]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(void);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 extern void sched_init(void);
262 extern void sched_init_smp(void);
263 extern asmlinkage void schedule_tail(struct task_struct *prev);
264 extern void init_idle(struct task_struct *idle, int cpu);
265 extern void init_idle_bootup_task(struct task_struct *idle);
266
267 extern int runqueue_is_locked(int cpu);
268 extern void task_rq_unlock_wait(struct task_struct *p);
269
270 extern cpumask_var_t nohz_cpu_mask;
271 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
272 extern int select_nohz_load_balancer(int cpu);
273 extern int get_nohz_load_balancer(void);
274 #else
275 static inline int select_nohz_load_balancer(int cpu)
276 {
277 return 0;
278 }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_DETECT_SOFTLOCKUP
311 extern void softlockup_tick(void);
312 extern void touch_softlockup_watchdog(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void softlockup_tick(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #endif
340
341 /* Attach to any functions which should be ignored in wchan output. */
342 #define __sched __attribute__((__section__(".sched.text")))
343
344 /* Linker adds these: start and end of __sched functions */
345 extern char __sched_text_start[], __sched_text_end[];
346
347 /* Is this address in the __sched functions? */
348 extern int in_sched_functions(unsigned long addr);
349
350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
351 extern signed long schedule_timeout(signed long timeout);
352 extern signed long schedule_timeout_interruptible(signed long timeout);
353 extern signed long schedule_timeout_killable(signed long timeout);
354 extern signed long schedule_timeout_uninterruptible(signed long timeout);
355 asmlinkage void schedule(void);
356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357
358 struct nsproxy;
359 struct user_namespace;
360
361 /*
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
365 *
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
372 */
373 #define MAPCOUNT_ELF_CORE_MARGIN (5)
374 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375
376 extern int sysctl_max_map_count;
377
378 #include <linux/aio.h>
379
380 #ifdef CONFIG_MMU
381 extern void arch_pick_mmap_layout(struct mm_struct *mm);
382 extern unsigned long
383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384 unsigned long, unsigned long);
385 extern unsigned long
386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387 unsigned long len, unsigned long pgoff,
388 unsigned long flags);
389 extern void arch_unmap_area(struct mm_struct *, unsigned long);
390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
391 #else
392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393 #endif
394
395 #if USE_SPLIT_PTLOCKS
396 /*
397 * The mm counters are not protected by its page_table_lock,
398 * so must be incremented atomically.
399 */
400 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
401 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
402 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
403 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
404 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
405
406 #else /* !USE_SPLIT_PTLOCKS */
407 /*
408 * The mm counters are protected by its page_table_lock,
409 * so can be incremented directly.
410 */
411 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
412 #define get_mm_counter(mm, member) ((mm)->_##member)
413 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
414 #define inc_mm_counter(mm, member) (mm)->_##member++
415 #define dec_mm_counter(mm, member) (mm)->_##member--
416
417 #endif /* !USE_SPLIT_PTLOCKS */
418
419 #define get_mm_rss(mm) \
420 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
421 #define update_hiwater_rss(mm) do { \
422 unsigned long _rss = get_mm_rss(mm); \
423 if ((mm)->hiwater_rss < _rss) \
424 (mm)->hiwater_rss = _rss; \
425 } while (0)
426 #define update_hiwater_vm(mm) do { \
427 if ((mm)->hiwater_vm < (mm)->total_vm) \
428 (mm)->hiwater_vm = (mm)->total_vm; \
429 } while (0)
430
431 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
432 {
433 return max(mm->hiwater_rss, get_mm_rss(mm));
434 }
435
436 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
437 struct mm_struct *mm)
438 {
439 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
440
441 if (*maxrss < hiwater_rss)
442 *maxrss = hiwater_rss;
443 }
444
445 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
446 {
447 return max(mm->hiwater_vm, mm->total_vm);
448 }
449
450 extern void set_dumpable(struct mm_struct *mm, int value);
451 extern int get_dumpable(struct mm_struct *mm);
452
453 /* mm flags */
454 /* dumpable bits */
455 #define MMF_DUMPABLE 0 /* core dump is permitted */
456 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
457
458 #define MMF_DUMPABLE_BITS 2
459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
460
461 /* coredump filter bits */
462 #define MMF_DUMP_ANON_PRIVATE 2
463 #define MMF_DUMP_ANON_SHARED 3
464 #define MMF_DUMP_MAPPED_PRIVATE 4
465 #define MMF_DUMP_MAPPED_SHARED 5
466 #define MMF_DUMP_ELF_HEADERS 6
467 #define MMF_DUMP_HUGETLB_PRIVATE 7
468 #define MMF_DUMP_HUGETLB_SHARED 8
469
470 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
471 #define MMF_DUMP_FILTER_BITS 7
472 #define MMF_DUMP_FILTER_MASK \
473 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
474 #define MMF_DUMP_FILTER_DEFAULT \
475 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
476 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
477
478 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
479 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
480 #else
481 # define MMF_DUMP_MASK_DEFAULT_ELF 0
482 #endif
483 /* leave room for more dump flags */
484 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
485
486 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
487
488 struct sighand_struct {
489 atomic_t count;
490 struct k_sigaction action[_NSIG];
491 spinlock_t siglock;
492 wait_queue_head_t signalfd_wqh;
493 };
494
495 struct pacct_struct {
496 int ac_flag;
497 long ac_exitcode;
498 unsigned long ac_mem;
499 cputime_t ac_utime, ac_stime;
500 unsigned long ac_minflt, ac_majflt;
501 };
502
503 struct cpu_itimer {
504 cputime_t expires;
505 cputime_t incr;
506 u32 error;
507 u32 incr_error;
508 };
509
510 /**
511 * struct task_cputime - collected CPU time counts
512 * @utime: time spent in user mode, in &cputime_t units
513 * @stime: time spent in kernel mode, in &cputime_t units
514 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
515 *
516 * This structure groups together three kinds of CPU time that are
517 * tracked for threads and thread groups. Most things considering
518 * CPU time want to group these counts together and treat all three
519 * of them in parallel.
520 */
521 struct task_cputime {
522 cputime_t utime;
523 cputime_t stime;
524 unsigned long long sum_exec_runtime;
525 };
526 /* Alternate field names when used to cache expirations. */
527 #define prof_exp stime
528 #define virt_exp utime
529 #define sched_exp sum_exec_runtime
530
531 #define INIT_CPUTIME \
532 (struct task_cputime) { \
533 .utime = cputime_zero, \
534 .stime = cputime_zero, \
535 .sum_exec_runtime = 0, \
536 }
537
538 /*
539 * Disable preemption until the scheduler is running.
540 * Reset by start_kernel()->sched_init()->init_idle().
541 *
542 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
543 * before the scheduler is active -- see should_resched().
544 */
545 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
546
547 /**
548 * struct thread_group_cputimer - thread group interval timer counts
549 * @cputime: thread group interval timers.
550 * @running: non-zero when there are timers running and
551 * @cputime receives updates.
552 * @lock: lock for fields in this struct.
553 *
554 * This structure contains the version of task_cputime, above, that is
555 * used for thread group CPU timer calculations.
556 */
557 struct thread_group_cputimer {
558 struct task_cputime cputime;
559 int running;
560 spinlock_t lock;
561 };
562
563 /*
564 * NOTE! "signal_struct" does not have it's own
565 * locking, because a shared signal_struct always
566 * implies a shared sighand_struct, so locking
567 * sighand_struct is always a proper superset of
568 * the locking of signal_struct.
569 */
570 struct signal_struct {
571 atomic_t count;
572 atomic_t live;
573
574 wait_queue_head_t wait_chldexit; /* for wait4() */
575
576 /* current thread group signal load-balancing target: */
577 struct task_struct *curr_target;
578
579 /* shared signal handling: */
580 struct sigpending shared_pending;
581
582 /* thread group exit support */
583 int group_exit_code;
584 /* overloaded:
585 * - notify group_exit_task when ->count is equal to notify_count
586 * - everyone except group_exit_task is stopped during signal delivery
587 * of fatal signals, group_exit_task processes the signal.
588 */
589 int notify_count;
590 struct task_struct *group_exit_task;
591
592 /* thread group stop support, overloads group_exit_code too */
593 int group_stop_count;
594 unsigned int flags; /* see SIGNAL_* flags below */
595
596 /* POSIX.1b Interval Timers */
597 struct list_head posix_timers;
598
599 /* ITIMER_REAL timer for the process */
600 struct hrtimer real_timer;
601 struct pid *leader_pid;
602 ktime_t it_real_incr;
603
604 /*
605 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
606 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
607 * values are defined to 0 and 1 respectively
608 */
609 struct cpu_itimer it[2];
610
611 /*
612 * Thread group totals for process CPU timers.
613 * See thread_group_cputimer(), et al, for details.
614 */
615 struct thread_group_cputimer cputimer;
616
617 /* Earliest-expiration cache. */
618 struct task_cputime cputime_expires;
619
620 struct list_head cpu_timers[3];
621
622 struct pid *tty_old_pgrp;
623
624 /* boolean value for session group leader */
625 int leader;
626
627 struct tty_struct *tty; /* NULL if no tty */
628
629 /*
630 * Cumulative resource counters for dead threads in the group,
631 * and for reaped dead child processes forked by this group.
632 * Live threads maintain their own counters and add to these
633 * in __exit_signal, except for the group leader.
634 */
635 cputime_t utime, stime, cutime, cstime;
636 cputime_t gtime;
637 cputime_t cgtime;
638 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
639 cputime_t prev_utime, prev_stime;
640 #endif
641 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
642 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
643 unsigned long inblock, oublock, cinblock, coublock;
644 unsigned long maxrss, cmaxrss;
645 struct task_io_accounting ioac;
646
647 /*
648 * Cumulative ns of schedule CPU time fo dead threads in the
649 * group, not including a zombie group leader, (This only differs
650 * from jiffies_to_ns(utime + stime) if sched_clock uses something
651 * other than jiffies.)
652 */
653 unsigned long long sum_sched_runtime;
654
655 /*
656 * We don't bother to synchronize most readers of this at all,
657 * because there is no reader checking a limit that actually needs
658 * to get both rlim_cur and rlim_max atomically, and either one
659 * alone is a single word that can safely be read normally.
660 * getrlimit/setrlimit use task_lock(current->group_leader) to
661 * protect this instead of the siglock, because they really
662 * have no need to disable irqs.
663 */
664 struct rlimit rlim[RLIM_NLIMITS];
665
666 #ifdef CONFIG_BSD_PROCESS_ACCT
667 struct pacct_struct pacct; /* per-process accounting information */
668 #endif
669 #ifdef CONFIG_TASKSTATS
670 struct taskstats *stats;
671 #endif
672 #ifdef CONFIG_AUDIT
673 unsigned audit_tty;
674 struct tty_audit_buf *tty_audit_buf;
675 #endif
676
677 int oom_adj; /* OOM kill score adjustment (bit shift) */
678 };
679
680 /* Context switch must be unlocked if interrupts are to be enabled */
681 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
682 # define __ARCH_WANT_UNLOCKED_CTXSW
683 #endif
684
685 /*
686 * Bits in flags field of signal_struct.
687 */
688 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
689 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
690 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
691 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
692 /*
693 * Pending notifications to parent.
694 */
695 #define SIGNAL_CLD_STOPPED 0x00000010
696 #define SIGNAL_CLD_CONTINUED 0x00000020
697 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
698
699 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
700
701 /* If true, all threads except ->group_exit_task have pending SIGKILL */
702 static inline int signal_group_exit(const struct signal_struct *sig)
703 {
704 return (sig->flags & SIGNAL_GROUP_EXIT) ||
705 (sig->group_exit_task != NULL);
706 }
707
708 /*
709 * Some day this will be a full-fledged user tracking system..
710 */
711 struct user_struct {
712 atomic_t __count; /* reference count */
713 atomic_t processes; /* How many processes does this user have? */
714 atomic_t files; /* How many open files does this user have? */
715 atomic_t sigpending; /* How many pending signals does this user have? */
716 #ifdef CONFIG_INOTIFY_USER
717 atomic_t inotify_watches; /* How many inotify watches does this user have? */
718 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
719 #endif
720 #ifdef CONFIG_EPOLL
721 atomic_t epoll_watches; /* The number of file descriptors currently watched */
722 #endif
723 #ifdef CONFIG_POSIX_MQUEUE
724 /* protected by mq_lock */
725 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
726 #endif
727 unsigned long locked_shm; /* How many pages of mlocked shm ? */
728
729 #ifdef CONFIG_KEYS
730 struct key *uid_keyring; /* UID specific keyring */
731 struct key *session_keyring; /* UID's default session keyring */
732 #endif
733
734 /* Hash table maintenance information */
735 struct hlist_node uidhash_node;
736 uid_t uid;
737 struct user_namespace *user_ns;
738
739 #ifdef CONFIG_USER_SCHED
740 struct task_group *tg;
741 #ifdef CONFIG_SYSFS
742 struct kobject kobj;
743 struct delayed_work work;
744 #endif
745 #endif
746
747 #ifdef CONFIG_PERF_EVENTS
748 atomic_long_t locked_vm;
749 #endif
750 };
751
752 extern int uids_sysfs_init(void);
753
754 extern struct user_struct *find_user(uid_t);
755
756 extern struct user_struct root_user;
757 #define INIT_USER (&root_user)
758
759
760 struct backing_dev_info;
761 struct reclaim_state;
762
763 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
764 struct sched_info {
765 /* cumulative counters */
766 unsigned long pcount; /* # of times run on this cpu */
767 unsigned long long run_delay; /* time spent waiting on a runqueue */
768
769 /* timestamps */
770 unsigned long long last_arrival,/* when we last ran on a cpu */
771 last_queued; /* when we were last queued to run */
772 #ifdef CONFIG_SCHEDSTATS
773 /* BKL stats */
774 unsigned int bkl_count;
775 #endif
776 };
777 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
778
779 #ifdef CONFIG_TASK_DELAY_ACCT
780 struct task_delay_info {
781 spinlock_t lock;
782 unsigned int flags; /* Private per-task flags */
783
784 /* For each stat XXX, add following, aligned appropriately
785 *
786 * struct timespec XXX_start, XXX_end;
787 * u64 XXX_delay;
788 * u32 XXX_count;
789 *
790 * Atomicity of updates to XXX_delay, XXX_count protected by
791 * single lock above (split into XXX_lock if contention is an issue).
792 */
793
794 /*
795 * XXX_count is incremented on every XXX operation, the delay
796 * associated with the operation is added to XXX_delay.
797 * XXX_delay contains the accumulated delay time in nanoseconds.
798 */
799 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
800 u64 blkio_delay; /* wait for sync block io completion */
801 u64 swapin_delay; /* wait for swapin block io completion */
802 u32 blkio_count; /* total count of the number of sync block */
803 /* io operations performed */
804 u32 swapin_count; /* total count of the number of swapin block */
805 /* io operations performed */
806
807 struct timespec freepages_start, freepages_end;
808 u64 freepages_delay; /* wait for memory reclaim */
809 u32 freepages_count; /* total count of memory reclaim */
810 };
811 #endif /* CONFIG_TASK_DELAY_ACCT */
812
813 static inline int sched_info_on(void)
814 {
815 #ifdef CONFIG_SCHEDSTATS
816 return 1;
817 #elif defined(CONFIG_TASK_DELAY_ACCT)
818 extern int delayacct_on;
819 return delayacct_on;
820 #else
821 return 0;
822 #endif
823 }
824
825 enum cpu_idle_type {
826 CPU_IDLE,
827 CPU_NOT_IDLE,
828 CPU_NEWLY_IDLE,
829 CPU_MAX_IDLE_TYPES
830 };
831
832 /*
833 * sched-domains (multiprocessor balancing) declarations:
834 */
835
836 /*
837 * Increase resolution of nice-level calculations:
838 */
839 #define SCHED_LOAD_SHIFT 10
840 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
841
842 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
843
844 #ifdef CONFIG_SMP
845 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
846 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
847 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
848 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
849 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
850 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
851 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
852 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
853 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
854 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
855 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
856
857 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
858
859 enum powersavings_balance_level {
860 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
861 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
862 * first for long running threads
863 */
864 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
865 * cpu package for power savings
866 */
867 MAX_POWERSAVINGS_BALANCE_LEVELS
868 };
869
870 extern int sched_mc_power_savings, sched_smt_power_savings;
871
872 static inline int sd_balance_for_mc_power(void)
873 {
874 if (sched_smt_power_savings)
875 return SD_POWERSAVINGS_BALANCE;
876
877 return SD_PREFER_SIBLING;
878 }
879
880 static inline int sd_balance_for_package_power(void)
881 {
882 if (sched_mc_power_savings | sched_smt_power_savings)
883 return SD_POWERSAVINGS_BALANCE;
884
885 return SD_PREFER_SIBLING;
886 }
887
888 /*
889 * Optimise SD flags for power savings:
890 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
891 * Keep default SD flags if sched_{smt,mc}_power_saving=0
892 */
893
894 static inline int sd_power_saving_flags(void)
895 {
896 if (sched_mc_power_savings | sched_smt_power_savings)
897 return SD_BALANCE_NEWIDLE;
898
899 return 0;
900 }
901
902 struct sched_group {
903 struct sched_group *next; /* Must be a circular list */
904
905 /*
906 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
907 * single CPU.
908 */
909 unsigned int cpu_power;
910
911 /*
912 * The CPUs this group covers.
913 *
914 * NOTE: this field is variable length. (Allocated dynamically
915 * by attaching extra space to the end of the structure,
916 * depending on how many CPUs the kernel has booted up with)
917 *
918 * It is also be embedded into static data structures at build
919 * time. (See 'struct static_sched_group' in kernel/sched.c)
920 */
921 unsigned long cpumask[0];
922 };
923
924 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
925 {
926 return to_cpumask(sg->cpumask);
927 }
928
929 enum sched_domain_level {
930 SD_LV_NONE = 0,
931 SD_LV_SIBLING,
932 SD_LV_MC,
933 SD_LV_CPU,
934 SD_LV_NODE,
935 SD_LV_ALLNODES,
936 SD_LV_MAX
937 };
938
939 struct sched_domain_attr {
940 int relax_domain_level;
941 };
942
943 #define SD_ATTR_INIT (struct sched_domain_attr) { \
944 .relax_domain_level = -1, \
945 }
946
947 struct sched_domain {
948 /* These fields must be setup */
949 struct sched_domain *parent; /* top domain must be null terminated */
950 struct sched_domain *child; /* bottom domain must be null terminated */
951 struct sched_group *groups; /* the balancing groups of the domain */
952 unsigned long min_interval; /* Minimum balance interval ms */
953 unsigned long max_interval; /* Maximum balance interval ms */
954 unsigned int busy_factor; /* less balancing by factor if busy */
955 unsigned int imbalance_pct; /* No balance until over watermark */
956 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
957 unsigned int busy_idx;
958 unsigned int idle_idx;
959 unsigned int newidle_idx;
960 unsigned int wake_idx;
961 unsigned int forkexec_idx;
962 unsigned int smt_gain;
963 int flags; /* See SD_* */
964 enum sched_domain_level level;
965
966 /* Runtime fields. */
967 unsigned long last_balance; /* init to jiffies. units in jiffies */
968 unsigned int balance_interval; /* initialise to 1. units in ms. */
969 unsigned int nr_balance_failed; /* initialise to 0 */
970
971 u64 last_update;
972
973 #ifdef CONFIG_SCHEDSTATS
974 /* load_balance() stats */
975 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
976 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
977 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
978 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
979 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
980 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
981 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
982 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
983
984 /* Active load balancing */
985 unsigned int alb_count;
986 unsigned int alb_failed;
987 unsigned int alb_pushed;
988
989 /* SD_BALANCE_EXEC stats */
990 unsigned int sbe_count;
991 unsigned int sbe_balanced;
992 unsigned int sbe_pushed;
993
994 /* SD_BALANCE_FORK stats */
995 unsigned int sbf_count;
996 unsigned int sbf_balanced;
997 unsigned int sbf_pushed;
998
999 /* try_to_wake_up() stats */
1000 unsigned int ttwu_wake_remote;
1001 unsigned int ttwu_move_affine;
1002 unsigned int ttwu_move_balance;
1003 #endif
1004 #ifdef CONFIG_SCHED_DEBUG
1005 char *name;
1006 #endif
1007
1008 /*
1009 * Span of all CPUs in this domain.
1010 *
1011 * NOTE: this field is variable length. (Allocated dynamically
1012 * by attaching extra space to the end of the structure,
1013 * depending on how many CPUs the kernel has booted up with)
1014 *
1015 * It is also be embedded into static data structures at build
1016 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1017 */
1018 unsigned long span[0];
1019 };
1020
1021 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1022 {
1023 return to_cpumask(sd->span);
1024 }
1025
1026 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1027 struct sched_domain_attr *dattr_new);
1028
1029 /* Allocate an array of sched domains, for partition_sched_domains(). */
1030 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1031 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1032
1033 /* Test a flag in parent sched domain */
1034 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1035 {
1036 if (sd->parent && (sd->parent->flags & flag))
1037 return 1;
1038
1039 return 0;
1040 }
1041
1042 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1043 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1044
1045 #else /* CONFIG_SMP */
1046
1047 struct sched_domain_attr;
1048
1049 static inline void
1050 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1051 struct sched_domain_attr *dattr_new)
1052 {
1053 }
1054 #endif /* !CONFIG_SMP */
1055
1056
1057 struct io_context; /* See blkdev.h */
1058
1059
1060 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1061 extern void prefetch_stack(struct task_struct *t);
1062 #else
1063 static inline void prefetch_stack(struct task_struct *t) { }
1064 #endif
1065
1066 struct audit_context; /* See audit.c */
1067 struct mempolicy;
1068 struct pipe_inode_info;
1069 struct uts_namespace;
1070
1071 struct rq;
1072 struct sched_domain;
1073
1074 /*
1075 * wake flags
1076 */
1077 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1078 #define WF_FORK 0x02 /* child wakeup after fork */
1079
1080 struct sched_class {
1081 const struct sched_class *next;
1082
1083 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1084 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1085 void (*yield_task) (struct rq *rq);
1086
1087 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1088
1089 struct task_struct * (*pick_next_task) (struct rq *rq);
1090 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1091
1092 #ifdef CONFIG_SMP
1093 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1094
1095 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1096 struct rq *busiest, unsigned long max_load_move,
1097 struct sched_domain *sd, enum cpu_idle_type idle,
1098 int *all_pinned, int *this_best_prio);
1099
1100 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1101 struct rq *busiest, struct sched_domain *sd,
1102 enum cpu_idle_type idle);
1103 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1104 void (*post_schedule) (struct rq *this_rq);
1105 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1106 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1107
1108 void (*set_cpus_allowed)(struct task_struct *p,
1109 const struct cpumask *newmask);
1110
1111 void (*rq_online)(struct rq *rq);
1112 void (*rq_offline)(struct rq *rq);
1113 #endif
1114
1115 void (*set_curr_task) (struct rq *rq);
1116 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1117 void (*task_fork) (struct task_struct *p);
1118
1119 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1120 int running);
1121 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1122 int running);
1123 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1124 int oldprio, int running);
1125
1126 unsigned int (*get_rr_interval) (struct rq *rq,
1127 struct task_struct *task);
1128
1129 #ifdef CONFIG_FAIR_GROUP_SCHED
1130 void (*moved_group) (struct task_struct *p, int on_rq);
1131 #endif
1132 };
1133
1134 struct load_weight {
1135 unsigned long weight, inv_weight;
1136 };
1137
1138 /*
1139 * CFS stats for a schedulable entity (task, task-group etc)
1140 *
1141 * Current field usage histogram:
1142 *
1143 * 4 se->block_start
1144 * 4 se->run_node
1145 * 4 se->sleep_start
1146 * 6 se->load.weight
1147 */
1148 struct sched_entity {
1149 struct load_weight load; /* for load-balancing */
1150 struct rb_node run_node;
1151 struct list_head group_node;
1152 unsigned int on_rq;
1153
1154 u64 exec_start;
1155 u64 sum_exec_runtime;
1156 u64 vruntime;
1157 u64 prev_sum_exec_runtime;
1158
1159 u64 last_wakeup;
1160 u64 avg_overlap;
1161
1162 u64 nr_migrations;
1163
1164 u64 start_runtime;
1165 u64 avg_wakeup;
1166
1167 #ifdef CONFIG_SCHEDSTATS
1168 u64 wait_start;
1169 u64 wait_max;
1170 u64 wait_count;
1171 u64 wait_sum;
1172 u64 iowait_count;
1173 u64 iowait_sum;
1174
1175 u64 sleep_start;
1176 u64 sleep_max;
1177 s64 sum_sleep_runtime;
1178
1179 u64 block_start;
1180 u64 block_max;
1181 u64 exec_max;
1182 u64 slice_max;
1183
1184 u64 nr_migrations_cold;
1185 u64 nr_failed_migrations_affine;
1186 u64 nr_failed_migrations_running;
1187 u64 nr_failed_migrations_hot;
1188 u64 nr_forced_migrations;
1189
1190 u64 nr_wakeups;
1191 u64 nr_wakeups_sync;
1192 u64 nr_wakeups_migrate;
1193 u64 nr_wakeups_local;
1194 u64 nr_wakeups_remote;
1195 u64 nr_wakeups_affine;
1196 u64 nr_wakeups_affine_attempts;
1197 u64 nr_wakeups_passive;
1198 u64 nr_wakeups_idle;
1199 #endif
1200
1201 #ifdef CONFIG_FAIR_GROUP_SCHED
1202 struct sched_entity *parent;
1203 /* rq on which this entity is (to be) queued: */
1204 struct cfs_rq *cfs_rq;
1205 /* rq "owned" by this entity/group: */
1206 struct cfs_rq *my_q;
1207 #endif
1208 };
1209
1210 struct sched_rt_entity {
1211 struct list_head run_list;
1212 unsigned long timeout;
1213 unsigned int time_slice;
1214 int nr_cpus_allowed;
1215
1216 struct sched_rt_entity *back;
1217 #ifdef CONFIG_RT_GROUP_SCHED
1218 struct sched_rt_entity *parent;
1219 /* rq on which this entity is (to be) queued: */
1220 struct rt_rq *rt_rq;
1221 /* rq "owned" by this entity/group: */
1222 struct rt_rq *my_q;
1223 #endif
1224 };
1225
1226 struct rcu_node;
1227
1228 struct task_struct {
1229 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1230 void *stack;
1231 atomic_t usage;
1232 unsigned int flags; /* per process flags, defined below */
1233 unsigned int ptrace;
1234
1235 int lock_depth; /* BKL lock depth */
1236
1237 #ifdef CONFIG_SMP
1238 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1239 int oncpu;
1240 #endif
1241 #endif
1242
1243 int prio, static_prio, normal_prio;
1244 unsigned int rt_priority;
1245 const struct sched_class *sched_class;
1246 struct sched_entity se;
1247 struct sched_rt_entity rt;
1248
1249 #ifdef CONFIG_PREEMPT_NOTIFIERS
1250 /* list of struct preempt_notifier: */
1251 struct hlist_head preempt_notifiers;
1252 #endif
1253
1254 /*
1255 * fpu_counter contains the number of consecutive context switches
1256 * that the FPU is used. If this is over a threshold, the lazy fpu
1257 * saving becomes unlazy to save the trap. This is an unsigned char
1258 * so that after 256 times the counter wraps and the behavior turns
1259 * lazy again; this to deal with bursty apps that only use FPU for
1260 * a short time
1261 */
1262 unsigned char fpu_counter;
1263 #ifdef CONFIG_BLK_DEV_IO_TRACE
1264 unsigned int btrace_seq;
1265 #endif
1266
1267 unsigned int policy;
1268 cpumask_t cpus_allowed;
1269
1270 #ifdef CONFIG_TREE_PREEMPT_RCU
1271 int rcu_read_lock_nesting;
1272 char rcu_read_unlock_special;
1273 struct rcu_node *rcu_blocked_node;
1274 struct list_head rcu_node_entry;
1275 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1276
1277 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1278 struct sched_info sched_info;
1279 #endif
1280
1281 struct list_head tasks;
1282 struct plist_node pushable_tasks;
1283
1284 struct mm_struct *mm, *active_mm;
1285
1286 /* task state */
1287 int exit_state;
1288 int exit_code, exit_signal;
1289 int pdeath_signal; /* The signal sent when the parent dies */
1290 /* ??? */
1291 unsigned int personality;
1292 unsigned did_exec:1;
1293 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1294 * execve */
1295 unsigned in_iowait:1;
1296
1297
1298 /* Revert to default priority/policy when forking */
1299 unsigned sched_reset_on_fork:1;
1300
1301 pid_t pid;
1302 pid_t tgid;
1303
1304 #ifdef CONFIG_CC_STACKPROTECTOR
1305 /* Canary value for the -fstack-protector gcc feature */
1306 unsigned long stack_canary;
1307 #endif
1308
1309 /*
1310 * pointers to (original) parent process, youngest child, younger sibling,
1311 * older sibling, respectively. (p->father can be replaced with
1312 * p->real_parent->pid)
1313 */
1314 struct task_struct *real_parent; /* real parent process */
1315 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1316 /*
1317 * children/sibling forms the list of my natural children
1318 */
1319 struct list_head children; /* list of my children */
1320 struct list_head sibling; /* linkage in my parent's children list */
1321 struct task_struct *group_leader; /* threadgroup leader */
1322
1323 /*
1324 * ptraced is the list of tasks this task is using ptrace on.
1325 * This includes both natural children and PTRACE_ATTACH targets.
1326 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1327 */
1328 struct list_head ptraced;
1329 struct list_head ptrace_entry;
1330
1331 /*
1332 * This is the tracer handle for the ptrace BTS extension.
1333 * This field actually belongs to the ptracer task.
1334 */
1335 struct bts_context *bts;
1336
1337 /* PID/PID hash table linkage. */
1338 struct pid_link pids[PIDTYPE_MAX];
1339 struct list_head thread_group;
1340
1341 struct completion *vfork_done; /* for vfork() */
1342 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1343 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1344
1345 cputime_t utime, stime, utimescaled, stimescaled;
1346 cputime_t gtime;
1347 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1348 cputime_t prev_utime, prev_stime;
1349 #endif
1350 unsigned long nvcsw, nivcsw; /* context switch counts */
1351 struct timespec start_time; /* monotonic time */
1352 struct timespec real_start_time; /* boot based time */
1353 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1354 unsigned long min_flt, maj_flt;
1355
1356 struct task_cputime cputime_expires;
1357 struct list_head cpu_timers[3];
1358
1359 /* process credentials */
1360 const struct cred *real_cred; /* objective and real subjective task
1361 * credentials (COW) */
1362 const struct cred *cred; /* effective (overridable) subjective task
1363 * credentials (COW) */
1364 struct mutex cred_guard_mutex; /* guard against foreign influences on
1365 * credential calculations
1366 * (notably. ptrace) */
1367 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1368
1369 char comm[TASK_COMM_LEN]; /* executable name excluding path
1370 - access with [gs]et_task_comm (which lock
1371 it with task_lock())
1372 - initialized normally by setup_new_exec */
1373 /* file system info */
1374 int link_count, total_link_count;
1375 #ifdef CONFIG_SYSVIPC
1376 /* ipc stuff */
1377 struct sysv_sem sysvsem;
1378 #endif
1379 #ifdef CONFIG_DETECT_HUNG_TASK
1380 /* hung task detection */
1381 unsigned long last_switch_count;
1382 #endif
1383 /* CPU-specific state of this task */
1384 struct thread_struct thread;
1385 /* filesystem information */
1386 struct fs_struct *fs;
1387 /* open file information */
1388 struct files_struct *files;
1389 /* namespaces */
1390 struct nsproxy *nsproxy;
1391 /* signal handlers */
1392 struct signal_struct *signal;
1393 struct sighand_struct *sighand;
1394
1395 sigset_t blocked, real_blocked;
1396 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1397 struct sigpending pending;
1398
1399 unsigned long sas_ss_sp;
1400 size_t sas_ss_size;
1401 int (*notifier)(void *priv);
1402 void *notifier_data;
1403 sigset_t *notifier_mask;
1404 struct audit_context *audit_context;
1405 #ifdef CONFIG_AUDITSYSCALL
1406 uid_t loginuid;
1407 unsigned int sessionid;
1408 #endif
1409 seccomp_t seccomp;
1410
1411 /* Thread group tracking */
1412 u32 parent_exec_id;
1413 u32 self_exec_id;
1414 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1415 * mempolicy */
1416 spinlock_t alloc_lock;
1417
1418 #ifdef CONFIG_GENERIC_HARDIRQS
1419 /* IRQ handler threads */
1420 struct irqaction *irqaction;
1421 #endif
1422
1423 /* Protection of the PI data structures: */
1424 raw_spinlock_t pi_lock;
1425
1426 #ifdef CONFIG_RT_MUTEXES
1427 /* PI waiters blocked on a rt_mutex held by this task */
1428 struct plist_head pi_waiters;
1429 /* Deadlock detection and priority inheritance handling */
1430 struct rt_mutex_waiter *pi_blocked_on;
1431 #endif
1432
1433 #ifdef CONFIG_DEBUG_MUTEXES
1434 /* mutex deadlock detection */
1435 struct mutex_waiter *blocked_on;
1436 #endif
1437 #ifdef CONFIG_TRACE_IRQFLAGS
1438 unsigned int irq_events;
1439 unsigned long hardirq_enable_ip;
1440 unsigned long hardirq_disable_ip;
1441 unsigned int hardirq_enable_event;
1442 unsigned int hardirq_disable_event;
1443 int hardirqs_enabled;
1444 int hardirq_context;
1445 unsigned long softirq_disable_ip;
1446 unsigned long softirq_enable_ip;
1447 unsigned int softirq_disable_event;
1448 unsigned int softirq_enable_event;
1449 int softirqs_enabled;
1450 int softirq_context;
1451 #endif
1452 #ifdef CONFIG_LOCKDEP
1453 # define MAX_LOCK_DEPTH 48UL
1454 u64 curr_chain_key;
1455 int lockdep_depth;
1456 unsigned int lockdep_recursion;
1457 struct held_lock held_locks[MAX_LOCK_DEPTH];
1458 gfp_t lockdep_reclaim_gfp;
1459 #endif
1460
1461 /* journalling filesystem info */
1462 void *journal_info;
1463
1464 /* stacked block device info */
1465 struct bio *bio_list, **bio_tail;
1466
1467 /* VM state */
1468 struct reclaim_state *reclaim_state;
1469
1470 struct backing_dev_info *backing_dev_info;
1471
1472 struct io_context *io_context;
1473
1474 unsigned long ptrace_message;
1475 siginfo_t *last_siginfo; /* For ptrace use. */
1476 struct task_io_accounting ioac;
1477 #if defined(CONFIG_TASK_XACCT)
1478 u64 acct_rss_mem1; /* accumulated rss usage */
1479 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1480 cputime_t acct_timexpd; /* stime + utime since last update */
1481 #endif
1482 #ifdef CONFIG_CPUSETS
1483 nodemask_t mems_allowed; /* Protected by alloc_lock */
1484 int cpuset_mem_spread_rotor;
1485 #endif
1486 #ifdef CONFIG_CGROUPS
1487 /* Control Group info protected by css_set_lock */
1488 struct css_set *cgroups;
1489 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1490 struct list_head cg_list;
1491 #endif
1492 #ifdef CONFIG_FUTEX
1493 struct robust_list_head __user *robust_list;
1494 #ifdef CONFIG_COMPAT
1495 struct compat_robust_list_head __user *compat_robust_list;
1496 #endif
1497 struct list_head pi_state_list;
1498 struct futex_pi_state *pi_state_cache;
1499 #endif
1500 #ifdef CONFIG_PERF_EVENTS
1501 struct perf_event_context *perf_event_ctxp;
1502 struct mutex perf_event_mutex;
1503 struct list_head perf_event_list;
1504 #endif
1505 #ifdef CONFIG_NUMA
1506 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1507 short il_next;
1508 #endif
1509 atomic_t fs_excl; /* holding fs exclusive resources */
1510 struct rcu_head rcu;
1511
1512 /*
1513 * cache last used pipe for splice
1514 */
1515 struct pipe_inode_info *splice_pipe;
1516 #ifdef CONFIG_TASK_DELAY_ACCT
1517 struct task_delay_info *delays;
1518 #endif
1519 #ifdef CONFIG_FAULT_INJECTION
1520 int make_it_fail;
1521 #endif
1522 struct prop_local_single dirties;
1523 #ifdef CONFIG_LATENCYTOP
1524 int latency_record_count;
1525 struct latency_record latency_record[LT_SAVECOUNT];
1526 #endif
1527 /*
1528 * time slack values; these are used to round up poll() and
1529 * select() etc timeout values. These are in nanoseconds.
1530 */
1531 unsigned long timer_slack_ns;
1532 unsigned long default_timer_slack_ns;
1533
1534 struct list_head *scm_work_list;
1535 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1536 /* Index of current stored adress in ret_stack */
1537 int curr_ret_stack;
1538 /* Stack of return addresses for return function tracing */
1539 struct ftrace_ret_stack *ret_stack;
1540 /* time stamp for last schedule */
1541 unsigned long long ftrace_timestamp;
1542 /*
1543 * Number of functions that haven't been traced
1544 * because of depth overrun.
1545 */
1546 atomic_t trace_overrun;
1547 /* Pause for the tracing */
1548 atomic_t tracing_graph_pause;
1549 #endif
1550 #ifdef CONFIG_TRACING
1551 /* state flags for use by tracers */
1552 unsigned long trace;
1553 /* bitmask of trace recursion */
1554 unsigned long trace_recursion;
1555 #endif /* CONFIG_TRACING */
1556 unsigned long stack_start;
1557 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1558 struct memcg_batch_info {
1559 int do_batch; /* incremented when batch uncharge started */
1560 struct mem_cgroup *memcg; /* target memcg of uncharge */
1561 unsigned long bytes; /* uncharged usage */
1562 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1563 } memcg_batch;
1564 #endif
1565 };
1566
1567 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1568 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1569
1570 /*
1571 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1572 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1573 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1574 * values are inverted: lower p->prio value means higher priority.
1575 *
1576 * The MAX_USER_RT_PRIO value allows the actual maximum
1577 * RT priority to be separate from the value exported to
1578 * user-space. This allows kernel threads to set their
1579 * priority to a value higher than any user task. Note:
1580 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1581 */
1582
1583 #define MAX_USER_RT_PRIO 100
1584 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1585
1586 #define MAX_PRIO (MAX_RT_PRIO + 40)
1587 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1588
1589 static inline int rt_prio(int prio)
1590 {
1591 if (unlikely(prio < MAX_RT_PRIO))
1592 return 1;
1593 return 0;
1594 }
1595
1596 static inline int rt_task(struct task_struct *p)
1597 {
1598 return rt_prio(p->prio);
1599 }
1600
1601 static inline struct pid *task_pid(struct task_struct *task)
1602 {
1603 return task->pids[PIDTYPE_PID].pid;
1604 }
1605
1606 static inline struct pid *task_tgid(struct task_struct *task)
1607 {
1608 return task->group_leader->pids[PIDTYPE_PID].pid;
1609 }
1610
1611 /*
1612 * Without tasklist or rcu lock it is not safe to dereference
1613 * the result of task_pgrp/task_session even if task == current,
1614 * we can race with another thread doing sys_setsid/sys_setpgid.
1615 */
1616 static inline struct pid *task_pgrp(struct task_struct *task)
1617 {
1618 return task->group_leader->pids[PIDTYPE_PGID].pid;
1619 }
1620
1621 static inline struct pid *task_session(struct task_struct *task)
1622 {
1623 return task->group_leader->pids[PIDTYPE_SID].pid;
1624 }
1625
1626 struct pid_namespace;
1627
1628 /*
1629 * the helpers to get the task's different pids as they are seen
1630 * from various namespaces
1631 *
1632 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1633 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1634 * current.
1635 * task_xid_nr_ns() : id seen from the ns specified;
1636 *
1637 * set_task_vxid() : assigns a virtual id to a task;
1638 *
1639 * see also pid_nr() etc in include/linux/pid.h
1640 */
1641 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1642 struct pid_namespace *ns);
1643
1644 static inline pid_t task_pid_nr(struct task_struct *tsk)
1645 {
1646 return tsk->pid;
1647 }
1648
1649 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1650 struct pid_namespace *ns)
1651 {
1652 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1653 }
1654
1655 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1656 {
1657 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1658 }
1659
1660
1661 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1662 {
1663 return tsk->tgid;
1664 }
1665
1666 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1667
1668 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1669 {
1670 return pid_vnr(task_tgid(tsk));
1671 }
1672
1673
1674 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1675 struct pid_namespace *ns)
1676 {
1677 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1678 }
1679
1680 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1681 {
1682 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1683 }
1684
1685
1686 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1687 struct pid_namespace *ns)
1688 {
1689 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1690 }
1691
1692 static inline pid_t task_session_vnr(struct task_struct *tsk)
1693 {
1694 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1695 }
1696
1697 /* obsolete, do not use */
1698 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1699 {
1700 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1701 }
1702
1703 /**
1704 * pid_alive - check that a task structure is not stale
1705 * @p: Task structure to be checked.
1706 *
1707 * Test if a process is not yet dead (at most zombie state)
1708 * If pid_alive fails, then pointers within the task structure
1709 * can be stale and must not be dereferenced.
1710 */
1711 static inline int pid_alive(struct task_struct *p)
1712 {
1713 return p->pids[PIDTYPE_PID].pid != NULL;
1714 }
1715
1716 /**
1717 * is_global_init - check if a task structure is init
1718 * @tsk: Task structure to be checked.
1719 *
1720 * Check if a task structure is the first user space task the kernel created.
1721 */
1722 static inline int is_global_init(struct task_struct *tsk)
1723 {
1724 return tsk->pid == 1;
1725 }
1726
1727 /*
1728 * is_container_init:
1729 * check whether in the task is init in its own pid namespace.
1730 */
1731 extern int is_container_init(struct task_struct *tsk);
1732
1733 extern struct pid *cad_pid;
1734
1735 extern void free_task(struct task_struct *tsk);
1736 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1737
1738 extern void __put_task_struct(struct task_struct *t);
1739
1740 static inline void put_task_struct(struct task_struct *t)
1741 {
1742 if (atomic_dec_and_test(&t->usage))
1743 __put_task_struct(t);
1744 }
1745
1746 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1747 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1748
1749 /*
1750 * Per process flags
1751 */
1752 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1753 /* Not implemented yet, only for 486*/
1754 #define PF_STARTING 0x00000002 /* being created */
1755 #define PF_EXITING 0x00000004 /* getting shut down */
1756 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1757 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1758 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1759 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1760 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1761 #define PF_DUMPCORE 0x00000200 /* dumped core */
1762 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1763 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1764 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1765 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1766 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1767 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1768 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1769 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1770 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1771 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1772 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1773 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1774 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1775 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1776 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1777 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1778 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1779 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1780 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1781 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1782 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1783 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1784
1785 /*
1786 * Only the _current_ task can read/write to tsk->flags, but other
1787 * tasks can access tsk->flags in readonly mode for example
1788 * with tsk_used_math (like during threaded core dumping).
1789 * There is however an exception to this rule during ptrace
1790 * or during fork: the ptracer task is allowed to write to the
1791 * child->flags of its traced child (same goes for fork, the parent
1792 * can write to the child->flags), because we're guaranteed the
1793 * child is not running and in turn not changing child->flags
1794 * at the same time the parent does it.
1795 */
1796 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1797 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1798 #define clear_used_math() clear_stopped_child_used_math(current)
1799 #define set_used_math() set_stopped_child_used_math(current)
1800 #define conditional_stopped_child_used_math(condition, child) \
1801 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1802 #define conditional_used_math(condition) \
1803 conditional_stopped_child_used_math(condition, current)
1804 #define copy_to_stopped_child_used_math(child) \
1805 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1806 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1807 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1808 #define used_math() tsk_used_math(current)
1809
1810 #ifdef CONFIG_TREE_PREEMPT_RCU
1811
1812 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1813 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1814
1815 static inline void rcu_copy_process(struct task_struct *p)
1816 {
1817 p->rcu_read_lock_nesting = 0;
1818 p->rcu_read_unlock_special = 0;
1819 p->rcu_blocked_node = NULL;
1820 INIT_LIST_HEAD(&p->rcu_node_entry);
1821 }
1822
1823 #else
1824
1825 static inline void rcu_copy_process(struct task_struct *p)
1826 {
1827 }
1828
1829 #endif
1830
1831 #ifdef CONFIG_SMP
1832 extern int set_cpus_allowed_ptr(struct task_struct *p,
1833 const struct cpumask *new_mask);
1834 #else
1835 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1836 const struct cpumask *new_mask)
1837 {
1838 if (!cpumask_test_cpu(0, new_mask))
1839 return -EINVAL;
1840 return 0;
1841 }
1842 #endif
1843
1844 #ifndef CONFIG_CPUMASK_OFFSTACK
1845 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1846 {
1847 return set_cpus_allowed_ptr(p, &new_mask);
1848 }
1849 #endif
1850
1851 /*
1852 * Architectures can set this to 1 if they have specified
1853 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1854 * but then during bootup it turns out that sched_clock()
1855 * is reliable after all:
1856 */
1857 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1858 extern int sched_clock_stable;
1859 #endif
1860
1861 /* ftrace calls sched_clock() directly */
1862 extern unsigned long long notrace sched_clock(void);
1863
1864 extern void sched_clock_init(void);
1865 extern u64 sched_clock_cpu(int cpu);
1866
1867 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1868 static inline void sched_clock_tick(void)
1869 {
1870 }
1871
1872 static inline void sched_clock_idle_sleep_event(void)
1873 {
1874 }
1875
1876 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1877 {
1878 }
1879 #else
1880 extern void sched_clock_tick(void);
1881 extern void sched_clock_idle_sleep_event(void);
1882 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1883 #endif
1884
1885 /*
1886 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1887 * clock constructed from sched_clock():
1888 */
1889 extern unsigned long long cpu_clock(int cpu);
1890
1891 extern unsigned long long
1892 task_sched_runtime(struct task_struct *task);
1893 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1894
1895 /* sched_exec is called by processes performing an exec */
1896 #ifdef CONFIG_SMP
1897 extern void sched_exec(void);
1898 #else
1899 #define sched_exec() {}
1900 #endif
1901
1902 extern void sched_clock_idle_sleep_event(void);
1903 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1904
1905 #ifdef CONFIG_HOTPLUG_CPU
1906 extern void idle_task_exit(void);
1907 #else
1908 static inline void idle_task_exit(void) {}
1909 #endif
1910
1911 extern void sched_idle_next(void);
1912
1913 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1914 extern void wake_up_idle_cpu(int cpu);
1915 #else
1916 static inline void wake_up_idle_cpu(int cpu) { }
1917 #endif
1918
1919 extern unsigned int sysctl_sched_latency;
1920 extern unsigned int sysctl_sched_min_granularity;
1921 extern unsigned int sysctl_sched_wakeup_granularity;
1922 extern unsigned int sysctl_sched_shares_ratelimit;
1923 extern unsigned int sysctl_sched_shares_thresh;
1924 extern unsigned int sysctl_sched_child_runs_first;
1925
1926 enum sched_tunable_scaling {
1927 SCHED_TUNABLESCALING_NONE,
1928 SCHED_TUNABLESCALING_LOG,
1929 SCHED_TUNABLESCALING_LINEAR,
1930 SCHED_TUNABLESCALING_END,
1931 };
1932 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1933
1934 #ifdef CONFIG_SCHED_DEBUG
1935 extern unsigned int sysctl_sched_migration_cost;
1936 extern unsigned int sysctl_sched_nr_migrate;
1937 extern unsigned int sysctl_sched_time_avg;
1938 extern unsigned int sysctl_timer_migration;
1939
1940 int sched_proc_update_handler(struct ctl_table *table, int write,
1941 void __user *buffer, size_t *length,
1942 loff_t *ppos);
1943 #endif
1944 #ifdef CONFIG_SCHED_DEBUG
1945 static inline unsigned int get_sysctl_timer_migration(void)
1946 {
1947 return sysctl_timer_migration;
1948 }
1949 #else
1950 static inline unsigned int get_sysctl_timer_migration(void)
1951 {
1952 return 1;
1953 }
1954 #endif
1955 extern unsigned int sysctl_sched_rt_period;
1956 extern int sysctl_sched_rt_runtime;
1957
1958 int sched_rt_handler(struct ctl_table *table, int write,
1959 void __user *buffer, size_t *lenp,
1960 loff_t *ppos);
1961
1962 extern unsigned int sysctl_sched_compat_yield;
1963
1964 #ifdef CONFIG_RT_MUTEXES
1965 extern int rt_mutex_getprio(struct task_struct *p);
1966 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1967 extern void rt_mutex_adjust_pi(struct task_struct *p);
1968 #else
1969 static inline int rt_mutex_getprio(struct task_struct *p)
1970 {
1971 return p->normal_prio;
1972 }
1973 # define rt_mutex_adjust_pi(p) do { } while (0)
1974 #endif
1975
1976 extern void set_user_nice(struct task_struct *p, long nice);
1977 extern int task_prio(const struct task_struct *p);
1978 extern int task_nice(const struct task_struct *p);
1979 extern int can_nice(const struct task_struct *p, const int nice);
1980 extern int task_curr(const struct task_struct *p);
1981 extern int idle_cpu(int cpu);
1982 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1983 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1984 struct sched_param *);
1985 extern struct task_struct *idle_task(int cpu);
1986 extern struct task_struct *curr_task(int cpu);
1987 extern void set_curr_task(int cpu, struct task_struct *p);
1988
1989 void yield(void);
1990
1991 /*
1992 * The default (Linux) execution domain.
1993 */
1994 extern struct exec_domain default_exec_domain;
1995
1996 union thread_union {
1997 struct thread_info thread_info;
1998 unsigned long stack[THREAD_SIZE/sizeof(long)];
1999 };
2000
2001 #ifndef __HAVE_ARCH_KSTACK_END
2002 static inline int kstack_end(void *addr)
2003 {
2004 /* Reliable end of stack detection:
2005 * Some APM bios versions misalign the stack
2006 */
2007 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2008 }
2009 #endif
2010
2011 extern union thread_union init_thread_union;
2012 extern struct task_struct init_task;
2013
2014 extern struct mm_struct init_mm;
2015
2016 extern struct pid_namespace init_pid_ns;
2017
2018 /*
2019 * find a task by one of its numerical ids
2020 *
2021 * find_task_by_pid_ns():
2022 * finds a task by its pid in the specified namespace
2023 * find_task_by_vpid():
2024 * finds a task by its virtual pid
2025 *
2026 * see also find_vpid() etc in include/linux/pid.h
2027 */
2028
2029 extern struct task_struct *find_task_by_vpid(pid_t nr);
2030 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2031 struct pid_namespace *ns);
2032
2033 extern void __set_special_pids(struct pid *pid);
2034
2035 /* per-UID process charging. */
2036 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2037 static inline struct user_struct *get_uid(struct user_struct *u)
2038 {
2039 atomic_inc(&u->__count);
2040 return u;
2041 }
2042 extern void free_uid(struct user_struct *);
2043 extern void release_uids(struct user_namespace *ns);
2044
2045 #include <asm/current.h>
2046
2047 extern void do_timer(unsigned long ticks);
2048
2049 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2050 extern int wake_up_process(struct task_struct *tsk);
2051 extern void wake_up_new_task(struct task_struct *tsk,
2052 unsigned long clone_flags);
2053 #ifdef CONFIG_SMP
2054 extern void kick_process(struct task_struct *tsk);
2055 #else
2056 static inline void kick_process(struct task_struct *tsk) { }
2057 #endif
2058 extern void sched_fork(struct task_struct *p, int clone_flags);
2059 extern void sched_dead(struct task_struct *p);
2060
2061 extern void proc_caches_init(void);
2062 extern void flush_signals(struct task_struct *);
2063 extern void __flush_signals(struct task_struct *);
2064 extern void ignore_signals(struct task_struct *);
2065 extern void flush_signal_handlers(struct task_struct *, int force_default);
2066 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2067
2068 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2069 {
2070 unsigned long flags;
2071 int ret;
2072
2073 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2074 ret = dequeue_signal(tsk, mask, info);
2075 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2076
2077 return ret;
2078 }
2079
2080 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2081 sigset_t *mask);
2082 extern void unblock_all_signals(void);
2083 extern void release_task(struct task_struct * p);
2084 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2085 extern int force_sigsegv(int, struct task_struct *);
2086 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2087 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2088 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2089 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2090 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2091 extern int kill_pid(struct pid *pid, int sig, int priv);
2092 extern int kill_proc_info(int, struct siginfo *, pid_t);
2093 extern int do_notify_parent(struct task_struct *, int);
2094 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2095 extern void force_sig(int, struct task_struct *);
2096 extern int send_sig(int, struct task_struct *, int);
2097 extern void zap_other_threads(struct task_struct *p);
2098 extern struct sigqueue *sigqueue_alloc(void);
2099 extern void sigqueue_free(struct sigqueue *);
2100 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2101 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2102 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2103
2104 static inline int kill_cad_pid(int sig, int priv)
2105 {
2106 return kill_pid(cad_pid, sig, priv);
2107 }
2108
2109 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2110 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2111 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2112 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2113
2114 /*
2115 * True if we are on the alternate signal stack.
2116 */
2117 static inline int on_sig_stack(unsigned long sp)
2118 {
2119 #ifdef CONFIG_STACK_GROWSUP
2120 return sp >= current->sas_ss_sp &&
2121 sp - current->sas_ss_sp < current->sas_ss_size;
2122 #else
2123 return sp > current->sas_ss_sp &&
2124 sp - current->sas_ss_sp <= current->sas_ss_size;
2125 #endif
2126 }
2127
2128 static inline int sas_ss_flags(unsigned long sp)
2129 {
2130 return (current->sas_ss_size == 0 ? SS_DISABLE
2131 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2132 }
2133
2134 /*
2135 * Routines for handling mm_structs
2136 */
2137 extern struct mm_struct * mm_alloc(void);
2138
2139 /* mmdrop drops the mm and the page tables */
2140 extern void __mmdrop(struct mm_struct *);
2141 static inline void mmdrop(struct mm_struct * mm)
2142 {
2143 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2144 __mmdrop(mm);
2145 }
2146
2147 /* mmput gets rid of the mappings and all user-space */
2148 extern void mmput(struct mm_struct *);
2149 /* Grab a reference to a task's mm, if it is not already going away */
2150 extern struct mm_struct *get_task_mm(struct task_struct *task);
2151 /* Remove the current tasks stale references to the old mm_struct */
2152 extern void mm_release(struct task_struct *, struct mm_struct *);
2153 /* Allocate a new mm structure and copy contents from tsk->mm */
2154 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2155
2156 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2157 struct task_struct *, struct pt_regs *);
2158 extern void flush_thread(void);
2159 extern void exit_thread(void);
2160
2161 extern void exit_files(struct task_struct *);
2162 extern void __cleanup_signal(struct signal_struct *);
2163 extern void __cleanup_sighand(struct sighand_struct *);
2164
2165 extern void exit_itimers(struct signal_struct *);
2166 extern void flush_itimer_signals(void);
2167
2168 extern NORET_TYPE void do_group_exit(int);
2169
2170 extern void daemonize(const char *, ...);
2171 extern int allow_signal(int);
2172 extern int disallow_signal(int);
2173
2174 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2175 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2176 struct task_struct *fork_idle(int);
2177
2178 extern void set_task_comm(struct task_struct *tsk, char *from);
2179 extern char *get_task_comm(char *to, struct task_struct *tsk);
2180
2181 #ifdef CONFIG_SMP
2182 extern void wait_task_context_switch(struct task_struct *p);
2183 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2184 #else
2185 static inline void wait_task_context_switch(struct task_struct *p) {}
2186 static inline unsigned long wait_task_inactive(struct task_struct *p,
2187 long match_state)
2188 {
2189 return 1;
2190 }
2191 #endif
2192
2193 #define next_task(p) \
2194 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2195
2196 #define for_each_process(p) \
2197 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2198
2199 extern bool current_is_single_threaded(void);
2200
2201 /*
2202 * Careful: do_each_thread/while_each_thread is a double loop so
2203 * 'break' will not work as expected - use goto instead.
2204 */
2205 #define do_each_thread(g, t) \
2206 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2207
2208 #define while_each_thread(g, t) \
2209 while ((t = next_thread(t)) != g)
2210
2211 /* de_thread depends on thread_group_leader not being a pid based check */
2212 #define thread_group_leader(p) (p == p->group_leader)
2213
2214 /* Do to the insanities of de_thread it is possible for a process
2215 * to have the pid of the thread group leader without actually being
2216 * the thread group leader. For iteration through the pids in proc
2217 * all we care about is that we have a task with the appropriate
2218 * pid, we don't actually care if we have the right task.
2219 */
2220 static inline int has_group_leader_pid(struct task_struct *p)
2221 {
2222 return p->pid == p->tgid;
2223 }
2224
2225 static inline
2226 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2227 {
2228 return p1->tgid == p2->tgid;
2229 }
2230
2231 static inline struct task_struct *next_thread(const struct task_struct *p)
2232 {
2233 return list_entry_rcu(p->thread_group.next,
2234 struct task_struct, thread_group);
2235 }
2236
2237 static inline int thread_group_empty(struct task_struct *p)
2238 {
2239 return list_empty(&p->thread_group);
2240 }
2241
2242 #define delay_group_leader(p) \
2243 (thread_group_leader(p) && !thread_group_empty(p))
2244
2245 static inline int task_detached(struct task_struct *p)
2246 {
2247 return p->exit_signal == -1;
2248 }
2249
2250 /*
2251 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2252 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2253 * pins the final release of task.io_context. Also protects ->cpuset and
2254 * ->cgroup.subsys[].
2255 *
2256 * Nests both inside and outside of read_lock(&tasklist_lock).
2257 * It must not be nested with write_lock_irq(&tasklist_lock),
2258 * neither inside nor outside.
2259 */
2260 static inline void task_lock(struct task_struct *p)
2261 {
2262 spin_lock(&p->alloc_lock);
2263 }
2264
2265 static inline void task_unlock(struct task_struct *p)
2266 {
2267 spin_unlock(&p->alloc_lock);
2268 }
2269
2270 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2271 unsigned long *flags);
2272
2273 static inline void unlock_task_sighand(struct task_struct *tsk,
2274 unsigned long *flags)
2275 {
2276 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2277 }
2278
2279 #ifndef __HAVE_THREAD_FUNCTIONS
2280
2281 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2282 #define task_stack_page(task) ((task)->stack)
2283
2284 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2285 {
2286 *task_thread_info(p) = *task_thread_info(org);
2287 task_thread_info(p)->task = p;
2288 }
2289
2290 static inline unsigned long *end_of_stack(struct task_struct *p)
2291 {
2292 return (unsigned long *)(task_thread_info(p) + 1);
2293 }
2294
2295 #endif
2296
2297 static inline int object_is_on_stack(void *obj)
2298 {
2299 void *stack = task_stack_page(current);
2300
2301 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2302 }
2303
2304 extern void thread_info_cache_init(void);
2305
2306 #ifdef CONFIG_DEBUG_STACK_USAGE
2307 static inline unsigned long stack_not_used(struct task_struct *p)
2308 {
2309 unsigned long *n = end_of_stack(p);
2310
2311 do { /* Skip over canary */
2312 n++;
2313 } while (!*n);
2314
2315 return (unsigned long)n - (unsigned long)end_of_stack(p);
2316 }
2317 #endif
2318
2319 /* set thread flags in other task's structures
2320 * - see asm/thread_info.h for TIF_xxxx flags available
2321 */
2322 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2323 {
2324 set_ti_thread_flag(task_thread_info(tsk), flag);
2325 }
2326
2327 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2328 {
2329 clear_ti_thread_flag(task_thread_info(tsk), flag);
2330 }
2331
2332 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2333 {
2334 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2335 }
2336
2337 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341
2342 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344 return test_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346
2347 static inline void set_tsk_need_resched(struct task_struct *tsk)
2348 {
2349 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2350 }
2351
2352 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2353 {
2354 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355 }
2356
2357 static inline int test_tsk_need_resched(struct task_struct *tsk)
2358 {
2359 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2360 }
2361
2362 static inline int restart_syscall(void)
2363 {
2364 set_tsk_thread_flag(current, TIF_SIGPENDING);
2365 return -ERESTARTNOINTR;
2366 }
2367
2368 static inline int signal_pending(struct task_struct *p)
2369 {
2370 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2371 }
2372
2373 static inline int __fatal_signal_pending(struct task_struct *p)
2374 {
2375 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2376 }
2377
2378 static inline int fatal_signal_pending(struct task_struct *p)
2379 {
2380 return signal_pending(p) && __fatal_signal_pending(p);
2381 }
2382
2383 static inline int signal_pending_state(long state, struct task_struct *p)
2384 {
2385 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2386 return 0;
2387 if (!signal_pending(p))
2388 return 0;
2389
2390 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2391 }
2392
2393 static inline int need_resched(void)
2394 {
2395 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2396 }
2397
2398 /*
2399 * cond_resched() and cond_resched_lock(): latency reduction via
2400 * explicit rescheduling in places that are safe. The return
2401 * value indicates whether a reschedule was done in fact.
2402 * cond_resched_lock() will drop the spinlock before scheduling,
2403 * cond_resched_softirq() will enable bhs before scheduling.
2404 */
2405 extern int _cond_resched(void);
2406
2407 #define cond_resched() ({ \
2408 __might_sleep(__FILE__, __LINE__, 0); \
2409 _cond_resched(); \
2410 })
2411
2412 extern int __cond_resched_lock(spinlock_t *lock);
2413
2414 #ifdef CONFIG_PREEMPT
2415 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2416 #else
2417 #define PREEMPT_LOCK_OFFSET 0
2418 #endif
2419
2420 #define cond_resched_lock(lock) ({ \
2421 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2422 __cond_resched_lock(lock); \
2423 })
2424
2425 extern int __cond_resched_softirq(void);
2426
2427 #define cond_resched_softirq() ({ \
2428 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2429 __cond_resched_softirq(); \
2430 })
2431
2432 /*
2433 * Does a critical section need to be broken due to another
2434 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2435 * but a general need for low latency)
2436 */
2437 static inline int spin_needbreak(spinlock_t *lock)
2438 {
2439 #ifdef CONFIG_PREEMPT
2440 return spin_is_contended(lock);
2441 #else
2442 return 0;
2443 #endif
2444 }
2445
2446 /*
2447 * Thread group CPU time accounting.
2448 */
2449 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2450 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2451
2452 static inline void thread_group_cputime_init(struct signal_struct *sig)
2453 {
2454 sig->cputimer.cputime = INIT_CPUTIME;
2455 spin_lock_init(&sig->cputimer.lock);
2456 sig->cputimer.running = 0;
2457 }
2458
2459 static inline void thread_group_cputime_free(struct signal_struct *sig)
2460 {
2461 }
2462
2463 /*
2464 * Reevaluate whether the task has signals pending delivery.
2465 * Wake the task if so.
2466 * This is required every time the blocked sigset_t changes.
2467 * callers must hold sighand->siglock.
2468 */
2469 extern void recalc_sigpending_and_wake(struct task_struct *t);
2470 extern void recalc_sigpending(void);
2471
2472 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2473
2474 /*
2475 * Wrappers for p->thread_info->cpu access. No-op on UP.
2476 */
2477 #ifdef CONFIG_SMP
2478
2479 static inline unsigned int task_cpu(const struct task_struct *p)
2480 {
2481 return task_thread_info(p)->cpu;
2482 }
2483
2484 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2485
2486 #else
2487
2488 static inline unsigned int task_cpu(const struct task_struct *p)
2489 {
2490 return 0;
2491 }
2492
2493 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2494 {
2495 }
2496
2497 #endif /* CONFIG_SMP */
2498
2499 #ifdef CONFIG_TRACING
2500 extern void
2501 __trace_special(void *__tr, void *__data,
2502 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2503 #else
2504 static inline void
2505 __trace_special(void *__tr, void *__data,
2506 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2507 {
2508 }
2509 #endif
2510
2511 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2512 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2513
2514 extern void normalize_rt_tasks(void);
2515
2516 #ifdef CONFIG_GROUP_SCHED
2517
2518 extern struct task_group init_task_group;
2519 #ifdef CONFIG_USER_SCHED
2520 extern struct task_group root_task_group;
2521 extern void set_tg_uid(struct user_struct *user);
2522 #endif
2523
2524 extern struct task_group *sched_create_group(struct task_group *parent);
2525 extern void sched_destroy_group(struct task_group *tg);
2526 extern void sched_move_task(struct task_struct *tsk);
2527 #ifdef CONFIG_FAIR_GROUP_SCHED
2528 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2529 extern unsigned long sched_group_shares(struct task_group *tg);
2530 #endif
2531 #ifdef CONFIG_RT_GROUP_SCHED
2532 extern int sched_group_set_rt_runtime(struct task_group *tg,
2533 long rt_runtime_us);
2534 extern long sched_group_rt_runtime(struct task_group *tg);
2535 extern int sched_group_set_rt_period(struct task_group *tg,
2536 long rt_period_us);
2537 extern long sched_group_rt_period(struct task_group *tg);
2538 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2539 #endif
2540 #endif
2541
2542 extern int task_can_switch_user(struct user_struct *up,
2543 struct task_struct *tsk);
2544
2545 #ifdef CONFIG_TASK_XACCT
2546 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2547 {
2548 tsk->ioac.rchar += amt;
2549 }
2550
2551 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2552 {
2553 tsk->ioac.wchar += amt;
2554 }
2555
2556 static inline void inc_syscr(struct task_struct *tsk)
2557 {
2558 tsk->ioac.syscr++;
2559 }
2560
2561 static inline void inc_syscw(struct task_struct *tsk)
2562 {
2563 tsk->ioac.syscw++;
2564 }
2565 #else
2566 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2567 {
2568 }
2569
2570 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2571 {
2572 }
2573
2574 static inline void inc_syscr(struct task_struct *tsk)
2575 {
2576 }
2577
2578 static inline void inc_syscw(struct task_struct *tsk)
2579 {
2580 }
2581 #endif
2582
2583 #ifndef TASK_SIZE_OF
2584 #define TASK_SIZE_OF(tsk) TASK_SIZE
2585 #endif
2586
2587 /*
2588 * Call the function if the target task is executing on a CPU right now:
2589 */
2590 extern void task_oncpu_function_call(struct task_struct *p,
2591 void (*func) (void *info), void *info);
2592
2593
2594 #ifdef CONFIG_MM_OWNER
2595 extern void mm_update_next_owner(struct mm_struct *mm);
2596 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2597 #else
2598 static inline void mm_update_next_owner(struct mm_struct *mm)
2599 {
2600 }
2601
2602 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2603 {
2604 }
2605 #endif /* CONFIG_MM_OWNER */
2606
2607 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2608 unsigned int limit)
2609 {
2610 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2611 }
2612
2613 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2614 unsigned int limit)
2615 {
2616 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2617 }
2618
2619 static inline unsigned long rlimit(unsigned int limit)
2620 {
2621 return task_rlimit(current, limit);
2622 }
2623
2624 static inline unsigned long rlimit_max(unsigned int limit)
2625 {
2626 return task_rlimit_max(current, limit);
2627 }
2628
2629 #endif /* __KERNEL__ */
2630
2631 #endif