending(p) && __fatal_signal_pending(p);
2185 }
2186
2187 static inline int signal_pending_state(long state, struct task_struct *p)
2188 {
2189 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2190 return 0;
2191 if (!signal_pending(p))
2192 return 0;
2193
2194 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2195 }
2196
2197 static inline int need_resched(void)
2198 {
2199 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2200 }
2201
2202 /*
2203 * cond_resched() and cond_resched_lock(): latency reduction via
2204 * explicit rescheduling in places that are safe. The return
2205 * value indicates whether a reschedule was done in fact.
2206 * cond_resched_lock() will drop the spinlock before scheduling,
2207 * cond_resched_softirq() will enable bhs before scheduling.
2208 */
2209 extern int _cond_resched(void);
2210 #ifdef CONFIG_PREEMPT_BKL
2211 static inline int cond_resched(void)
2212 {
2213 return 0;
2214 }
2215 #else
2216 static inline int cond_resched(void)
2217 {
2218 return _cond_resched();
2219 }
2220 #endif
2221 extern int cond_resched_lock(spinlock_t * lock);
2222 extern int cond_resched_softirq(void);
2223 static inline int cond_resched_bkl(void)
2224 {
2225 return _cond_resched();
2226 }
2227
2228 /*
2229 * Does a critical section need to be broken due to another
2230 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2231 * but a general need for low latency)
2232 */
2233 static inline int spin_needbreak(spinlock_t *lock)
2234 {
2235 #ifdef CONFIG_PREEMPT
2236 return spin_is_contended(lock);
2237 #else
2238 return 0;
2239 #endif
2240 }
2241
2242 /*
2243 * Thread group CPU time accounting.
2244 */
2245 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2246 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2247
2248 static inline void thread_group_cputime_init(struct signal_struct *sig)
2249 {
2250 sig->cputimer.cputime = INIT_CPUTIME;
2251 spin_lock_init(&sig->cputimer.lock);
2252 sig->cputimer.running = 0;
2253 }
2254
2255 static inline void thread_group_cputime_free(struct signal_struct *sig)
2256 {
2257 }
2258
2259 /*
2260 * Reevaluate whether the task has signals pending delivery.
2261 * Wake the task if so.
2262 * This is required every time the blocked sigset_t changes.
2263 * callers must hold sighand->siglock.
2264 */
2265 extern void recalc_sigpending_and_wake(struct task_struct *t);
2266 extern void recalc_sigpending(void);
2267
2268 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2269
2270 /*
2271 * Wrappers for p->thread_info->cpu access. No-op on UP.
2272 */
2273 #ifdef CONFIG_SMP
2274
2275 static inline unsigned int task_cpu(const struct task_struct *p)
2276 {
2277 return task_thread_info(p)->cpu;
2278 }
2279
2280 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2281
2282 #else
2283
2284 static inline unsigned int task_cpu(const struct task_struct *p)
2285 {
2286 return 0;
2287 }
2288
2289 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2290 {
2291 }
2292
2293 #endif /* CONFIG_SMP */
2294
2295 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2296
2297 #ifdef CONFIG_TRACING
2298 extern void
2299 __trace_special(void *__tr, void *__data,
2300 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2301 #else
2302 static inline void
2303 __trace_special(void *__tr, void *__data,
2304 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2305 {
2306 }
2307 #endif
2308
2309 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2310 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2311
2312 extern void normalize_rt_tasks(void);
2313
2314 #ifdef CONFIG_GROUP_SCHED
2315
2316 extern struct task_group init_task_group;
2317 #ifdef CONFIG_USER_SCHED
2318 extern struct task_group root_task_group;
2319 extern void set_tg_uid(struct user_struct *user);
2320 #endif
2321
2322 extern struct task_group *sched_create_group(struct task_group *parent);
2323 extern void sched_destroy_group(struct task_group *tg);
2324 extern void sched_move_task(struct task_struct *tsk);
2325 #ifdef CONFIG_FAIR_GROUP_SCHED
2326 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2327 extern unsigned long sched_group_shares(struct task_group *tg);
2328 #endif
2329 #ifdef CONFIG_RT_GROUP_SCHED
2330 extern int sched_group_set_rt_runtime(struct task_group *tg,
2331 long rt_runtime_us);
2332 extern long sched_group_rt_runtime(struct task_group *tg);
2333 extern int sched_group_set_rt_period(struct task_group *tg,
2334 long rt_period_us);
2335 extern long sched_group_rt_period(struct task_group *tg);
2336 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2337 #endif
2338 #endif
2339
2340 extern int task_can_switch_user(struct user_struct *up,
2341 struct task_struct *tsk);
2342
2343 #ifdef CONFIG_TASK_XACCT
2344 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2345 {
2346 tsk->ioac.rchar += amt;
2347 }
2348
2349 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2350 {
2351 tsk->ioac.wchar += amt;
2352 }
2353
2354 static inline void inc_syscr(struct task_struct *tsk)
2355 {
2356 tsk->ioac.syscr++;
2357 }
2358
2359 static inline void inc_syscw(struct task_struct *tsk)
2360 {
2361 tsk->ioac.syscw++;
2362 }
2363 #else
2364 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2365 {
2366 }
2367
2368 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2369 {
2370 }
2371
2372 static inline void inc_syscr(struct task_struct *tsk)
2373 {
2374 }
2375
2376 static inline void inc_syscw(struct task_struct *tsk)
2377 {
2378 }
2379 #endif
2380
2381 #ifndef TASK_SIZE_OF
2382 #define TASK_SIZE_OF(tsk) TASK_SIZE
2383 #endif
2384
2385 #ifdef CONFIG_MM_OWNER
2386 extern void mm_update_next_owner(struct mm_struct *mm);
2387 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2388 #else
2389 static inline void mm_update_next_owner(struct mm_struct *mm)
2390 {
2391 }
2392
2393 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2394 {
2395 }
2396 #endif /* CONFIG_MM_OWNER */
2397
2398 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2399
2400 #endif /* __KERNEL__ */
2401
2402 #endif