]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/sched.h
c5630f3dca1fafac7cfde1ed7051f0b61314ff7e
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/signal_types.h>
29 #include <linux/mm_types_task.h>
30 #include <linux/task_io_accounting.h>
31 #include <linux/rseq.h>
32
33 /* task_struct member predeclarations (sorted alphabetically): */
34 struct audit_context;
35 struct backing_dev_info;
36 struct bio_list;
37 struct blk_plug;
38 struct capture_control;
39 struct cfs_rq;
40 struct fs_struct;
41 struct futex_pi_state;
42 struct io_context;
43 struct mempolicy;
44 struct nameidata;
45 struct nsproxy;
46 struct perf_event_context;
47 struct pid_namespace;
48 struct pipe_inode_info;
49 struct rcu_node;
50 struct reclaim_state;
51 struct robust_list_head;
52 struct root_domain;
53 struct rq;
54 struct sched_attr;
55 struct sched_param;
56 struct seq_file;
57 struct sighand_struct;
58 struct signal_struct;
59 struct task_delay_info;
60 struct task_group;
61
62 /*
63 * Task state bitmask. NOTE! These bits are also
64 * encoded in fs/proc/array.c: get_task_state().
65 *
66 * We have two separate sets of flags: task->state
67 * is about runnability, while task->exit_state are
68 * about the task exiting. Confusing, but this way
69 * modifying one set can't modify the other one by
70 * mistake.
71 */
72
73 /* Used in tsk->state: */
74 #define TASK_RUNNING 0x0000
75 #define TASK_INTERRUPTIBLE 0x0001
76 #define TASK_UNINTERRUPTIBLE 0x0002
77 #define __TASK_STOPPED 0x0004
78 #define __TASK_TRACED 0x0008
79 /* Used in tsk->exit_state: */
80 #define EXIT_DEAD 0x0010
81 #define EXIT_ZOMBIE 0x0020
82 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
83 /* Used in tsk->state again: */
84 #define TASK_PARKED 0x0040
85 #define TASK_DEAD 0x0080
86 #define TASK_WAKEKILL 0x0100
87 #define TASK_WAKING 0x0200
88 #define TASK_NOLOAD 0x0400
89 #define TASK_NEW 0x0800
90 #define TASK_STATE_MAX 0x1000
91
92 /* Convenience macros for the sake of set_current_state: */
93 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
94 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
95 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
96
97 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
98
99 /* Convenience macros for the sake of wake_up(): */
100 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
101
102 /* get_task_state(): */
103 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
104 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
105 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
106 TASK_PARKED)
107
108 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
109
110 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
111
112 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
113
114 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
115 (task->flags & PF_FROZEN) == 0 && \
116 (task->state & TASK_NOLOAD) == 0)
117
118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119
120 /*
121 * Special states are those that do not use the normal wait-loop pattern. See
122 * the comment with set_special_state().
123 */
124 #define is_special_task_state(state) \
125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
126
127 #define __set_current_state(state_value) \
128 do { \
129 WARN_ON_ONCE(is_special_task_state(state_value));\
130 current->task_state_change = _THIS_IP_; \
131 current->state = (state_value); \
132 } while (0)
133
134 #define set_current_state(state_value) \
135 do { \
136 WARN_ON_ONCE(is_special_task_state(state_value));\
137 current->task_state_change = _THIS_IP_; \
138 smp_store_mb(current->state, (state_value)); \
139 } while (0)
140
141 #define set_special_state(state_value) \
142 do { \
143 unsigned long flags; /* may shadow */ \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 raw_spin_lock_irqsave(&current->pi_lock, flags); \
146 current->task_state_change = _THIS_IP_; \
147 current->state = (state_value); \
148 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
149 } while (0)
150 #else
151 /*
152 * set_current_state() includes a barrier so that the write of current->state
153 * is correctly serialised wrt the caller's subsequent test of whether to
154 * actually sleep:
155 *
156 * for (;;) {
157 * set_current_state(TASK_UNINTERRUPTIBLE);
158 * if (!need_sleep)
159 * break;
160 *
161 * schedule();
162 * }
163 * __set_current_state(TASK_RUNNING);
164 *
165 * If the caller does not need such serialisation (because, for instance, the
166 * condition test and condition change and wakeup are under the same lock) then
167 * use __set_current_state().
168 *
169 * The above is typically ordered against the wakeup, which does:
170 *
171 * need_sleep = false;
172 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
173 *
174 * where wake_up_state() executes a full memory barrier before accessing the
175 * task state.
176 *
177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
180 *
181 * However, with slightly different timing the wakeup TASK_RUNNING store can
182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
183 * a problem either because that will result in one extra go around the loop
184 * and our @cond test will save the day.
185 *
186 * Also see the comments of try_to_wake_up().
187 */
188 #define __set_current_state(state_value) \
189 current->state = (state_value)
190
191 #define set_current_state(state_value) \
192 smp_store_mb(current->state, (state_value))
193
194 /*
195 * set_special_state() should be used for those states when the blocking task
196 * can not use the regular condition based wait-loop. In that case we must
197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198 * will not collide with our state change.
199 */
200 #define set_special_state(state_value) \
201 do { \
202 unsigned long flags; /* may shadow */ \
203 raw_spin_lock_irqsave(&current->pi_lock, flags); \
204 current->state = (state_value); \
205 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
206 } while (0)
207
208 #endif
209
210 /* Task command name length: */
211 #define TASK_COMM_LEN 16
212
213 extern void scheduler_tick(void);
214
215 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
216
217 extern long schedule_timeout(long timeout);
218 extern long schedule_timeout_interruptible(long timeout);
219 extern long schedule_timeout_killable(long timeout);
220 extern long schedule_timeout_uninterruptible(long timeout);
221 extern long schedule_timeout_idle(long timeout);
222 asmlinkage void schedule(void);
223 extern void schedule_preempt_disabled(void);
224
225 extern int __must_check io_schedule_prepare(void);
226 extern void io_schedule_finish(int token);
227 extern long io_schedule_timeout(long timeout);
228 extern void io_schedule(void);
229
230 /**
231 * struct prev_cputime - snapshot of system and user cputime
232 * @utime: time spent in user mode
233 * @stime: time spent in system mode
234 * @lock: protects the above two fields
235 *
236 * Stores previous user/system time values such that we can guarantee
237 * monotonicity.
238 */
239 struct prev_cputime {
240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
241 u64 utime;
242 u64 stime;
243 raw_spinlock_t lock;
244 #endif
245 };
246
247 /**
248 * struct task_cputime - collected CPU time counts
249 * @utime: time spent in user mode, in nanoseconds
250 * @stime: time spent in kernel mode, in nanoseconds
251 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
252 *
253 * This structure groups together three kinds of CPU time that are tracked for
254 * threads and thread groups. Most things considering CPU time want to group
255 * these counts together and treat all three of them in parallel.
256 */
257 struct task_cputime {
258 u64 utime;
259 u64 stime;
260 unsigned long long sum_exec_runtime;
261 };
262
263 /* Alternate field names when used on cache expirations: */
264 #define virt_exp utime
265 #define prof_exp stime
266 #define sched_exp sum_exec_runtime
267
268 enum vtime_state {
269 /* Task is sleeping or running in a CPU with VTIME inactive: */
270 VTIME_INACTIVE = 0,
271 /* Task runs in userspace in a CPU with VTIME active: */
272 VTIME_USER,
273 /* Task runs in kernelspace in a CPU with VTIME active: */
274 VTIME_SYS,
275 };
276
277 struct vtime {
278 seqcount_t seqcount;
279 unsigned long long starttime;
280 enum vtime_state state;
281 u64 utime;
282 u64 stime;
283 u64 gtime;
284 };
285
286 /*
287 * Utilization clamp constraints.
288 * @UCLAMP_MIN: Minimum utilization
289 * @UCLAMP_MAX: Maximum utilization
290 * @UCLAMP_CNT: Utilization clamp constraints count
291 */
292 enum uclamp_id {
293 UCLAMP_MIN = 0,
294 UCLAMP_MAX,
295 UCLAMP_CNT
296 };
297
298 struct sched_info {
299 #ifdef CONFIG_SCHED_INFO
300 /* Cumulative counters: */
301
302 /* # of times we have run on this CPU: */
303 unsigned long pcount;
304
305 /* Time spent waiting on a runqueue: */
306 unsigned long long run_delay;
307
308 /* Timestamps: */
309
310 /* When did we last run on a CPU? */
311 unsigned long long last_arrival;
312
313 /* When were we last queued to run? */
314 unsigned long long last_queued;
315
316 #endif /* CONFIG_SCHED_INFO */
317 };
318
319 /*
320 * Integer metrics need fixed point arithmetic, e.g., sched/fair
321 * has a few: load, load_avg, util_avg, freq, and capacity.
322 *
323 * We define a basic fixed point arithmetic range, and then formalize
324 * all these metrics based on that basic range.
325 */
326 # define SCHED_FIXEDPOINT_SHIFT 10
327 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
328
329 /* Increase resolution of cpu_capacity calculations */
330 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
331 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
332
333 struct load_weight {
334 unsigned long weight;
335 u32 inv_weight;
336 };
337
338 /**
339 * struct util_est - Estimation utilization of FAIR tasks
340 * @enqueued: instantaneous estimated utilization of a task/cpu
341 * @ewma: the Exponential Weighted Moving Average (EWMA)
342 * utilization of a task
343 *
344 * Support data structure to track an Exponential Weighted Moving Average
345 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
346 * average each time a task completes an activation. Sample's weight is chosen
347 * so that the EWMA will be relatively insensitive to transient changes to the
348 * task's workload.
349 *
350 * The enqueued attribute has a slightly different meaning for tasks and cpus:
351 * - task: the task's util_avg at last task dequeue time
352 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
353 * Thus, the util_est.enqueued of a task represents the contribution on the
354 * estimated utilization of the CPU where that task is currently enqueued.
355 *
356 * Only for tasks we track a moving average of the past instantaneous
357 * estimated utilization. This allows to absorb sporadic drops in utilization
358 * of an otherwise almost periodic task.
359 */
360 struct util_est {
361 unsigned int enqueued;
362 unsigned int ewma;
363 #define UTIL_EST_WEIGHT_SHIFT 2
364 } __attribute__((__aligned__(sizeof(u64))));
365
366 /*
367 * The load_avg/util_avg accumulates an infinite geometric series
368 * (see __update_load_avg() in kernel/sched/fair.c).
369 *
370 * [load_avg definition]
371 *
372 * load_avg = runnable% * scale_load_down(load)
373 *
374 * where runnable% is the time ratio that a sched_entity is runnable.
375 * For cfs_rq, it is the aggregated load_avg of all runnable and
376 * blocked sched_entities.
377 *
378 * [util_avg definition]
379 *
380 * util_avg = running% * SCHED_CAPACITY_SCALE
381 *
382 * where running% is the time ratio that a sched_entity is running on
383 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
384 * and blocked sched_entities.
385 *
386 * load_avg and util_avg don't direcly factor frequency scaling and CPU
387 * capacity scaling. The scaling is done through the rq_clock_pelt that
388 * is used for computing those signals (see update_rq_clock_pelt())
389 *
390 * N.B., the above ratios (runnable% and running%) themselves are in the
391 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
392 * to as large a range as necessary. This is for example reflected by
393 * util_avg's SCHED_CAPACITY_SCALE.
394 *
395 * [Overflow issue]
396 *
397 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
398 * with the highest load (=88761), always runnable on a single cfs_rq,
399 * and should not overflow as the number already hits PID_MAX_LIMIT.
400 *
401 * For all other cases (including 32-bit kernels), struct load_weight's
402 * weight will overflow first before we do, because:
403 *
404 * Max(load_avg) <= Max(load.weight)
405 *
406 * Then it is the load_weight's responsibility to consider overflow
407 * issues.
408 */
409 struct sched_avg {
410 u64 last_update_time;
411 u64 load_sum;
412 u64 runnable_load_sum;
413 u32 util_sum;
414 u32 period_contrib;
415 unsigned long load_avg;
416 unsigned long runnable_load_avg;
417 unsigned long util_avg;
418 struct util_est util_est;
419 } ____cacheline_aligned;
420
421 struct sched_statistics {
422 #ifdef CONFIG_SCHEDSTATS
423 u64 wait_start;
424 u64 wait_max;
425 u64 wait_count;
426 u64 wait_sum;
427 u64 iowait_count;
428 u64 iowait_sum;
429
430 u64 sleep_start;
431 u64 sleep_max;
432 s64 sum_sleep_runtime;
433
434 u64 block_start;
435 u64 block_max;
436 u64 exec_max;
437 u64 slice_max;
438
439 u64 nr_migrations_cold;
440 u64 nr_failed_migrations_affine;
441 u64 nr_failed_migrations_running;
442 u64 nr_failed_migrations_hot;
443 u64 nr_forced_migrations;
444
445 u64 nr_wakeups;
446 u64 nr_wakeups_sync;
447 u64 nr_wakeups_migrate;
448 u64 nr_wakeups_local;
449 u64 nr_wakeups_remote;
450 u64 nr_wakeups_affine;
451 u64 nr_wakeups_affine_attempts;
452 u64 nr_wakeups_passive;
453 u64 nr_wakeups_idle;
454 #endif
455 };
456
457 struct sched_entity {
458 /* For load-balancing: */
459 struct load_weight load;
460 unsigned long runnable_weight;
461 struct rb_node run_node;
462 struct list_head group_node;
463 unsigned int on_rq;
464
465 u64 exec_start;
466 u64 sum_exec_runtime;
467 u64 vruntime;
468 u64 prev_sum_exec_runtime;
469
470 u64 nr_migrations;
471
472 struct sched_statistics statistics;
473
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 int depth;
476 struct sched_entity *parent;
477 /* rq on which this entity is (to be) queued: */
478 struct cfs_rq *cfs_rq;
479 /* rq "owned" by this entity/group: */
480 struct cfs_rq *my_q;
481 #endif
482
483 #ifdef CONFIG_SMP
484 /*
485 * Per entity load average tracking.
486 *
487 * Put into separate cache line so it does not
488 * collide with read-mostly values above.
489 */
490 struct sched_avg avg;
491 #endif
492 };
493
494 struct sched_rt_entity {
495 struct list_head run_list;
496 unsigned long timeout;
497 unsigned long watchdog_stamp;
498 unsigned int time_slice;
499 unsigned short on_rq;
500 unsigned short on_list;
501
502 struct sched_rt_entity *back;
503 #ifdef CONFIG_RT_GROUP_SCHED
504 struct sched_rt_entity *parent;
505 /* rq on which this entity is (to be) queued: */
506 struct rt_rq *rt_rq;
507 /* rq "owned" by this entity/group: */
508 struct rt_rq *my_q;
509 #endif
510 } __randomize_layout;
511
512 struct sched_dl_entity {
513 struct rb_node rb_node;
514
515 /*
516 * Original scheduling parameters. Copied here from sched_attr
517 * during sched_setattr(), they will remain the same until
518 * the next sched_setattr().
519 */
520 u64 dl_runtime; /* Maximum runtime for each instance */
521 u64 dl_deadline; /* Relative deadline of each instance */
522 u64 dl_period; /* Separation of two instances (period) */
523 u64 dl_bw; /* dl_runtime / dl_period */
524 u64 dl_density; /* dl_runtime / dl_deadline */
525
526 /*
527 * Actual scheduling parameters. Initialized with the values above,
528 * they are continuously updated during task execution. Note that
529 * the remaining runtime could be < 0 in case we are in overrun.
530 */
531 s64 runtime; /* Remaining runtime for this instance */
532 u64 deadline; /* Absolute deadline for this instance */
533 unsigned int flags; /* Specifying the scheduler behaviour */
534
535 /*
536 * Some bool flags:
537 *
538 * @dl_throttled tells if we exhausted the runtime. If so, the
539 * task has to wait for a replenishment to be performed at the
540 * next firing of dl_timer.
541 *
542 * @dl_boosted tells if we are boosted due to DI. If so we are
543 * outside bandwidth enforcement mechanism (but only until we
544 * exit the critical section);
545 *
546 * @dl_yielded tells if task gave up the CPU before consuming
547 * all its available runtime during the last job.
548 *
549 * @dl_non_contending tells if the task is inactive while still
550 * contributing to the active utilization. In other words, it
551 * indicates if the inactive timer has been armed and its handler
552 * has not been executed yet. This flag is useful to avoid race
553 * conditions between the inactive timer handler and the wakeup
554 * code.
555 *
556 * @dl_overrun tells if the task asked to be informed about runtime
557 * overruns.
558 */
559 unsigned int dl_throttled : 1;
560 unsigned int dl_boosted : 1;
561 unsigned int dl_yielded : 1;
562 unsigned int dl_non_contending : 1;
563 unsigned int dl_overrun : 1;
564
565 /*
566 * Bandwidth enforcement timer. Each -deadline task has its
567 * own bandwidth to be enforced, thus we need one timer per task.
568 */
569 struct hrtimer dl_timer;
570
571 /*
572 * Inactive timer, responsible for decreasing the active utilization
573 * at the "0-lag time". When a -deadline task blocks, it contributes
574 * to GRUB's active utilization until the "0-lag time", hence a
575 * timer is needed to decrease the active utilization at the correct
576 * time.
577 */
578 struct hrtimer inactive_timer;
579 };
580
581 #ifdef CONFIG_UCLAMP_TASK
582 /* Number of utilization clamp buckets (shorter alias) */
583 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
584
585 /*
586 * Utilization clamp for a scheduling entity
587 * @value: clamp value "assigned" to a se
588 * @bucket_id: bucket index corresponding to the "assigned" value
589 * @active: the se is currently refcounted in a rq's bucket
590 * @user_defined: the requested clamp value comes from user-space
591 *
592 * The bucket_id is the index of the clamp bucket matching the clamp value
593 * which is pre-computed and stored to avoid expensive integer divisions from
594 * the fast path.
595 *
596 * The active bit is set whenever a task has got an "effective" value assigned,
597 * which can be different from the clamp value "requested" from user-space.
598 * This allows to know a task is refcounted in the rq's bucket corresponding
599 * to the "effective" bucket_id.
600 *
601 * The user_defined bit is set whenever a task has got a task-specific clamp
602 * value requested from userspace, i.e. the system defaults apply to this task
603 * just as a restriction. This allows to relax default clamps when a less
604 * restrictive task-specific value has been requested, thus allowing to
605 * implement a "nice" semantic. For example, a task running with a 20%
606 * default boost can still drop its own boosting to 0%.
607 */
608 struct uclamp_se {
609 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
610 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
611 unsigned int active : 1;
612 unsigned int user_defined : 1;
613 };
614 #endif /* CONFIG_UCLAMP_TASK */
615
616 union rcu_special {
617 struct {
618 u8 blocked;
619 u8 need_qs;
620 u8 exp_hint; /* Hint for performance. */
621 u8 deferred_qs;
622 } b; /* Bits. */
623 u32 s; /* Set of bits. */
624 };
625
626 enum perf_event_task_context {
627 perf_invalid_context = -1,
628 perf_hw_context = 0,
629 perf_sw_context,
630 perf_nr_task_contexts,
631 };
632
633 struct wake_q_node {
634 struct wake_q_node *next;
635 };
636
637 struct task_struct {
638 #ifdef CONFIG_THREAD_INFO_IN_TASK
639 /*
640 * For reasons of header soup (see current_thread_info()), this
641 * must be the first element of task_struct.
642 */
643 struct thread_info thread_info;
644 #endif
645 /* -1 unrunnable, 0 runnable, >0 stopped: */
646 volatile long state;
647
648 /*
649 * This begins the randomizable portion of task_struct. Only
650 * scheduling-critical items should be added above here.
651 */
652 randomized_struct_fields_start
653
654 void *stack;
655 refcount_t usage;
656 /* Per task flags (PF_*), defined further below: */
657 unsigned int flags;
658 unsigned int ptrace;
659
660 #ifdef CONFIG_SMP
661 struct llist_node wake_entry;
662 int on_cpu;
663 #ifdef CONFIG_THREAD_INFO_IN_TASK
664 /* Current CPU: */
665 unsigned int cpu;
666 #endif
667 unsigned int wakee_flips;
668 unsigned long wakee_flip_decay_ts;
669 struct task_struct *last_wakee;
670
671 /*
672 * recent_used_cpu is initially set as the last CPU used by a task
673 * that wakes affine another task. Waker/wakee relationships can
674 * push tasks around a CPU where each wakeup moves to the next one.
675 * Tracking a recently used CPU allows a quick search for a recently
676 * used CPU that may be idle.
677 */
678 int recent_used_cpu;
679 int wake_cpu;
680 #endif
681 int on_rq;
682
683 int prio;
684 int static_prio;
685 int normal_prio;
686 unsigned int rt_priority;
687
688 const struct sched_class *sched_class;
689 struct sched_entity se;
690 struct sched_rt_entity rt;
691 #ifdef CONFIG_CGROUP_SCHED
692 struct task_group *sched_task_group;
693 #endif
694 struct sched_dl_entity dl;
695
696 #ifdef CONFIG_UCLAMP_TASK
697 /* Clamp values requested for a scheduling entity */
698 struct uclamp_se uclamp_req[UCLAMP_CNT];
699 /* Effective clamp values used for a scheduling entity */
700 struct uclamp_se uclamp[UCLAMP_CNT];
701 #endif
702
703 #ifdef CONFIG_PREEMPT_NOTIFIERS
704 /* List of struct preempt_notifier: */
705 struct hlist_head preempt_notifiers;
706 #endif
707
708 #ifdef CONFIG_BLK_DEV_IO_TRACE
709 unsigned int btrace_seq;
710 #endif
711
712 unsigned int policy;
713 int nr_cpus_allowed;
714 const cpumask_t *cpus_ptr;
715 cpumask_t cpus_mask;
716
717 #ifdef CONFIG_PREEMPT_RCU
718 int rcu_read_lock_nesting;
719 union rcu_special rcu_read_unlock_special;
720 struct list_head rcu_node_entry;
721 struct rcu_node *rcu_blocked_node;
722 #endif /* #ifdef CONFIG_PREEMPT_RCU */
723
724 #ifdef CONFIG_TASKS_RCU
725 unsigned long rcu_tasks_nvcsw;
726 u8 rcu_tasks_holdout;
727 u8 rcu_tasks_idx;
728 int rcu_tasks_idle_cpu;
729 struct list_head rcu_tasks_holdout_list;
730 #endif /* #ifdef CONFIG_TASKS_RCU */
731
732 struct sched_info sched_info;
733
734 struct list_head tasks;
735 #ifdef CONFIG_SMP
736 struct plist_node pushable_tasks;
737 struct rb_node pushable_dl_tasks;
738 #endif
739
740 struct mm_struct *mm;
741 struct mm_struct *active_mm;
742
743 /* Per-thread vma caching: */
744 struct vmacache vmacache;
745
746 #ifdef SPLIT_RSS_COUNTING
747 struct task_rss_stat rss_stat;
748 #endif
749 int exit_state;
750 int exit_code;
751 int exit_signal;
752 /* The signal sent when the parent dies: */
753 int pdeath_signal;
754 /* JOBCTL_*, siglock protected: */
755 unsigned long jobctl;
756
757 /* Used for emulating ABI behavior of previous Linux versions: */
758 unsigned int personality;
759
760 /* Scheduler bits, serialized by scheduler locks: */
761 unsigned sched_reset_on_fork:1;
762 unsigned sched_contributes_to_load:1;
763 unsigned sched_migrated:1;
764 unsigned sched_remote_wakeup:1;
765 #ifdef CONFIG_PSI
766 unsigned sched_psi_wake_requeue:1;
767 #endif
768
769 /* Force alignment to the next boundary: */
770 unsigned :0;
771
772 /* Unserialized, strictly 'current' */
773
774 /* Bit to tell LSMs we're in execve(): */
775 unsigned in_execve:1;
776 unsigned in_iowait:1;
777 #ifndef TIF_RESTORE_SIGMASK
778 unsigned restore_sigmask:1;
779 #endif
780 #ifdef CONFIG_MEMCG
781 unsigned in_user_fault:1;
782 #endif
783 #ifdef CONFIG_COMPAT_BRK
784 unsigned brk_randomized:1;
785 #endif
786 #ifdef CONFIG_CGROUPS
787 /* disallow userland-initiated cgroup migration */
788 unsigned no_cgroup_migration:1;
789 /* task is frozen/stopped (used by the cgroup freezer) */
790 unsigned frozen:1;
791 #endif
792 #ifdef CONFIG_BLK_CGROUP
793 /* to be used once the psi infrastructure lands upstream. */
794 unsigned use_memdelay:1;
795 #endif
796
797 unsigned long atomic_flags; /* Flags requiring atomic access. */
798
799 struct restart_block restart_block;
800
801 pid_t pid;
802 pid_t tgid;
803
804 #ifdef CONFIG_STACKPROTECTOR
805 /* Canary value for the -fstack-protector GCC feature: */
806 unsigned long stack_canary;
807 #endif
808 /*
809 * Pointers to the (original) parent process, youngest child, younger sibling,
810 * older sibling, respectively. (p->father can be replaced with
811 * p->real_parent->pid)
812 */
813
814 /* Real parent process: */
815 struct task_struct __rcu *real_parent;
816
817 /* Recipient of SIGCHLD, wait4() reports: */
818 struct task_struct __rcu *parent;
819
820 /*
821 * Children/sibling form the list of natural children:
822 */
823 struct list_head children;
824 struct list_head sibling;
825 struct task_struct *group_leader;
826
827 /*
828 * 'ptraced' is the list of tasks this task is using ptrace() on.
829 *
830 * This includes both natural children and PTRACE_ATTACH targets.
831 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
832 */
833 struct list_head ptraced;
834 struct list_head ptrace_entry;
835
836 /* PID/PID hash table linkage. */
837 struct pid *thread_pid;
838 struct hlist_node pid_links[PIDTYPE_MAX];
839 struct list_head thread_group;
840 struct list_head thread_node;
841
842 struct completion *vfork_done;
843
844 /* CLONE_CHILD_SETTID: */
845 int __user *set_child_tid;
846
847 /* CLONE_CHILD_CLEARTID: */
848 int __user *clear_child_tid;
849
850 u64 utime;
851 u64 stime;
852 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
853 u64 utimescaled;
854 u64 stimescaled;
855 #endif
856 u64 gtime;
857 struct prev_cputime prev_cputime;
858 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
859 struct vtime vtime;
860 #endif
861
862 #ifdef CONFIG_NO_HZ_FULL
863 atomic_t tick_dep_mask;
864 #endif
865 /* Context switch counts: */
866 unsigned long nvcsw;
867 unsigned long nivcsw;
868
869 /* Monotonic time in nsecs: */
870 u64 start_time;
871
872 /* Boot based time in nsecs: */
873 u64 real_start_time;
874
875 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
876 unsigned long min_flt;
877 unsigned long maj_flt;
878
879 #ifdef CONFIG_POSIX_TIMERS
880 struct task_cputime cputime_expires;
881 struct list_head cpu_timers[3];
882 #endif
883
884 /* Process credentials: */
885
886 /* Tracer's credentials at attach: */
887 const struct cred __rcu *ptracer_cred;
888
889 /* Objective and real subjective task credentials (COW): */
890 const struct cred __rcu *real_cred;
891
892 /* Effective (overridable) subjective task credentials (COW): */
893 const struct cred __rcu *cred;
894
895 #ifdef CONFIG_KEYS
896 /* Cached requested key. */
897 struct key *cached_requested_key;
898 #endif
899
900 /*
901 * executable name, excluding path.
902 *
903 * - normally initialized setup_new_exec()
904 * - access it with [gs]et_task_comm()
905 * - lock it with task_lock()
906 */
907 char comm[TASK_COMM_LEN];
908
909 struct nameidata *nameidata;
910
911 #ifdef CONFIG_SYSVIPC
912 struct sysv_sem sysvsem;
913 struct sysv_shm sysvshm;
914 #endif
915 #ifdef CONFIG_DETECT_HUNG_TASK
916 unsigned long last_switch_count;
917 unsigned long last_switch_time;
918 #endif
919 /* Filesystem information: */
920 struct fs_struct *fs;
921
922 /* Open file information: */
923 struct files_struct *files;
924
925 /* Namespaces: */
926 struct nsproxy *nsproxy;
927
928 /* Signal handlers: */
929 struct signal_struct *signal;
930 struct sighand_struct *sighand;
931 sigset_t blocked;
932 sigset_t real_blocked;
933 /* Restored if set_restore_sigmask() was used: */
934 sigset_t saved_sigmask;
935 struct sigpending pending;
936 unsigned long sas_ss_sp;
937 size_t sas_ss_size;
938 unsigned int sas_ss_flags;
939
940 struct callback_head *task_works;
941
942 #ifdef CONFIG_AUDIT
943 #ifdef CONFIG_AUDITSYSCALL
944 struct audit_context *audit_context;
945 #endif
946 kuid_t loginuid;
947 unsigned int sessionid;
948 #endif
949 struct seccomp seccomp;
950
951 /* Thread group tracking: */
952 u32 parent_exec_id;
953 u32 self_exec_id;
954
955 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
956 spinlock_t alloc_lock;
957
958 /* Protection of the PI data structures: */
959 raw_spinlock_t pi_lock;
960
961 struct wake_q_node wake_q;
962
963 #ifdef CONFIG_RT_MUTEXES
964 /* PI waiters blocked on a rt_mutex held by this task: */
965 struct rb_root_cached pi_waiters;
966 /* Updated under owner's pi_lock and rq lock */
967 struct task_struct *pi_top_task;
968 /* Deadlock detection and priority inheritance handling: */
969 struct rt_mutex_waiter *pi_blocked_on;
970 #endif
971
972 #ifdef CONFIG_DEBUG_MUTEXES
973 /* Mutex deadlock detection: */
974 struct mutex_waiter *blocked_on;
975 #endif
976
977 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
978 int non_block_count;
979 #endif
980
981 #ifdef CONFIG_TRACE_IRQFLAGS
982 unsigned int irq_events;
983 unsigned long hardirq_enable_ip;
984 unsigned long hardirq_disable_ip;
985 unsigned int hardirq_enable_event;
986 unsigned int hardirq_disable_event;
987 int hardirqs_enabled;
988 int hardirq_context;
989 unsigned long softirq_disable_ip;
990 unsigned long softirq_enable_ip;
991 unsigned int softirq_disable_event;
992 unsigned int softirq_enable_event;
993 int softirqs_enabled;
994 int softirq_context;
995 #endif
996
997 #ifdef CONFIG_LOCKDEP
998 # define MAX_LOCK_DEPTH 48UL
999 u64 curr_chain_key;
1000 int lockdep_depth;
1001 unsigned int lockdep_recursion;
1002 struct held_lock held_locks[MAX_LOCK_DEPTH];
1003 #endif
1004
1005 #ifdef CONFIG_UBSAN
1006 unsigned int in_ubsan;
1007 #endif
1008
1009 /* Journalling filesystem info: */
1010 void *journal_info;
1011
1012 /* Stacked block device info: */
1013 struct bio_list *bio_list;
1014
1015 #ifdef CONFIG_BLOCK
1016 /* Stack plugging: */
1017 struct blk_plug *plug;
1018 #endif
1019
1020 /* VM state: */
1021 struct reclaim_state *reclaim_state;
1022
1023 struct backing_dev_info *backing_dev_info;
1024
1025 struct io_context *io_context;
1026
1027 #ifdef CONFIG_COMPACTION
1028 struct capture_control *capture_control;
1029 #endif
1030 /* Ptrace state: */
1031 unsigned long ptrace_message;
1032 kernel_siginfo_t *last_siginfo;
1033
1034 struct task_io_accounting ioac;
1035 #ifdef CONFIG_PSI
1036 /* Pressure stall state */
1037 unsigned int psi_flags;
1038 #endif
1039 #ifdef CONFIG_TASK_XACCT
1040 /* Accumulated RSS usage: */
1041 u64 acct_rss_mem1;
1042 /* Accumulated virtual memory usage: */
1043 u64 acct_vm_mem1;
1044 /* stime + utime since last update: */
1045 u64 acct_timexpd;
1046 #endif
1047 #ifdef CONFIG_CPUSETS
1048 /* Protected by ->alloc_lock: */
1049 nodemask_t mems_allowed;
1050 /* Seqence number to catch updates: */
1051 seqcount_t mems_allowed_seq;
1052 int cpuset_mem_spread_rotor;
1053 int cpuset_slab_spread_rotor;
1054 #endif
1055 #ifdef CONFIG_CGROUPS
1056 /* Control Group info protected by css_set_lock: */
1057 struct css_set __rcu *cgroups;
1058 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1059 struct list_head cg_list;
1060 #endif
1061 #ifdef CONFIG_X86_CPU_RESCTRL
1062 u32 closid;
1063 u32 rmid;
1064 #endif
1065 #ifdef CONFIG_FUTEX
1066 struct robust_list_head __user *robust_list;
1067 #ifdef CONFIG_COMPAT
1068 struct compat_robust_list_head __user *compat_robust_list;
1069 #endif
1070 struct list_head pi_state_list;
1071 struct futex_pi_state *pi_state_cache;
1072 #endif
1073 #ifdef CONFIG_PERF_EVENTS
1074 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1075 struct mutex perf_event_mutex;
1076 struct list_head perf_event_list;
1077 #endif
1078 #ifdef CONFIG_DEBUG_PREEMPT
1079 unsigned long preempt_disable_ip;
1080 #endif
1081 #ifdef CONFIG_NUMA
1082 /* Protected by alloc_lock: */
1083 struct mempolicy *mempolicy;
1084 short il_prev;
1085 short pref_node_fork;
1086 #endif
1087 #ifdef CONFIG_NUMA_BALANCING
1088 int numa_scan_seq;
1089 unsigned int numa_scan_period;
1090 unsigned int numa_scan_period_max;
1091 int numa_preferred_nid;
1092 unsigned long numa_migrate_retry;
1093 /* Migration stamp: */
1094 u64 node_stamp;
1095 u64 last_task_numa_placement;
1096 u64 last_sum_exec_runtime;
1097 struct callback_head numa_work;
1098
1099 /*
1100 * This pointer is only modified for current in syscall and
1101 * pagefault context (and for tasks being destroyed), so it can be read
1102 * from any of the following contexts:
1103 * - RCU read-side critical section
1104 * - current->numa_group from everywhere
1105 * - task's runqueue locked, task not running
1106 */
1107 struct numa_group __rcu *numa_group;
1108
1109 /*
1110 * numa_faults is an array split into four regions:
1111 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1112 * in this precise order.
1113 *
1114 * faults_memory: Exponential decaying average of faults on a per-node
1115 * basis. Scheduling placement decisions are made based on these
1116 * counts. The values remain static for the duration of a PTE scan.
1117 * faults_cpu: Track the nodes the process was running on when a NUMA
1118 * hinting fault was incurred.
1119 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1120 * during the current scan window. When the scan completes, the counts
1121 * in faults_memory and faults_cpu decay and these values are copied.
1122 */
1123 unsigned long *numa_faults;
1124 unsigned long total_numa_faults;
1125
1126 /*
1127 * numa_faults_locality tracks if faults recorded during the last
1128 * scan window were remote/local or failed to migrate. The task scan
1129 * period is adapted based on the locality of the faults with different
1130 * weights depending on whether they were shared or private faults
1131 */
1132 unsigned long numa_faults_locality[3];
1133
1134 unsigned long numa_pages_migrated;
1135 #endif /* CONFIG_NUMA_BALANCING */
1136
1137 #ifdef CONFIG_RSEQ
1138 struct rseq __user *rseq;
1139 u32 rseq_sig;
1140 /*
1141 * RmW on rseq_event_mask must be performed atomically
1142 * with respect to preemption.
1143 */
1144 unsigned long rseq_event_mask;
1145 #endif
1146
1147 struct tlbflush_unmap_batch tlb_ubc;
1148
1149 struct rcu_head rcu;
1150
1151 /* Cache last used pipe for splice(): */
1152 struct pipe_inode_info *splice_pipe;
1153
1154 struct page_frag task_frag;
1155
1156 #ifdef CONFIG_TASK_DELAY_ACCT
1157 struct task_delay_info *delays;
1158 #endif
1159
1160 #ifdef CONFIG_FAULT_INJECTION
1161 int make_it_fail;
1162 unsigned int fail_nth;
1163 #endif
1164 /*
1165 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1166 * balance_dirty_pages() for a dirty throttling pause:
1167 */
1168 int nr_dirtied;
1169 int nr_dirtied_pause;
1170 /* Start of a write-and-pause period: */
1171 unsigned long dirty_paused_when;
1172
1173 #ifdef CONFIG_LATENCYTOP
1174 int latency_record_count;
1175 struct latency_record latency_record[LT_SAVECOUNT];
1176 #endif
1177 /*
1178 * Time slack values; these are used to round up poll() and
1179 * select() etc timeout values. These are in nanoseconds.
1180 */
1181 u64 timer_slack_ns;
1182 u64 default_timer_slack_ns;
1183
1184 #ifdef CONFIG_KASAN
1185 unsigned int kasan_depth;
1186 #endif
1187
1188 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1189 /* Index of current stored address in ret_stack: */
1190 int curr_ret_stack;
1191 int curr_ret_depth;
1192
1193 /* Stack of return addresses for return function tracing: */
1194 struct ftrace_ret_stack *ret_stack;
1195
1196 /* Timestamp for last schedule: */
1197 unsigned long long ftrace_timestamp;
1198
1199 /*
1200 * Number of functions that haven't been traced
1201 * because of depth overrun:
1202 */
1203 atomic_t trace_overrun;
1204
1205 /* Pause tracing: */
1206 atomic_t tracing_graph_pause;
1207 #endif
1208
1209 #ifdef CONFIG_TRACING
1210 /* State flags for use by tracers: */
1211 unsigned long trace;
1212
1213 /* Bitmask and counter of trace recursion: */
1214 unsigned long trace_recursion;
1215 #endif /* CONFIG_TRACING */
1216
1217 #ifdef CONFIG_KCOV
1218 /* Coverage collection mode enabled for this task (0 if disabled): */
1219 unsigned int kcov_mode;
1220
1221 /* Size of the kcov_area: */
1222 unsigned int kcov_size;
1223
1224 /* Buffer for coverage collection: */
1225 void *kcov_area;
1226
1227 /* KCOV descriptor wired with this task or NULL: */
1228 struct kcov *kcov;
1229 #endif
1230
1231 #ifdef CONFIG_MEMCG
1232 struct mem_cgroup *memcg_in_oom;
1233 gfp_t memcg_oom_gfp_mask;
1234 int memcg_oom_order;
1235
1236 /* Number of pages to reclaim on returning to userland: */
1237 unsigned int memcg_nr_pages_over_high;
1238
1239 /* Used by memcontrol for targeted memcg charge: */
1240 struct mem_cgroup *active_memcg;
1241 #endif
1242
1243 #ifdef CONFIG_BLK_CGROUP
1244 struct request_queue *throttle_queue;
1245 #endif
1246
1247 #ifdef CONFIG_UPROBES
1248 struct uprobe_task *utask;
1249 #endif
1250 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1251 unsigned int sequential_io;
1252 unsigned int sequential_io_avg;
1253 #endif
1254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1255 unsigned long task_state_change;
1256 #endif
1257 int pagefault_disabled;
1258 #ifdef CONFIG_MMU
1259 struct task_struct *oom_reaper_list;
1260 #endif
1261 #ifdef CONFIG_VMAP_STACK
1262 struct vm_struct *stack_vm_area;
1263 #endif
1264 #ifdef CONFIG_THREAD_INFO_IN_TASK
1265 /* A live task holds one reference: */
1266 refcount_t stack_refcount;
1267 #endif
1268 #ifdef CONFIG_LIVEPATCH
1269 int patch_state;
1270 #endif
1271 #ifdef CONFIG_SECURITY
1272 /* Used by LSM modules for access restriction: */
1273 void *security;
1274 #endif
1275
1276 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1277 unsigned long lowest_stack;
1278 unsigned long prev_lowest_stack;
1279 #endif
1280
1281 /*
1282 * New fields for task_struct should be added above here, so that
1283 * they are included in the randomized portion of task_struct.
1284 */
1285 randomized_struct_fields_end
1286
1287 /* CPU-specific state of this task: */
1288 struct thread_struct thread;
1289
1290 /*
1291 * WARNING: on x86, 'thread_struct' contains a variable-sized
1292 * structure. It *MUST* be at the end of 'task_struct'.
1293 *
1294 * Do not put anything below here!
1295 */
1296 };
1297
1298 static inline struct pid *task_pid(struct task_struct *task)
1299 {
1300 return task->thread_pid;
1301 }
1302
1303 /*
1304 * the helpers to get the task's different pids as they are seen
1305 * from various namespaces
1306 *
1307 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1308 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1309 * current.
1310 * task_xid_nr_ns() : id seen from the ns specified;
1311 *
1312 * see also pid_nr() etc in include/linux/pid.h
1313 */
1314 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1315
1316 static inline pid_t task_pid_nr(struct task_struct *tsk)
1317 {
1318 return tsk->pid;
1319 }
1320
1321 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1322 {
1323 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1324 }
1325
1326 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1327 {
1328 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1329 }
1330
1331
1332 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1333 {
1334 return tsk->tgid;
1335 }
1336
1337 /**
1338 * pid_alive - check that a task structure is not stale
1339 * @p: Task structure to be checked.
1340 *
1341 * Test if a process is not yet dead (at most zombie state)
1342 * If pid_alive fails, then pointers within the task structure
1343 * can be stale and must not be dereferenced.
1344 *
1345 * Return: 1 if the process is alive. 0 otherwise.
1346 */
1347 static inline int pid_alive(const struct task_struct *p)
1348 {
1349 return p->thread_pid != NULL;
1350 }
1351
1352 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1353 {
1354 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1355 }
1356
1357 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1358 {
1359 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1360 }
1361
1362
1363 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1364 {
1365 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1366 }
1367
1368 static inline pid_t task_session_vnr(struct task_struct *tsk)
1369 {
1370 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1371 }
1372
1373 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1374 {
1375 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1376 }
1377
1378 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1379 {
1380 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1381 }
1382
1383 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1384 {
1385 pid_t pid = 0;
1386
1387 rcu_read_lock();
1388 if (pid_alive(tsk))
1389 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1390 rcu_read_unlock();
1391
1392 return pid;
1393 }
1394
1395 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1396 {
1397 return task_ppid_nr_ns(tsk, &init_pid_ns);
1398 }
1399
1400 /* Obsolete, do not use: */
1401 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1402 {
1403 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1404 }
1405
1406 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1407 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1408
1409 static inline unsigned int task_state_index(struct task_struct *tsk)
1410 {
1411 unsigned int tsk_state = READ_ONCE(tsk->state);
1412 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1413
1414 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1415
1416 if (tsk_state == TASK_IDLE)
1417 state = TASK_REPORT_IDLE;
1418
1419 return fls(state);
1420 }
1421
1422 static inline char task_index_to_char(unsigned int state)
1423 {
1424 static const char state_char[] = "RSDTtXZPI";
1425
1426 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1427
1428 return state_char[state];
1429 }
1430
1431 static inline char task_state_to_char(struct task_struct *tsk)
1432 {
1433 return task_index_to_char(task_state_index(tsk));
1434 }
1435
1436 /**
1437 * is_global_init - check if a task structure is init. Since init
1438 * is free to have sub-threads we need to check tgid.
1439 * @tsk: Task structure to be checked.
1440 *
1441 * Check if a task structure is the first user space task the kernel created.
1442 *
1443 * Return: 1 if the task structure is init. 0 otherwise.
1444 */
1445 static inline int is_global_init(struct task_struct *tsk)
1446 {
1447 return task_tgid_nr(tsk) == 1;
1448 }
1449
1450 extern struct pid *cad_pid;
1451
1452 /*
1453 * Per process flags
1454 */
1455 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1456 #define PF_EXITING 0x00000004 /* Getting shut down */
1457 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1458 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1459 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1460 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1461 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1462 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1463 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1464 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1465 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1466 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1467 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1468 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1469 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1470 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1471 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1472 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1473 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1474 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1475 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1476 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1477 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1478 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1479 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1480 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1481 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1482 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1483 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1484 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1485
1486 /*
1487 * Only the _current_ task can read/write to tsk->flags, but other
1488 * tasks can access tsk->flags in readonly mode for example
1489 * with tsk_used_math (like during threaded core dumping).
1490 * There is however an exception to this rule during ptrace
1491 * or during fork: the ptracer task is allowed to write to the
1492 * child->flags of its traced child (same goes for fork, the parent
1493 * can write to the child->flags), because we're guaranteed the
1494 * child is not running and in turn not changing child->flags
1495 * at the same time the parent does it.
1496 */
1497 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1498 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1499 #define clear_used_math() clear_stopped_child_used_math(current)
1500 #define set_used_math() set_stopped_child_used_math(current)
1501
1502 #define conditional_stopped_child_used_math(condition, child) \
1503 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1504
1505 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1506
1507 #define copy_to_stopped_child_used_math(child) \
1508 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1509
1510 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1511 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1512 #define used_math() tsk_used_math(current)
1513
1514 static inline bool is_percpu_thread(void)
1515 {
1516 #ifdef CONFIG_SMP
1517 return (current->flags & PF_NO_SETAFFINITY) &&
1518 (current->nr_cpus_allowed == 1);
1519 #else
1520 return true;
1521 #endif
1522 }
1523
1524 /* Per-process atomic flags. */
1525 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1526 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1527 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1528 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1529 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1530 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1531 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1532 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1533
1534 #define TASK_PFA_TEST(name, func) \
1535 static inline bool task_##func(struct task_struct *p) \
1536 { return test_bit(PFA_##name, &p->atomic_flags); }
1537
1538 #define TASK_PFA_SET(name, func) \
1539 static inline void task_set_##func(struct task_struct *p) \
1540 { set_bit(PFA_##name, &p->atomic_flags); }
1541
1542 #define TASK_PFA_CLEAR(name, func) \
1543 static inline void task_clear_##func(struct task_struct *p) \
1544 { clear_bit(PFA_##name, &p->atomic_flags); }
1545
1546 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1547 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1548
1549 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1550 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1551 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1552
1553 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1554 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1555 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1556
1557 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1558 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1559 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1560
1561 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1562 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1563 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1564
1565 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1566 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1567
1568 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1569 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1570 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1571
1572 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1573 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1574
1575 static inline void
1576 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1577 {
1578 current->flags &= ~flags;
1579 current->flags |= orig_flags & flags;
1580 }
1581
1582 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1583 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1584 #ifdef CONFIG_SMP
1585 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1586 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1587 #else
1588 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1589 {
1590 }
1591 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1592 {
1593 if (!cpumask_test_cpu(0, new_mask))
1594 return -EINVAL;
1595 return 0;
1596 }
1597 #endif
1598
1599 extern int yield_to(struct task_struct *p, bool preempt);
1600 extern void set_user_nice(struct task_struct *p, long nice);
1601 extern int task_prio(const struct task_struct *p);
1602
1603 /**
1604 * task_nice - return the nice value of a given task.
1605 * @p: the task in question.
1606 *
1607 * Return: The nice value [ -20 ... 0 ... 19 ].
1608 */
1609 static inline int task_nice(const struct task_struct *p)
1610 {
1611 return PRIO_TO_NICE((p)->static_prio);
1612 }
1613
1614 extern int can_nice(const struct task_struct *p, const int nice);
1615 extern int task_curr(const struct task_struct *p);
1616 extern int idle_cpu(int cpu);
1617 extern int available_idle_cpu(int cpu);
1618 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1619 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1620 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1621 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1622 extern struct task_struct *idle_task(int cpu);
1623
1624 /**
1625 * is_idle_task - is the specified task an idle task?
1626 * @p: the task in question.
1627 *
1628 * Return: 1 if @p is an idle task. 0 otherwise.
1629 */
1630 static inline bool is_idle_task(const struct task_struct *p)
1631 {
1632 return !!(p->flags & PF_IDLE);
1633 }
1634
1635 extern struct task_struct *curr_task(int cpu);
1636 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1637
1638 void yield(void);
1639
1640 union thread_union {
1641 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1642 struct task_struct task;
1643 #endif
1644 #ifndef CONFIG_THREAD_INFO_IN_TASK
1645 struct thread_info thread_info;
1646 #endif
1647 unsigned long stack[THREAD_SIZE/sizeof(long)];
1648 };
1649
1650 #ifndef CONFIG_THREAD_INFO_IN_TASK
1651 extern struct thread_info init_thread_info;
1652 #endif
1653
1654 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1655
1656 #ifdef CONFIG_THREAD_INFO_IN_TASK
1657 static inline struct thread_info *task_thread_info(struct task_struct *task)
1658 {
1659 return &task->thread_info;
1660 }
1661 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1662 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1663 #endif
1664
1665 /*
1666 * find a task by one of its numerical ids
1667 *
1668 * find_task_by_pid_ns():
1669 * finds a task by its pid in the specified namespace
1670 * find_task_by_vpid():
1671 * finds a task by its virtual pid
1672 *
1673 * see also find_vpid() etc in include/linux/pid.h
1674 */
1675
1676 extern struct task_struct *find_task_by_vpid(pid_t nr);
1677 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1678
1679 /*
1680 * find a task by its virtual pid and get the task struct
1681 */
1682 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1683
1684 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1685 extern int wake_up_process(struct task_struct *tsk);
1686 extern void wake_up_new_task(struct task_struct *tsk);
1687
1688 #ifdef CONFIG_SMP
1689 extern void kick_process(struct task_struct *tsk);
1690 #else
1691 static inline void kick_process(struct task_struct *tsk) { }
1692 #endif
1693
1694 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1695
1696 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1697 {
1698 __set_task_comm(tsk, from, false);
1699 }
1700
1701 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1702 #define get_task_comm(buf, tsk) ({ \
1703 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1704 __get_task_comm(buf, sizeof(buf), tsk); \
1705 })
1706
1707 #ifdef CONFIG_SMP
1708 void scheduler_ipi(void);
1709 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1710 #else
1711 static inline void scheduler_ipi(void) { }
1712 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1713 {
1714 return 1;
1715 }
1716 #endif
1717
1718 /*
1719 * Set thread flags in other task's structures.
1720 * See asm/thread_info.h for TIF_xxxx flags available:
1721 */
1722 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1723 {
1724 set_ti_thread_flag(task_thread_info(tsk), flag);
1725 }
1726
1727 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1728 {
1729 clear_ti_thread_flag(task_thread_info(tsk), flag);
1730 }
1731
1732 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1733 bool value)
1734 {
1735 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1736 }
1737
1738 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1739 {
1740 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1741 }
1742
1743 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1744 {
1745 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1746 }
1747
1748 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1749 {
1750 return test_ti_thread_flag(task_thread_info(tsk), flag);
1751 }
1752
1753 static inline void set_tsk_need_resched(struct task_struct *tsk)
1754 {
1755 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1756 }
1757
1758 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1759 {
1760 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1761 }
1762
1763 static inline int test_tsk_need_resched(struct task_struct *tsk)
1764 {
1765 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1766 }
1767
1768 /*
1769 * cond_resched() and cond_resched_lock(): latency reduction via
1770 * explicit rescheduling in places that are safe. The return
1771 * value indicates whether a reschedule was done in fact.
1772 * cond_resched_lock() will drop the spinlock before scheduling,
1773 */
1774 #ifndef CONFIG_PREEMPT
1775 extern int _cond_resched(void);
1776 #else
1777 static inline int _cond_resched(void) { return 0; }
1778 #endif
1779
1780 #define cond_resched() ({ \
1781 ___might_sleep(__FILE__, __LINE__, 0); \
1782 _cond_resched(); \
1783 })
1784
1785 extern int __cond_resched_lock(spinlock_t *lock);
1786
1787 #define cond_resched_lock(lock) ({ \
1788 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1789 __cond_resched_lock(lock); \
1790 })
1791
1792 static inline void cond_resched_rcu(void)
1793 {
1794 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1795 rcu_read_unlock();
1796 cond_resched();
1797 rcu_read_lock();
1798 #endif
1799 }
1800
1801 /*
1802 * Does a critical section need to be broken due to another
1803 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1804 * but a general need for low latency)
1805 */
1806 static inline int spin_needbreak(spinlock_t *lock)
1807 {
1808 #ifdef CONFIG_PREEMPT
1809 return spin_is_contended(lock);
1810 #else
1811 return 0;
1812 #endif
1813 }
1814
1815 static __always_inline bool need_resched(void)
1816 {
1817 return unlikely(tif_need_resched());
1818 }
1819
1820 /*
1821 * Wrappers for p->thread_info->cpu access. No-op on UP.
1822 */
1823 #ifdef CONFIG_SMP
1824
1825 static inline unsigned int task_cpu(const struct task_struct *p)
1826 {
1827 #ifdef CONFIG_THREAD_INFO_IN_TASK
1828 return READ_ONCE(p->cpu);
1829 #else
1830 return READ_ONCE(task_thread_info(p)->cpu);
1831 #endif
1832 }
1833
1834 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1835
1836 #else
1837
1838 static inline unsigned int task_cpu(const struct task_struct *p)
1839 {
1840 return 0;
1841 }
1842
1843 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1844 {
1845 }
1846
1847 #endif /* CONFIG_SMP */
1848
1849 /*
1850 * In order to reduce various lock holder preemption latencies provide an
1851 * interface to see if a vCPU is currently running or not.
1852 *
1853 * This allows us to terminate optimistic spin loops and block, analogous to
1854 * the native optimistic spin heuristic of testing if the lock owner task is
1855 * running or not.
1856 */
1857 #ifndef vcpu_is_preempted
1858 # define vcpu_is_preempted(cpu) false
1859 #endif
1860
1861 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1862 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1863
1864 #ifndef TASK_SIZE_OF
1865 #define TASK_SIZE_OF(tsk) TASK_SIZE
1866 #endif
1867
1868 #ifdef CONFIG_RSEQ
1869
1870 /*
1871 * Map the event mask on the user-space ABI enum rseq_cs_flags
1872 * for direct mask checks.
1873 */
1874 enum rseq_event_mask_bits {
1875 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1876 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1877 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1878 };
1879
1880 enum rseq_event_mask {
1881 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1882 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1883 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1884 };
1885
1886 static inline void rseq_set_notify_resume(struct task_struct *t)
1887 {
1888 if (t->rseq)
1889 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1890 }
1891
1892 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1893
1894 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1895 struct pt_regs *regs)
1896 {
1897 if (current->rseq)
1898 __rseq_handle_notify_resume(ksig, regs);
1899 }
1900
1901 static inline void rseq_signal_deliver(struct ksignal *ksig,
1902 struct pt_regs *regs)
1903 {
1904 preempt_disable();
1905 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1906 preempt_enable();
1907 rseq_handle_notify_resume(ksig, regs);
1908 }
1909
1910 /* rseq_preempt() requires preemption to be disabled. */
1911 static inline void rseq_preempt(struct task_struct *t)
1912 {
1913 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1914 rseq_set_notify_resume(t);
1915 }
1916
1917 /* rseq_migrate() requires preemption to be disabled. */
1918 static inline void rseq_migrate(struct task_struct *t)
1919 {
1920 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1921 rseq_set_notify_resume(t);
1922 }
1923
1924 /*
1925 * If parent process has a registered restartable sequences area, the
1926 * child inherits. Only applies when forking a process, not a thread.
1927 */
1928 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1929 {
1930 if (clone_flags & CLONE_THREAD) {
1931 t->rseq = NULL;
1932 t->rseq_sig = 0;
1933 t->rseq_event_mask = 0;
1934 } else {
1935 t->rseq = current->rseq;
1936 t->rseq_sig = current->rseq_sig;
1937 t->rseq_event_mask = current->rseq_event_mask;
1938 }
1939 }
1940
1941 static inline void rseq_execve(struct task_struct *t)
1942 {
1943 t->rseq = NULL;
1944 t->rseq_sig = 0;
1945 t->rseq_event_mask = 0;
1946 }
1947
1948 #else
1949
1950 static inline void rseq_set_notify_resume(struct task_struct *t)
1951 {
1952 }
1953 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1954 struct pt_regs *regs)
1955 {
1956 }
1957 static inline void rseq_signal_deliver(struct ksignal *ksig,
1958 struct pt_regs *regs)
1959 {
1960 }
1961 static inline void rseq_preempt(struct task_struct *t)
1962 {
1963 }
1964 static inline void rseq_migrate(struct task_struct *t)
1965 {
1966 }
1967 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1968 {
1969 }
1970 static inline void rseq_execve(struct task_struct *t)
1971 {
1972 }
1973
1974 #endif
1975
1976 void __exit_umh(struct task_struct *tsk);
1977
1978 static inline void exit_umh(struct task_struct *tsk)
1979 {
1980 if (unlikely(tsk->flags & PF_UMH))
1981 __exit_umh(tsk);
1982 }
1983
1984 #ifdef CONFIG_DEBUG_RSEQ
1985
1986 void rseq_syscall(struct pt_regs *regs);
1987
1988 #else
1989
1990 static inline void rseq_syscall(struct pt_regs *regs)
1991 {
1992 }
1993
1994 #endif
1995
1996 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1997 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1998 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1999
2000 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2001 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2002 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2003
2004 int sched_trace_rq_cpu(struct rq *rq);
2005
2006 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2007
2008 #endif