]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/sched.h
sched: Extend enqueue_task to allow head queueing
[mirror_ubuntu-kernels.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(void);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 extern void sched_init(void);
262 extern void sched_init_smp(void);
263 extern asmlinkage void schedule_tail(struct task_struct *prev);
264 extern void init_idle(struct task_struct *idle, int cpu);
265 extern void init_idle_bootup_task(struct task_struct *idle);
266
267 extern int runqueue_is_locked(int cpu);
268 extern void task_rq_unlock_wait(struct task_struct *p);
269
270 extern cpumask_var_t nohz_cpu_mask;
271 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
272 extern int select_nohz_load_balancer(int cpu);
273 extern int get_nohz_load_balancer(void);
274 #else
275 static inline int select_nohz_load_balancer(int cpu)
276 {
277 return 0;
278 }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_DETECT_SOFTLOCKUP
311 extern void softlockup_tick(void);
312 extern void touch_softlockup_watchdog(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void softlockup_tick(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #endif
340
341 /* Attach to any functions which should be ignored in wchan output. */
342 #define __sched __attribute__((__section__(".sched.text")))
343
344 /* Linker adds these: start and end of __sched functions */
345 extern char __sched_text_start[], __sched_text_end[];
346
347 /* Is this address in the __sched functions? */
348 extern int in_sched_functions(unsigned long addr);
349
350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
351 extern signed long schedule_timeout(signed long timeout);
352 extern signed long schedule_timeout_interruptible(signed long timeout);
353 extern signed long schedule_timeout_killable(signed long timeout);
354 extern signed long schedule_timeout_uninterruptible(signed long timeout);
355 asmlinkage void schedule(void);
356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357
358 struct nsproxy;
359 struct user_namespace;
360
361 /*
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
365 *
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
372 */
373 #define MAPCOUNT_ELF_CORE_MARGIN (5)
374 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375
376 extern int sysctl_max_map_count;
377
378 #include <linux/aio.h>
379
380 extern unsigned long
381 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
382 unsigned long, unsigned long);
383 extern unsigned long
384 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
385 unsigned long len, unsigned long pgoff,
386 unsigned long flags);
387 extern void arch_unmap_area(struct mm_struct *, unsigned long);
388 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
389
390 #if USE_SPLIT_PTLOCKS
391 /*
392 * The mm counters are not protected by its page_table_lock,
393 * so must be incremented atomically.
394 */
395 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
396 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
397 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
398 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
399 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
400
401 #else /* !USE_SPLIT_PTLOCKS */
402 /*
403 * The mm counters are protected by its page_table_lock,
404 * so can be incremented directly.
405 */
406 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
407 #define get_mm_counter(mm, member) ((mm)->_##member)
408 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
409 #define inc_mm_counter(mm, member) (mm)->_##member++
410 #define dec_mm_counter(mm, member) (mm)->_##member--
411
412 #endif /* !USE_SPLIT_PTLOCKS */
413
414 #define get_mm_rss(mm) \
415 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
416 #define update_hiwater_rss(mm) do { \
417 unsigned long _rss = get_mm_rss(mm); \
418 if ((mm)->hiwater_rss < _rss) \
419 (mm)->hiwater_rss = _rss; \
420 } while (0)
421 #define update_hiwater_vm(mm) do { \
422 if ((mm)->hiwater_vm < (mm)->total_vm) \
423 (mm)->hiwater_vm = (mm)->total_vm; \
424 } while (0)
425
426 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
427 {
428 return max(mm->hiwater_rss, get_mm_rss(mm));
429 }
430
431 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
432 struct mm_struct *mm)
433 {
434 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
435
436 if (*maxrss < hiwater_rss)
437 *maxrss = hiwater_rss;
438 }
439
440 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
441 {
442 return max(mm->hiwater_vm, mm->total_vm);
443 }
444
445 extern void set_dumpable(struct mm_struct *mm, int value);
446 extern int get_dumpable(struct mm_struct *mm);
447
448 /* mm flags */
449 /* dumpable bits */
450 #define MMF_DUMPABLE 0 /* core dump is permitted */
451 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
452
453 #define MMF_DUMPABLE_BITS 2
454 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
455
456 /* coredump filter bits */
457 #define MMF_DUMP_ANON_PRIVATE 2
458 #define MMF_DUMP_ANON_SHARED 3
459 #define MMF_DUMP_MAPPED_PRIVATE 4
460 #define MMF_DUMP_MAPPED_SHARED 5
461 #define MMF_DUMP_ELF_HEADERS 6
462 #define MMF_DUMP_HUGETLB_PRIVATE 7
463 #define MMF_DUMP_HUGETLB_SHARED 8
464
465 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
466 #define MMF_DUMP_FILTER_BITS 7
467 #define MMF_DUMP_FILTER_MASK \
468 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
469 #define MMF_DUMP_FILTER_DEFAULT \
470 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
471 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
472
473 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
474 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
475 #else
476 # define MMF_DUMP_MASK_DEFAULT_ELF 0
477 #endif
478 /* leave room for more dump flags */
479 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
480
481 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
482
483 struct sighand_struct {
484 atomic_t count;
485 struct k_sigaction action[_NSIG];
486 spinlock_t siglock;
487 wait_queue_head_t signalfd_wqh;
488 };
489
490 struct pacct_struct {
491 int ac_flag;
492 long ac_exitcode;
493 unsigned long ac_mem;
494 cputime_t ac_utime, ac_stime;
495 unsigned long ac_minflt, ac_majflt;
496 };
497
498 struct cpu_itimer {
499 cputime_t expires;
500 cputime_t incr;
501 u32 error;
502 u32 incr_error;
503 };
504
505 /**
506 * struct task_cputime - collected CPU time counts
507 * @utime: time spent in user mode, in &cputime_t units
508 * @stime: time spent in kernel mode, in &cputime_t units
509 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
510 *
511 * This structure groups together three kinds of CPU time that are
512 * tracked for threads and thread groups. Most things considering
513 * CPU time want to group these counts together and treat all three
514 * of them in parallel.
515 */
516 struct task_cputime {
517 cputime_t utime;
518 cputime_t stime;
519 unsigned long long sum_exec_runtime;
520 };
521 /* Alternate field names when used to cache expirations. */
522 #define prof_exp stime
523 #define virt_exp utime
524 #define sched_exp sum_exec_runtime
525
526 #define INIT_CPUTIME \
527 (struct task_cputime) { \
528 .utime = cputime_zero, \
529 .stime = cputime_zero, \
530 .sum_exec_runtime = 0, \
531 }
532
533 /*
534 * Disable preemption until the scheduler is running.
535 * Reset by start_kernel()->sched_init()->init_idle().
536 *
537 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
538 * before the scheduler is active -- see should_resched().
539 */
540 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
541
542 /**
543 * struct thread_group_cputimer - thread group interval timer counts
544 * @cputime: thread group interval timers.
545 * @running: non-zero when there are timers running and
546 * @cputime receives updates.
547 * @lock: lock for fields in this struct.
548 *
549 * This structure contains the version of task_cputime, above, that is
550 * used for thread group CPU timer calculations.
551 */
552 struct thread_group_cputimer {
553 struct task_cputime cputime;
554 int running;
555 spinlock_t lock;
556 };
557
558 /*
559 * NOTE! "signal_struct" does not have it's own
560 * locking, because a shared signal_struct always
561 * implies a shared sighand_struct, so locking
562 * sighand_struct is always a proper superset of
563 * the locking of signal_struct.
564 */
565 struct signal_struct {
566 atomic_t count;
567 atomic_t live;
568
569 wait_queue_head_t wait_chldexit; /* for wait4() */
570
571 /* current thread group signal load-balancing target: */
572 struct task_struct *curr_target;
573
574 /* shared signal handling: */
575 struct sigpending shared_pending;
576
577 /* thread group exit support */
578 int group_exit_code;
579 /* overloaded:
580 * - notify group_exit_task when ->count is equal to notify_count
581 * - everyone except group_exit_task is stopped during signal delivery
582 * of fatal signals, group_exit_task processes the signal.
583 */
584 int notify_count;
585 struct task_struct *group_exit_task;
586
587 /* thread group stop support, overloads group_exit_code too */
588 int group_stop_count;
589 unsigned int flags; /* see SIGNAL_* flags below */
590
591 /* POSIX.1b Interval Timers */
592 struct list_head posix_timers;
593
594 /* ITIMER_REAL timer for the process */
595 struct hrtimer real_timer;
596 struct pid *leader_pid;
597 ktime_t it_real_incr;
598
599 /*
600 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
601 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
602 * values are defined to 0 and 1 respectively
603 */
604 struct cpu_itimer it[2];
605
606 /*
607 * Thread group totals for process CPU timers.
608 * See thread_group_cputimer(), et al, for details.
609 */
610 struct thread_group_cputimer cputimer;
611
612 /* Earliest-expiration cache. */
613 struct task_cputime cputime_expires;
614
615 struct list_head cpu_timers[3];
616
617 struct pid *tty_old_pgrp;
618
619 /* boolean value for session group leader */
620 int leader;
621
622 struct tty_struct *tty; /* NULL if no tty */
623
624 /*
625 * Cumulative resource counters for dead threads in the group,
626 * and for reaped dead child processes forked by this group.
627 * Live threads maintain their own counters and add to these
628 * in __exit_signal, except for the group leader.
629 */
630 cputime_t utime, stime, cutime, cstime;
631 cputime_t gtime;
632 cputime_t cgtime;
633 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
634 cputime_t prev_utime, prev_stime;
635 #endif
636 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
637 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
638 unsigned long inblock, oublock, cinblock, coublock;
639 unsigned long maxrss, cmaxrss;
640 struct task_io_accounting ioac;
641
642 /*
643 * Cumulative ns of schedule CPU time fo dead threads in the
644 * group, not including a zombie group leader, (This only differs
645 * from jiffies_to_ns(utime + stime) if sched_clock uses something
646 * other than jiffies.)
647 */
648 unsigned long long sum_sched_runtime;
649
650 /*
651 * We don't bother to synchronize most readers of this at all,
652 * because there is no reader checking a limit that actually needs
653 * to get both rlim_cur and rlim_max atomically, and either one
654 * alone is a single word that can safely be read normally.
655 * getrlimit/setrlimit use task_lock(current->group_leader) to
656 * protect this instead of the siglock, because they really
657 * have no need to disable irqs.
658 */
659 struct rlimit rlim[RLIM_NLIMITS];
660
661 #ifdef CONFIG_BSD_PROCESS_ACCT
662 struct pacct_struct pacct; /* per-process accounting information */
663 #endif
664 #ifdef CONFIG_TASKSTATS
665 struct taskstats *stats;
666 #endif
667 #ifdef CONFIG_AUDIT
668 unsigned audit_tty;
669 struct tty_audit_buf *tty_audit_buf;
670 #endif
671
672 int oom_adj; /* OOM kill score adjustment (bit shift) */
673 };
674
675 /* Context switch must be unlocked if interrupts are to be enabled */
676 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
677 # define __ARCH_WANT_UNLOCKED_CTXSW
678 #endif
679
680 /*
681 * Bits in flags field of signal_struct.
682 */
683 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
684 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
685 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
686 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
687 /*
688 * Pending notifications to parent.
689 */
690 #define SIGNAL_CLD_STOPPED 0x00000010
691 #define SIGNAL_CLD_CONTINUED 0x00000020
692 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
693
694 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
695
696 /* If true, all threads except ->group_exit_task have pending SIGKILL */
697 static inline int signal_group_exit(const struct signal_struct *sig)
698 {
699 return (sig->flags & SIGNAL_GROUP_EXIT) ||
700 (sig->group_exit_task != NULL);
701 }
702
703 /*
704 * Some day this will be a full-fledged user tracking system..
705 */
706 struct user_struct {
707 atomic_t __count; /* reference count */
708 atomic_t processes; /* How many processes does this user have? */
709 atomic_t files; /* How many open files does this user have? */
710 atomic_t sigpending; /* How many pending signals does this user have? */
711 #ifdef CONFIG_INOTIFY_USER
712 atomic_t inotify_watches; /* How many inotify watches does this user have? */
713 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
714 #endif
715 #ifdef CONFIG_EPOLL
716 atomic_t epoll_watches; /* The number of file descriptors currently watched */
717 #endif
718 #ifdef CONFIG_POSIX_MQUEUE
719 /* protected by mq_lock */
720 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
721 #endif
722 unsigned long locked_shm; /* How many pages of mlocked shm ? */
723
724 #ifdef CONFIG_KEYS
725 struct key *uid_keyring; /* UID specific keyring */
726 struct key *session_keyring; /* UID's default session keyring */
727 #endif
728
729 /* Hash table maintenance information */
730 struct hlist_node uidhash_node;
731 uid_t uid;
732 struct user_namespace *user_ns;
733
734 #ifdef CONFIG_PERF_EVENTS
735 atomic_long_t locked_vm;
736 #endif
737 };
738
739 extern int uids_sysfs_init(void);
740
741 extern struct user_struct *find_user(uid_t);
742
743 extern struct user_struct root_user;
744 #define INIT_USER (&root_user)
745
746
747 struct backing_dev_info;
748 struct reclaim_state;
749
750 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
751 struct sched_info {
752 /* cumulative counters */
753 unsigned long pcount; /* # of times run on this cpu */
754 unsigned long long run_delay; /* time spent waiting on a runqueue */
755
756 /* timestamps */
757 unsigned long long last_arrival,/* when we last ran on a cpu */
758 last_queued; /* when we were last queued to run */
759 #ifdef CONFIG_SCHEDSTATS
760 /* BKL stats */
761 unsigned int bkl_count;
762 #endif
763 };
764 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
765
766 #ifdef CONFIG_TASK_DELAY_ACCT
767 struct task_delay_info {
768 spinlock_t lock;
769 unsigned int flags; /* Private per-task flags */
770
771 /* For each stat XXX, add following, aligned appropriately
772 *
773 * struct timespec XXX_start, XXX_end;
774 * u64 XXX_delay;
775 * u32 XXX_count;
776 *
777 * Atomicity of updates to XXX_delay, XXX_count protected by
778 * single lock above (split into XXX_lock if contention is an issue).
779 */
780
781 /*
782 * XXX_count is incremented on every XXX operation, the delay
783 * associated with the operation is added to XXX_delay.
784 * XXX_delay contains the accumulated delay time in nanoseconds.
785 */
786 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
787 u64 blkio_delay; /* wait for sync block io completion */
788 u64 swapin_delay; /* wait for swapin block io completion */
789 u32 blkio_count; /* total count of the number of sync block */
790 /* io operations performed */
791 u32 swapin_count; /* total count of the number of swapin block */
792 /* io operations performed */
793
794 struct timespec freepages_start, freepages_end;
795 u64 freepages_delay; /* wait for memory reclaim */
796 u32 freepages_count; /* total count of memory reclaim */
797 };
798 #endif /* CONFIG_TASK_DELAY_ACCT */
799
800 static inline int sched_info_on(void)
801 {
802 #ifdef CONFIG_SCHEDSTATS
803 return 1;
804 #elif defined(CONFIG_TASK_DELAY_ACCT)
805 extern int delayacct_on;
806 return delayacct_on;
807 #else
808 return 0;
809 #endif
810 }
811
812 enum cpu_idle_type {
813 CPU_IDLE,
814 CPU_NOT_IDLE,
815 CPU_NEWLY_IDLE,
816 CPU_MAX_IDLE_TYPES
817 };
818
819 /*
820 * sched-domains (multiprocessor balancing) declarations:
821 */
822
823 /*
824 * Increase resolution of nice-level calculations:
825 */
826 #define SCHED_LOAD_SHIFT 10
827 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
828
829 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
830
831 #ifdef CONFIG_SMP
832 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
833 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
834 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
835 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
836 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
837 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
838 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
839 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
840 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
841 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
842 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
843
844 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
845
846 enum powersavings_balance_level {
847 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
848 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
849 * first for long running threads
850 */
851 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
852 * cpu package for power savings
853 */
854 MAX_POWERSAVINGS_BALANCE_LEVELS
855 };
856
857 extern int sched_mc_power_savings, sched_smt_power_savings;
858
859 static inline int sd_balance_for_mc_power(void)
860 {
861 if (sched_smt_power_savings)
862 return SD_POWERSAVINGS_BALANCE;
863
864 return SD_PREFER_SIBLING;
865 }
866
867 static inline int sd_balance_for_package_power(void)
868 {
869 if (sched_mc_power_savings | sched_smt_power_savings)
870 return SD_POWERSAVINGS_BALANCE;
871
872 return SD_PREFER_SIBLING;
873 }
874
875 /*
876 * Optimise SD flags for power savings:
877 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
878 * Keep default SD flags if sched_{smt,mc}_power_saving=0
879 */
880
881 static inline int sd_power_saving_flags(void)
882 {
883 if (sched_mc_power_savings | sched_smt_power_savings)
884 return SD_BALANCE_NEWIDLE;
885
886 return 0;
887 }
888
889 struct sched_group {
890 struct sched_group *next; /* Must be a circular list */
891
892 /*
893 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
894 * single CPU.
895 */
896 unsigned int cpu_power;
897
898 /*
899 * The CPUs this group covers.
900 *
901 * NOTE: this field is variable length. (Allocated dynamically
902 * by attaching extra space to the end of the structure,
903 * depending on how many CPUs the kernel has booted up with)
904 *
905 * It is also be embedded into static data structures at build
906 * time. (See 'struct static_sched_group' in kernel/sched.c)
907 */
908 unsigned long cpumask[0];
909 };
910
911 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
912 {
913 return to_cpumask(sg->cpumask);
914 }
915
916 enum sched_domain_level {
917 SD_LV_NONE = 0,
918 SD_LV_SIBLING,
919 SD_LV_MC,
920 SD_LV_CPU,
921 SD_LV_NODE,
922 SD_LV_ALLNODES,
923 SD_LV_MAX
924 };
925
926 struct sched_domain_attr {
927 int relax_domain_level;
928 };
929
930 #define SD_ATTR_INIT (struct sched_domain_attr) { \
931 .relax_domain_level = -1, \
932 }
933
934 struct sched_domain {
935 /* These fields must be setup */
936 struct sched_domain *parent; /* top domain must be null terminated */
937 struct sched_domain *child; /* bottom domain must be null terminated */
938 struct sched_group *groups; /* the balancing groups of the domain */
939 unsigned long min_interval; /* Minimum balance interval ms */
940 unsigned long max_interval; /* Maximum balance interval ms */
941 unsigned int busy_factor; /* less balancing by factor if busy */
942 unsigned int imbalance_pct; /* No balance until over watermark */
943 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
944 unsigned int busy_idx;
945 unsigned int idle_idx;
946 unsigned int newidle_idx;
947 unsigned int wake_idx;
948 unsigned int forkexec_idx;
949 unsigned int smt_gain;
950 int flags; /* See SD_* */
951 enum sched_domain_level level;
952
953 /* Runtime fields. */
954 unsigned long last_balance; /* init to jiffies. units in jiffies */
955 unsigned int balance_interval; /* initialise to 1. units in ms. */
956 unsigned int nr_balance_failed; /* initialise to 0 */
957
958 u64 last_update;
959
960 #ifdef CONFIG_SCHEDSTATS
961 /* load_balance() stats */
962 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
963 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
964 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
965 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
966 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
970
971 /* Active load balancing */
972 unsigned int alb_count;
973 unsigned int alb_failed;
974 unsigned int alb_pushed;
975
976 /* SD_BALANCE_EXEC stats */
977 unsigned int sbe_count;
978 unsigned int sbe_balanced;
979 unsigned int sbe_pushed;
980
981 /* SD_BALANCE_FORK stats */
982 unsigned int sbf_count;
983 unsigned int sbf_balanced;
984 unsigned int sbf_pushed;
985
986 /* try_to_wake_up() stats */
987 unsigned int ttwu_wake_remote;
988 unsigned int ttwu_move_affine;
989 unsigned int ttwu_move_balance;
990 #endif
991 #ifdef CONFIG_SCHED_DEBUG
992 char *name;
993 #endif
994
995 /*
996 * Span of all CPUs in this domain.
997 *
998 * NOTE: this field is variable length. (Allocated dynamically
999 * by attaching extra space to the end of the structure,
1000 * depending on how many CPUs the kernel has booted up with)
1001 *
1002 * It is also be embedded into static data structures at build
1003 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1004 */
1005 unsigned long span[0];
1006 };
1007
1008 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1009 {
1010 return to_cpumask(sd->span);
1011 }
1012
1013 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1014 struct sched_domain_attr *dattr_new);
1015
1016 /* Allocate an array of sched domains, for partition_sched_domains(). */
1017 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1018 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1019
1020 /* Test a flag in parent sched domain */
1021 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1022 {
1023 if (sd->parent && (sd->parent->flags & flag))
1024 return 1;
1025
1026 return 0;
1027 }
1028
1029 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1030 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1031
1032 #else /* CONFIG_SMP */
1033
1034 struct sched_domain_attr;
1035
1036 static inline void
1037 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1038 struct sched_domain_attr *dattr_new)
1039 {
1040 }
1041 #endif /* !CONFIG_SMP */
1042
1043
1044 struct io_context; /* See blkdev.h */
1045
1046
1047 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1048 extern void prefetch_stack(struct task_struct *t);
1049 #else
1050 static inline void prefetch_stack(struct task_struct *t) { }
1051 #endif
1052
1053 struct audit_context; /* See audit.c */
1054 struct mempolicy;
1055 struct pipe_inode_info;
1056 struct uts_namespace;
1057
1058 struct rq;
1059 struct sched_domain;
1060
1061 /*
1062 * wake flags
1063 */
1064 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1065 #define WF_FORK 0x02 /* child wakeup after fork */
1066
1067 struct sched_class {
1068 const struct sched_class *next;
1069
1070 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup,
1071 bool head);
1072 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1073 void (*yield_task) (struct rq *rq);
1074
1075 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1076
1077 struct task_struct * (*pick_next_task) (struct rq *rq);
1078 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1079
1080 #ifdef CONFIG_SMP
1081 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1082
1083 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1084 void (*post_schedule) (struct rq *this_rq);
1085 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1086 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1087
1088 void (*set_cpus_allowed)(struct task_struct *p,
1089 const struct cpumask *newmask);
1090
1091 void (*rq_online)(struct rq *rq);
1092 void (*rq_offline)(struct rq *rq);
1093 #endif
1094
1095 void (*set_curr_task) (struct rq *rq);
1096 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1097 void (*task_fork) (struct task_struct *p);
1098
1099 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1100 int running);
1101 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1102 int running);
1103 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1104 int oldprio, int running);
1105
1106 unsigned int (*get_rr_interval) (struct rq *rq,
1107 struct task_struct *task);
1108
1109 #ifdef CONFIG_FAIR_GROUP_SCHED
1110 void (*moved_group) (struct task_struct *p, int on_rq);
1111 #endif
1112 };
1113
1114 struct load_weight {
1115 unsigned long weight, inv_weight;
1116 };
1117
1118 /*
1119 * CFS stats for a schedulable entity (task, task-group etc)
1120 *
1121 * Current field usage histogram:
1122 *
1123 * 4 se->block_start
1124 * 4 se->run_node
1125 * 4 se->sleep_start
1126 * 6 se->load.weight
1127 */
1128 struct sched_entity {
1129 struct load_weight load; /* for load-balancing */
1130 struct rb_node run_node;
1131 struct list_head group_node;
1132 unsigned int on_rq;
1133
1134 u64 exec_start;
1135 u64 sum_exec_runtime;
1136 u64 vruntime;
1137 u64 prev_sum_exec_runtime;
1138
1139 u64 last_wakeup;
1140 u64 avg_overlap;
1141
1142 u64 nr_migrations;
1143
1144 u64 start_runtime;
1145 u64 avg_wakeup;
1146
1147 #ifdef CONFIG_SCHEDSTATS
1148 u64 wait_start;
1149 u64 wait_max;
1150 u64 wait_count;
1151 u64 wait_sum;
1152 u64 iowait_count;
1153 u64 iowait_sum;
1154
1155 u64 sleep_start;
1156 u64 sleep_max;
1157 s64 sum_sleep_runtime;
1158
1159 u64 block_start;
1160 u64 block_max;
1161 u64 exec_max;
1162 u64 slice_max;
1163
1164 u64 nr_migrations_cold;
1165 u64 nr_failed_migrations_affine;
1166 u64 nr_failed_migrations_running;
1167 u64 nr_failed_migrations_hot;
1168 u64 nr_forced_migrations;
1169
1170 u64 nr_wakeups;
1171 u64 nr_wakeups_sync;
1172 u64 nr_wakeups_migrate;
1173 u64 nr_wakeups_local;
1174 u64 nr_wakeups_remote;
1175 u64 nr_wakeups_affine;
1176 u64 nr_wakeups_affine_attempts;
1177 u64 nr_wakeups_passive;
1178 u64 nr_wakeups_idle;
1179 #endif
1180
1181 #ifdef CONFIG_FAIR_GROUP_SCHED
1182 struct sched_entity *parent;
1183 /* rq on which this entity is (to be) queued: */
1184 struct cfs_rq *cfs_rq;
1185 /* rq "owned" by this entity/group: */
1186 struct cfs_rq *my_q;
1187 #endif
1188 };
1189
1190 struct sched_rt_entity {
1191 struct list_head run_list;
1192 unsigned long timeout;
1193 unsigned int time_slice;
1194 int nr_cpus_allowed;
1195
1196 struct sched_rt_entity *back;
1197 #ifdef CONFIG_RT_GROUP_SCHED
1198 struct sched_rt_entity *parent;
1199 /* rq on which this entity is (to be) queued: */
1200 struct rt_rq *rt_rq;
1201 /* rq "owned" by this entity/group: */
1202 struct rt_rq *my_q;
1203 #endif
1204 };
1205
1206 struct rcu_node;
1207
1208 struct task_struct {
1209 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1210 void *stack;
1211 atomic_t usage;
1212 unsigned int flags; /* per process flags, defined below */
1213 unsigned int ptrace;
1214
1215 int lock_depth; /* BKL lock depth */
1216
1217 #ifdef CONFIG_SMP
1218 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1219 int oncpu;
1220 #endif
1221 #endif
1222
1223 int prio, static_prio, normal_prio;
1224 unsigned int rt_priority;
1225 const struct sched_class *sched_class;
1226 struct sched_entity se;
1227 struct sched_rt_entity rt;
1228
1229 #ifdef CONFIG_PREEMPT_NOTIFIERS
1230 /* list of struct preempt_notifier: */
1231 struct hlist_head preempt_notifiers;
1232 #endif
1233
1234 /*
1235 * fpu_counter contains the number of consecutive context switches
1236 * that the FPU is used. If this is over a threshold, the lazy fpu
1237 * saving becomes unlazy to save the trap. This is an unsigned char
1238 * so that after 256 times the counter wraps and the behavior turns
1239 * lazy again; this to deal with bursty apps that only use FPU for
1240 * a short time
1241 */
1242 unsigned char fpu_counter;
1243 #ifdef CONFIG_BLK_DEV_IO_TRACE
1244 unsigned int btrace_seq;
1245 #endif
1246
1247 unsigned int policy;
1248 cpumask_t cpus_allowed;
1249
1250 #ifdef CONFIG_TREE_PREEMPT_RCU
1251 int rcu_read_lock_nesting;
1252 char rcu_read_unlock_special;
1253 struct rcu_node *rcu_blocked_node;
1254 struct list_head rcu_node_entry;
1255 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1256
1257 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1258 struct sched_info sched_info;
1259 #endif
1260
1261 struct list_head tasks;
1262 struct plist_node pushable_tasks;
1263
1264 struct mm_struct *mm, *active_mm;
1265
1266 /* task state */
1267 int exit_state;
1268 int exit_code, exit_signal;
1269 int pdeath_signal; /* The signal sent when the parent dies */
1270 /* ??? */
1271 unsigned int personality;
1272 unsigned did_exec:1;
1273 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1274 * execve */
1275 unsigned in_iowait:1;
1276
1277
1278 /* Revert to default priority/policy when forking */
1279 unsigned sched_reset_on_fork:1;
1280
1281 pid_t pid;
1282 pid_t tgid;
1283
1284 #ifdef CONFIG_CC_STACKPROTECTOR
1285 /* Canary value for the -fstack-protector gcc feature */
1286 unsigned long stack_canary;
1287 #endif
1288
1289 /*
1290 * pointers to (original) parent process, youngest child, younger sibling,
1291 * older sibling, respectively. (p->father can be replaced with
1292 * p->real_parent->pid)
1293 */
1294 struct task_struct *real_parent; /* real parent process */
1295 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1296 /*
1297 * children/sibling forms the list of my natural children
1298 */
1299 struct list_head children; /* list of my children */
1300 struct list_head sibling; /* linkage in my parent's children list */
1301 struct task_struct *group_leader; /* threadgroup leader */
1302
1303 /*
1304 * ptraced is the list of tasks this task is using ptrace on.
1305 * This includes both natural children and PTRACE_ATTACH targets.
1306 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1307 */
1308 struct list_head ptraced;
1309 struct list_head ptrace_entry;
1310
1311 /*
1312 * This is the tracer handle for the ptrace BTS extension.
1313 * This field actually belongs to the ptracer task.
1314 */
1315 struct bts_context *bts;
1316
1317 /* PID/PID hash table linkage. */
1318 struct pid_link pids[PIDTYPE_MAX];
1319 struct list_head thread_group;
1320
1321 struct completion *vfork_done; /* for vfork() */
1322 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1323 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1324
1325 cputime_t utime, stime, utimescaled, stimescaled;
1326 cputime_t gtime;
1327 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1328 cputime_t prev_utime, prev_stime;
1329 #endif
1330 unsigned long nvcsw, nivcsw; /* context switch counts */
1331 struct timespec start_time; /* monotonic time */
1332 struct timespec real_start_time; /* boot based time */
1333 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1334 unsigned long min_flt, maj_flt;
1335
1336 struct task_cputime cputime_expires;
1337 struct list_head cpu_timers[3];
1338
1339 /* process credentials */
1340 const struct cred *real_cred; /* objective and real subjective task
1341 * credentials (COW) */
1342 const struct cred *cred; /* effective (overridable) subjective task
1343 * credentials (COW) */
1344 struct mutex cred_guard_mutex; /* guard against foreign influences on
1345 * credential calculations
1346 * (notably. ptrace) */
1347 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1348
1349 char comm[TASK_COMM_LEN]; /* executable name excluding path
1350 - access with [gs]et_task_comm (which lock
1351 it with task_lock())
1352 - initialized normally by flush_old_exec */
1353 /* file system info */
1354 int link_count, total_link_count;
1355 #ifdef CONFIG_SYSVIPC
1356 /* ipc stuff */
1357 struct sysv_sem sysvsem;
1358 #endif
1359 #ifdef CONFIG_DETECT_HUNG_TASK
1360 /* hung task detection */
1361 unsigned long last_switch_count;
1362 #endif
1363 /* CPU-specific state of this task */
1364 struct thread_struct thread;
1365 /* filesystem information */
1366 struct fs_struct *fs;
1367 /* open file information */
1368 struct files_struct *files;
1369 /* namespaces */
1370 struct nsproxy *nsproxy;
1371 /* signal handlers */
1372 struct signal_struct *signal;
1373 struct sighand_struct *sighand;
1374
1375 sigset_t blocked, real_blocked;
1376 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1377 struct sigpending pending;
1378
1379 unsigned long sas_ss_sp;
1380 size_t sas_ss_size;
1381 int (*notifier)(void *priv);
1382 void *notifier_data;
1383 sigset_t *notifier_mask;
1384 struct audit_context *audit_context;
1385 #ifdef CONFIG_AUDITSYSCALL
1386 uid_t loginuid;
1387 unsigned int sessionid;
1388 #endif
1389 seccomp_t seccomp;
1390
1391 /* Thread group tracking */
1392 u32 parent_exec_id;
1393 u32 self_exec_id;
1394 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1395 * mempolicy */
1396 spinlock_t alloc_lock;
1397
1398 #ifdef CONFIG_GENERIC_HARDIRQS
1399 /* IRQ handler threads */
1400 struct irqaction *irqaction;
1401 #endif
1402
1403 /* Protection of the PI data structures: */
1404 raw_spinlock_t pi_lock;
1405
1406 #ifdef CONFIG_RT_MUTEXES
1407 /* PI waiters blocked on a rt_mutex held by this task */
1408 struct plist_head pi_waiters;
1409 /* Deadlock detection and priority inheritance handling */
1410 struct rt_mutex_waiter *pi_blocked_on;
1411 #endif
1412
1413 #ifdef CONFIG_DEBUG_MUTEXES
1414 /* mutex deadlock detection */
1415 struct mutex_waiter *blocked_on;
1416 #endif
1417 #ifdef CONFIG_TRACE_IRQFLAGS
1418 unsigned int irq_events;
1419 unsigned long hardirq_enable_ip;
1420 unsigned long hardirq_disable_ip;
1421 unsigned int hardirq_enable_event;
1422 unsigned int hardirq_disable_event;
1423 int hardirqs_enabled;
1424 int hardirq_context;
1425 unsigned long softirq_disable_ip;
1426 unsigned long softirq_enable_ip;
1427 unsigned int softirq_disable_event;
1428 unsigned int softirq_enable_event;
1429 int softirqs_enabled;
1430 int softirq_context;
1431 #endif
1432 #ifdef CONFIG_LOCKDEP
1433 # define MAX_LOCK_DEPTH 48UL
1434 u64 curr_chain_key;
1435 int lockdep_depth;
1436 unsigned int lockdep_recursion;
1437 struct held_lock held_locks[MAX_LOCK_DEPTH];
1438 gfp_t lockdep_reclaim_gfp;
1439 #endif
1440
1441 /* journalling filesystem info */
1442 void *journal_info;
1443
1444 /* stacked block device info */
1445 struct bio *bio_list, **bio_tail;
1446
1447 /* VM state */
1448 struct reclaim_state *reclaim_state;
1449
1450 struct backing_dev_info *backing_dev_info;
1451
1452 struct io_context *io_context;
1453
1454 unsigned long ptrace_message;
1455 siginfo_t *last_siginfo; /* For ptrace use. */
1456 struct task_io_accounting ioac;
1457 #if defined(CONFIG_TASK_XACCT)
1458 u64 acct_rss_mem1; /* accumulated rss usage */
1459 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1460 cputime_t acct_timexpd; /* stime + utime since last update */
1461 #endif
1462 #ifdef CONFIG_CPUSETS
1463 nodemask_t mems_allowed; /* Protected by alloc_lock */
1464 int cpuset_mem_spread_rotor;
1465 #endif
1466 #ifdef CONFIG_CGROUPS
1467 /* Control Group info protected by css_set_lock */
1468 struct css_set *cgroups;
1469 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1470 struct list_head cg_list;
1471 #endif
1472 #ifdef CONFIG_FUTEX
1473 struct robust_list_head __user *robust_list;
1474 #ifdef CONFIG_COMPAT
1475 struct compat_robust_list_head __user *compat_robust_list;
1476 #endif
1477 struct list_head pi_state_list;
1478 struct futex_pi_state *pi_state_cache;
1479 #endif
1480 #ifdef CONFIG_PERF_EVENTS
1481 struct perf_event_context *perf_event_ctxp;
1482 struct mutex perf_event_mutex;
1483 struct list_head perf_event_list;
1484 #endif
1485 #ifdef CONFIG_NUMA
1486 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1487 short il_next;
1488 #endif
1489 atomic_t fs_excl; /* holding fs exclusive resources */
1490 struct rcu_head rcu;
1491
1492 /*
1493 * cache last used pipe for splice
1494 */
1495 struct pipe_inode_info *splice_pipe;
1496 #ifdef CONFIG_TASK_DELAY_ACCT
1497 struct task_delay_info *delays;
1498 #endif
1499 #ifdef CONFIG_FAULT_INJECTION
1500 int make_it_fail;
1501 #endif
1502 struct prop_local_single dirties;
1503 #ifdef CONFIG_LATENCYTOP
1504 int latency_record_count;
1505 struct latency_record latency_record[LT_SAVECOUNT];
1506 #endif
1507 /*
1508 * time slack values; these are used to round up poll() and
1509 * select() etc timeout values. These are in nanoseconds.
1510 */
1511 unsigned long timer_slack_ns;
1512 unsigned long default_timer_slack_ns;
1513
1514 struct list_head *scm_work_list;
1515 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1516 /* Index of current stored adress in ret_stack */
1517 int curr_ret_stack;
1518 /* Stack of return addresses for return function tracing */
1519 struct ftrace_ret_stack *ret_stack;
1520 /* time stamp for last schedule */
1521 unsigned long long ftrace_timestamp;
1522 /*
1523 * Number of functions that haven't been traced
1524 * because of depth overrun.
1525 */
1526 atomic_t trace_overrun;
1527 /* Pause for the tracing */
1528 atomic_t tracing_graph_pause;
1529 #endif
1530 #ifdef CONFIG_TRACING
1531 /* state flags for use by tracers */
1532 unsigned long trace;
1533 /* bitmask of trace recursion */
1534 unsigned long trace_recursion;
1535 #endif /* CONFIG_TRACING */
1536 unsigned long stack_start;
1537 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1538 struct memcg_batch_info {
1539 int do_batch; /* incremented when batch uncharge started */
1540 struct mem_cgroup *memcg; /* target memcg of uncharge */
1541 unsigned long bytes; /* uncharged usage */
1542 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1543 } memcg_batch;
1544 #endif
1545 };
1546
1547 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1548 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1549
1550 /*
1551 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1552 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1553 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1554 * values are inverted: lower p->prio value means higher priority.
1555 *
1556 * The MAX_USER_RT_PRIO value allows the actual maximum
1557 * RT priority to be separate from the value exported to
1558 * user-space. This allows kernel threads to set their
1559 * priority to a value higher than any user task. Note:
1560 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1561 */
1562
1563 #define MAX_USER_RT_PRIO 100
1564 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1565
1566 #define MAX_PRIO (MAX_RT_PRIO + 40)
1567 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1568
1569 static inline int rt_prio(int prio)
1570 {
1571 if (unlikely(prio < MAX_RT_PRIO))
1572 return 1;
1573 return 0;
1574 }
1575
1576 static inline int rt_task(struct task_struct *p)
1577 {
1578 return rt_prio(p->prio);
1579 }
1580
1581 static inline struct pid *task_pid(struct task_struct *task)
1582 {
1583 return task->pids[PIDTYPE_PID].pid;
1584 }
1585
1586 static inline struct pid *task_tgid(struct task_struct *task)
1587 {
1588 return task->group_leader->pids[PIDTYPE_PID].pid;
1589 }
1590
1591 /*
1592 * Without tasklist or rcu lock it is not safe to dereference
1593 * the result of task_pgrp/task_session even if task == current,
1594 * we can race with another thread doing sys_setsid/sys_setpgid.
1595 */
1596 static inline struct pid *task_pgrp(struct task_struct *task)
1597 {
1598 return task->group_leader->pids[PIDTYPE_PGID].pid;
1599 }
1600
1601 static inline struct pid *task_session(struct task_struct *task)
1602 {
1603 return task->group_leader->pids[PIDTYPE_SID].pid;
1604 }
1605
1606 struct pid_namespace;
1607
1608 /*
1609 * the helpers to get the task's different pids as they are seen
1610 * from various namespaces
1611 *
1612 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1613 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1614 * current.
1615 * task_xid_nr_ns() : id seen from the ns specified;
1616 *
1617 * set_task_vxid() : assigns a virtual id to a task;
1618 *
1619 * see also pid_nr() etc in include/linux/pid.h
1620 */
1621 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1622 struct pid_namespace *ns);
1623
1624 static inline pid_t task_pid_nr(struct task_struct *tsk)
1625 {
1626 return tsk->pid;
1627 }
1628
1629 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1630 struct pid_namespace *ns)
1631 {
1632 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1633 }
1634
1635 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1636 {
1637 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1638 }
1639
1640
1641 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1642 {
1643 return tsk->tgid;
1644 }
1645
1646 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1647
1648 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1649 {
1650 return pid_vnr(task_tgid(tsk));
1651 }
1652
1653
1654 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1655 struct pid_namespace *ns)
1656 {
1657 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1658 }
1659
1660 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1661 {
1662 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1663 }
1664
1665
1666 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1667 struct pid_namespace *ns)
1668 {
1669 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1670 }
1671
1672 static inline pid_t task_session_vnr(struct task_struct *tsk)
1673 {
1674 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1675 }
1676
1677 /* obsolete, do not use */
1678 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1679 {
1680 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1681 }
1682
1683 /**
1684 * pid_alive - check that a task structure is not stale
1685 * @p: Task structure to be checked.
1686 *
1687 * Test if a process is not yet dead (at most zombie state)
1688 * If pid_alive fails, then pointers within the task structure
1689 * can be stale and must not be dereferenced.
1690 */
1691 static inline int pid_alive(struct task_struct *p)
1692 {
1693 return p->pids[PIDTYPE_PID].pid != NULL;
1694 }
1695
1696 /**
1697 * is_global_init - check if a task structure is init
1698 * @tsk: Task structure to be checked.
1699 *
1700 * Check if a task structure is the first user space task the kernel created.
1701 */
1702 static inline int is_global_init(struct task_struct *tsk)
1703 {
1704 return tsk->pid == 1;
1705 }
1706
1707 /*
1708 * is_container_init:
1709 * check whether in the task is init in its own pid namespace.
1710 */
1711 extern int is_container_init(struct task_struct *tsk);
1712
1713 extern struct pid *cad_pid;
1714
1715 extern void free_task(struct task_struct *tsk);
1716 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1717
1718 extern void __put_task_struct(struct task_struct *t);
1719
1720 static inline void put_task_struct(struct task_struct *t)
1721 {
1722 if (atomic_dec_and_test(&t->usage))
1723 __put_task_struct(t);
1724 }
1725
1726 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1727 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1728
1729 /*
1730 * Per process flags
1731 */
1732 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1733 /* Not implemented yet, only for 486*/
1734 #define PF_STARTING 0x00000002 /* being created */
1735 #define PF_EXITING 0x00000004 /* getting shut down */
1736 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1737 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1738 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1739 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1740 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1741 #define PF_DUMPCORE 0x00000200 /* dumped core */
1742 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1743 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1744 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1745 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1746 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1747 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1748 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1749 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1750 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1751 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1752 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1753 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1754 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1755 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1756 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1757 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1758 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1759 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1760 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1761 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1762 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1763 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1764
1765 /*
1766 * Only the _current_ task can read/write to tsk->flags, but other
1767 * tasks can access tsk->flags in readonly mode for example
1768 * with tsk_used_math (like during threaded core dumping).
1769 * There is however an exception to this rule during ptrace
1770 * or during fork: the ptracer task is allowed to write to the
1771 * child->flags of its traced child (same goes for fork, the parent
1772 * can write to the child->flags), because we're guaranteed the
1773 * child is not running and in turn not changing child->flags
1774 * at the same time the parent does it.
1775 */
1776 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1777 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1778 #define clear_used_math() clear_stopped_child_used_math(current)
1779 #define set_used_math() set_stopped_child_used_math(current)
1780 #define conditional_stopped_child_used_math(condition, child) \
1781 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1782 #define conditional_used_math(condition) \
1783 conditional_stopped_child_used_math(condition, current)
1784 #define copy_to_stopped_child_used_math(child) \
1785 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1786 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1787 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1788 #define used_math() tsk_used_math(current)
1789
1790 #ifdef CONFIG_TREE_PREEMPT_RCU
1791
1792 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1793 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1794
1795 static inline void rcu_copy_process(struct task_struct *p)
1796 {
1797 p->rcu_read_lock_nesting = 0;
1798 p->rcu_read_unlock_special = 0;
1799 p->rcu_blocked_node = NULL;
1800 INIT_LIST_HEAD(&p->rcu_node_entry);
1801 }
1802
1803 #else
1804
1805 static inline void rcu_copy_process(struct task_struct *p)
1806 {
1807 }
1808
1809 #endif
1810
1811 #ifdef CONFIG_SMP
1812 extern int set_cpus_allowed_ptr(struct task_struct *p,
1813 const struct cpumask *new_mask);
1814 #else
1815 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1816 const struct cpumask *new_mask)
1817 {
1818 if (!cpumask_test_cpu(0, new_mask))
1819 return -EINVAL;
1820 return 0;
1821 }
1822 #endif
1823
1824 #ifndef CONFIG_CPUMASK_OFFSTACK
1825 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1826 {
1827 return set_cpus_allowed_ptr(p, &new_mask);
1828 }
1829 #endif
1830
1831 /*
1832 * Architectures can set this to 1 if they have specified
1833 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1834 * but then during bootup it turns out that sched_clock()
1835 * is reliable after all:
1836 */
1837 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1838 extern int sched_clock_stable;
1839 #endif
1840
1841 /* ftrace calls sched_clock() directly */
1842 extern unsigned long long notrace sched_clock(void);
1843
1844 extern void sched_clock_init(void);
1845 extern u64 sched_clock_cpu(int cpu);
1846
1847 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1848 static inline void sched_clock_tick(void)
1849 {
1850 }
1851
1852 static inline void sched_clock_idle_sleep_event(void)
1853 {
1854 }
1855
1856 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1857 {
1858 }
1859 #else
1860 extern void sched_clock_tick(void);
1861 extern void sched_clock_idle_sleep_event(void);
1862 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1863 #endif
1864
1865 /*
1866 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1867 * clock constructed from sched_clock():
1868 */
1869 extern unsigned long long cpu_clock(int cpu);
1870
1871 extern unsigned long long
1872 task_sched_runtime(struct task_struct *task);
1873 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1874
1875 /* sched_exec is called by processes performing an exec */
1876 #ifdef CONFIG_SMP
1877 extern void sched_exec(void);
1878 #else
1879 #define sched_exec() {}
1880 #endif
1881
1882 extern void sched_clock_idle_sleep_event(void);
1883 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1884
1885 #ifdef CONFIG_HOTPLUG_CPU
1886 extern void idle_task_exit(void);
1887 #else
1888 static inline void idle_task_exit(void) {}
1889 #endif
1890
1891 extern void sched_idle_next(void);
1892
1893 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1894 extern void wake_up_idle_cpu(int cpu);
1895 #else
1896 static inline void wake_up_idle_cpu(int cpu) { }
1897 #endif
1898
1899 extern unsigned int sysctl_sched_latency;
1900 extern unsigned int sysctl_sched_min_granularity;
1901 extern unsigned int sysctl_sched_wakeup_granularity;
1902 extern unsigned int sysctl_sched_shares_ratelimit;
1903 extern unsigned int sysctl_sched_shares_thresh;
1904 extern unsigned int sysctl_sched_child_runs_first;
1905
1906 enum sched_tunable_scaling {
1907 SCHED_TUNABLESCALING_NONE,
1908 SCHED_TUNABLESCALING_LOG,
1909 SCHED_TUNABLESCALING_LINEAR,
1910 SCHED_TUNABLESCALING_END,
1911 };
1912 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1913
1914 #ifdef CONFIG_SCHED_DEBUG
1915 extern unsigned int sysctl_sched_migration_cost;
1916 extern unsigned int sysctl_sched_nr_migrate;
1917 extern unsigned int sysctl_sched_time_avg;
1918 extern unsigned int sysctl_timer_migration;
1919
1920 int sched_proc_update_handler(struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length,
1922 loff_t *ppos);
1923 #endif
1924 #ifdef CONFIG_SCHED_DEBUG
1925 static inline unsigned int get_sysctl_timer_migration(void)
1926 {
1927 return sysctl_timer_migration;
1928 }
1929 #else
1930 static inline unsigned int get_sysctl_timer_migration(void)
1931 {
1932 return 1;
1933 }
1934 #endif
1935 extern unsigned int sysctl_sched_rt_period;
1936 extern int sysctl_sched_rt_runtime;
1937
1938 int sched_rt_handler(struct ctl_table *table, int write,
1939 void __user *buffer, size_t *lenp,
1940 loff_t *ppos);
1941
1942 extern unsigned int sysctl_sched_compat_yield;
1943
1944 #ifdef CONFIG_RT_MUTEXES
1945 extern int rt_mutex_getprio(struct task_struct *p);
1946 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1947 extern void rt_mutex_adjust_pi(struct task_struct *p);
1948 #else
1949 static inline int rt_mutex_getprio(struct task_struct *p)
1950 {
1951 return p->normal_prio;
1952 }
1953 # define rt_mutex_adjust_pi(p) do { } while (0)
1954 #endif
1955
1956 extern void set_user_nice(struct task_struct *p, long nice);
1957 extern int task_prio(const struct task_struct *p);
1958 extern int task_nice(const struct task_struct *p);
1959 extern int can_nice(const struct task_struct *p, const int nice);
1960 extern int task_curr(const struct task_struct *p);
1961 extern int idle_cpu(int cpu);
1962 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1963 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1964 struct sched_param *);
1965 extern struct task_struct *idle_task(int cpu);
1966 extern struct task_struct *curr_task(int cpu);
1967 extern void set_curr_task(int cpu, struct task_struct *p);
1968
1969 void yield(void);
1970
1971 /*
1972 * The default (Linux) execution domain.
1973 */
1974 extern struct exec_domain default_exec_domain;
1975
1976 union thread_union {
1977 struct thread_info thread_info;
1978 unsigned long stack[THREAD_SIZE/sizeof(long)];
1979 };
1980
1981 #ifndef __HAVE_ARCH_KSTACK_END
1982 static inline int kstack_end(void *addr)
1983 {
1984 /* Reliable end of stack detection:
1985 * Some APM bios versions misalign the stack
1986 */
1987 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1988 }
1989 #endif
1990
1991 extern union thread_union init_thread_union;
1992 extern struct task_struct init_task;
1993
1994 extern struct mm_struct init_mm;
1995
1996 extern struct pid_namespace init_pid_ns;
1997
1998 /*
1999 * find a task by one of its numerical ids
2000 *
2001 * find_task_by_pid_ns():
2002 * finds a task by its pid in the specified namespace
2003 * find_task_by_vpid():
2004 * finds a task by its virtual pid
2005 *
2006 * see also find_vpid() etc in include/linux/pid.h
2007 */
2008
2009 extern struct task_struct *find_task_by_vpid(pid_t nr);
2010 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2011 struct pid_namespace *ns);
2012
2013 extern void __set_special_pids(struct pid *pid);
2014
2015 /* per-UID process charging. */
2016 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2017 static inline struct user_struct *get_uid(struct user_struct *u)
2018 {
2019 atomic_inc(&u->__count);
2020 return u;
2021 }
2022 extern void free_uid(struct user_struct *);
2023 extern void release_uids(struct user_namespace *ns);
2024
2025 #include <asm/current.h>
2026
2027 extern void do_timer(unsigned long ticks);
2028
2029 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2030 extern int wake_up_process(struct task_struct *tsk);
2031 extern void wake_up_new_task(struct task_struct *tsk,
2032 unsigned long clone_flags);
2033 #ifdef CONFIG_SMP
2034 extern void kick_process(struct task_struct *tsk);
2035 #else
2036 static inline void kick_process(struct task_struct *tsk) { }
2037 #endif
2038 extern void sched_fork(struct task_struct *p, int clone_flags);
2039 extern void sched_dead(struct task_struct *p);
2040
2041 extern void proc_caches_init(void);
2042 extern void flush_signals(struct task_struct *);
2043 extern void __flush_signals(struct task_struct *);
2044 extern void ignore_signals(struct task_struct *);
2045 extern void flush_signal_handlers(struct task_struct *, int force_default);
2046 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2047
2048 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2049 {
2050 unsigned long flags;
2051 int ret;
2052
2053 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2054 ret = dequeue_signal(tsk, mask, info);
2055 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2056
2057 return ret;
2058 }
2059
2060 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2061 sigset_t *mask);
2062 extern void unblock_all_signals(void);
2063 extern void release_task(struct task_struct * p);
2064 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2065 extern int force_sigsegv(int, struct task_struct *);
2066 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2067 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2068 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2069 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2070 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2071 extern int kill_pid(struct pid *pid, int sig, int priv);
2072 extern int kill_proc_info(int, struct siginfo *, pid_t);
2073 extern int do_notify_parent(struct task_struct *, int);
2074 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2075 extern void force_sig(int, struct task_struct *);
2076 extern int send_sig(int, struct task_struct *, int);
2077 extern void zap_other_threads(struct task_struct *p);
2078 extern struct sigqueue *sigqueue_alloc(void);
2079 extern void sigqueue_free(struct sigqueue *);
2080 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2081 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2082 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2083
2084 static inline int kill_cad_pid(int sig, int priv)
2085 {
2086 return kill_pid(cad_pid, sig, priv);
2087 }
2088
2089 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2090 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2091 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2092 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2093
2094 /*
2095 * True if we are on the alternate signal stack.
2096 */
2097 static inline int on_sig_stack(unsigned long sp)
2098 {
2099 #ifdef CONFIG_STACK_GROWSUP
2100 return sp >= current->sas_ss_sp &&
2101 sp - current->sas_ss_sp < current->sas_ss_size;
2102 #else
2103 return sp > current->sas_ss_sp &&
2104 sp - current->sas_ss_sp <= current->sas_ss_size;
2105 #endif
2106 }
2107
2108 static inline int sas_ss_flags(unsigned long sp)
2109 {
2110 return (current->sas_ss_size == 0 ? SS_DISABLE
2111 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2112 }
2113
2114 /*
2115 * Routines for handling mm_structs
2116 */
2117 extern struct mm_struct * mm_alloc(void);
2118
2119 /* mmdrop drops the mm and the page tables */
2120 extern void __mmdrop(struct mm_struct *);
2121 static inline void mmdrop(struct mm_struct * mm)
2122 {
2123 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2124 __mmdrop(mm);
2125 }
2126
2127 /* mmput gets rid of the mappings and all user-space */
2128 extern void mmput(struct mm_struct *);
2129 /* Grab a reference to a task's mm, if it is not already going away */
2130 extern struct mm_struct *get_task_mm(struct task_struct *task);
2131 /* Remove the current tasks stale references to the old mm_struct */
2132 extern void mm_release(struct task_struct *, struct mm_struct *);
2133 /* Allocate a new mm structure and copy contents from tsk->mm */
2134 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2135
2136 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2137 struct task_struct *, struct pt_regs *);
2138 extern void flush_thread(void);
2139 extern void exit_thread(void);
2140
2141 extern void exit_files(struct task_struct *);
2142 extern void __cleanup_signal(struct signal_struct *);
2143 extern void __cleanup_sighand(struct sighand_struct *);
2144
2145 extern void exit_itimers(struct signal_struct *);
2146 extern void flush_itimer_signals(void);
2147
2148 extern NORET_TYPE void do_group_exit(int);
2149
2150 extern void daemonize(const char *, ...);
2151 extern int allow_signal(int);
2152 extern int disallow_signal(int);
2153
2154 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2155 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2156 struct task_struct *fork_idle(int);
2157
2158 extern void set_task_comm(struct task_struct *tsk, char *from);
2159 extern char *get_task_comm(char *to, struct task_struct *tsk);
2160
2161 #ifdef CONFIG_SMP
2162 extern void wait_task_context_switch(struct task_struct *p);
2163 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2164 #else
2165 static inline void wait_task_context_switch(struct task_struct *p) {}
2166 static inline unsigned long wait_task_inactive(struct task_struct *p,
2167 long match_state)
2168 {
2169 return 1;
2170 }
2171 #endif
2172
2173 #define next_task(p) \
2174 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2175
2176 #define for_each_process(p) \
2177 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2178
2179 extern bool current_is_single_threaded(void);
2180
2181 /*
2182 * Careful: do_each_thread/while_each_thread is a double loop so
2183 * 'break' will not work as expected - use goto instead.
2184 */
2185 #define do_each_thread(g, t) \
2186 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2187
2188 #define while_each_thread(g, t) \
2189 while ((t = next_thread(t)) != g)
2190
2191 /* de_thread depends on thread_group_leader not being a pid based check */
2192 #define thread_group_leader(p) (p == p->group_leader)
2193
2194 /* Do to the insanities of de_thread it is possible for a process
2195 * to have the pid of the thread group leader without actually being
2196 * the thread group leader. For iteration through the pids in proc
2197 * all we care about is that we have a task with the appropriate
2198 * pid, we don't actually care if we have the right task.
2199 */
2200 static inline int has_group_leader_pid(struct task_struct *p)
2201 {
2202 return p->pid == p->tgid;
2203 }
2204
2205 static inline
2206 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2207 {
2208 return p1->tgid == p2->tgid;
2209 }
2210
2211 static inline struct task_struct *next_thread(const struct task_struct *p)
2212 {
2213 return list_entry_rcu(p->thread_group.next,
2214 struct task_struct, thread_group);
2215 }
2216
2217 static inline int thread_group_empty(struct task_struct *p)
2218 {
2219 return list_empty(&p->thread_group);
2220 }
2221
2222 #define delay_group_leader(p) \
2223 (thread_group_leader(p) && !thread_group_empty(p))
2224
2225 static inline int task_detached(struct task_struct *p)
2226 {
2227 return p->exit_signal == -1;
2228 }
2229
2230 /*
2231 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2232 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2233 * pins the final release of task.io_context. Also protects ->cpuset and
2234 * ->cgroup.subsys[].
2235 *
2236 * Nests both inside and outside of read_lock(&tasklist_lock).
2237 * It must not be nested with write_lock_irq(&tasklist_lock),
2238 * neither inside nor outside.
2239 */
2240 static inline void task_lock(struct task_struct *p)
2241 {
2242 spin_lock(&p->alloc_lock);
2243 }
2244
2245 static inline void task_unlock(struct task_struct *p)
2246 {
2247 spin_unlock(&p->alloc_lock);
2248 }
2249
2250 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2251 unsigned long *flags);
2252
2253 static inline void unlock_task_sighand(struct task_struct *tsk,
2254 unsigned long *flags)
2255 {
2256 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2257 }
2258
2259 #ifndef __HAVE_THREAD_FUNCTIONS
2260
2261 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2262 #define task_stack_page(task) ((task)->stack)
2263
2264 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2265 {
2266 *task_thread_info(p) = *task_thread_info(org);
2267 task_thread_info(p)->task = p;
2268 }
2269
2270 static inline unsigned long *end_of_stack(struct task_struct *p)
2271 {
2272 return (unsigned long *)(task_thread_info(p) + 1);
2273 }
2274
2275 #endif
2276
2277 static inline int object_is_on_stack(void *obj)
2278 {
2279 void *stack = task_stack_page(current);
2280
2281 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2282 }
2283
2284 extern void thread_info_cache_init(void);
2285
2286 #ifdef CONFIG_DEBUG_STACK_USAGE
2287 static inline unsigned long stack_not_used(struct task_struct *p)
2288 {
2289 unsigned long *n = end_of_stack(p);
2290
2291 do { /* Skip over canary */
2292 n++;
2293 } while (!*n);
2294
2295 return (unsigned long)n - (unsigned long)end_of_stack(p);
2296 }
2297 #endif
2298
2299 /* set thread flags in other task's structures
2300 * - see asm/thread_info.h for TIF_xxxx flags available
2301 */
2302 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2303 {
2304 set_ti_thread_flag(task_thread_info(tsk), flag);
2305 }
2306
2307 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2308 {
2309 clear_ti_thread_flag(task_thread_info(tsk), flag);
2310 }
2311
2312 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2313 {
2314 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2315 }
2316
2317 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2318 {
2319 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2320 }
2321
2322 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2323 {
2324 return test_ti_thread_flag(task_thread_info(tsk), flag);
2325 }
2326
2327 static inline void set_tsk_need_resched(struct task_struct *tsk)
2328 {
2329 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2330 }
2331
2332 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2333 {
2334 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2335 }
2336
2337 static inline int test_tsk_need_resched(struct task_struct *tsk)
2338 {
2339 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2340 }
2341
2342 static inline int restart_syscall(void)
2343 {
2344 set_tsk_thread_flag(current, TIF_SIGPENDING);
2345 return -ERESTARTNOINTR;
2346 }
2347
2348 static inline int signal_pending(struct task_struct *p)
2349 {
2350 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2351 }
2352
2353 static inline int __fatal_signal_pending(struct task_struct *p)
2354 {
2355 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2356 }
2357
2358 static inline int fatal_signal_pending(struct task_struct *p)
2359 {
2360 return signal_pending(p) && __fatal_signal_pending(p);
2361 }
2362
2363 static inline int signal_pending_state(long state, struct task_struct *p)
2364 {
2365 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2366 return 0;
2367 if (!signal_pending(p))
2368 return 0;
2369
2370 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2371 }
2372
2373 static inline int need_resched(void)
2374 {
2375 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2376 }
2377
2378 /*
2379 * cond_resched() and cond_resched_lock(): latency reduction via
2380 * explicit rescheduling in places that are safe. The return
2381 * value indicates whether a reschedule was done in fact.
2382 * cond_resched_lock() will drop the spinlock before scheduling,
2383 * cond_resched_softirq() will enable bhs before scheduling.
2384 */
2385 extern int _cond_resched(void);
2386
2387 #define cond_resched() ({ \
2388 __might_sleep(__FILE__, __LINE__, 0); \
2389 _cond_resched(); \
2390 })
2391
2392 extern int __cond_resched_lock(spinlock_t *lock);
2393
2394 #ifdef CONFIG_PREEMPT
2395 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2396 #else
2397 #define PREEMPT_LOCK_OFFSET 0
2398 #endif
2399
2400 #define cond_resched_lock(lock) ({ \
2401 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2402 __cond_resched_lock(lock); \
2403 })
2404
2405 extern int __cond_resched_softirq(void);
2406
2407 #define cond_resched_softirq() ({ \
2408 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2409 __cond_resched_softirq(); \
2410 })
2411
2412 /*
2413 * Does a critical section need to be broken due to another
2414 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2415 * but a general need for low latency)
2416 */
2417 static inline int spin_needbreak(spinlock_t *lock)
2418 {
2419 #ifdef CONFIG_PREEMPT
2420 return spin_is_contended(lock);
2421 #else
2422 return 0;
2423 #endif
2424 }
2425
2426 /*
2427 * Thread group CPU time accounting.
2428 */
2429 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2430 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2431
2432 static inline void thread_group_cputime_init(struct signal_struct *sig)
2433 {
2434 sig->cputimer.cputime = INIT_CPUTIME;
2435 spin_lock_init(&sig->cputimer.lock);
2436 sig->cputimer.running = 0;
2437 }
2438
2439 static inline void thread_group_cputime_free(struct signal_struct *sig)
2440 {
2441 }
2442
2443 /*
2444 * Reevaluate whether the task has signals pending delivery.
2445 * Wake the task if so.
2446 * This is required every time the blocked sigset_t changes.
2447 * callers must hold sighand->siglock.
2448 */
2449 extern void recalc_sigpending_and_wake(struct task_struct *t);
2450 extern void recalc_sigpending(void);
2451
2452 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2453
2454 /*
2455 * Wrappers for p->thread_info->cpu access. No-op on UP.
2456 */
2457 #ifdef CONFIG_SMP
2458
2459 static inline unsigned int task_cpu(const struct task_struct *p)
2460 {
2461 return task_thread_info(p)->cpu;
2462 }
2463
2464 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2465
2466 #else
2467
2468 static inline unsigned int task_cpu(const struct task_struct *p)
2469 {
2470 return 0;
2471 }
2472
2473 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2474 {
2475 }
2476
2477 #endif /* CONFIG_SMP */
2478
2479 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2480
2481 #ifdef CONFIG_TRACING
2482 extern void
2483 __trace_special(void *__tr, void *__data,
2484 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2485 #else
2486 static inline void
2487 __trace_special(void *__tr, void *__data,
2488 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2489 {
2490 }
2491 #endif
2492
2493 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2494 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2495
2496 extern void normalize_rt_tasks(void);
2497
2498 #ifdef CONFIG_CGROUP_SCHED
2499
2500 extern struct task_group init_task_group;
2501
2502 extern struct task_group *sched_create_group(struct task_group *parent);
2503 extern void sched_destroy_group(struct task_group *tg);
2504 extern void sched_move_task(struct task_struct *tsk);
2505 #ifdef CONFIG_FAIR_GROUP_SCHED
2506 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2507 extern unsigned long sched_group_shares(struct task_group *tg);
2508 #endif
2509 #ifdef CONFIG_RT_GROUP_SCHED
2510 extern int sched_group_set_rt_runtime(struct task_group *tg,
2511 long rt_runtime_us);
2512 extern long sched_group_rt_runtime(struct task_group *tg);
2513 extern int sched_group_set_rt_period(struct task_group *tg,
2514 long rt_period_us);
2515 extern long sched_group_rt_period(struct task_group *tg);
2516 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2517 #endif
2518 #endif
2519
2520 extern int task_can_switch_user(struct user_struct *up,
2521 struct task_struct *tsk);
2522
2523 #ifdef CONFIG_TASK_XACCT
2524 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2525 {
2526 tsk->ioac.rchar += amt;
2527 }
2528
2529 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2530 {
2531 tsk->ioac.wchar += amt;
2532 }
2533
2534 static inline void inc_syscr(struct task_struct *tsk)
2535 {
2536 tsk->ioac.syscr++;
2537 }
2538
2539 static inline void inc_syscw(struct task_struct *tsk)
2540 {
2541 tsk->ioac.syscw++;
2542 }
2543 #else
2544 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2545 {
2546 }
2547
2548 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2549 {
2550 }
2551
2552 static inline void inc_syscr(struct task_struct *tsk)
2553 {
2554 }
2555
2556 static inline void inc_syscw(struct task_struct *tsk)
2557 {
2558 }
2559 #endif
2560
2561 #ifndef TASK_SIZE_OF
2562 #define TASK_SIZE_OF(tsk) TASK_SIZE
2563 #endif
2564
2565 /*
2566 * Call the function if the target task is executing on a CPU right now:
2567 */
2568 extern void task_oncpu_function_call(struct task_struct *p,
2569 void (*func) (void *info), void *info);
2570
2571
2572 #ifdef CONFIG_MM_OWNER
2573 extern void mm_update_next_owner(struct mm_struct *mm);
2574 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2575 #else
2576 static inline void mm_update_next_owner(struct mm_struct *mm)
2577 {
2578 }
2579
2580 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2581 {
2582 }
2583 #endif /* CONFIG_MM_OWNER */
2584
2585 #endif /* __KERNEL__ */
2586
2587 #endif