]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
sched/headers: Move task_struct::signal and task_struct::sighand types and accessors...
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8 #include <asm/param.h> /* for HZ */
9
10 #include <linux/capability.h>
11 #include <linux/threads.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/mutex.h>
17 #include <linux/plist.h>
18 #include <linux/rbtree.h>
19 #include <linux/thread_info.h>
20 #include <linux/cpumask.h>
21 #include <linux/errno.h>
22 #include <linux/nodemask.h>
23 #include <linux/mm_types.h>
24 #include <linux/preempt.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28
29 #include <linux/smp.h>
30 #include <linux/sem.h>
31 #include <linux/shm.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/signal_types.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/kcov.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56 #include <linux/topology.h>
57 #include <linux/magic.h>
58 #include <linux/cgroup-defs.h>
59
60 #include <asm/processor.h>
61
62 struct sched_attr;
63 struct sched_param;
64
65 struct futex_pi_state;
66 struct robust_list_head;
67 struct bio_list;
68 struct fs_struct;
69 struct perf_event_context;
70 struct blk_plug;
71 struct filename;
72 struct nameidata;
73
74 struct signal_struct;
75 struct sighand_struct;
76
77 extern unsigned long total_forks;
78 extern int nr_threads;
79 DECLARE_PER_CPU(unsigned long, process_counts);
80 extern int nr_processes(void);
81 extern unsigned long nr_running(void);
82 extern bool single_task_running(void);
83 extern unsigned long nr_iowait(void);
84 extern unsigned long nr_iowait_cpu(int cpu);
85 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
86
87 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
88 extern void cpu_load_update_nohz_start(void);
89 extern void cpu_load_update_nohz_stop(void);
90 #else
91 static inline void cpu_load_update_nohz_start(void) { }
92 static inline void cpu_load_update_nohz_stop(void) { }
93 #endif
94
95 extern void dump_cpu_task(int cpu);
96
97 struct seq_file;
98 struct cfs_rq;
99 struct task_group;
100 #ifdef CONFIG_SCHED_DEBUG
101 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
102 extern void proc_sched_set_task(struct task_struct *p);
103 #endif
104
105 /*
106 * Task state bitmask. NOTE! These bits are also
107 * encoded in fs/proc/array.c: get_task_state().
108 *
109 * We have two separate sets of flags: task->state
110 * is about runnability, while task->exit_state are
111 * about the task exiting. Confusing, but this way
112 * modifying one set can't modify the other one by
113 * mistake.
114 */
115 #define TASK_RUNNING 0
116 #define TASK_INTERRUPTIBLE 1
117 #define TASK_UNINTERRUPTIBLE 2
118 #define __TASK_STOPPED 4
119 #define __TASK_TRACED 8
120 /* in tsk->exit_state */
121 #define EXIT_DEAD 16
122 #define EXIT_ZOMBIE 32
123 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
124 /* in tsk->state again */
125 #define TASK_DEAD 64
126 #define TASK_WAKEKILL 128
127 #define TASK_WAKING 256
128 #define TASK_PARKED 512
129 #define TASK_NOLOAD 1024
130 #define TASK_NEW 2048
131 #define TASK_STATE_MAX 4096
132
133 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
134
135 /* Convenience macros for the sake of set_current_state */
136 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
137 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
138 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
139
140 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
141
142 /* Convenience macros for the sake of wake_up */
143 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
144 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
145
146 /* get_task_state() */
147 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
148 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
149 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
150
151 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
152 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
153 #define task_is_stopped_or_traced(task) \
154 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
155 #define task_contributes_to_load(task) \
156 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
157 (task->flags & PF_FROZEN) == 0 && \
158 (task->state & TASK_NOLOAD) == 0)
159
160 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
161
162 #define __set_current_state(state_value) \
163 do { \
164 current->task_state_change = _THIS_IP_; \
165 current->state = (state_value); \
166 } while (0)
167 #define set_current_state(state_value) \
168 do { \
169 current->task_state_change = _THIS_IP_; \
170 smp_store_mb(current->state, (state_value)); \
171 } while (0)
172
173 #else
174 /*
175 * set_current_state() includes a barrier so that the write of current->state
176 * is correctly serialised wrt the caller's subsequent test of whether to
177 * actually sleep:
178 *
179 * for (;;) {
180 * set_current_state(TASK_UNINTERRUPTIBLE);
181 * if (!need_sleep)
182 * break;
183 *
184 * schedule();
185 * }
186 * __set_current_state(TASK_RUNNING);
187 *
188 * If the caller does not need such serialisation (because, for instance, the
189 * condition test and condition change and wakeup are under the same lock) then
190 * use __set_current_state().
191 *
192 * The above is typically ordered against the wakeup, which does:
193 *
194 * need_sleep = false;
195 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
196 *
197 * Where wake_up_state() (and all other wakeup primitives) imply enough
198 * barriers to order the store of the variable against wakeup.
199 *
200 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
201 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203 *
204 * This is obviously fine, since they both store the exact same value.
205 *
206 * Also see the comments of try_to_wake_up().
207 */
208 #define __set_current_state(state_value) \
209 do { current->state = (state_value); } while (0)
210 #define set_current_state(state_value) \
211 smp_store_mb(current->state, (state_value))
212
213 #endif
214
215 /* Task command name length */
216 #define TASK_COMM_LEN 16
217
218 #include <linux/spinlock.h>
219
220 /*
221 * This serializes "schedule()" and also protects
222 * the run-queue from deletions/modifications (but
223 * _adding_ to the beginning of the run-queue has
224 * a separate lock).
225 */
226 extern rwlock_t tasklist_lock;
227 extern spinlock_t mmlist_lock;
228
229 struct task_struct;
230
231 #ifdef CONFIG_PROVE_RCU
232 extern int lockdep_tasklist_lock_is_held(void);
233 #endif /* #ifdef CONFIG_PROVE_RCU */
234
235 extern void sched_init(void);
236 extern void sched_init_smp(void);
237 extern asmlinkage void schedule_tail(struct task_struct *prev);
238 extern void init_idle(struct task_struct *idle, int cpu);
239 extern void init_idle_bootup_task(struct task_struct *idle);
240
241 extern cpumask_var_t cpu_isolated_map;
242
243 extern int runqueue_is_locked(int cpu);
244
245 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
246 extern void nohz_balance_enter_idle(int cpu);
247 extern void set_cpu_sd_state_idle(void);
248 extern int get_nohz_timer_target(void);
249 #else
250 static inline void nohz_balance_enter_idle(int cpu) { }
251 static inline void set_cpu_sd_state_idle(void) { }
252 #endif
253
254 /*
255 * Only dump TASK_* tasks. (0 for all tasks)
256 */
257 extern void show_state_filter(unsigned long state_filter);
258
259 static inline void show_state(void)
260 {
261 show_state_filter(0);
262 }
263
264 extern void show_regs(struct pt_regs *);
265
266 /*
267 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
268 * task), SP is the stack pointer of the first frame that should be shown in the back
269 * trace (or NULL if the entire call-chain of the task should be shown).
270 */
271 extern void show_stack(struct task_struct *task, unsigned long *sp);
272
273 extern void cpu_init (void);
274 extern void trap_init(void);
275 extern void update_process_times(int user);
276 extern void scheduler_tick(void);
277 extern int sched_cpu_starting(unsigned int cpu);
278 extern int sched_cpu_activate(unsigned int cpu);
279 extern int sched_cpu_deactivate(unsigned int cpu);
280
281 #ifdef CONFIG_HOTPLUG_CPU
282 extern int sched_cpu_dying(unsigned int cpu);
283 #else
284 # define sched_cpu_dying NULL
285 #endif
286
287 extern void sched_show_task(struct task_struct *p);
288
289 #ifdef CONFIG_LOCKUP_DETECTOR
290 extern void touch_softlockup_watchdog_sched(void);
291 extern void touch_softlockup_watchdog(void);
292 extern void touch_softlockup_watchdog_sync(void);
293 extern void touch_all_softlockup_watchdogs(void);
294 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
295 void __user *buffer,
296 size_t *lenp, loff_t *ppos);
297 extern unsigned int softlockup_panic;
298 extern unsigned int hardlockup_panic;
299 void lockup_detector_init(void);
300 #else
301 static inline void touch_softlockup_watchdog_sched(void)
302 {
303 }
304 static inline void touch_softlockup_watchdog(void)
305 {
306 }
307 static inline void touch_softlockup_watchdog_sync(void)
308 {
309 }
310 static inline void touch_all_softlockup_watchdogs(void)
311 {
312 }
313 static inline void lockup_detector_init(void)
314 {
315 }
316 #endif
317
318 #ifdef CONFIG_DETECT_HUNG_TASK
319 void reset_hung_task_detector(void);
320 #else
321 static inline void reset_hung_task_detector(void)
322 {
323 }
324 #endif
325
326 /* Attach to any functions which should be ignored in wchan output. */
327 #define __sched __attribute__((__section__(".sched.text")))
328
329 /* Linker adds these: start and end of __sched functions */
330 extern char __sched_text_start[], __sched_text_end[];
331
332 /* Is this address in the __sched functions? */
333 extern int in_sched_functions(unsigned long addr);
334
335 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
336 extern signed long schedule_timeout(signed long timeout);
337 extern signed long schedule_timeout_interruptible(signed long timeout);
338 extern signed long schedule_timeout_killable(signed long timeout);
339 extern signed long schedule_timeout_uninterruptible(signed long timeout);
340 extern signed long schedule_timeout_idle(signed long timeout);
341 asmlinkage void schedule(void);
342 extern void schedule_preempt_disabled(void);
343
344 extern int __must_check io_schedule_prepare(void);
345 extern void io_schedule_finish(int token);
346 extern long io_schedule_timeout(long timeout);
347 extern void io_schedule(void);
348
349 void __noreturn do_task_dead(void);
350
351 struct nsproxy;
352 struct user_namespace;
353
354 #ifdef CONFIG_MMU
355 extern void arch_pick_mmap_layout(struct mm_struct *mm);
356 extern unsigned long
357 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
358 unsigned long, unsigned long);
359 extern unsigned long
360 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
361 unsigned long len, unsigned long pgoff,
362 unsigned long flags);
363 #else
364 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
365 #endif
366
367 struct pacct_struct {
368 int ac_flag;
369 long ac_exitcode;
370 unsigned long ac_mem;
371 u64 ac_utime, ac_stime;
372 unsigned long ac_minflt, ac_majflt;
373 };
374
375 struct cpu_itimer {
376 u64 expires;
377 u64 incr;
378 };
379
380 /**
381 * struct prev_cputime - snaphsot of system and user cputime
382 * @utime: time spent in user mode
383 * @stime: time spent in system mode
384 * @lock: protects the above two fields
385 *
386 * Stores previous user/system time values such that we can guarantee
387 * monotonicity.
388 */
389 struct prev_cputime {
390 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
391 u64 utime;
392 u64 stime;
393 raw_spinlock_t lock;
394 #endif
395 };
396
397 static inline void prev_cputime_init(struct prev_cputime *prev)
398 {
399 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400 prev->utime = prev->stime = 0;
401 raw_spin_lock_init(&prev->lock);
402 #endif
403 }
404
405 /**
406 * struct task_cputime - collected CPU time counts
407 * @utime: time spent in user mode, in nanoseconds
408 * @stime: time spent in kernel mode, in nanoseconds
409 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
410 *
411 * This structure groups together three kinds of CPU time that are tracked for
412 * threads and thread groups. Most things considering CPU time want to group
413 * these counts together and treat all three of them in parallel.
414 */
415 struct task_cputime {
416 u64 utime;
417 u64 stime;
418 unsigned long long sum_exec_runtime;
419 };
420
421 /* Alternate field names when used to cache expirations. */
422 #define virt_exp utime
423 #define prof_exp stime
424 #define sched_exp sum_exec_runtime
425
426 /*
427 * This is the atomic variant of task_cputime, which can be used for
428 * storing and updating task_cputime statistics without locking.
429 */
430 struct task_cputime_atomic {
431 atomic64_t utime;
432 atomic64_t stime;
433 atomic64_t sum_exec_runtime;
434 };
435
436 #define INIT_CPUTIME_ATOMIC \
437 (struct task_cputime_atomic) { \
438 .utime = ATOMIC64_INIT(0), \
439 .stime = ATOMIC64_INIT(0), \
440 .sum_exec_runtime = ATOMIC64_INIT(0), \
441 }
442
443 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
444
445 /*
446 * Disable preemption until the scheduler is running -- use an unconditional
447 * value so that it also works on !PREEMPT_COUNT kernels.
448 *
449 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
450 */
451 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
452
453 /*
454 * Initial preempt_count value; reflects the preempt_count schedule invariant
455 * which states that during context switches:
456 *
457 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
458 *
459 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
460 * Note: See finish_task_switch().
461 */
462 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
463
464 /**
465 * struct thread_group_cputimer - thread group interval timer counts
466 * @cputime_atomic: atomic thread group interval timers.
467 * @running: true when there are timers running and
468 * @cputime_atomic receives updates.
469 * @checking_timer: true when a thread in the group is in the
470 * process of checking for thread group timers.
471 *
472 * This structure contains the version of task_cputime, above, that is
473 * used for thread group CPU timer calculations.
474 */
475 struct thread_group_cputimer {
476 struct task_cputime_atomic cputime_atomic;
477 bool running;
478 bool checking_timer;
479 };
480
481 #include <linux/rwsem.h>
482 struct autogroup;
483
484 /*
485 * Some day this will be a full-fledged user tracking system..
486 */
487 struct user_struct {
488 atomic_t __count; /* reference count */
489 atomic_t processes; /* How many processes does this user have? */
490 atomic_t sigpending; /* How many pending signals does this user have? */
491 #ifdef CONFIG_FANOTIFY
492 atomic_t fanotify_listeners;
493 #endif
494 #ifdef CONFIG_EPOLL
495 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
496 #endif
497 #ifdef CONFIG_POSIX_MQUEUE
498 /* protected by mq_lock */
499 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
500 #endif
501 unsigned long locked_shm; /* How many pages of mlocked shm ? */
502 unsigned long unix_inflight; /* How many files in flight in unix sockets */
503 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
504
505 #ifdef CONFIG_KEYS
506 struct key *uid_keyring; /* UID specific keyring */
507 struct key *session_keyring; /* UID's default session keyring */
508 #endif
509
510 /* Hash table maintenance information */
511 struct hlist_node uidhash_node;
512 kuid_t uid;
513
514 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
515 atomic_long_t locked_vm;
516 #endif
517 };
518
519 extern int uids_sysfs_init(void);
520
521 extern struct user_struct *find_user(kuid_t);
522
523 extern struct user_struct root_user;
524 #define INIT_USER (&root_user)
525
526
527 struct backing_dev_info;
528 struct reclaim_state;
529
530 #ifdef CONFIG_SCHED_INFO
531 struct sched_info {
532 /* cumulative counters */
533 unsigned long pcount; /* # of times run on this cpu */
534 unsigned long long run_delay; /* time spent waiting on a runqueue */
535
536 /* timestamps */
537 unsigned long long last_arrival,/* when we last ran on a cpu */
538 last_queued; /* when we were last queued to run */
539 };
540 #endif /* CONFIG_SCHED_INFO */
541
542 struct task_delay_info;
543
544 static inline int sched_info_on(void)
545 {
546 #ifdef CONFIG_SCHEDSTATS
547 return 1;
548 #elif defined(CONFIG_TASK_DELAY_ACCT)
549 extern int delayacct_on;
550 return delayacct_on;
551 #else
552 return 0;
553 #endif
554 }
555
556 #ifdef CONFIG_SCHEDSTATS
557 void force_schedstat_enabled(void);
558 #endif
559
560 /*
561 * Integer metrics need fixed point arithmetic, e.g., sched/fair
562 * has a few: load, load_avg, util_avg, freq, and capacity.
563 *
564 * We define a basic fixed point arithmetic range, and then formalize
565 * all these metrics based on that basic range.
566 */
567 # define SCHED_FIXEDPOINT_SHIFT 10
568 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
569
570 struct io_context; /* See blkdev.h */
571
572
573 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
574 extern void prefetch_stack(struct task_struct *t);
575 #else
576 static inline void prefetch_stack(struct task_struct *t) { }
577 #endif
578
579 struct audit_context; /* See audit.c */
580 struct mempolicy;
581 struct pipe_inode_info;
582 struct uts_namespace;
583
584 struct load_weight {
585 unsigned long weight;
586 u32 inv_weight;
587 };
588
589 /*
590 * The load_avg/util_avg accumulates an infinite geometric series
591 * (see __update_load_avg() in kernel/sched/fair.c).
592 *
593 * [load_avg definition]
594 *
595 * load_avg = runnable% * scale_load_down(load)
596 *
597 * where runnable% is the time ratio that a sched_entity is runnable.
598 * For cfs_rq, it is the aggregated load_avg of all runnable and
599 * blocked sched_entities.
600 *
601 * load_avg may also take frequency scaling into account:
602 *
603 * load_avg = runnable% * scale_load_down(load) * freq%
604 *
605 * where freq% is the CPU frequency normalized to the highest frequency.
606 *
607 * [util_avg definition]
608 *
609 * util_avg = running% * SCHED_CAPACITY_SCALE
610 *
611 * where running% is the time ratio that a sched_entity is running on
612 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
613 * and blocked sched_entities.
614 *
615 * util_avg may also factor frequency scaling and CPU capacity scaling:
616 *
617 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
618 *
619 * where freq% is the same as above, and capacity% is the CPU capacity
620 * normalized to the greatest capacity (due to uarch differences, etc).
621 *
622 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
623 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
624 * we therefore scale them to as large a range as necessary. This is for
625 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
626 *
627 * [Overflow issue]
628 *
629 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
630 * with the highest load (=88761), always runnable on a single cfs_rq,
631 * and should not overflow as the number already hits PID_MAX_LIMIT.
632 *
633 * For all other cases (including 32-bit kernels), struct load_weight's
634 * weight will overflow first before we do, because:
635 *
636 * Max(load_avg) <= Max(load.weight)
637 *
638 * Then it is the load_weight's responsibility to consider overflow
639 * issues.
640 */
641 struct sched_avg {
642 u64 last_update_time, load_sum;
643 u32 util_sum, period_contrib;
644 unsigned long load_avg, util_avg;
645 };
646
647 #ifdef CONFIG_SCHEDSTATS
648 struct sched_statistics {
649 u64 wait_start;
650 u64 wait_max;
651 u64 wait_count;
652 u64 wait_sum;
653 u64 iowait_count;
654 u64 iowait_sum;
655
656 u64 sleep_start;
657 u64 sleep_max;
658 s64 sum_sleep_runtime;
659
660 u64 block_start;
661 u64 block_max;
662 u64 exec_max;
663 u64 slice_max;
664
665 u64 nr_migrations_cold;
666 u64 nr_failed_migrations_affine;
667 u64 nr_failed_migrations_running;
668 u64 nr_failed_migrations_hot;
669 u64 nr_forced_migrations;
670
671 u64 nr_wakeups;
672 u64 nr_wakeups_sync;
673 u64 nr_wakeups_migrate;
674 u64 nr_wakeups_local;
675 u64 nr_wakeups_remote;
676 u64 nr_wakeups_affine;
677 u64 nr_wakeups_affine_attempts;
678 u64 nr_wakeups_passive;
679 u64 nr_wakeups_idle;
680 };
681 #endif
682
683 struct sched_entity {
684 struct load_weight load; /* for load-balancing */
685 struct rb_node run_node;
686 struct list_head group_node;
687 unsigned int on_rq;
688
689 u64 exec_start;
690 u64 sum_exec_runtime;
691 u64 vruntime;
692 u64 prev_sum_exec_runtime;
693
694 u64 nr_migrations;
695
696 #ifdef CONFIG_SCHEDSTATS
697 struct sched_statistics statistics;
698 #endif
699
700 #ifdef CONFIG_FAIR_GROUP_SCHED
701 int depth;
702 struct sched_entity *parent;
703 /* rq on which this entity is (to be) queued: */
704 struct cfs_rq *cfs_rq;
705 /* rq "owned" by this entity/group: */
706 struct cfs_rq *my_q;
707 #endif
708
709 #ifdef CONFIG_SMP
710 /*
711 * Per entity load average tracking.
712 *
713 * Put into separate cache line so it does not
714 * collide with read-mostly values above.
715 */
716 struct sched_avg avg ____cacheline_aligned_in_smp;
717 #endif
718 };
719
720 struct sched_rt_entity {
721 struct list_head run_list;
722 unsigned long timeout;
723 unsigned long watchdog_stamp;
724 unsigned int time_slice;
725 unsigned short on_rq;
726 unsigned short on_list;
727
728 struct sched_rt_entity *back;
729 #ifdef CONFIG_RT_GROUP_SCHED
730 struct sched_rt_entity *parent;
731 /* rq on which this entity is (to be) queued: */
732 struct rt_rq *rt_rq;
733 /* rq "owned" by this entity/group: */
734 struct rt_rq *my_q;
735 #endif
736 };
737
738 struct sched_dl_entity {
739 struct rb_node rb_node;
740
741 /*
742 * Original scheduling parameters. Copied here from sched_attr
743 * during sched_setattr(), they will remain the same until
744 * the next sched_setattr().
745 */
746 u64 dl_runtime; /* maximum runtime for each instance */
747 u64 dl_deadline; /* relative deadline of each instance */
748 u64 dl_period; /* separation of two instances (period) */
749 u64 dl_bw; /* dl_runtime / dl_deadline */
750
751 /*
752 * Actual scheduling parameters. Initialized with the values above,
753 * they are continously updated during task execution. Note that
754 * the remaining runtime could be < 0 in case we are in overrun.
755 */
756 s64 runtime; /* remaining runtime for this instance */
757 u64 deadline; /* absolute deadline for this instance */
758 unsigned int flags; /* specifying the scheduler behaviour */
759
760 /*
761 * Some bool flags:
762 *
763 * @dl_throttled tells if we exhausted the runtime. If so, the
764 * task has to wait for a replenishment to be performed at the
765 * next firing of dl_timer.
766 *
767 * @dl_boosted tells if we are boosted due to DI. If so we are
768 * outside bandwidth enforcement mechanism (but only until we
769 * exit the critical section);
770 *
771 * @dl_yielded tells if task gave up the cpu before consuming
772 * all its available runtime during the last job.
773 */
774 int dl_throttled, dl_boosted, dl_yielded;
775
776 /*
777 * Bandwidth enforcement timer. Each -deadline task has its
778 * own bandwidth to be enforced, thus we need one timer per task.
779 */
780 struct hrtimer dl_timer;
781 };
782
783 union rcu_special {
784 struct {
785 u8 blocked;
786 u8 need_qs;
787 u8 exp_need_qs;
788 u8 pad; /* Otherwise the compiler can store garbage here. */
789 } b; /* Bits. */
790 u32 s; /* Set of bits. */
791 };
792 struct rcu_node;
793
794 enum perf_event_task_context {
795 perf_invalid_context = -1,
796 perf_hw_context = 0,
797 perf_sw_context,
798 perf_nr_task_contexts,
799 };
800
801 struct wake_q_node {
802 struct wake_q_node *next;
803 };
804
805 /* Track pages that require TLB flushes */
806 struct tlbflush_unmap_batch {
807 /*
808 * Each bit set is a CPU that potentially has a TLB entry for one of
809 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
810 */
811 struct cpumask cpumask;
812
813 /* True if any bit in cpumask is set */
814 bool flush_required;
815
816 /*
817 * If true then the PTE was dirty when unmapped. The entry must be
818 * flushed before IO is initiated or a stale TLB entry potentially
819 * allows an update without redirtying the page.
820 */
821 bool writable;
822 };
823
824 struct task_struct {
825 #ifdef CONFIG_THREAD_INFO_IN_TASK
826 /*
827 * For reasons of header soup (see current_thread_info()), this
828 * must be the first element of task_struct.
829 */
830 struct thread_info thread_info;
831 #endif
832 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
833 void *stack;
834 atomic_t usage;
835 unsigned int flags; /* per process flags, defined below */
836 unsigned int ptrace;
837
838 #ifdef CONFIG_SMP
839 struct llist_node wake_entry;
840 int on_cpu;
841 #ifdef CONFIG_THREAD_INFO_IN_TASK
842 unsigned int cpu; /* current CPU */
843 #endif
844 unsigned int wakee_flips;
845 unsigned long wakee_flip_decay_ts;
846 struct task_struct *last_wakee;
847
848 int wake_cpu;
849 #endif
850 int on_rq;
851
852 int prio, static_prio, normal_prio;
853 unsigned int rt_priority;
854 const struct sched_class *sched_class;
855 struct sched_entity se;
856 struct sched_rt_entity rt;
857 #ifdef CONFIG_CGROUP_SCHED
858 struct task_group *sched_task_group;
859 #endif
860 struct sched_dl_entity dl;
861
862 #ifdef CONFIG_PREEMPT_NOTIFIERS
863 /* list of struct preempt_notifier: */
864 struct hlist_head preempt_notifiers;
865 #endif
866
867 #ifdef CONFIG_BLK_DEV_IO_TRACE
868 unsigned int btrace_seq;
869 #endif
870
871 unsigned int policy;
872 int nr_cpus_allowed;
873 cpumask_t cpus_allowed;
874
875 #ifdef CONFIG_PREEMPT_RCU
876 int rcu_read_lock_nesting;
877 union rcu_special rcu_read_unlock_special;
878 struct list_head rcu_node_entry;
879 struct rcu_node *rcu_blocked_node;
880 #endif /* #ifdef CONFIG_PREEMPT_RCU */
881 #ifdef CONFIG_TASKS_RCU
882 unsigned long rcu_tasks_nvcsw;
883 bool rcu_tasks_holdout;
884 struct list_head rcu_tasks_holdout_list;
885 int rcu_tasks_idle_cpu;
886 #endif /* #ifdef CONFIG_TASKS_RCU */
887
888 #ifdef CONFIG_SCHED_INFO
889 struct sched_info sched_info;
890 #endif
891
892 struct list_head tasks;
893 #ifdef CONFIG_SMP
894 struct plist_node pushable_tasks;
895 struct rb_node pushable_dl_tasks;
896 #endif
897
898 struct mm_struct *mm, *active_mm;
899
900 /* Per-thread vma caching: */
901 struct vmacache vmacache;
902
903 #if defined(SPLIT_RSS_COUNTING)
904 struct task_rss_stat rss_stat;
905 #endif
906 /* task state */
907 int exit_state;
908 int exit_code, exit_signal;
909 int pdeath_signal; /* The signal sent when the parent dies */
910 unsigned long jobctl; /* JOBCTL_*, siglock protected */
911
912 /* Used for emulating ABI behavior of previous Linux versions */
913 unsigned int personality;
914
915 /* scheduler bits, serialized by scheduler locks */
916 unsigned sched_reset_on_fork:1;
917 unsigned sched_contributes_to_load:1;
918 unsigned sched_migrated:1;
919 unsigned sched_remote_wakeup:1;
920 unsigned :0; /* force alignment to the next boundary */
921
922 /* unserialized, strictly 'current' */
923 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
924 unsigned in_iowait:1;
925 #if !defined(TIF_RESTORE_SIGMASK)
926 unsigned restore_sigmask:1;
927 #endif
928 #ifdef CONFIG_MEMCG
929 unsigned memcg_may_oom:1;
930 #ifndef CONFIG_SLOB
931 unsigned memcg_kmem_skip_account:1;
932 #endif
933 #endif
934 #ifdef CONFIG_COMPAT_BRK
935 unsigned brk_randomized:1;
936 #endif
937
938 unsigned long atomic_flags; /* Flags needing atomic access. */
939
940 struct restart_block restart_block;
941
942 pid_t pid;
943 pid_t tgid;
944
945 #ifdef CONFIG_CC_STACKPROTECTOR
946 /* Canary value for the -fstack-protector gcc feature */
947 unsigned long stack_canary;
948 #endif
949 /*
950 * pointers to (original) parent process, youngest child, younger sibling,
951 * older sibling, respectively. (p->father can be replaced with
952 * p->real_parent->pid)
953 */
954 struct task_struct __rcu *real_parent; /* real parent process */
955 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
956 /*
957 * children/sibling forms the list of my natural children
958 */
959 struct list_head children; /* list of my children */
960 struct list_head sibling; /* linkage in my parent's children list */
961 struct task_struct *group_leader; /* threadgroup leader */
962
963 /*
964 * ptraced is the list of tasks this task is using ptrace on.
965 * This includes both natural children and PTRACE_ATTACH targets.
966 * p->ptrace_entry is p's link on the p->parent->ptraced list.
967 */
968 struct list_head ptraced;
969 struct list_head ptrace_entry;
970
971 /* PID/PID hash table linkage. */
972 struct pid_link pids[PIDTYPE_MAX];
973 struct list_head thread_group;
974 struct list_head thread_node;
975
976 struct completion *vfork_done; /* for vfork() */
977 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
978 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
979
980 u64 utime, stime;
981 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
982 u64 utimescaled, stimescaled;
983 #endif
984 u64 gtime;
985 struct prev_cputime prev_cputime;
986 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
987 seqcount_t vtime_seqcount;
988 unsigned long long vtime_snap;
989 enum {
990 /* Task is sleeping or running in a CPU with VTIME inactive */
991 VTIME_INACTIVE = 0,
992 /* Task runs in userspace in a CPU with VTIME active */
993 VTIME_USER,
994 /* Task runs in kernelspace in a CPU with VTIME active */
995 VTIME_SYS,
996 } vtime_snap_whence;
997 #endif
998
999 #ifdef CONFIG_NO_HZ_FULL
1000 atomic_t tick_dep_mask;
1001 #endif
1002 unsigned long nvcsw, nivcsw; /* context switch counts */
1003 u64 start_time; /* monotonic time in nsec */
1004 u64 real_start_time; /* boot based time in nsec */
1005 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1006 unsigned long min_flt, maj_flt;
1007
1008 #ifdef CONFIG_POSIX_TIMERS
1009 struct task_cputime cputime_expires;
1010 struct list_head cpu_timers[3];
1011 #endif
1012
1013 /* process credentials */
1014 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1015 const struct cred __rcu *real_cred; /* objective and real subjective task
1016 * credentials (COW) */
1017 const struct cred __rcu *cred; /* effective (overridable) subjective task
1018 * credentials (COW) */
1019 char comm[TASK_COMM_LEN]; /* executable name excluding path
1020 - access with [gs]et_task_comm (which lock
1021 it with task_lock())
1022 - initialized normally by setup_new_exec */
1023 /* file system info */
1024 struct nameidata *nameidata;
1025 #ifdef CONFIG_SYSVIPC
1026 /* ipc stuff */
1027 struct sysv_sem sysvsem;
1028 struct sysv_shm sysvshm;
1029 #endif
1030 #ifdef CONFIG_DETECT_HUNG_TASK
1031 /* hung task detection */
1032 unsigned long last_switch_count;
1033 #endif
1034 /* filesystem information */
1035 struct fs_struct *fs;
1036 /* open file information */
1037 struct files_struct *files;
1038 /* namespaces */
1039 struct nsproxy *nsproxy;
1040 /* signal handlers */
1041 struct signal_struct *signal;
1042 struct sighand_struct *sighand;
1043
1044 sigset_t blocked, real_blocked;
1045 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1046 struct sigpending pending;
1047
1048 unsigned long sas_ss_sp;
1049 size_t sas_ss_size;
1050 unsigned sas_ss_flags;
1051
1052 struct callback_head *task_works;
1053
1054 struct audit_context *audit_context;
1055 #ifdef CONFIG_AUDITSYSCALL
1056 kuid_t loginuid;
1057 unsigned int sessionid;
1058 #endif
1059 struct seccomp seccomp;
1060
1061 /* Thread group tracking */
1062 u32 parent_exec_id;
1063 u32 self_exec_id;
1064 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1065 * mempolicy */
1066 spinlock_t alloc_lock;
1067
1068 /* Protection of the PI data structures: */
1069 raw_spinlock_t pi_lock;
1070
1071 struct wake_q_node wake_q;
1072
1073 #ifdef CONFIG_RT_MUTEXES
1074 /* PI waiters blocked on a rt_mutex held by this task */
1075 struct rb_root pi_waiters;
1076 struct rb_node *pi_waiters_leftmost;
1077 /* Deadlock detection and priority inheritance handling */
1078 struct rt_mutex_waiter *pi_blocked_on;
1079 #endif
1080
1081 #ifdef CONFIG_DEBUG_MUTEXES
1082 /* mutex deadlock detection */
1083 struct mutex_waiter *blocked_on;
1084 #endif
1085 #ifdef CONFIG_TRACE_IRQFLAGS
1086 unsigned int irq_events;
1087 unsigned long hardirq_enable_ip;
1088 unsigned long hardirq_disable_ip;
1089 unsigned int hardirq_enable_event;
1090 unsigned int hardirq_disable_event;
1091 int hardirqs_enabled;
1092 int hardirq_context;
1093 unsigned long softirq_disable_ip;
1094 unsigned long softirq_enable_ip;
1095 unsigned int softirq_disable_event;
1096 unsigned int softirq_enable_event;
1097 int softirqs_enabled;
1098 int softirq_context;
1099 #endif
1100 #ifdef CONFIG_LOCKDEP
1101 # define MAX_LOCK_DEPTH 48UL
1102 u64 curr_chain_key;
1103 int lockdep_depth;
1104 unsigned int lockdep_recursion;
1105 struct held_lock held_locks[MAX_LOCK_DEPTH];
1106 gfp_t lockdep_reclaim_gfp;
1107 #endif
1108 #ifdef CONFIG_UBSAN
1109 unsigned int in_ubsan;
1110 #endif
1111
1112 /* journalling filesystem info */
1113 void *journal_info;
1114
1115 /* stacked block device info */
1116 struct bio_list *bio_list;
1117
1118 #ifdef CONFIG_BLOCK
1119 /* stack plugging */
1120 struct blk_plug *plug;
1121 #endif
1122
1123 /* VM state */
1124 struct reclaim_state *reclaim_state;
1125
1126 struct backing_dev_info *backing_dev_info;
1127
1128 struct io_context *io_context;
1129
1130 unsigned long ptrace_message;
1131 siginfo_t *last_siginfo; /* For ptrace use. */
1132 struct task_io_accounting ioac;
1133 #if defined(CONFIG_TASK_XACCT)
1134 u64 acct_rss_mem1; /* accumulated rss usage */
1135 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1136 u64 acct_timexpd; /* stime + utime since last update */
1137 #endif
1138 #ifdef CONFIG_CPUSETS
1139 nodemask_t mems_allowed; /* Protected by alloc_lock */
1140 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1141 int cpuset_mem_spread_rotor;
1142 int cpuset_slab_spread_rotor;
1143 #endif
1144 #ifdef CONFIG_CGROUPS
1145 /* Control Group info protected by css_set_lock */
1146 struct css_set __rcu *cgroups;
1147 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1148 struct list_head cg_list;
1149 #endif
1150 #ifdef CONFIG_INTEL_RDT_A
1151 int closid;
1152 #endif
1153 #ifdef CONFIG_FUTEX
1154 struct robust_list_head __user *robust_list;
1155 #ifdef CONFIG_COMPAT
1156 struct compat_robust_list_head __user *compat_robust_list;
1157 #endif
1158 struct list_head pi_state_list;
1159 struct futex_pi_state *pi_state_cache;
1160 #endif
1161 #ifdef CONFIG_PERF_EVENTS
1162 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1163 struct mutex perf_event_mutex;
1164 struct list_head perf_event_list;
1165 #endif
1166 #ifdef CONFIG_DEBUG_PREEMPT
1167 unsigned long preempt_disable_ip;
1168 #endif
1169 #ifdef CONFIG_NUMA
1170 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1171 short il_next;
1172 short pref_node_fork;
1173 #endif
1174 #ifdef CONFIG_NUMA_BALANCING
1175 int numa_scan_seq;
1176 unsigned int numa_scan_period;
1177 unsigned int numa_scan_period_max;
1178 int numa_preferred_nid;
1179 unsigned long numa_migrate_retry;
1180 u64 node_stamp; /* migration stamp */
1181 u64 last_task_numa_placement;
1182 u64 last_sum_exec_runtime;
1183 struct callback_head numa_work;
1184
1185 struct list_head numa_entry;
1186 struct numa_group *numa_group;
1187
1188 /*
1189 * numa_faults is an array split into four regions:
1190 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1191 * in this precise order.
1192 *
1193 * faults_memory: Exponential decaying average of faults on a per-node
1194 * basis. Scheduling placement decisions are made based on these
1195 * counts. The values remain static for the duration of a PTE scan.
1196 * faults_cpu: Track the nodes the process was running on when a NUMA
1197 * hinting fault was incurred.
1198 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1199 * during the current scan window. When the scan completes, the counts
1200 * in faults_memory and faults_cpu decay and these values are copied.
1201 */
1202 unsigned long *numa_faults;
1203 unsigned long total_numa_faults;
1204
1205 /*
1206 * numa_faults_locality tracks if faults recorded during the last
1207 * scan window were remote/local or failed to migrate. The task scan
1208 * period is adapted based on the locality of the faults with different
1209 * weights depending on whether they were shared or private faults
1210 */
1211 unsigned long numa_faults_locality[3];
1212
1213 unsigned long numa_pages_migrated;
1214 #endif /* CONFIG_NUMA_BALANCING */
1215
1216 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1217 struct tlbflush_unmap_batch tlb_ubc;
1218 #endif
1219
1220 struct rcu_head rcu;
1221
1222 /*
1223 * cache last used pipe for splice
1224 */
1225 struct pipe_inode_info *splice_pipe;
1226
1227 struct page_frag task_frag;
1228
1229 #ifdef CONFIG_TASK_DELAY_ACCT
1230 struct task_delay_info *delays;
1231 #endif
1232
1233 #ifdef CONFIG_FAULT_INJECTION
1234 int make_it_fail;
1235 #endif
1236 /*
1237 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1238 * balance_dirty_pages() for some dirty throttling pause
1239 */
1240 int nr_dirtied;
1241 int nr_dirtied_pause;
1242 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1243
1244 #ifdef CONFIG_LATENCYTOP
1245 int latency_record_count;
1246 struct latency_record latency_record[LT_SAVECOUNT];
1247 #endif
1248 /*
1249 * time slack values; these are used to round up poll() and
1250 * select() etc timeout values. These are in nanoseconds.
1251 */
1252 u64 timer_slack_ns;
1253 u64 default_timer_slack_ns;
1254
1255 #ifdef CONFIG_KASAN
1256 unsigned int kasan_depth;
1257 #endif
1258 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1259 /* Index of current stored address in ret_stack */
1260 int curr_ret_stack;
1261 /* Stack of return addresses for return function tracing */
1262 struct ftrace_ret_stack *ret_stack;
1263 /* time stamp for last schedule */
1264 unsigned long long ftrace_timestamp;
1265 /*
1266 * Number of functions that haven't been traced
1267 * because of depth overrun.
1268 */
1269 atomic_t trace_overrun;
1270 /* Pause for the tracing */
1271 atomic_t tracing_graph_pause;
1272 #endif
1273 #ifdef CONFIG_TRACING
1274 /* state flags for use by tracers */
1275 unsigned long trace;
1276 /* bitmask and counter of trace recursion */
1277 unsigned long trace_recursion;
1278 #endif /* CONFIG_TRACING */
1279 #ifdef CONFIG_KCOV
1280 /* Coverage collection mode enabled for this task (0 if disabled). */
1281 enum kcov_mode kcov_mode;
1282 /* Size of the kcov_area. */
1283 unsigned kcov_size;
1284 /* Buffer for coverage collection. */
1285 void *kcov_area;
1286 /* kcov desciptor wired with this task or NULL. */
1287 struct kcov *kcov;
1288 #endif
1289 #ifdef CONFIG_MEMCG
1290 struct mem_cgroup *memcg_in_oom;
1291 gfp_t memcg_oom_gfp_mask;
1292 int memcg_oom_order;
1293
1294 /* number of pages to reclaim on returning to userland */
1295 unsigned int memcg_nr_pages_over_high;
1296 #endif
1297 #ifdef CONFIG_UPROBES
1298 struct uprobe_task *utask;
1299 #endif
1300 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1301 unsigned int sequential_io;
1302 unsigned int sequential_io_avg;
1303 #endif
1304 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1305 unsigned long task_state_change;
1306 #endif
1307 int pagefault_disabled;
1308 #ifdef CONFIG_MMU
1309 struct task_struct *oom_reaper_list;
1310 #endif
1311 #ifdef CONFIG_VMAP_STACK
1312 struct vm_struct *stack_vm_area;
1313 #endif
1314 #ifdef CONFIG_THREAD_INFO_IN_TASK
1315 /* A live task holds one reference. */
1316 atomic_t stack_refcount;
1317 #endif
1318 /* CPU-specific state of this task */
1319 struct thread_struct thread;
1320 /*
1321 * WARNING: on x86, 'thread_struct' contains a variable-sized
1322 * structure. It *MUST* be at the end of 'task_struct'.
1323 *
1324 * Do not put anything below here!
1325 */
1326 };
1327
1328 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1329 extern int arch_task_struct_size __read_mostly;
1330 #else
1331 # define arch_task_struct_size (sizeof(struct task_struct))
1332 #endif
1333
1334 #ifdef CONFIG_VMAP_STACK
1335 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1336 {
1337 return t->stack_vm_area;
1338 }
1339 #else
1340 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1341 {
1342 return NULL;
1343 }
1344 #endif
1345
1346 #define TNF_MIGRATED 0x01
1347 #define TNF_NO_GROUP 0x02
1348 #define TNF_SHARED 0x04
1349 #define TNF_FAULT_LOCAL 0x08
1350 #define TNF_MIGRATE_FAIL 0x10
1351
1352 static inline bool in_vfork(struct task_struct *tsk)
1353 {
1354 bool ret;
1355
1356 /*
1357 * need RCU to access ->real_parent if CLONE_VM was used along with
1358 * CLONE_PARENT.
1359 *
1360 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
1361 * imply CLONE_VM
1362 *
1363 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
1364 * ->real_parent is not necessarily the task doing vfork(), so in
1365 * theory we can't rely on task_lock() if we want to dereference it.
1366 *
1367 * And in this case we can't trust the real_parent->mm == tsk->mm
1368 * check, it can be false negative. But we do not care, if init or
1369 * another oom-unkillable task does this it should blame itself.
1370 */
1371 rcu_read_lock();
1372 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
1373 rcu_read_unlock();
1374
1375 return ret;
1376 }
1377
1378 #ifdef CONFIG_NUMA_BALANCING
1379 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1380 extern pid_t task_numa_group_id(struct task_struct *p);
1381 extern void set_numabalancing_state(bool enabled);
1382 extern void task_numa_free(struct task_struct *p);
1383 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1384 int src_nid, int dst_cpu);
1385 #else
1386 static inline void task_numa_fault(int last_node, int node, int pages,
1387 int flags)
1388 {
1389 }
1390 static inline pid_t task_numa_group_id(struct task_struct *p)
1391 {
1392 return 0;
1393 }
1394 static inline void set_numabalancing_state(bool enabled)
1395 {
1396 }
1397 static inline void task_numa_free(struct task_struct *p)
1398 {
1399 }
1400 static inline bool should_numa_migrate_memory(struct task_struct *p,
1401 struct page *page, int src_nid, int dst_cpu)
1402 {
1403 return true;
1404 }
1405 #endif
1406
1407 static inline struct pid *task_pid(struct task_struct *task)
1408 {
1409 return task->pids[PIDTYPE_PID].pid;
1410 }
1411
1412 static inline struct pid *task_tgid(struct task_struct *task)
1413 {
1414 return task->group_leader->pids[PIDTYPE_PID].pid;
1415 }
1416
1417 /*
1418 * Without tasklist or rcu lock it is not safe to dereference
1419 * the result of task_pgrp/task_session even if task == current,
1420 * we can race with another thread doing sys_setsid/sys_setpgid.
1421 */
1422 static inline struct pid *task_pgrp(struct task_struct *task)
1423 {
1424 return task->group_leader->pids[PIDTYPE_PGID].pid;
1425 }
1426
1427 static inline struct pid *task_session(struct task_struct *task)
1428 {
1429 return task->group_leader->pids[PIDTYPE_SID].pid;
1430 }
1431
1432 struct pid_namespace;
1433
1434 /*
1435 * the helpers to get the task's different pids as they are seen
1436 * from various namespaces
1437 *
1438 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1439 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1440 * current.
1441 * task_xid_nr_ns() : id seen from the ns specified;
1442 *
1443 * set_task_vxid() : assigns a virtual id to a task;
1444 *
1445 * see also pid_nr() etc in include/linux/pid.h
1446 */
1447 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1448 struct pid_namespace *ns);
1449
1450 static inline pid_t task_pid_nr(struct task_struct *tsk)
1451 {
1452 return tsk->pid;
1453 }
1454
1455 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1456 struct pid_namespace *ns)
1457 {
1458 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1459 }
1460
1461 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1462 {
1463 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1464 }
1465
1466
1467 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1468 {
1469 return tsk->tgid;
1470 }
1471
1472 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1473
1474 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1475 {
1476 return pid_vnr(task_tgid(tsk));
1477 }
1478
1479
1480 static inline int pid_alive(const struct task_struct *p);
1481 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1482 {
1483 pid_t pid = 0;
1484
1485 rcu_read_lock();
1486 if (pid_alive(tsk))
1487 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1488 rcu_read_unlock();
1489
1490 return pid;
1491 }
1492
1493 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1494 {
1495 return task_ppid_nr_ns(tsk, &init_pid_ns);
1496 }
1497
1498 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1499 struct pid_namespace *ns)
1500 {
1501 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1502 }
1503
1504 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1505 {
1506 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1507 }
1508
1509
1510 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1511 struct pid_namespace *ns)
1512 {
1513 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1514 }
1515
1516 static inline pid_t task_session_vnr(struct task_struct *tsk)
1517 {
1518 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1519 }
1520
1521 /* obsolete, do not use */
1522 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1523 {
1524 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1525 }
1526
1527 /**
1528 * pid_alive - check that a task structure is not stale
1529 * @p: Task structure to be checked.
1530 *
1531 * Test if a process is not yet dead (at most zombie state)
1532 * If pid_alive fails, then pointers within the task structure
1533 * can be stale and must not be dereferenced.
1534 *
1535 * Return: 1 if the process is alive. 0 otherwise.
1536 */
1537 static inline int pid_alive(const struct task_struct *p)
1538 {
1539 return p->pids[PIDTYPE_PID].pid != NULL;
1540 }
1541
1542 /**
1543 * is_global_init - check if a task structure is init. Since init
1544 * is free to have sub-threads we need to check tgid.
1545 * @tsk: Task structure to be checked.
1546 *
1547 * Check if a task structure is the first user space task the kernel created.
1548 *
1549 * Return: 1 if the task structure is init. 0 otherwise.
1550 */
1551 static inline int is_global_init(struct task_struct *tsk)
1552 {
1553 return task_tgid_nr(tsk) == 1;
1554 }
1555
1556 extern struct pid *cad_pid;
1557
1558 extern void free_task(struct task_struct *tsk);
1559 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1560
1561 extern void __put_task_struct(struct task_struct *t);
1562
1563 static inline void put_task_struct(struct task_struct *t)
1564 {
1565 if (atomic_dec_and_test(&t->usage))
1566 __put_task_struct(t);
1567 }
1568
1569 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
1570 struct task_struct *try_get_task_struct(struct task_struct **ptask);
1571
1572 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1573 extern void task_cputime(struct task_struct *t,
1574 u64 *utime, u64 *stime);
1575 extern u64 task_gtime(struct task_struct *t);
1576 #else
1577 static inline void task_cputime(struct task_struct *t,
1578 u64 *utime, u64 *stime)
1579 {
1580 *utime = t->utime;
1581 *stime = t->stime;
1582 }
1583
1584 static inline u64 task_gtime(struct task_struct *t)
1585 {
1586 return t->gtime;
1587 }
1588 #endif
1589
1590 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1591 static inline void task_cputime_scaled(struct task_struct *t,
1592 u64 *utimescaled,
1593 u64 *stimescaled)
1594 {
1595 *utimescaled = t->utimescaled;
1596 *stimescaled = t->stimescaled;
1597 }
1598 #else
1599 static inline void task_cputime_scaled(struct task_struct *t,
1600 u64 *utimescaled,
1601 u64 *stimescaled)
1602 {
1603 task_cputime(t, utimescaled, stimescaled);
1604 }
1605 #endif
1606
1607 extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
1608 extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
1609
1610 /*
1611 * Per process flags
1612 */
1613 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1614 #define PF_EXITING 0x00000004 /* getting shut down */
1615 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1616 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1617 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1618 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1619 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1620 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1621 #define PF_DUMPCORE 0x00000200 /* dumped core */
1622 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1623 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1624 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1625 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1626 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1627 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1628 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1629 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1630 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1631 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1632 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1633 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1634 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1635 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1636 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1637 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1638 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1639 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1640 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1641
1642 /*
1643 * Only the _current_ task can read/write to tsk->flags, but other
1644 * tasks can access tsk->flags in readonly mode for example
1645 * with tsk_used_math (like during threaded core dumping).
1646 * There is however an exception to this rule during ptrace
1647 * or during fork: the ptracer task is allowed to write to the
1648 * child->flags of its traced child (same goes for fork, the parent
1649 * can write to the child->flags), because we're guaranteed the
1650 * child is not running and in turn not changing child->flags
1651 * at the same time the parent does it.
1652 */
1653 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1654 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1655 #define clear_used_math() clear_stopped_child_used_math(current)
1656 #define set_used_math() set_stopped_child_used_math(current)
1657 #define conditional_stopped_child_used_math(condition, child) \
1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1659 #define conditional_used_math(condition) \
1660 conditional_stopped_child_used_math(condition, current)
1661 #define copy_to_stopped_child_used_math(child) \
1662 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1663 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1664 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1665 #define used_math() tsk_used_math(current)
1666
1667 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1668 * __GFP_FS is also cleared as it implies __GFP_IO.
1669 */
1670 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1671 {
1672 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1673 flags &= ~(__GFP_IO | __GFP_FS);
1674 return flags;
1675 }
1676
1677 static inline unsigned int memalloc_noio_save(void)
1678 {
1679 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1680 current->flags |= PF_MEMALLOC_NOIO;
1681 return flags;
1682 }
1683
1684 static inline void memalloc_noio_restore(unsigned int flags)
1685 {
1686 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1687 }
1688
1689 /* Per-process atomic flags. */
1690 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1691 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1692 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1693 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
1694
1695
1696 #define TASK_PFA_TEST(name, func) \
1697 static inline bool task_##func(struct task_struct *p) \
1698 { return test_bit(PFA_##name, &p->atomic_flags); }
1699 #define TASK_PFA_SET(name, func) \
1700 static inline void task_set_##func(struct task_struct *p) \
1701 { set_bit(PFA_##name, &p->atomic_flags); }
1702 #define TASK_PFA_CLEAR(name, func) \
1703 static inline void task_clear_##func(struct task_struct *p) \
1704 { clear_bit(PFA_##name, &p->atomic_flags); }
1705
1706 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1707 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1708
1709 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1710 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1711 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1712
1713 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1714 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1715 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1716
1717 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
1718 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
1719
1720 /*
1721 * task->jobctl flags
1722 */
1723 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1724
1725 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1726 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1727 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1728 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1729 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1730 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1731 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1732
1733 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
1734 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
1735 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
1736 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
1737 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
1738 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
1739 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
1740
1741 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1742 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1743
1744 extern bool task_set_jobctl_pending(struct task_struct *task,
1745 unsigned long mask);
1746 extern void task_clear_jobctl_trapping(struct task_struct *task);
1747 extern void task_clear_jobctl_pending(struct task_struct *task,
1748 unsigned long mask);
1749
1750 static inline void rcu_copy_process(struct task_struct *p)
1751 {
1752 #ifdef CONFIG_PREEMPT_RCU
1753 p->rcu_read_lock_nesting = 0;
1754 p->rcu_read_unlock_special.s = 0;
1755 p->rcu_blocked_node = NULL;
1756 INIT_LIST_HEAD(&p->rcu_node_entry);
1757 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1758 #ifdef CONFIG_TASKS_RCU
1759 p->rcu_tasks_holdout = false;
1760 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1761 p->rcu_tasks_idle_cpu = -1;
1762 #endif /* #ifdef CONFIG_TASKS_RCU */
1763 }
1764
1765 static inline void tsk_restore_flags(struct task_struct *task,
1766 unsigned long orig_flags, unsigned long flags)
1767 {
1768 task->flags &= ~flags;
1769 task->flags |= orig_flags & flags;
1770 }
1771
1772 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
1773 const struct cpumask *trial);
1774 extern int task_can_attach(struct task_struct *p,
1775 const struct cpumask *cs_cpus_allowed);
1776 #ifdef CONFIG_SMP
1777 extern void do_set_cpus_allowed(struct task_struct *p,
1778 const struct cpumask *new_mask);
1779
1780 extern int set_cpus_allowed_ptr(struct task_struct *p,
1781 const struct cpumask *new_mask);
1782 #else
1783 static inline void do_set_cpus_allowed(struct task_struct *p,
1784 const struct cpumask *new_mask)
1785 {
1786 }
1787 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1788 const struct cpumask *new_mask)
1789 {
1790 if (!cpumask_test_cpu(0, new_mask))
1791 return -EINVAL;
1792 return 0;
1793 }
1794 #endif
1795
1796 #ifdef CONFIG_NO_HZ_COMMON
1797 void calc_load_enter_idle(void);
1798 void calc_load_exit_idle(void);
1799 #else
1800 static inline void calc_load_enter_idle(void) { }
1801 static inline void calc_load_exit_idle(void) { }
1802 #endif /* CONFIG_NO_HZ_COMMON */
1803
1804 #ifndef cpu_relax_yield
1805 #define cpu_relax_yield() cpu_relax()
1806 #endif
1807
1808 extern unsigned long long
1809 task_sched_runtime(struct task_struct *task);
1810
1811 /* sched_exec is called by processes performing an exec */
1812 #ifdef CONFIG_SMP
1813 extern void sched_exec(void);
1814 #else
1815 #define sched_exec() {}
1816 #endif
1817
1818 #ifdef CONFIG_HOTPLUG_CPU
1819 extern void idle_task_exit(void);
1820 #else
1821 static inline void idle_task_exit(void) {}
1822 #endif
1823
1824 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1825 extern void wake_up_nohz_cpu(int cpu);
1826 #else
1827 static inline void wake_up_nohz_cpu(int cpu) { }
1828 #endif
1829
1830 #ifdef CONFIG_NO_HZ_FULL
1831 extern u64 scheduler_tick_max_deferment(void);
1832 #endif
1833
1834 extern int yield_to(struct task_struct *p, bool preempt);
1835 extern void set_user_nice(struct task_struct *p, long nice);
1836 extern int task_prio(const struct task_struct *p);
1837 /**
1838 * task_nice - return the nice value of a given task.
1839 * @p: the task in question.
1840 *
1841 * Return: The nice value [ -20 ... 0 ... 19 ].
1842 */
1843 static inline int task_nice(const struct task_struct *p)
1844 {
1845 return PRIO_TO_NICE((p)->static_prio);
1846 }
1847 extern int can_nice(const struct task_struct *p, const int nice);
1848 extern int task_curr(const struct task_struct *p);
1849 extern int idle_cpu(int cpu);
1850 extern int sched_setscheduler(struct task_struct *, int,
1851 const struct sched_param *);
1852 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1853 const struct sched_param *);
1854 extern int sched_setattr(struct task_struct *,
1855 const struct sched_attr *);
1856 extern struct task_struct *idle_task(int cpu);
1857 /**
1858 * is_idle_task - is the specified task an idle task?
1859 * @p: the task in question.
1860 *
1861 * Return: 1 if @p is an idle task. 0 otherwise.
1862 */
1863 static inline bool is_idle_task(const struct task_struct *p)
1864 {
1865 return !!(p->flags & PF_IDLE);
1866 }
1867 extern struct task_struct *curr_task(int cpu);
1868 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1869
1870 void yield(void);
1871
1872 union thread_union {
1873 #ifndef CONFIG_THREAD_INFO_IN_TASK
1874 struct thread_info thread_info;
1875 #endif
1876 unsigned long stack[THREAD_SIZE/sizeof(long)];
1877 };
1878
1879 #ifndef __HAVE_ARCH_KSTACK_END
1880 static inline int kstack_end(void *addr)
1881 {
1882 /* Reliable end of stack detection:
1883 * Some APM bios versions misalign the stack
1884 */
1885 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1886 }
1887 #endif
1888
1889 extern union thread_union init_thread_union;
1890 extern struct task_struct init_task;
1891
1892 extern struct mm_struct init_mm;
1893
1894 extern struct pid_namespace init_pid_ns;
1895
1896 /*
1897 * find a task by one of its numerical ids
1898 *
1899 * find_task_by_pid_ns():
1900 * finds a task by its pid in the specified namespace
1901 * find_task_by_vpid():
1902 * finds a task by its virtual pid
1903 *
1904 * see also find_vpid() etc in include/linux/pid.h
1905 */
1906
1907 extern struct task_struct *find_task_by_vpid(pid_t nr);
1908 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1909 struct pid_namespace *ns);
1910
1911 /* per-UID process charging. */
1912 extern struct user_struct * alloc_uid(kuid_t);
1913 static inline struct user_struct *get_uid(struct user_struct *u)
1914 {
1915 atomic_inc(&u->__count);
1916 return u;
1917 }
1918 extern void free_uid(struct user_struct *);
1919
1920 #include <asm/current.h>
1921
1922 extern void xtime_update(unsigned long ticks);
1923
1924 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1925 extern int wake_up_process(struct task_struct *tsk);
1926 extern void wake_up_new_task(struct task_struct *tsk);
1927 #ifdef CONFIG_SMP
1928 extern void kick_process(struct task_struct *tsk);
1929 #else
1930 static inline void kick_process(struct task_struct *tsk) { }
1931 #endif
1932 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
1933 extern void sched_dead(struct task_struct *p);
1934
1935 extern void proc_caches_init(void);
1936
1937 extern void release_task(struct task_struct * p);
1938
1939 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
1940 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
1941 struct task_struct *, unsigned long);
1942 #else
1943 extern int copy_thread(unsigned long, unsigned long, unsigned long,
1944 struct task_struct *);
1945
1946 /* Architectures that haven't opted into copy_thread_tls get the tls argument
1947 * via pt_regs, so ignore the tls argument passed via C. */
1948 static inline int copy_thread_tls(
1949 unsigned long clone_flags, unsigned long sp, unsigned long arg,
1950 struct task_struct *p, unsigned long tls)
1951 {
1952 return copy_thread(clone_flags, sp, arg, p);
1953 }
1954 #endif
1955 extern void flush_thread(void);
1956
1957 #ifdef CONFIG_HAVE_EXIT_THREAD
1958 extern void exit_thread(struct task_struct *tsk);
1959 #else
1960 static inline void exit_thread(struct task_struct *tsk)
1961 {
1962 }
1963 #endif
1964
1965 extern void exit_files(struct task_struct *);
1966
1967 extern void exit_itimers(struct signal_struct *);
1968
1969 extern void do_group_exit(int);
1970
1971 extern int do_execve(struct filename *,
1972 const char __user * const __user *,
1973 const char __user * const __user *);
1974 extern int do_execveat(int, struct filename *,
1975 const char __user * const __user *,
1976 const char __user * const __user *,
1977 int);
1978 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
1979 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
1980 struct task_struct *fork_idle(int);
1981 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1982
1983 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1984 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1985 {
1986 __set_task_comm(tsk, from, false);
1987 }
1988 extern char *get_task_comm(char *to, struct task_struct *tsk);
1989
1990 #ifdef CONFIG_SMP
1991 void scheduler_ipi(void);
1992 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1993 #else
1994 static inline void scheduler_ipi(void) { }
1995 static inline unsigned long wait_task_inactive(struct task_struct *p,
1996 long match_state)
1997 {
1998 return 1;
1999 }
2000 #endif
2001
2002 /*
2003 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2004 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2005 * pins the final release of task.io_context. Also protects ->cpuset and
2006 * ->cgroup.subsys[]. And ->vfork_done.
2007 *
2008 * Nests both inside and outside of read_lock(&tasklist_lock).
2009 * It must not be nested with write_lock_irq(&tasklist_lock),
2010 * neither inside nor outside.
2011 */
2012 static inline void task_lock(struct task_struct *p)
2013 {
2014 spin_lock(&p->alloc_lock);
2015 }
2016
2017 static inline void task_unlock(struct task_struct *p)
2018 {
2019 spin_unlock(&p->alloc_lock);
2020 }
2021
2022 #ifdef CONFIG_THREAD_INFO_IN_TASK
2023
2024 static inline struct thread_info *task_thread_info(struct task_struct *task)
2025 {
2026 return &task->thread_info;
2027 }
2028
2029 /*
2030 * When accessing the stack of a non-current task that might exit, use
2031 * try_get_task_stack() instead. task_stack_page will return a pointer
2032 * that could get freed out from under you.
2033 */
2034 static inline void *task_stack_page(const struct task_struct *task)
2035 {
2036 return task->stack;
2037 }
2038
2039 #define setup_thread_stack(new,old) do { } while(0)
2040
2041 static inline unsigned long *end_of_stack(const struct task_struct *task)
2042 {
2043 return task->stack;
2044 }
2045
2046 #elif !defined(__HAVE_THREAD_FUNCTIONS)
2047
2048 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2049 #define task_stack_page(task) ((void *)(task)->stack)
2050
2051 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2052 {
2053 *task_thread_info(p) = *task_thread_info(org);
2054 task_thread_info(p)->task = p;
2055 }
2056
2057 /*
2058 * Return the address of the last usable long on the stack.
2059 *
2060 * When the stack grows down, this is just above the thread
2061 * info struct. Going any lower will corrupt the threadinfo.
2062 *
2063 * When the stack grows up, this is the highest address.
2064 * Beyond that position, we corrupt data on the next page.
2065 */
2066 static inline unsigned long *end_of_stack(struct task_struct *p)
2067 {
2068 #ifdef CONFIG_STACK_GROWSUP
2069 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2070 #else
2071 return (unsigned long *)(task_thread_info(p) + 1);
2072 #endif
2073 }
2074
2075 #endif
2076
2077 #ifdef CONFIG_THREAD_INFO_IN_TASK
2078 static inline void *try_get_task_stack(struct task_struct *tsk)
2079 {
2080 return atomic_inc_not_zero(&tsk->stack_refcount) ?
2081 task_stack_page(tsk) : NULL;
2082 }
2083
2084 extern void put_task_stack(struct task_struct *tsk);
2085 #else
2086 static inline void *try_get_task_stack(struct task_struct *tsk)
2087 {
2088 return task_stack_page(tsk);
2089 }
2090
2091 static inline void put_task_stack(struct task_struct *tsk) {}
2092 #endif
2093
2094 #define task_stack_end_corrupted(task) \
2095 (*(end_of_stack(task)) != STACK_END_MAGIC)
2096
2097 static inline int object_is_on_stack(void *obj)
2098 {
2099 void *stack = task_stack_page(current);
2100
2101 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2102 }
2103
2104 extern void thread_stack_cache_init(void);
2105
2106 #ifdef CONFIG_DEBUG_STACK_USAGE
2107 static inline unsigned long stack_not_used(struct task_struct *p)
2108 {
2109 unsigned long *n = end_of_stack(p);
2110
2111 do { /* Skip over canary */
2112 # ifdef CONFIG_STACK_GROWSUP
2113 n--;
2114 # else
2115 n++;
2116 # endif
2117 } while (!*n);
2118
2119 # ifdef CONFIG_STACK_GROWSUP
2120 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2121 # else
2122 return (unsigned long)n - (unsigned long)end_of_stack(p);
2123 # endif
2124 }
2125 #endif
2126 extern void set_task_stack_end_magic(struct task_struct *tsk);
2127
2128 /* set thread flags in other task's structures
2129 * - see asm/thread_info.h for TIF_xxxx flags available
2130 */
2131 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2132 {
2133 set_ti_thread_flag(task_thread_info(tsk), flag);
2134 }
2135
2136 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2137 {
2138 clear_ti_thread_flag(task_thread_info(tsk), flag);
2139 }
2140
2141 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2142 {
2143 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2144 }
2145
2146 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2147 {
2148 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2149 }
2150
2151 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2152 {
2153 return test_ti_thread_flag(task_thread_info(tsk), flag);
2154 }
2155
2156 static inline void set_tsk_need_resched(struct task_struct *tsk)
2157 {
2158 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2159 }
2160
2161 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2162 {
2163 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2164 }
2165
2166 static inline int test_tsk_need_resched(struct task_struct *tsk)
2167 {
2168 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2169 }
2170
2171 static inline int restart_syscall(void)
2172 {
2173 set_tsk_thread_flag(current, TIF_SIGPENDING);
2174 return -ERESTARTNOINTR;
2175 }
2176
2177 static inline int signal_pending(struct task_struct *p)
2178 {
2179 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2180 }
2181
2182 static inline int __fatal_signal_pending(struct task_struct *p)
2183 {
2184 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2185 }
2186
2187 static inline int fatal_signal_pending(struct task_struct *p)
2188 {
2189 return signal_pending(p) && __fatal_signal_pending(p);
2190 }
2191
2192 static inline int signal_pending_state(long state, struct task_struct *p)
2193 {
2194 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2195 return 0;
2196 if (!signal_pending(p))
2197 return 0;
2198
2199 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2200 }
2201
2202 /*
2203 * cond_resched() and cond_resched_lock(): latency reduction via
2204 * explicit rescheduling in places that are safe. The return
2205 * value indicates whether a reschedule was done in fact.
2206 * cond_resched_lock() will drop the spinlock before scheduling,
2207 * cond_resched_softirq() will enable bhs before scheduling.
2208 */
2209 #ifndef CONFIG_PREEMPT
2210 extern int _cond_resched(void);
2211 #else
2212 static inline int _cond_resched(void) { return 0; }
2213 #endif
2214
2215 #define cond_resched() ({ \
2216 ___might_sleep(__FILE__, __LINE__, 0); \
2217 _cond_resched(); \
2218 })
2219
2220 extern int __cond_resched_lock(spinlock_t *lock);
2221
2222 #define cond_resched_lock(lock) ({ \
2223 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2224 __cond_resched_lock(lock); \
2225 })
2226
2227 extern int __cond_resched_softirq(void);
2228
2229 #define cond_resched_softirq() ({ \
2230 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2231 __cond_resched_softirq(); \
2232 })
2233
2234 static inline void cond_resched_rcu(void)
2235 {
2236 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2237 rcu_read_unlock();
2238 cond_resched();
2239 rcu_read_lock();
2240 #endif
2241 }
2242
2243 /*
2244 * Does a critical section need to be broken due to another
2245 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2246 * but a general need for low latency)
2247 */
2248 static inline int spin_needbreak(spinlock_t *lock)
2249 {
2250 #ifdef CONFIG_PREEMPT
2251 return spin_is_contended(lock);
2252 #else
2253 return 0;
2254 #endif
2255 }
2256
2257 static __always_inline bool need_resched(void)
2258 {
2259 return unlikely(tif_need_resched());
2260 }
2261
2262 /*
2263 * Thread group CPU time accounting.
2264 */
2265 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2266 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2267
2268 /*
2269 * Reevaluate whether the task has signals pending delivery.
2270 * Wake the task if so.
2271 * This is required every time the blocked sigset_t changes.
2272 * callers must hold sighand->siglock.
2273 */
2274 extern void recalc_sigpending_and_wake(struct task_struct *t);
2275 extern void recalc_sigpending(void);
2276
2277 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2278
2279 static inline void signal_wake_up(struct task_struct *t, bool resume)
2280 {
2281 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2282 }
2283 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2284 {
2285 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2286 }
2287
2288 /*
2289 * Wrappers for p->thread_info->cpu access. No-op on UP.
2290 */
2291 #ifdef CONFIG_SMP
2292
2293 static inline unsigned int task_cpu(const struct task_struct *p)
2294 {
2295 #ifdef CONFIG_THREAD_INFO_IN_TASK
2296 return p->cpu;
2297 #else
2298 return task_thread_info(p)->cpu;
2299 #endif
2300 }
2301
2302 static inline int task_node(const struct task_struct *p)
2303 {
2304 return cpu_to_node(task_cpu(p));
2305 }
2306
2307 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2308
2309 #else
2310
2311 static inline unsigned int task_cpu(const struct task_struct *p)
2312 {
2313 return 0;
2314 }
2315
2316 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2317 {
2318 }
2319
2320 #endif /* CONFIG_SMP */
2321
2322 /*
2323 * In order to reduce various lock holder preemption latencies provide an
2324 * interface to see if a vCPU is currently running or not.
2325 *
2326 * This allows us to terminate optimistic spin loops and block, analogous to
2327 * the native optimistic spin heuristic of testing if the lock owner task is
2328 * running or not.
2329 */
2330 #ifndef vcpu_is_preempted
2331 # define vcpu_is_preempted(cpu) false
2332 #endif
2333
2334 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2335 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2336
2337 #ifdef CONFIG_CGROUP_SCHED
2338 extern struct task_group root_task_group;
2339 #endif /* CONFIG_CGROUP_SCHED */
2340
2341 extern int task_can_switch_user(struct user_struct *up,
2342 struct task_struct *tsk);
2343
2344 #ifdef CONFIG_TASK_XACCT
2345 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2346 {
2347 tsk->ioac.rchar += amt;
2348 }
2349
2350 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2351 {
2352 tsk->ioac.wchar += amt;
2353 }
2354
2355 static inline void inc_syscr(struct task_struct *tsk)
2356 {
2357 tsk->ioac.syscr++;
2358 }
2359
2360 static inline void inc_syscw(struct task_struct *tsk)
2361 {
2362 tsk->ioac.syscw++;
2363 }
2364 #else
2365 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2366 {
2367 }
2368
2369 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2370 {
2371 }
2372
2373 static inline void inc_syscr(struct task_struct *tsk)
2374 {
2375 }
2376
2377 static inline void inc_syscw(struct task_struct *tsk)
2378 {
2379 }
2380 #endif
2381
2382 #ifndef TASK_SIZE_OF
2383 #define TASK_SIZE_OF(tsk) TASK_SIZE
2384 #endif
2385
2386 #ifdef CONFIG_MEMCG
2387 extern void mm_update_next_owner(struct mm_struct *mm);
2388 #else
2389 static inline void mm_update_next_owner(struct mm_struct *mm)
2390 {
2391 }
2392 #endif /* CONFIG_MEMCG */
2393
2394 #define SCHED_CPUFREQ_RT (1U << 0)
2395 #define SCHED_CPUFREQ_DL (1U << 1)
2396 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
2397
2398 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
2399
2400 #ifdef CONFIG_CPU_FREQ
2401 struct update_util_data {
2402 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
2403 };
2404
2405 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
2406 void (*func)(struct update_util_data *data, u64 time,
2407 unsigned int flags));
2408 void cpufreq_remove_update_util_hook(int cpu);
2409 #endif /* CONFIG_CPU_FREQ */
2410
2411 #endif