]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched/headers: Move the get_task_struct()/put_task_struct() and related APIs from...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8 #include <linux/capability.h>
9 #include <linux/mutex.h>
10 #include <linux/plist.h>
11 #include <linux/mm_types_task.h>
12 #include <asm/ptrace.h>
13
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/signal.h>
17 #include <linux/signal_types.h>
18 #include <linux/pid.h>
19 #include <linux/seccomp.h>
20 #include <linux/rculist.h>
21 #include <linux/rtmutex.h>
22
23 #include <linux/resource.h>
24 #include <linux/hrtimer.h>
25 #include <linux/kcov.h>
26 #include <linux/task_io_accounting.h>
27 #include <linux/latencytop.h>
28 #include <linux/cred.h>
29 #include <linux/gfp.h>
30 #include <linux/topology.h>
31 #include <linux/magic.h>
32 #include <linux/cgroup-defs.h>
33
34 #include <asm/current.h>
35
36 /* task_struct member predeclarations: */
37 struct audit_context;
38 struct autogroup;
39 struct backing_dev_info;
40 struct bio_list;
41 struct blk_plug;
42 struct cfs_rq;
43 struct filename;
44 struct fs_struct;
45 struct futex_pi_state;
46 struct io_context;
47 struct mempolicy;
48 struct nameidata;
49 struct nsproxy;
50 struct perf_event_context;
51 struct pid_namespace;
52 struct pipe_inode_info;
53 struct rcu_node;
54 struct reclaim_state;
55 struct robust_list_head;
56 struct sched_attr;
57 struct sched_param;
58 struct seq_file;
59 struct sighand_struct;
60 struct signal_struct;
61 struct task_delay_info;
62 struct task_group;
63 struct task_struct;
64 struct uts_namespace;
65
66 /*
67 * Task state bitmask. NOTE! These bits are also
68 * encoded in fs/proc/array.c: get_task_state().
69 *
70 * We have two separate sets of flags: task->state
71 * is about runnability, while task->exit_state are
72 * about the task exiting. Confusing, but this way
73 * modifying one set can't modify the other one by
74 * mistake.
75 */
76 #define TASK_RUNNING 0
77 #define TASK_INTERRUPTIBLE 1
78 #define TASK_UNINTERRUPTIBLE 2
79 #define __TASK_STOPPED 4
80 #define __TASK_TRACED 8
81 /* in tsk->exit_state */
82 #define EXIT_DEAD 16
83 #define EXIT_ZOMBIE 32
84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85 /* in tsk->state again */
86 #define TASK_DEAD 64
87 #define TASK_WAKEKILL 128
88 #define TASK_WAKING 256
89 #define TASK_PARKED 512
90 #define TASK_NOLOAD 1024
91 #define TASK_NEW 2048
92 #define TASK_STATE_MAX 4096
93
94 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
95
96 /* Convenience macros for the sake of set_current_state */
97 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
98 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
99 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
100
101 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
102
103 /* Convenience macros for the sake of wake_up */
104 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
105 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
106
107 /* get_task_state() */
108 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
109 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
110 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
111
112 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
113 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
114 #define task_is_stopped_or_traced(task) \
115 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
116 #define task_contributes_to_load(task) \
117 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
118 (task->flags & PF_FROZEN) == 0 && \
119 (task->state & TASK_NOLOAD) == 0)
120
121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
122
123 #define __set_current_state(state_value) \
124 do { \
125 current->task_state_change = _THIS_IP_; \
126 current->state = (state_value); \
127 } while (0)
128 #define set_current_state(state_value) \
129 do { \
130 current->task_state_change = _THIS_IP_; \
131 smp_store_mb(current->state, (state_value)); \
132 } while (0)
133
134 #else
135 /*
136 * set_current_state() includes a barrier so that the write of current->state
137 * is correctly serialised wrt the caller's subsequent test of whether to
138 * actually sleep:
139 *
140 * for (;;) {
141 * set_current_state(TASK_UNINTERRUPTIBLE);
142 * if (!need_sleep)
143 * break;
144 *
145 * schedule();
146 * }
147 * __set_current_state(TASK_RUNNING);
148 *
149 * If the caller does not need such serialisation (because, for instance, the
150 * condition test and condition change and wakeup are under the same lock) then
151 * use __set_current_state().
152 *
153 * The above is typically ordered against the wakeup, which does:
154 *
155 * need_sleep = false;
156 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
157 *
158 * Where wake_up_state() (and all other wakeup primitives) imply enough
159 * barriers to order the store of the variable against wakeup.
160 *
161 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
162 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
163 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
164 *
165 * This is obviously fine, since they both store the exact same value.
166 *
167 * Also see the comments of try_to_wake_up().
168 */
169 #define __set_current_state(state_value) \
170 do { current->state = (state_value); } while (0)
171 #define set_current_state(state_value) \
172 smp_store_mb(current->state, (state_value))
173
174 #endif
175
176 /* Task command name length */
177 #define TASK_COMM_LEN 16
178
179 extern cpumask_var_t cpu_isolated_map;
180
181 extern int runqueue_is_locked(int cpu);
182
183 extern void scheduler_tick(void);
184
185 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
186 extern signed long schedule_timeout(signed long timeout);
187 extern signed long schedule_timeout_interruptible(signed long timeout);
188 extern signed long schedule_timeout_killable(signed long timeout);
189 extern signed long schedule_timeout_uninterruptible(signed long timeout);
190 extern signed long schedule_timeout_idle(signed long timeout);
191 asmlinkage void schedule(void);
192 extern void schedule_preempt_disabled(void);
193
194 extern int __must_check io_schedule_prepare(void);
195 extern void io_schedule_finish(int token);
196 extern long io_schedule_timeout(long timeout);
197 extern void io_schedule(void);
198
199 /**
200 * struct prev_cputime - snaphsot of system and user cputime
201 * @utime: time spent in user mode
202 * @stime: time spent in system mode
203 * @lock: protects the above two fields
204 *
205 * Stores previous user/system time values such that we can guarantee
206 * monotonicity.
207 */
208 struct prev_cputime {
209 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
210 u64 utime;
211 u64 stime;
212 raw_spinlock_t lock;
213 #endif
214 };
215
216 /**
217 * struct task_cputime - collected CPU time counts
218 * @utime: time spent in user mode, in nanoseconds
219 * @stime: time spent in kernel mode, in nanoseconds
220 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
221 *
222 * This structure groups together three kinds of CPU time that are tracked for
223 * threads and thread groups. Most things considering CPU time want to group
224 * these counts together and treat all three of them in parallel.
225 */
226 struct task_cputime {
227 u64 utime;
228 u64 stime;
229 unsigned long long sum_exec_runtime;
230 };
231
232 /* Alternate field names when used to cache expirations. */
233 #define virt_exp utime
234 #define prof_exp stime
235 #define sched_exp sum_exec_runtime
236
237 #include <linux/rwsem.h>
238
239 #ifdef CONFIG_SCHED_INFO
240 struct sched_info {
241 /* cumulative counters */
242 unsigned long pcount; /* # of times run on this cpu */
243 unsigned long long run_delay; /* time spent waiting on a runqueue */
244
245 /* timestamps */
246 unsigned long long last_arrival,/* when we last ran on a cpu */
247 last_queued; /* when we were last queued to run */
248 };
249 #endif /* CONFIG_SCHED_INFO */
250
251 /*
252 * Integer metrics need fixed point arithmetic, e.g., sched/fair
253 * has a few: load, load_avg, util_avg, freq, and capacity.
254 *
255 * We define a basic fixed point arithmetic range, and then formalize
256 * all these metrics based on that basic range.
257 */
258 # define SCHED_FIXEDPOINT_SHIFT 10
259 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
260
261 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
262 extern void prefetch_stack(struct task_struct *t);
263 #else
264 static inline void prefetch_stack(struct task_struct *t) { }
265 #endif
266
267 struct load_weight {
268 unsigned long weight;
269 u32 inv_weight;
270 };
271
272 /*
273 * The load_avg/util_avg accumulates an infinite geometric series
274 * (see __update_load_avg() in kernel/sched/fair.c).
275 *
276 * [load_avg definition]
277 *
278 * load_avg = runnable% * scale_load_down(load)
279 *
280 * where runnable% is the time ratio that a sched_entity is runnable.
281 * For cfs_rq, it is the aggregated load_avg of all runnable and
282 * blocked sched_entities.
283 *
284 * load_avg may also take frequency scaling into account:
285 *
286 * load_avg = runnable% * scale_load_down(load) * freq%
287 *
288 * where freq% is the CPU frequency normalized to the highest frequency.
289 *
290 * [util_avg definition]
291 *
292 * util_avg = running% * SCHED_CAPACITY_SCALE
293 *
294 * where running% is the time ratio that a sched_entity is running on
295 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
296 * and blocked sched_entities.
297 *
298 * util_avg may also factor frequency scaling and CPU capacity scaling:
299 *
300 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
301 *
302 * where freq% is the same as above, and capacity% is the CPU capacity
303 * normalized to the greatest capacity (due to uarch differences, etc).
304 *
305 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
306 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
307 * we therefore scale them to as large a range as necessary. This is for
308 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
309 *
310 * [Overflow issue]
311 *
312 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
313 * with the highest load (=88761), always runnable on a single cfs_rq,
314 * and should not overflow as the number already hits PID_MAX_LIMIT.
315 *
316 * For all other cases (including 32-bit kernels), struct load_weight's
317 * weight will overflow first before we do, because:
318 *
319 * Max(load_avg) <= Max(load.weight)
320 *
321 * Then it is the load_weight's responsibility to consider overflow
322 * issues.
323 */
324 struct sched_avg {
325 u64 last_update_time, load_sum;
326 u32 util_sum, period_contrib;
327 unsigned long load_avg, util_avg;
328 };
329
330 #ifdef CONFIG_SCHEDSTATS
331 struct sched_statistics {
332 u64 wait_start;
333 u64 wait_max;
334 u64 wait_count;
335 u64 wait_sum;
336 u64 iowait_count;
337 u64 iowait_sum;
338
339 u64 sleep_start;
340 u64 sleep_max;
341 s64 sum_sleep_runtime;
342
343 u64 block_start;
344 u64 block_max;
345 u64 exec_max;
346 u64 slice_max;
347
348 u64 nr_migrations_cold;
349 u64 nr_failed_migrations_affine;
350 u64 nr_failed_migrations_running;
351 u64 nr_failed_migrations_hot;
352 u64 nr_forced_migrations;
353
354 u64 nr_wakeups;
355 u64 nr_wakeups_sync;
356 u64 nr_wakeups_migrate;
357 u64 nr_wakeups_local;
358 u64 nr_wakeups_remote;
359 u64 nr_wakeups_affine;
360 u64 nr_wakeups_affine_attempts;
361 u64 nr_wakeups_passive;
362 u64 nr_wakeups_idle;
363 };
364 #endif
365
366 struct sched_entity {
367 struct load_weight load; /* for load-balancing */
368 struct rb_node run_node;
369 struct list_head group_node;
370 unsigned int on_rq;
371
372 u64 exec_start;
373 u64 sum_exec_runtime;
374 u64 vruntime;
375 u64 prev_sum_exec_runtime;
376
377 u64 nr_migrations;
378
379 #ifdef CONFIG_SCHEDSTATS
380 struct sched_statistics statistics;
381 #endif
382
383 #ifdef CONFIG_FAIR_GROUP_SCHED
384 int depth;
385 struct sched_entity *parent;
386 /* rq on which this entity is (to be) queued: */
387 struct cfs_rq *cfs_rq;
388 /* rq "owned" by this entity/group: */
389 struct cfs_rq *my_q;
390 #endif
391
392 #ifdef CONFIG_SMP
393 /*
394 * Per entity load average tracking.
395 *
396 * Put into separate cache line so it does not
397 * collide with read-mostly values above.
398 */
399 struct sched_avg avg ____cacheline_aligned_in_smp;
400 #endif
401 };
402
403 struct sched_rt_entity {
404 struct list_head run_list;
405 unsigned long timeout;
406 unsigned long watchdog_stamp;
407 unsigned int time_slice;
408 unsigned short on_rq;
409 unsigned short on_list;
410
411 struct sched_rt_entity *back;
412 #ifdef CONFIG_RT_GROUP_SCHED
413 struct sched_rt_entity *parent;
414 /* rq on which this entity is (to be) queued: */
415 struct rt_rq *rt_rq;
416 /* rq "owned" by this entity/group: */
417 struct rt_rq *my_q;
418 #endif
419 };
420
421 struct sched_dl_entity {
422 struct rb_node rb_node;
423
424 /*
425 * Original scheduling parameters. Copied here from sched_attr
426 * during sched_setattr(), they will remain the same until
427 * the next sched_setattr().
428 */
429 u64 dl_runtime; /* maximum runtime for each instance */
430 u64 dl_deadline; /* relative deadline of each instance */
431 u64 dl_period; /* separation of two instances (period) */
432 u64 dl_bw; /* dl_runtime / dl_deadline */
433
434 /*
435 * Actual scheduling parameters. Initialized with the values above,
436 * they are continously updated during task execution. Note that
437 * the remaining runtime could be < 0 in case we are in overrun.
438 */
439 s64 runtime; /* remaining runtime for this instance */
440 u64 deadline; /* absolute deadline for this instance */
441 unsigned int flags; /* specifying the scheduler behaviour */
442
443 /*
444 * Some bool flags:
445 *
446 * @dl_throttled tells if we exhausted the runtime. If so, the
447 * task has to wait for a replenishment to be performed at the
448 * next firing of dl_timer.
449 *
450 * @dl_boosted tells if we are boosted due to DI. If so we are
451 * outside bandwidth enforcement mechanism (but only until we
452 * exit the critical section);
453 *
454 * @dl_yielded tells if task gave up the cpu before consuming
455 * all its available runtime during the last job.
456 */
457 int dl_throttled, dl_boosted, dl_yielded;
458
459 /*
460 * Bandwidth enforcement timer. Each -deadline task has its
461 * own bandwidth to be enforced, thus we need one timer per task.
462 */
463 struct hrtimer dl_timer;
464 };
465
466 union rcu_special {
467 struct {
468 u8 blocked;
469 u8 need_qs;
470 u8 exp_need_qs;
471 u8 pad; /* Otherwise the compiler can store garbage here. */
472 } b; /* Bits. */
473 u32 s; /* Set of bits. */
474 };
475
476 enum perf_event_task_context {
477 perf_invalid_context = -1,
478 perf_hw_context = 0,
479 perf_sw_context,
480 perf_nr_task_contexts,
481 };
482
483 struct wake_q_node {
484 struct wake_q_node *next;
485 };
486
487 struct task_struct {
488 #ifdef CONFIG_THREAD_INFO_IN_TASK
489 /*
490 * For reasons of header soup (see current_thread_info()), this
491 * must be the first element of task_struct.
492 */
493 struct thread_info thread_info;
494 #endif
495 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
496 void *stack;
497 atomic_t usage;
498 unsigned int flags; /* per process flags, defined below */
499 unsigned int ptrace;
500
501 #ifdef CONFIG_SMP
502 struct llist_node wake_entry;
503 int on_cpu;
504 #ifdef CONFIG_THREAD_INFO_IN_TASK
505 unsigned int cpu; /* current CPU */
506 #endif
507 unsigned int wakee_flips;
508 unsigned long wakee_flip_decay_ts;
509 struct task_struct *last_wakee;
510
511 int wake_cpu;
512 #endif
513 int on_rq;
514
515 int prio, static_prio, normal_prio;
516 unsigned int rt_priority;
517 const struct sched_class *sched_class;
518 struct sched_entity se;
519 struct sched_rt_entity rt;
520 #ifdef CONFIG_CGROUP_SCHED
521 struct task_group *sched_task_group;
522 #endif
523 struct sched_dl_entity dl;
524
525 #ifdef CONFIG_PREEMPT_NOTIFIERS
526 /* list of struct preempt_notifier: */
527 struct hlist_head preempt_notifiers;
528 #endif
529
530 #ifdef CONFIG_BLK_DEV_IO_TRACE
531 unsigned int btrace_seq;
532 #endif
533
534 unsigned int policy;
535 int nr_cpus_allowed;
536 cpumask_t cpus_allowed;
537
538 #ifdef CONFIG_PREEMPT_RCU
539 int rcu_read_lock_nesting;
540 union rcu_special rcu_read_unlock_special;
541 struct list_head rcu_node_entry;
542 struct rcu_node *rcu_blocked_node;
543 #endif /* #ifdef CONFIG_PREEMPT_RCU */
544 #ifdef CONFIG_TASKS_RCU
545 unsigned long rcu_tasks_nvcsw;
546 bool rcu_tasks_holdout;
547 struct list_head rcu_tasks_holdout_list;
548 int rcu_tasks_idle_cpu;
549 #endif /* #ifdef CONFIG_TASKS_RCU */
550
551 #ifdef CONFIG_SCHED_INFO
552 struct sched_info sched_info;
553 #endif
554
555 struct list_head tasks;
556 #ifdef CONFIG_SMP
557 struct plist_node pushable_tasks;
558 struct rb_node pushable_dl_tasks;
559 #endif
560
561 struct mm_struct *mm, *active_mm;
562
563 /* Per-thread vma caching: */
564 struct vmacache vmacache;
565
566 #if defined(SPLIT_RSS_COUNTING)
567 struct task_rss_stat rss_stat;
568 #endif
569 /* task state */
570 int exit_state;
571 int exit_code, exit_signal;
572 int pdeath_signal; /* The signal sent when the parent dies */
573 unsigned long jobctl; /* JOBCTL_*, siglock protected */
574
575 /* Used for emulating ABI behavior of previous Linux versions */
576 unsigned int personality;
577
578 /* scheduler bits, serialized by scheduler locks */
579 unsigned sched_reset_on_fork:1;
580 unsigned sched_contributes_to_load:1;
581 unsigned sched_migrated:1;
582 unsigned sched_remote_wakeup:1;
583 unsigned :0; /* force alignment to the next boundary */
584
585 /* unserialized, strictly 'current' */
586 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
587 unsigned in_iowait:1;
588 #if !defined(TIF_RESTORE_SIGMASK)
589 unsigned restore_sigmask:1;
590 #endif
591 #ifdef CONFIG_MEMCG
592 unsigned memcg_may_oom:1;
593 #ifndef CONFIG_SLOB
594 unsigned memcg_kmem_skip_account:1;
595 #endif
596 #endif
597 #ifdef CONFIG_COMPAT_BRK
598 unsigned brk_randomized:1;
599 #endif
600
601 unsigned long atomic_flags; /* Flags needing atomic access. */
602
603 struct restart_block restart_block;
604
605 pid_t pid;
606 pid_t tgid;
607
608 #ifdef CONFIG_CC_STACKPROTECTOR
609 /* Canary value for the -fstack-protector gcc feature */
610 unsigned long stack_canary;
611 #endif
612 /*
613 * pointers to (original) parent process, youngest child, younger sibling,
614 * older sibling, respectively. (p->father can be replaced with
615 * p->real_parent->pid)
616 */
617 struct task_struct __rcu *real_parent; /* real parent process */
618 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
619 /*
620 * children/sibling forms the list of my natural children
621 */
622 struct list_head children; /* list of my children */
623 struct list_head sibling; /* linkage in my parent's children list */
624 struct task_struct *group_leader; /* threadgroup leader */
625
626 /*
627 * ptraced is the list of tasks this task is using ptrace on.
628 * This includes both natural children and PTRACE_ATTACH targets.
629 * p->ptrace_entry is p's link on the p->parent->ptraced list.
630 */
631 struct list_head ptraced;
632 struct list_head ptrace_entry;
633
634 /* PID/PID hash table linkage. */
635 struct pid_link pids[PIDTYPE_MAX];
636 struct list_head thread_group;
637 struct list_head thread_node;
638
639 struct completion *vfork_done; /* for vfork() */
640 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
641 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
642
643 u64 utime, stime;
644 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
645 u64 utimescaled, stimescaled;
646 #endif
647 u64 gtime;
648 struct prev_cputime prev_cputime;
649 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
650 seqcount_t vtime_seqcount;
651 unsigned long long vtime_snap;
652 enum {
653 /* Task is sleeping or running in a CPU with VTIME inactive */
654 VTIME_INACTIVE = 0,
655 /* Task runs in userspace in a CPU with VTIME active */
656 VTIME_USER,
657 /* Task runs in kernelspace in a CPU with VTIME active */
658 VTIME_SYS,
659 } vtime_snap_whence;
660 #endif
661
662 #ifdef CONFIG_NO_HZ_FULL
663 atomic_t tick_dep_mask;
664 #endif
665 unsigned long nvcsw, nivcsw; /* context switch counts */
666 u64 start_time; /* monotonic time in nsec */
667 u64 real_start_time; /* boot based time in nsec */
668 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
669 unsigned long min_flt, maj_flt;
670
671 #ifdef CONFIG_POSIX_TIMERS
672 struct task_cputime cputime_expires;
673 struct list_head cpu_timers[3];
674 #endif
675
676 /* process credentials */
677 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
678 const struct cred __rcu *real_cred; /* objective and real subjective task
679 * credentials (COW) */
680 const struct cred __rcu *cred; /* effective (overridable) subjective task
681 * credentials (COW) */
682 char comm[TASK_COMM_LEN]; /* executable name excluding path
683 - access with [gs]et_task_comm (which lock
684 it with task_lock())
685 - initialized normally by setup_new_exec */
686 /* file system info */
687 struct nameidata *nameidata;
688 #ifdef CONFIG_SYSVIPC
689 /* ipc stuff */
690 struct sysv_sem sysvsem;
691 struct sysv_shm sysvshm;
692 #endif
693 #ifdef CONFIG_DETECT_HUNG_TASK
694 /* hung task detection */
695 unsigned long last_switch_count;
696 #endif
697 /* filesystem information */
698 struct fs_struct *fs;
699 /* open file information */
700 struct files_struct *files;
701 /* namespaces */
702 struct nsproxy *nsproxy;
703 /* signal handlers */
704 struct signal_struct *signal;
705 struct sighand_struct *sighand;
706
707 sigset_t blocked, real_blocked;
708 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
709 struct sigpending pending;
710
711 unsigned long sas_ss_sp;
712 size_t sas_ss_size;
713 unsigned sas_ss_flags;
714
715 struct callback_head *task_works;
716
717 struct audit_context *audit_context;
718 #ifdef CONFIG_AUDITSYSCALL
719 kuid_t loginuid;
720 unsigned int sessionid;
721 #endif
722 struct seccomp seccomp;
723
724 /* Thread group tracking */
725 u32 parent_exec_id;
726 u32 self_exec_id;
727 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
728 * mempolicy */
729 spinlock_t alloc_lock;
730
731 /* Protection of the PI data structures: */
732 raw_spinlock_t pi_lock;
733
734 struct wake_q_node wake_q;
735
736 #ifdef CONFIG_RT_MUTEXES
737 /* PI waiters blocked on a rt_mutex held by this task */
738 struct rb_root pi_waiters;
739 struct rb_node *pi_waiters_leftmost;
740 /* Deadlock detection and priority inheritance handling */
741 struct rt_mutex_waiter *pi_blocked_on;
742 #endif
743
744 #ifdef CONFIG_DEBUG_MUTEXES
745 /* mutex deadlock detection */
746 struct mutex_waiter *blocked_on;
747 #endif
748 #ifdef CONFIG_TRACE_IRQFLAGS
749 unsigned int irq_events;
750 unsigned long hardirq_enable_ip;
751 unsigned long hardirq_disable_ip;
752 unsigned int hardirq_enable_event;
753 unsigned int hardirq_disable_event;
754 int hardirqs_enabled;
755 int hardirq_context;
756 unsigned long softirq_disable_ip;
757 unsigned long softirq_enable_ip;
758 unsigned int softirq_disable_event;
759 unsigned int softirq_enable_event;
760 int softirqs_enabled;
761 int softirq_context;
762 #endif
763 #ifdef CONFIG_LOCKDEP
764 # define MAX_LOCK_DEPTH 48UL
765 u64 curr_chain_key;
766 int lockdep_depth;
767 unsigned int lockdep_recursion;
768 struct held_lock held_locks[MAX_LOCK_DEPTH];
769 gfp_t lockdep_reclaim_gfp;
770 #endif
771 #ifdef CONFIG_UBSAN
772 unsigned int in_ubsan;
773 #endif
774
775 /* journalling filesystem info */
776 void *journal_info;
777
778 /* stacked block device info */
779 struct bio_list *bio_list;
780
781 #ifdef CONFIG_BLOCK
782 /* stack plugging */
783 struct blk_plug *plug;
784 #endif
785
786 /* VM state */
787 struct reclaim_state *reclaim_state;
788
789 struct backing_dev_info *backing_dev_info;
790
791 struct io_context *io_context;
792
793 unsigned long ptrace_message;
794 siginfo_t *last_siginfo; /* For ptrace use. */
795 struct task_io_accounting ioac;
796 #if defined(CONFIG_TASK_XACCT)
797 u64 acct_rss_mem1; /* accumulated rss usage */
798 u64 acct_vm_mem1; /* accumulated virtual memory usage */
799 u64 acct_timexpd; /* stime + utime since last update */
800 #endif
801 #ifdef CONFIG_CPUSETS
802 nodemask_t mems_allowed; /* Protected by alloc_lock */
803 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
804 int cpuset_mem_spread_rotor;
805 int cpuset_slab_spread_rotor;
806 #endif
807 #ifdef CONFIG_CGROUPS
808 /* Control Group info protected by css_set_lock */
809 struct css_set __rcu *cgroups;
810 /* cg_list protected by css_set_lock and tsk->alloc_lock */
811 struct list_head cg_list;
812 #endif
813 #ifdef CONFIG_INTEL_RDT_A
814 int closid;
815 #endif
816 #ifdef CONFIG_FUTEX
817 struct robust_list_head __user *robust_list;
818 #ifdef CONFIG_COMPAT
819 struct compat_robust_list_head __user *compat_robust_list;
820 #endif
821 struct list_head pi_state_list;
822 struct futex_pi_state *pi_state_cache;
823 #endif
824 #ifdef CONFIG_PERF_EVENTS
825 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
826 struct mutex perf_event_mutex;
827 struct list_head perf_event_list;
828 #endif
829 #ifdef CONFIG_DEBUG_PREEMPT
830 unsigned long preempt_disable_ip;
831 #endif
832 #ifdef CONFIG_NUMA
833 struct mempolicy *mempolicy; /* Protected by alloc_lock */
834 short il_next;
835 short pref_node_fork;
836 #endif
837 #ifdef CONFIG_NUMA_BALANCING
838 int numa_scan_seq;
839 unsigned int numa_scan_period;
840 unsigned int numa_scan_period_max;
841 int numa_preferred_nid;
842 unsigned long numa_migrate_retry;
843 u64 node_stamp; /* migration stamp */
844 u64 last_task_numa_placement;
845 u64 last_sum_exec_runtime;
846 struct callback_head numa_work;
847
848 struct list_head numa_entry;
849 struct numa_group *numa_group;
850
851 /*
852 * numa_faults is an array split into four regions:
853 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
854 * in this precise order.
855 *
856 * faults_memory: Exponential decaying average of faults on a per-node
857 * basis. Scheduling placement decisions are made based on these
858 * counts. The values remain static for the duration of a PTE scan.
859 * faults_cpu: Track the nodes the process was running on when a NUMA
860 * hinting fault was incurred.
861 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
862 * during the current scan window. When the scan completes, the counts
863 * in faults_memory and faults_cpu decay and these values are copied.
864 */
865 unsigned long *numa_faults;
866 unsigned long total_numa_faults;
867
868 /*
869 * numa_faults_locality tracks if faults recorded during the last
870 * scan window were remote/local or failed to migrate. The task scan
871 * period is adapted based on the locality of the faults with different
872 * weights depending on whether they were shared or private faults
873 */
874 unsigned long numa_faults_locality[3];
875
876 unsigned long numa_pages_migrated;
877 #endif /* CONFIG_NUMA_BALANCING */
878
879 struct tlbflush_unmap_batch tlb_ubc;
880
881 struct rcu_head rcu;
882
883 /*
884 * cache last used pipe for splice
885 */
886 struct pipe_inode_info *splice_pipe;
887
888 struct page_frag task_frag;
889
890 #ifdef CONFIG_TASK_DELAY_ACCT
891 struct task_delay_info *delays;
892 #endif
893
894 #ifdef CONFIG_FAULT_INJECTION
895 int make_it_fail;
896 #endif
897 /*
898 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
899 * balance_dirty_pages() for some dirty throttling pause
900 */
901 int nr_dirtied;
902 int nr_dirtied_pause;
903 unsigned long dirty_paused_when; /* start of a write-and-pause period */
904
905 #ifdef CONFIG_LATENCYTOP
906 int latency_record_count;
907 struct latency_record latency_record[LT_SAVECOUNT];
908 #endif
909 /*
910 * time slack values; these are used to round up poll() and
911 * select() etc timeout values. These are in nanoseconds.
912 */
913 u64 timer_slack_ns;
914 u64 default_timer_slack_ns;
915
916 #ifdef CONFIG_KASAN
917 unsigned int kasan_depth;
918 #endif
919 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
920 /* Index of current stored address in ret_stack */
921 int curr_ret_stack;
922 /* Stack of return addresses for return function tracing */
923 struct ftrace_ret_stack *ret_stack;
924 /* time stamp for last schedule */
925 unsigned long long ftrace_timestamp;
926 /*
927 * Number of functions that haven't been traced
928 * because of depth overrun.
929 */
930 atomic_t trace_overrun;
931 /* Pause for the tracing */
932 atomic_t tracing_graph_pause;
933 #endif
934 #ifdef CONFIG_TRACING
935 /* state flags for use by tracers */
936 unsigned long trace;
937 /* bitmask and counter of trace recursion */
938 unsigned long trace_recursion;
939 #endif /* CONFIG_TRACING */
940 #ifdef CONFIG_KCOV
941 /* Coverage collection mode enabled for this task (0 if disabled). */
942 enum kcov_mode kcov_mode;
943 /* Size of the kcov_area. */
944 unsigned kcov_size;
945 /* Buffer for coverage collection. */
946 void *kcov_area;
947 /* kcov desciptor wired with this task or NULL. */
948 struct kcov *kcov;
949 #endif
950 #ifdef CONFIG_MEMCG
951 struct mem_cgroup *memcg_in_oom;
952 gfp_t memcg_oom_gfp_mask;
953 int memcg_oom_order;
954
955 /* number of pages to reclaim on returning to userland */
956 unsigned int memcg_nr_pages_over_high;
957 #endif
958 #ifdef CONFIG_UPROBES
959 struct uprobe_task *utask;
960 #endif
961 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
962 unsigned int sequential_io;
963 unsigned int sequential_io_avg;
964 #endif
965 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
966 unsigned long task_state_change;
967 #endif
968 int pagefault_disabled;
969 #ifdef CONFIG_MMU
970 struct task_struct *oom_reaper_list;
971 #endif
972 #ifdef CONFIG_VMAP_STACK
973 struct vm_struct *stack_vm_area;
974 #endif
975 #ifdef CONFIG_THREAD_INFO_IN_TASK
976 /* A live task holds one reference. */
977 atomic_t stack_refcount;
978 #endif
979 /* CPU-specific state of this task */
980 struct thread_struct thread;
981 /*
982 * WARNING: on x86, 'thread_struct' contains a variable-sized
983 * structure. It *MUST* be at the end of 'task_struct'.
984 *
985 * Do not put anything below here!
986 */
987 };
988
989 static inline struct pid *task_pid(struct task_struct *task)
990 {
991 return task->pids[PIDTYPE_PID].pid;
992 }
993
994 static inline struct pid *task_tgid(struct task_struct *task)
995 {
996 return task->group_leader->pids[PIDTYPE_PID].pid;
997 }
998
999 /*
1000 * Without tasklist or rcu lock it is not safe to dereference
1001 * the result of task_pgrp/task_session even if task == current,
1002 * we can race with another thread doing sys_setsid/sys_setpgid.
1003 */
1004 static inline struct pid *task_pgrp(struct task_struct *task)
1005 {
1006 return task->group_leader->pids[PIDTYPE_PGID].pid;
1007 }
1008
1009 static inline struct pid *task_session(struct task_struct *task)
1010 {
1011 return task->group_leader->pids[PIDTYPE_SID].pid;
1012 }
1013
1014 /*
1015 * the helpers to get the task's different pids as they are seen
1016 * from various namespaces
1017 *
1018 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1019 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1020 * current.
1021 * task_xid_nr_ns() : id seen from the ns specified;
1022 *
1023 * set_task_vxid() : assigns a virtual id to a task;
1024 *
1025 * see also pid_nr() etc in include/linux/pid.h
1026 */
1027 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1028 struct pid_namespace *ns);
1029
1030 static inline pid_t task_pid_nr(struct task_struct *tsk)
1031 {
1032 return tsk->pid;
1033 }
1034
1035 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1036 struct pid_namespace *ns)
1037 {
1038 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1039 }
1040
1041 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1042 {
1043 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1044 }
1045
1046
1047 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1048 {
1049 return tsk->tgid;
1050 }
1051
1052 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1053
1054 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1055 {
1056 return pid_vnr(task_tgid(tsk));
1057 }
1058
1059
1060 static inline int pid_alive(const struct task_struct *p);
1061 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1062 {
1063 pid_t pid = 0;
1064
1065 rcu_read_lock();
1066 if (pid_alive(tsk))
1067 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1068 rcu_read_unlock();
1069
1070 return pid;
1071 }
1072
1073 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1074 {
1075 return task_ppid_nr_ns(tsk, &init_pid_ns);
1076 }
1077
1078 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1079 struct pid_namespace *ns)
1080 {
1081 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1082 }
1083
1084 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1085 {
1086 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1087 }
1088
1089
1090 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1091 struct pid_namespace *ns)
1092 {
1093 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1094 }
1095
1096 static inline pid_t task_session_vnr(struct task_struct *tsk)
1097 {
1098 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1099 }
1100
1101 /* obsolete, do not use */
1102 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1103 {
1104 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1105 }
1106
1107 /**
1108 * pid_alive - check that a task structure is not stale
1109 * @p: Task structure to be checked.
1110 *
1111 * Test if a process is not yet dead (at most zombie state)
1112 * If pid_alive fails, then pointers within the task structure
1113 * can be stale and must not be dereferenced.
1114 *
1115 * Return: 1 if the process is alive. 0 otherwise.
1116 */
1117 static inline int pid_alive(const struct task_struct *p)
1118 {
1119 return p->pids[PIDTYPE_PID].pid != NULL;
1120 }
1121
1122 /**
1123 * is_global_init - check if a task structure is init. Since init
1124 * is free to have sub-threads we need to check tgid.
1125 * @tsk: Task structure to be checked.
1126 *
1127 * Check if a task structure is the first user space task the kernel created.
1128 *
1129 * Return: 1 if the task structure is init. 0 otherwise.
1130 */
1131 static inline int is_global_init(struct task_struct *tsk)
1132 {
1133 return task_tgid_nr(tsk) == 1;
1134 }
1135
1136 extern struct pid *cad_pid;
1137
1138 /*
1139 * Per process flags
1140 */
1141 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1142 #define PF_EXITING 0x00000004 /* getting shut down */
1143 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1144 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1145 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1146 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1147 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1148 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1149 #define PF_DUMPCORE 0x00000200 /* dumped core */
1150 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1151 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1152 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1153 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1154 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1155 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1156 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1157 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1158 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1159 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1160 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1161 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1162 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1163 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1164 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1165 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1166 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1167 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1168 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1169
1170 /*
1171 * Only the _current_ task can read/write to tsk->flags, but other
1172 * tasks can access tsk->flags in readonly mode for example
1173 * with tsk_used_math (like during threaded core dumping).
1174 * There is however an exception to this rule during ptrace
1175 * or during fork: the ptracer task is allowed to write to the
1176 * child->flags of its traced child (same goes for fork, the parent
1177 * can write to the child->flags), because we're guaranteed the
1178 * child is not running and in turn not changing child->flags
1179 * at the same time the parent does it.
1180 */
1181 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1182 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1183 #define clear_used_math() clear_stopped_child_used_math(current)
1184 #define set_used_math() set_stopped_child_used_math(current)
1185 #define conditional_stopped_child_used_math(condition, child) \
1186 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1187 #define conditional_used_math(condition) \
1188 conditional_stopped_child_used_math(condition, current)
1189 #define copy_to_stopped_child_used_math(child) \
1190 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1191 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1192 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1193 #define used_math() tsk_used_math(current)
1194
1195 /* Per-process atomic flags. */
1196 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1197 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1198 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1199 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
1200
1201
1202 #define TASK_PFA_TEST(name, func) \
1203 static inline bool task_##func(struct task_struct *p) \
1204 { return test_bit(PFA_##name, &p->atomic_flags); }
1205 #define TASK_PFA_SET(name, func) \
1206 static inline void task_set_##func(struct task_struct *p) \
1207 { set_bit(PFA_##name, &p->atomic_flags); }
1208 #define TASK_PFA_CLEAR(name, func) \
1209 static inline void task_clear_##func(struct task_struct *p) \
1210 { clear_bit(PFA_##name, &p->atomic_flags); }
1211
1212 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1213 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1214
1215 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1216 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1217 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1218
1219 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1220 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1221 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1222
1223 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
1224 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
1225
1226 static inline void tsk_restore_flags(struct task_struct *task,
1227 unsigned long orig_flags, unsigned long flags)
1228 {
1229 task->flags &= ~flags;
1230 task->flags |= orig_flags & flags;
1231 }
1232
1233 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
1234 const struct cpumask *trial);
1235 extern int task_can_attach(struct task_struct *p,
1236 const struct cpumask *cs_cpus_allowed);
1237 #ifdef CONFIG_SMP
1238 extern void do_set_cpus_allowed(struct task_struct *p,
1239 const struct cpumask *new_mask);
1240
1241 extern int set_cpus_allowed_ptr(struct task_struct *p,
1242 const struct cpumask *new_mask);
1243 #else
1244 static inline void do_set_cpus_allowed(struct task_struct *p,
1245 const struct cpumask *new_mask)
1246 {
1247 }
1248 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1249 const struct cpumask *new_mask)
1250 {
1251 if (!cpumask_test_cpu(0, new_mask))
1252 return -EINVAL;
1253 return 0;
1254 }
1255 #endif
1256
1257 #ifndef cpu_relax_yield
1258 #define cpu_relax_yield() cpu_relax()
1259 #endif
1260
1261 /* sched_exec is called by processes performing an exec */
1262 #ifdef CONFIG_SMP
1263 extern void sched_exec(void);
1264 #else
1265 #define sched_exec() {}
1266 #endif
1267
1268 extern int yield_to(struct task_struct *p, bool preempt);
1269 extern void set_user_nice(struct task_struct *p, long nice);
1270 extern int task_prio(const struct task_struct *p);
1271 /**
1272 * task_nice - return the nice value of a given task.
1273 * @p: the task in question.
1274 *
1275 * Return: The nice value [ -20 ... 0 ... 19 ].
1276 */
1277 static inline int task_nice(const struct task_struct *p)
1278 {
1279 return PRIO_TO_NICE((p)->static_prio);
1280 }
1281 extern int can_nice(const struct task_struct *p, const int nice);
1282 extern int task_curr(const struct task_struct *p);
1283 extern int idle_cpu(int cpu);
1284 extern int sched_setscheduler(struct task_struct *, int,
1285 const struct sched_param *);
1286 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1287 const struct sched_param *);
1288 extern int sched_setattr(struct task_struct *,
1289 const struct sched_attr *);
1290 extern struct task_struct *idle_task(int cpu);
1291 /**
1292 * is_idle_task - is the specified task an idle task?
1293 * @p: the task in question.
1294 *
1295 * Return: 1 if @p is an idle task. 0 otherwise.
1296 */
1297 static inline bool is_idle_task(const struct task_struct *p)
1298 {
1299 return !!(p->flags & PF_IDLE);
1300 }
1301 extern struct task_struct *curr_task(int cpu);
1302 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1303
1304 void yield(void);
1305
1306 union thread_union {
1307 #ifndef CONFIG_THREAD_INFO_IN_TASK
1308 struct thread_info thread_info;
1309 #endif
1310 unsigned long stack[THREAD_SIZE/sizeof(long)];
1311 };
1312
1313 #ifdef CONFIG_THREAD_INFO_IN_TASK
1314 static inline struct thread_info *task_thread_info(struct task_struct *task)
1315 {
1316 return &task->thread_info;
1317 }
1318 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1319 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1320 #endif
1321
1322 extern struct pid_namespace init_pid_ns;
1323
1324 /*
1325 * find a task by one of its numerical ids
1326 *
1327 * find_task_by_pid_ns():
1328 * finds a task by its pid in the specified namespace
1329 * find_task_by_vpid():
1330 * finds a task by its virtual pid
1331 *
1332 * see also find_vpid() etc in include/linux/pid.h
1333 */
1334
1335 extern struct task_struct *find_task_by_vpid(pid_t nr);
1336 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1337 struct pid_namespace *ns);
1338
1339 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1340 extern int wake_up_process(struct task_struct *tsk);
1341 extern void wake_up_new_task(struct task_struct *tsk);
1342 #ifdef CONFIG_SMP
1343 extern void kick_process(struct task_struct *tsk);
1344 #else
1345 static inline void kick_process(struct task_struct *tsk) { }
1346 #endif
1347
1348 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1349 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1350 {
1351 __set_task_comm(tsk, from, false);
1352 }
1353 extern char *get_task_comm(char *to, struct task_struct *tsk);
1354
1355 #ifdef CONFIG_SMP
1356 void scheduler_ipi(void);
1357 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1358 #else
1359 static inline void scheduler_ipi(void) { }
1360 static inline unsigned long wait_task_inactive(struct task_struct *p,
1361 long match_state)
1362 {
1363 return 1;
1364 }
1365 #endif
1366
1367 /* set thread flags in other task's structures
1368 * - see asm/thread_info.h for TIF_xxxx flags available
1369 */
1370 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1371 {
1372 set_ti_thread_flag(task_thread_info(tsk), flag);
1373 }
1374
1375 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1376 {
1377 clear_ti_thread_flag(task_thread_info(tsk), flag);
1378 }
1379
1380 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1381 {
1382 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1383 }
1384
1385 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1386 {
1387 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1388 }
1389
1390 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1391 {
1392 return test_ti_thread_flag(task_thread_info(tsk), flag);
1393 }
1394
1395 static inline void set_tsk_need_resched(struct task_struct *tsk)
1396 {
1397 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1398 }
1399
1400 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1401 {
1402 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1403 }
1404
1405 static inline int test_tsk_need_resched(struct task_struct *tsk)
1406 {
1407 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1408 }
1409
1410 /*
1411 * cond_resched() and cond_resched_lock(): latency reduction via
1412 * explicit rescheduling in places that are safe. The return
1413 * value indicates whether a reschedule was done in fact.
1414 * cond_resched_lock() will drop the spinlock before scheduling,
1415 * cond_resched_softirq() will enable bhs before scheduling.
1416 */
1417 #ifndef CONFIG_PREEMPT
1418 extern int _cond_resched(void);
1419 #else
1420 static inline int _cond_resched(void) { return 0; }
1421 #endif
1422
1423 #define cond_resched() ({ \
1424 ___might_sleep(__FILE__, __LINE__, 0); \
1425 _cond_resched(); \
1426 })
1427
1428 extern int __cond_resched_lock(spinlock_t *lock);
1429
1430 #define cond_resched_lock(lock) ({ \
1431 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1432 __cond_resched_lock(lock); \
1433 })
1434
1435 extern int __cond_resched_softirq(void);
1436
1437 #define cond_resched_softirq() ({ \
1438 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1439 __cond_resched_softirq(); \
1440 })
1441
1442 static inline void cond_resched_rcu(void)
1443 {
1444 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1445 rcu_read_unlock();
1446 cond_resched();
1447 rcu_read_lock();
1448 #endif
1449 }
1450
1451 /*
1452 * Does a critical section need to be broken due to another
1453 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1454 * but a general need for low latency)
1455 */
1456 static inline int spin_needbreak(spinlock_t *lock)
1457 {
1458 #ifdef CONFIG_PREEMPT
1459 return spin_is_contended(lock);
1460 #else
1461 return 0;
1462 #endif
1463 }
1464
1465 static __always_inline bool need_resched(void)
1466 {
1467 return unlikely(tif_need_resched());
1468 }
1469
1470 /*
1471 * Wrappers for p->thread_info->cpu access. No-op on UP.
1472 */
1473 #ifdef CONFIG_SMP
1474
1475 static inline unsigned int task_cpu(const struct task_struct *p)
1476 {
1477 #ifdef CONFIG_THREAD_INFO_IN_TASK
1478 return p->cpu;
1479 #else
1480 return task_thread_info(p)->cpu;
1481 #endif
1482 }
1483
1484 static inline int task_node(const struct task_struct *p)
1485 {
1486 return cpu_to_node(task_cpu(p));
1487 }
1488
1489 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1490
1491 #else
1492
1493 static inline unsigned int task_cpu(const struct task_struct *p)
1494 {
1495 return 0;
1496 }
1497
1498 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1499 {
1500 }
1501
1502 #endif /* CONFIG_SMP */
1503
1504 /*
1505 * In order to reduce various lock holder preemption latencies provide an
1506 * interface to see if a vCPU is currently running or not.
1507 *
1508 * This allows us to terminate optimistic spin loops and block, analogous to
1509 * the native optimistic spin heuristic of testing if the lock owner task is
1510 * running or not.
1511 */
1512 #ifndef vcpu_is_preempted
1513 # define vcpu_is_preempted(cpu) false
1514 #endif
1515
1516 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1517 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1518
1519 extern int task_can_switch_user(struct user_struct *up,
1520 struct task_struct *tsk);
1521
1522 #ifndef TASK_SIZE_OF
1523 #define TASK_SIZE_OF(tsk) TASK_SIZE
1524 #endif
1525
1526 #endif