]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/sched.h
f2fs: fix deadlock between quota writes and checkpoint
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/mm_types_task.h>
31 #include <linux/task_io_accounting.h>
32 #include <linux/posix-timers.h>
33 #include <linux/rseq.h>
34
35 /* task_struct member predeclarations (sorted alphabetically): */
36 struct audit_context;
37 struct backing_dev_info;
38 struct bio_list;
39 struct blk_plug;
40 struct capture_control;
41 struct cfs_rq;
42 struct fs_struct;
43 struct futex_pi_state;
44 struct io_context;
45 struct mempolicy;
46 struct nameidata;
47 struct nsproxy;
48 struct perf_event_context;
49 struct pid_namespace;
50 struct pipe_inode_info;
51 struct rcu_node;
52 struct reclaim_state;
53 struct robust_list_head;
54 struct root_domain;
55 struct rq;
56 struct sched_attr;
57 struct sched_param;
58 struct seq_file;
59 struct sighand_struct;
60 struct signal_struct;
61 struct task_delay_info;
62 struct task_group;
63
64 /*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
74
75 /* Used in tsk->state: */
76 #define TASK_RUNNING 0x0000
77 #define TASK_INTERRUPTIBLE 0x0001
78 #define TASK_UNINTERRUPTIBLE 0x0002
79 #define __TASK_STOPPED 0x0004
80 #define __TASK_TRACED 0x0008
81 /* Used in tsk->exit_state: */
82 #define EXIT_DEAD 0x0010
83 #define EXIT_ZOMBIE 0x0020
84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85 /* Used in tsk->state again: */
86 #define TASK_PARKED 0x0040
87 #define TASK_DEAD 0x0080
88 #define TASK_WAKEKILL 0x0100
89 #define TASK_WAKING 0x0200
90 #define TASK_NOLOAD 0x0400
91 #define TASK_NEW 0x0800
92 #define TASK_STATE_MAX 0x1000
93
94 /* Convenience macros for the sake of set_current_state: */
95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101 /* Convenience macros for the sake of wake_up(): */
102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
103
104 /* get_task_state(): */
105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
109
110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
119
120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
122 /*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126 #define is_special_task_state(state) \
127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128
129 #define __set_current_state(state_value) \
130 do { \
131 WARN_ON_ONCE(is_special_task_state(state_value));\
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
135
136 #define set_current_state(state_value) \
137 do { \
138 WARN_ON_ONCE(is_special_task_state(state_value));\
139 current->task_state_change = _THIS_IP_; \
140 smp_store_mb(current->state, (state_value)); \
141 } while (0)
142
143 #define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
152 #else
153 /*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
158 * for (;;) {
159 * set_current_state(TASK_UNINTERRUPTIBLE);
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
175 *
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182 *
183 * However, with slightly different timing the wakeup TASK_RUNNING store can
184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
187 *
188 * Also see the comments of try_to_wake_up().
189 */
190 #define __set_current_state(state_value) \
191 current->state = (state_value)
192
193 #define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196 /*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202 #define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
210 #endif
211
212 /* Task command name length: */
213 #define TASK_COMM_LEN 16
214
215 extern void scheduler_tick(void);
216
217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219 extern long schedule_timeout(long timeout);
220 extern long schedule_timeout_interruptible(long timeout);
221 extern long schedule_timeout_killable(long timeout);
222 extern long schedule_timeout_uninterruptible(long timeout);
223 extern long schedule_timeout_idle(long timeout);
224 asmlinkage void schedule(void);
225 extern void schedule_preempt_disabled(void);
226 asmlinkage void preempt_schedule_irq(void);
227
228 extern int __must_check io_schedule_prepare(void);
229 extern void io_schedule_finish(int token);
230 extern long io_schedule_timeout(long timeout);
231 extern void io_schedule(void);
232
233 /**
234 * struct prev_cputime - snapshot of system and user cputime
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
237 * @lock: protects the above two fields
238 *
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
241 */
242 struct prev_cputime {
243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
247 #endif
248 };
249
250 enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
253 /* Task is idle */
254 VTIME_IDLE,
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
257 /* Task runs in userspace in a CPU with VTIME active: */
258 VTIME_USER,
259 /* Task runs as guests in a CPU with VTIME active: */
260 VTIME_GUEST,
261 };
262
263 struct vtime {
264 seqcount_t seqcount;
265 unsigned long long starttime;
266 enum vtime_state state;
267 unsigned int cpu;
268 u64 utime;
269 u64 stime;
270 u64 gtime;
271 };
272
273 /*
274 * Utilization clamp constraints.
275 * @UCLAMP_MIN: Minimum utilization
276 * @UCLAMP_MAX: Maximum utilization
277 * @UCLAMP_CNT: Utilization clamp constraints count
278 */
279 enum uclamp_id {
280 UCLAMP_MIN = 0,
281 UCLAMP_MAX,
282 UCLAMP_CNT
283 };
284
285 #ifdef CONFIG_SMP
286 extern struct root_domain def_root_domain;
287 extern struct mutex sched_domains_mutex;
288 #endif
289
290 struct sched_info {
291 #ifdef CONFIG_SCHED_INFO
292 /* Cumulative counters: */
293
294 /* # of times we have run on this CPU: */
295 unsigned long pcount;
296
297 /* Time spent waiting on a runqueue: */
298 unsigned long long run_delay;
299
300 /* Timestamps: */
301
302 /* When did we last run on a CPU? */
303 unsigned long long last_arrival;
304
305 /* When were we last queued to run? */
306 unsigned long long last_queued;
307
308 #endif /* CONFIG_SCHED_INFO */
309 };
310
311 /*
312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
313 * has a few: load, load_avg, util_avg, freq, and capacity.
314 *
315 * We define a basic fixed point arithmetic range, and then formalize
316 * all these metrics based on that basic range.
317 */
318 # define SCHED_FIXEDPOINT_SHIFT 10
319 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
320
321 /* Increase resolution of cpu_capacity calculations */
322 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
323 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324
325 struct load_weight {
326 unsigned long weight;
327 u32 inv_weight;
328 };
329
330 /**
331 * struct util_est - Estimation utilization of FAIR tasks
332 * @enqueued: instantaneous estimated utilization of a task/cpu
333 * @ewma: the Exponential Weighted Moving Average (EWMA)
334 * utilization of a task
335 *
336 * Support data structure to track an Exponential Weighted Moving Average
337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338 * average each time a task completes an activation. Sample's weight is chosen
339 * so that the EWMA will be relatively insensitive to transient changes to the
340 * task's workload.
341 *
342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
343 * - task: the task's util_avg at last task dequeue time
344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345 * Thus, the util_est.enqueued of a task represents the contribution on the
346 * estimated utilization of the CPU where that task is currently enqueued.
347 *
348 * Only for tasks we track a moving average of the past instantaneous
349 * estimated utilization. This allows to absorb sporadic drops in utilization
350 * of an otherwise almost periodic task.
351 */
352 struct util_est {
353 unsigned int enqueued;
354 unsigned int ewma;
355 #define UTIL_EST_WEIGHT_SHIFT 2
356 } __attribute__((__aligned__(sizeof(u64))));
357
358 /*
359 * The load/runnable/util_avg accumulates an infinite geometric series
360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
361 *
362 * [load_avg definition]
363 *
364 * load_avg = runnable% * scale_load_down(load)
365 *
366 * [runnable_avg definition]
367 *
368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
369 *
370 * [util_avg definition]
371 *
372 * util_avg = running% * SCHED_CAPACITY_SCALE
373 *
374 * where runnable% is the time ratio that a sched_entity is runnable and
375 * running% the time ratio that a sched_entity is running.
376 *
377 * For cfs_rq, they are the aggregated values of all runnable and blocked
378 * sched_entities.
379 *
380 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
382 * for computing those signals (see update_rq_clock_pelt())
383 *
384 * N.B., the above ratios (runnable% and running%) themselves are in the
385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
386 * to as large a range as necessary. This is for example reflected by
387 * util_avg's SCHED_CAPACITY_SCALE.
388 *
389 * [Overflow issue]
390 *
391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
392 * with the highest load (=88761), always runnable on a single cfs_rq,
393 * and should not overflow as the number already hits PID_MAX_LIMIT.
394 *
395 * For all other cases (including 32-bit kernels), struct load_weight's
396 * weight will overflow first before we do, because:
397 *
398 * Max(load_avg) <= Max(load.weight)
399 *
400 * Then it is the load_weight's responsibility to consider overflow
401 * issues.
402 */
403 struct sched_avg {
404 u64 last_update_time;
405 u64 load_sum;
406 u64 runnable_sum;
407 u32 util_sum;
408 u32 period_contrib;
409 unsigned long load_avg;
410 unsigned long runnable_avg;
411 unsigned long util_avg;
412 struct util_est util_est;
413 } ____cacheline_aligned;
414
415 struct sched_statistics {
416 #ifdef CONFIG_SCHEDSTATS
417 u64 wait_start;
418 u64 wait_max;
419 u64 wait_count;
420 u64 wait_sum;
421 u64 iowait_count;
422 u64 iowait_sum;
423
424 u64 sleep_start;
425 u64 sleep_max;
426 s64 sum_sleep_runtime;
427
428 u64 block_start;
429 u64 block_max;
430 u64 exec_max;
431 u64 slice_max;
432
433 u64 nr_migrations_cold;
434 u64 nr_failed_migrations_affine;
435 u64 nr_failed_migrations_running;
436 u64 nr_failed_migrations_hot;
437 u64 nr_forced_migrations;
438
439 u64 nr_wakeups;
440 u64 nr_wakeups_sync;
441 u64 nr_wakeups_migrate;
442 u64 nr_wakeups_local;
443 u64 nr_wakeups_remote;
444 u64 nr_wakeups_affine;
445 u64 nr_wakeups_affine_attempts;
446 u64 nr_wakeups_passive;
447 u64 nr_wakeups_idle;
448 #endif
449 };
450
451 struct sched_entity {
452 /* For load-balancing: */
453 struct load_weight load;
454 struct rb_node run_node;
455 struct list_head group_node;
456 unsigned int on_rq;
457
458 u64 exec_start;
459 u64 sum_exec_runtime;
460 u64 vruntime;
461 u64 prev_sum_exec_runtime;
462
463 u64 nr_migrations;
464
465 struct sched_statistics statistics;
466
467 #ifdef CONFIG_FAIR_GROUP_SCHED
468 int depth;
469 struct sched_entity *parent;
470 /* rq on which this entity is (to be) queued: */
471 struct cfs_rq *cfs_rq;
472 /* rq "owned" by this entity/group: */
473 struct cfs_rq *my_q;
474 /* cached value of my_q->h_nr_running */
475 unsigned long runnable_weight;
476 #endif
477
478 #ifdef CONFIG_SMP
479 /*
480 * Per entity load average tracking.
481 *
482 * Put into separate cache line so it does not
483 * collide with read-mostly values above.
484 */
485 struct sched_avg avg;
486 #endif
487 };
488
489 struct sched_rt_entity {
490 struct list_head run_list;
491 unsigned long timeout;
492 unsigned long watchdog_stamp;
493 unsigned int time_slice;
494 unsigned short on_rq;
495 unsigned short on_list;
496
497 struct sched_rt_entity *back;
498 #ifdef CONFIG_RT_GROUP_SCHED
499 struct sched_rt_entity *parent;
500 /* rq on which this entity is (to be) queued: */
501 struct rt_rq *rt_rq;
502 /* rq "owned" by this entity/group: */
503 struct rt_rq *my_q;
504 #endif
505 } __randomize_layout;
506
507 struct sched_dl_entity {
508 struct rb_node rb_node;
509
510 /*
511 * Original scheduling parameters. Copied here from sched_attr
512 * during sched_setattr(), they will remain the same until
513 * the next sched_setattr().
514 */
515 u64 dl_runtime; /* Maximum runtime for each instance */
516 u64 dl_deadline; /* Relative deadline of each instance */
517 u64 dl_period; /* Separation of two instances (period) */
518 u64 dl_bw; /* dl_runtime / dl_period */
519 u64 dl_density; /* dl_runtime / dl_deadline */
520
521 /*
522 * Actual scheduling parameters. Initialized with the values above,
523 * they are continuously updated during task execution. Note that
524 * the remaining runtime could be < 0 in case we are in overrun.
525 */
526 s64 runtime; /* Remaining runtime for this instance */
527 u64 deadline; /* Absolute deadline for this instance */
528 unsigned int flags; /* Specifying the scheduler behaviour */
529
530 /*
531 * Some bool flags:
532 *
533 * @dl_throttled tells if we exhausted the runtime. If so, the
534 * task has to wait for a replenishment to be performed at the
535 * next firing of dl_timer.
536 *
537 * @dl_boosted tells if we are boosted due to DI. If so we are
538 * outside bandwidth enforcement mechanism (but only until we
539 * exit the critical section);
540 *
541 * @dl_yielded tells if task gave up the CPU before consuming
542 * all its available runtime during the last job.
543 *
544 * @dl_non_contending tells if the task is inactive while still
545 * contributing to the active utilization. In other words, it
546 * indicates if the inactive timer has been armed and its handler
547 * has not been executed yet. This flag is useful to avoid race
548 * conditions between the inactive timer handler and the wakeup
549 * code.
550 *
551 * @dl_overrun tells if the task asked to be informed about runtime
552 * overruns.
553 */
554 unsigned int dl_throttled : 1;
555 unsigned int dl_boosted : 1;
556 unsigned int dl_yielded : 1;
557 unsigned int dl_non_contending : 1;
558 unsigned int dl_overrun : 1;
559
560 /*
561 * Bandwidth enforcement timer. Each -deadline task has its
562 * own bandwidth to be enforced, thus we need one timer per task.
563 */
564 struct hrtimer dl_timer;
565
566 /*
567 * Inactive timer, responsible for decreasing the active utilization
568 * at the "0-lag time". When a -deadline task blocks, it contributes
569 * to GRUB's active utilization until the "0-lag time", hence a
570 * timer is needed to decrease the active utilization at the correct
571 * time.
572 */
573 struct hrtimer inactive_timer;
574 };
575
576 #ifdef CONFIG_UCLAMP_TASK
577 /* Number of utilization clamp buckets (shorter alias) */
578 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
579
580 /*
581 * Utilization clamp for a scheduling entity
582 * @value: clamp value "assigned" to a se
583 * @bucket_id: bucket index corresponding to the "assigned" value
584 * @active: the se is currently refcounted in a rq's bucket
585 * @user_defined: the requested clamp value comes from user-space
586 *
587 * The bucket_id is the index of the clamp bucket matching the clamp value
588 * which is pre-computed and stored to avoid expensive integer divisions from
589 * the fast path.
590 *
591 * The active bit is set whenever a task has got an "effective" value assigned,
592 * which can be different from the clamp value "requested" from user-space.
593 * This allows to know a task is refcounted in the rq's bucket corresponding
594 * to the "effective" bucket_id.
595 *
596 * The user_defined bit is set whenever a task has got a task-specific clamp
597 * value requested from userspace, i.e. the system defaults apply to this task
598 * just as a restriction. This allows to relax default clamps when a less
599 * restrictive task-specific value has been requested, thus allowing to
600 * implement a "nice" semantic. For example, a task running with a 20%
601 * default boost can still drop its own boosting to 0%.
602 */
603 struct uclamp_se {
604 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
605 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
606 unsigned int active : 1;
607 unsigned int user_defined : 1;
608 };
609 #endif /* CONFIG_UCLAMP_TASK */
610
611 union rcu_special {
612 struct {
613 u8 blocked;
614 u8 need_qs;
615 u8 exp_hint; /* Hint for performance. */
616 u8 need_mb; /* Readers need smp_mb(). */
617 } b; /* Bits. */
618 u32 s; /* Set of bits. */
619 };
620
621 enum perf_event_task_context {
622 perf_invalid_context = -1,
623 perf_hw_context = 0,
624 perf_sw_context,
625 perf_nr_task_contexts,
626 };
627
628 struct wake_q_node {
629 struct wake_q_node *next;
630 };
631
632 struct task_struct {
633 #ifdef CONFIG_THREAD_INFO_IN_TASK
634 /*
635 * For reasons of header soup (see current_thread_info()), this
636 * must be the first element of task_struct.
637 */
638 struct thread_info thread_info;
639 #endif
640 /* -1 unrunnable, 0 runnable, >0 stopped: */
641 volatile long state;
642
643 /*
644 * This begins the randomizable portion of task_struct. Only
645 * scheduling-critical items should be added above here.
646 */
647 randomized_struct_fields_start
648
649 void *stack;
650 refcount_t usage;
651 /* Per task flags (PF_*), defined further below: */
652 unsigned int flags;
653 unsigned int ptrace;
654
655 #ifdef CONFIG_SMP
656 struct llist_node wake_entry;
657 unsigned int wake_entry_type;
658 int on_cpu;
659 #ifdef CONFIG_THREAD_INFO_IN_TASK
660 /* Current CPU: */
661 unsigned int cpu;
662 #endif
663 unsigned int wakee_flips;
664 unsigned long wakee_flip_decay_ts;
665 struct task_struct *last_wakee;
666
667 /*
668 * recent_used_cpu is initially set as the last CPU used by a task
669 * that wakes affine another task. Waker/wakee relationships can
670 * push tasks around a CPU where each wakeup moves to the next one.
671 * Tracking a recently used CPU allows a quick search for a recently
672 * used CPU that may be idle.
673 */
674 int recent_used_cpu;
675 int wake_cpu;
676 #endif
677 int on_rq;
678
679 int prio;
680 int static_prio;
681 int normal_prio;
682 unsigned int rt_priority;
683
684 const struct sched_class *sched_class;
685 struct sched_entity se;
686 struct sched_rt_entity rt;
687 #ifdef CONFIG_CGROUP_SCHED
688 struct task_group *sched_task_group;
689 #endif
690 struct sched_dl_entity dl;
691
692 #ifdef CONFIG_UCLAMP_TASK
693 /* Clamp values requested for a scheduling entity */
694 struct uclamp_se uclamp_req[UCLAMP_CNT];
695 /* Effective clamp values used for a scheduling entity */
696 struct uclamp_se uclamp[UCLAMP_CNT];
697 #endif
698
699 #ifdef CONFIG_PREEMPT_NOTIFIERS
700 /* List of struct preempt_notifier: */
701 struct hlist_head preempt_notifiers;
702 #endif
703
704 #ifdef CONFIG_BLK_DEV_IO_TRACE
705 unsigned int btrace_seq;
706 #endif
707
708 unsigned int policy;
709 int nr_cpus_allowed;
710 const cpumask_t *cpus_ptr;
711 cpumask_t cpus_mask;
712
713 #ifdef CONFIG_PREEMPT_RCU
714 int rcu_read_lock_nesting;
715 union rcu_special rcu_read_unlock_special;
716 struct list_head rcu_node_entry;
717 struct rcu_node *rcu_blocked_node;
718 #endif /* #ifdef CONFIG_PREEMPT_RCU */
719
720 #ifdef CONFIG_TASKS_RCU
721 unsigned long rcu_tasks_nvcsw;
722 u8 rcu_tasks_holdout;
723 u8 rcu_tasks_idx;
724 int rcu_tasks_idle_cpu;
725 struct list_head rcu_tasks_holdout_list;
726 #endif /* #ifdef CONFIG_TASKS_RCU */
727
728 #ifdef CONFIG_TASKS_TRACE_RCU
729 int trc_reader_nesting;
730 int trc_ipi_to_cpu;
731 union rcu_special trc_reader_special;
732 bool trc_reader_checked;
733 struct list_head trc_holdout_list;
734 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
735
736 struct sched_info sched_info;
737
738 struct list_head tasks;
739 #ifdef CONFIG_SMP
740 struct plist_node pushable_tasks;
741 struct rb_node pushable_dl_tasks;
742 #endif
743
744 struct mm_struct *mm;
745 struct mm_struct *active_mm;
746
747 /* Per-thread vma caching: */
748 struct vmacache vmacache;
749
750 #ifdef SPLIT_RSS_COUNTING
751 struct task_rss_stat rss_stat;
752 #endif
753 int exit_state;
754 int exit_code;
755 int exit_signal;
756 /* The signal sent when the parent dies: */
757 int pdeath_signal;
758 /* JOBCTL_*, siglock protected: */
759 unsigned long jobctl;
760
761 /* Used for emulating ABI behavior of previous Linux versions: */
762 unsigned int personality;
763
764 /* Scheduler bits, serialized by scheduler locks: */
765 unsigned sched_reset_on_fork:1;
766 unsigned sched_contributes_to_load:1;
767 unsigned sched_migrated:1;
768 unsigned sched_remote_wakeup:1;
769 #ifdef CONFIG_PSI
770 unsigned sched_psi_wake_requeue:1;
771 #endif
772
773 /* Force alignment to the next boundary: */
774 unsigned :0;
775
776 /* Unserialized, strictly 'current' */
777
778 /* Bit to tell LSMs we're in execve(): */
779 unsigned in_execve:1;
780 unsigned in_iowait:1;
781 #ifndef TIF_RESTORE_SIGMASK
782 unsigned restore_sigmask:1;
783 #endif
784 #ifdef CONFIG_MEMCG
785 unsigned in_user_fault:1;
786 #endif
787 #ifdef CONFIG_COMPAT_BRK
788 unsigned brk_randomized:1;
789 #endif
790 #ifdef CONFIG_CGROUPS
791 /* disallow userland-initiated cgroup migration */
792 unsigned no_cgroup_migration:1;
793 /* task is frozen/stopped (used by the cgroup freezer) */
794 unsigned frozen:1;
795 #endif
796 #ifdef CONFIG_BLK_CGROUP
797 unsigned use_memdelay:1;
798 #endif
799 #ifdef CONFIG_PSI
800 /* Stalled due to lack of memory */
801 unsigned in_memstall:1;
802 #endif
803
804 unsigned long atomic_flags; /* Flags requiring atomic access. */
805
806 struct restart_block restart_block;
807
808 pid_t pid;
809 pid_t tgid;
810
811 #ifdef CONFIG_STACKPROTECTOR
812 /* Canary value for the -fstack-protector GCC feature: */
813 unsigned long stack_canary;
814 #endif
815 /*
816 * Pointers to the (original) parent process, youngest child, younger sibling,
817 * older sibling, respectively. (p->father can be replaced with
818 * p->real_parent->pid)
819 */
820
821 /* Real parent process: */
822 struct task_struct __rcu *real_parent;
823
824 /* Recipient of SIGCHLD, wait4() reports: */
825 struct task_struct __rcu *parent;
826
827 /*
828 * Children/sibling form the list of natural children:
829 */
830 struct list_head children;
831 struct list_head sibling;
832 struct task_struct *group_leader;
833
834 /*
835 * 'ptraced' is the list of tasks this task is using ptrace() on.
836 *
837 * This includes both natural children and PTRACE_ATTACH targets.
838 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
839 */
840 struct list_head ptraced;
841 struct list_head ptrace_entry;
842
843 /* PID/PID hash table linkage. */
844 struct pid *thread_pid;
845 struct hlist_node pid_links[PIDTYPE_MAX];
846 struct list_head thread_group;
847 struct list_head thread_node;
848
849 struct completion *vfork_done;
850
851 /* CLONE_CHILD_SETTID: */
852 int __user *set_child_tid;
853
854 /* CLONE_CHILD_CLEARTID: */
855 int __user *clear_child_tid;
856
857 u64 utime;
858 u64 stime;
859 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
860 u64 utimescaled;
861 u64 stimescaled;
862 #endif
863 u64 gtime;
864 struct prev_cputime prev_cputime;
865 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
866 struct vtime vtime;
867 #endif
868
869 #ifdef CONFIG_NO_HZ_FULL
870 atomic_t tick_dep_mask;
871 #endif
872 /* Context switch counts: */
873 unsigned long nvcsw;
874 unsigned long nivcsw;
875
876 /* Monotonic time in nsecs: */
877 u64 start_time;
878
879 /* Boot based time in nsecs: */
880 u64 start_boottime;
881
882 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
883 unsigned long min_flt;
884 unsigned long maj_flt;
885
886 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
887 struct posix_cputimers posix_cputimers;
888
889 /* Process credentials: */
890
891 /* Tracer's credentials at attach: */
892 const struct cred __rcu *ptracer_cred;
893
894 /* Objective and real subjective task credentials (COW): */
895 const struct cred __rcu *real_cred;
896
897 /* Effective (overridable) subjective task credentials (COW): */
898 const struct cred __rcu *cred;
899
900 #ifdef CONFIG_KEYS
901 /* Cached requested key. */
902 struct key *cached_requested_key;
903 #endif
904
905 /*
906 * executable name, excluding path.
907 *
908 * - normally initialized setup_new_exec()
909 * - access it with [gs]et_task_comm()
910 * - lock it with task_lock()
911 */
912 char comm[TASK_COMM_LEN];
913
914 struct nameidata *nameidata;
915
916 #ifdef CONFIG_SYSVIPC
917 struct sysv_sem sysvsem;
918 struct sysv_shm sysvshm;
919 #endif
920 #ifdef CONFIG_DETECT_HUNG_TASK
921 unsigned long last_switch_count;
922 unsigned long last_switch_time;
923 #endif
924 /* Filesystem information: */
925 struct fs_struct *fs;
926
927 /* Open file information: */
928 struct files_struct *files;
929
930 /* Namespaces: */
931 struct nsproxy *nsproxy;
932
933 /* Signal handlers: */
934 struct signal_struct *signal;
935 struct sighand_struct __rcu *sighand;
936 sigset_t blocked;
937 sigset_t real_blocked;
938 /* Restored if set_restore_sigmask() was used: */
939 sigset_t saved_sigmask;
940 struct sigpending pending;
941 unsigned long sas_ss_sp;
942 size_t sas_ss_size;
943 unsigned int sas_ss_flags;
944
945 struct callback_head *task_works;
946
947 #ifdef CONFIG_AUDIT
948 #ifdef CONFIG_AUDITSYSCALL
949 struct audit_context *audit_context;
950 #endif
951 kuid_t loginuid;
952 unsigned int sessionid;
953 #endif
954 struct seccomp seccomp;
955
956 /* Thread group tracking: */
957 u64 parent_exec_id;
958 u64 self_exec_id;
959
960 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
961 spinlock_t alloc_lock;
962
963 /* Protection of the PI data structures: */
964 raw_spinlock_t pi_lock;
965
966 struct wake_q_node wake_q;
967
968 #ifdef CONFIG_RT_MUTEXES
969 /* PI waiters blocked on a rt_mutex held by this task: */
970 struct rb_root_cached pi_waiters;
971 /* Updated under owner's pi_lock and rq lock */
972 struct task_struct *pi_top_task;
973 /* Deadlock detection and priority inheritance handling: */
974 struct rt_mutex_waiter *pi_blocked_on;
975 #endif
976
977 #ifdef CONFIG_DEBUG_MUTEXES
978 /* Mutex deadlock detection: */
979 struct mutex_waiter *blocked_on;
980 #endif
981
982 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
983 int non_block_count;
984 #endif
985
986 #ifdef CONFIG_TRACE_IRQFLAGS
987 unsigned int irq_events;
988 unsigned int hardirq_threaded;
989 unsigned long hardirq_enable_ip;
990 unsigned long hardirq_disable_ip;
991 unsigned int hardirq_enable_event;
992 unsigned int hardirq_disable_event;
993 int hardirqs_enabled;
994 int hardirq_context;
995 u64 hardirq_chain_key;
996 unsigned long softirq_disable_ip;
997 unsigned long softirq_enable_ip;
998 unsigned int softirq_disable_event;
999 unsigned int softirq_enable_event;
1000 int softirqs_enabled;
1001 int softirq_context;
1002 int irq_config;
1003 #endif
1004
1005 #ifdef CONFIG_LOCKDEP
1006 # define MAX_LOCK_DEPTH 48UL
1007 u64 curr_chain_key;
1008 int lockdep_depth;
1009 unsigned int lockdep_recursion;
1010 struct held_lock held_locks[MAX_LOCK_DEPTH];
1011 #endif
1012
1013 #ifdef CONFIG_UBSAN
1014 unsigned int in_ubsan;
1015 #endif
1016
1017 /* Journalling filesystem info: */
1018 void *journal_info;
1019
1020 /* Stacked block device info: */
1021 struct bio_list *bio_list;
1022
1023 #ifdef CONFIG_BLOCK
1024 /* Stack plugging: */
1025 struct blk_plug *plug;
1026 #endif
1027
1028 /* VM state: */
1029 struct reclaim_state *reclaim_state;
1030
1031 struct backing_dev_info *backing_dev_info;
1032
1033 struct io_context *io_context;
1034
1035 #ifdef CONFIG_COMPACTION
1036 struct capture_control *capture_control;
1037 #endif
1038 /* Ptrace state: */
1039 unsigned long ptrace_message;
1040 kernel_siginfo_t *last_siginfo;
1041
1042 struct task_io_accounting ioac;
1043 #ifdef CONFIG_PSI
1044 /* Pressure stall state */
1045 unsigned int psi_flags;
1046 #endif
1047 #ifdef CONFIG_TASK_XACCT
1048 /* Accumulated RSS usage: */
1049 u64 acct_rss_mem1;
1050 /* Accumulated virtual memory usage: */
1051 u64 acct_vm_mem1;
1052 /* stime + utime since last update: */
1053 u64 acct_timexpd;
1054 #endif
1055 #ifdef CONFIG_CPUSETS
1056 /* Protected by ->alloc_lock: */
1057 nodemask_t mems_allowed;
1058 /* Seqence number to catch updates: */
1059 seqcount_t mems_allowed_seq;
1060 int cpuset_mem_spread_rotor;
1061 int cpuset_slab_spread_rotor;
1062 #endif
1063 #ifdef CONFIG_CGROUPS
1064 /* Control Group info protected by css_set_lock: */
1065 struct css_set __rcu *cgroups;
1066 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1067 struct list_head cg_list;
1068 #endif
1069 #ifdef CONFIG_X86_CPU_RESCTRL
1070 u32 closid;
1071 u32 rmid;
1072 #endif
1073 #ifdef CONFIG_FUTEX
1074 struct robust_list_head __user *robust_list;
1075 #ifdef CONFIG_COMPAT
1076 struct compat_robust_list_head __user *compat_robust_list;
1077 #endif
1078 struct list_head pi_state_list;
1079 struct futex_pi_state *pi_state_cache;
1080 struct mutex futex_exit_mutex;
1081 unsigned int futex_state;
1082 #endif
1083 #ifdef CONFIG_PERF_EVENTS
1084 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1085 struct mutex perf_event_mutex;
1086 struct list_head perf_event_list;
1087 #endif
1088 #ifdef CONFIG_DEBUG_PREEMPT
1089 unsigned long preempt_disable_ip;
1090 #endif
1091 #ifdef CONFIG_NUMA
1092 /* Protected by alloc_lock: */
1093 struct mempolicy *mempolicy;
1094 short il_prev;
1095 short pref_node_fork;
1096 #endif
1097 #ifdef CONFIG_NUMA_BALANCING
1098 int numa_scan_seq;
1099 unsigned int numa_scan_period;
1100 unsigned int numa_scan_period_max;
1101 int numa_preferred_nid;
1102 unsigned long numa_migrate_retry;
1103 /* Migration stamp: */
1104 u64 node_stamp;
1105 u64 last_task_numa_placement;
1106 u64 last_sum_exec_runtime;
1107 struct callback_head numa_work;
1108
1109 /*
1110 * This pointer is only modified for current in syscall and
1111 * pagefault context (and for tasks being destroyed), so it can be read
1112 * from any of the following contexts:
1113 * - RCU read-side critical section
1114 * - current->numa_group from everywhere
1115 * - task's runqueue locked, task not running
1116 */
1117 struct numa_group __rcu *numa_group;
1118
1119 /*
1120 * numa_faults is an array split into four regions:
1121 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1122 * in this precise order.
1123 *
1124 * faults_memory: Exponential decaying average of faults on a per-node
1125 * basis. Scheduling placement decisions are made based on these
1126 * counts. The values remain static for the duration of a PTE scan.
1127 * faults_cpu: Track the nodes the process was running on when a NUMA
1128 * hinting fault was incurred.
1129 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1130 * during the current scan window. When the scan completes, the counts
1131 * in faults_memory and faults_cpu decay and these values are copied.
1132 */
1133 unsigned long *numa_faults;
1134 unsigned long total_numa_faults;
1135
1136 /*
1137 * numa_faults_locality tracks if faults recorded during the last
1138 * scan window were remote/local or failed to migrate. The task scan
1139 * period is adapted based on the locality of the faults with different
1140 * weights depending on whether they were shared or private faults
1141 */
1142 unsigned long numa_faults_locality[3];
1143
1144 unsigned long numa_pages_migrated;
1145 #endif /* CONFIG_NUMA_BALANCING */
1146
1147 #ifdef CONFIG_RSEQ
1148 struct rseq __user *rseq;
1149 u32 rseq_sig;
1150 /*
1151 * RmW on rseq_event_mask must be performed atomically
1152 * with respect to preemption.
1153 */
1154 unsigned long rseq_event_mask;
1155 #endif
1156
1157 struct tlbflush_unmap_batch tlb_ubc;
1158
1159 union {
1160 refcount_t rcu_users;
1161 struct rcu_head rcu;
1162 };
1163
1164 /* Cache last used pipe for splice(): */
1165 struct pipe_inode_info *splice_pipe;
1166
1167 struct page_frag task_frag;
1168
1169 #ifdef CONFIG_TASK_DELAY_ACCT
1170 struct task_delay_info *delays;
1171 #endif
1172
1173 #ifdef CONFIG_FAULT_INJECTION
1174 int make_it_fail;
1175 unsigned int fail_nth;
1176 #endif
1177 /*
1178 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1179 * balance_dirty_pages() for a dirty throttling pause:
1180 */
1181 int nr_dirtied;
1182 int nr_dirtied_pause;
1183 /* Start of a write-and-pause period: */
1184 unsigned long dirty_paused_when;
1185
1186 #ifdef CONFIG_LATENCYTOP
1187 int latency_record_count;
1188 struct latency_record latency_record[LT_SAVECOUNT];
1189 #endif
1190 /*
1191 * Time slack values; these are used to round up poll() and
1192 * select() etc timeout values. These are in nanoseconds.
1193 */
1194 u64 timer_slack_ns;
1195 u64 default_timer_slack_ns;
1196
1197 #ifdef CONFIG_KASAN
1198 unsigned int kasan_depth;
1199 #endif
1200
1201 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1202 /* Index of current stored address in ret_stack: */
1203 int curr_ret_stack;
1204 int curr_ret_depth;
1205
1206 /* Stack of return addresses for return function tracing: */
1207 struct ftrace_ret_stack *ret_stack;
1208
1209 /* Timestamp for last schedule: */
1210 unsigned long long ftrace_timestamp;
1211
1212 /*
1213 * Number of functions that haven't been traced
1214 * because of depth overrun:
1215 */
1216 atomic_t trace_overrun;
1217
1218 /* Pause tracing: */
1219 atomic_t tracing_graph_pause;
1220 #endif
1221
1222 #ifdef CONFIG_TRACING
1223 /* State flags for use by tracers: */
1224 unsigned long trace;
1225
1226 /* Bitmask and counter of trace recursion: */
1227 unsigned long trace_recursion;
1228 #endif /* CONFIG_TRACING */
1229
1230 #ifdef CONFIG_KCOV
1231 /* See kernel/kcov.c for more details. */
1232
1233 /* Coverage collection mode enabled for this task (0 if disabled): */
1234 unsigned int kcov_mode;
1235
1236 /* Size of the kcov_area: */
1237 unsigned int kcov_size;
1238
1239 /* Buffer for coverage collection: */
1240 void *kcov_area;
1241
1242 /* KCOV descriptor wired with this task or NULL: */
1243 struct kcov *kcov;
1244
1245 /* KCOV common handle for remote coverage collection: */
1246 u64 kcov_handle;
1247
1248 /* KCOV sequence number: */
1249 int kcov_sequence;
1250
1251 /* Collect coverage from softirq context: */
1252 unsigned int kcov_softirq;
1253 #endif
1254
1255 #ifdef CONFIG_MEMCG
1256 struct mem_cgroup *memcg_in_oom;
1257 gfp_t memcg_oom_gfp_mask;
1258 int memcg_oom_order;
1259
1260 /* Number of pages to reclaim on returning to userland: */
1261 unsigned int memcg_nr_pages_over_high;
1262
1263 /* Used by memcontrol for targeted memcg charge: */
1264 struct mem_cgroup *active_memcg;
1265 #endif
1266
1267 #ifdef CONFIG_BLK_CGROUP
1268 struct request_queue *throttle_queue;
1269 #endif
1270
1271 #ifdef CONFIG_UPROBES
1272 struct uprobe_task *utask;
1273 #endif
1274 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1275 unsigned int sequential_io;
1276 unsigned int sequential_io_avg;
1277 #endif
1278 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1279 unsigned long task_state_change;
1280 #endif
1281 int pagefault_disabled;
1282 #ifdef CONFIG_MMU
1283 struct task_struct *oom_reaper_list;
1284 #endif
1285 #ifdef CONFIG_VMAP_STACK
1286 struct vm_struct *stack_vm_area;
1287 #endif
1288 #ifdef CONFIG_THREAD_INFO_IN_TASK
1289 /* A live task holds one reference: */
1290 refcount_t stack_refcount;
1291 #endif
1292 #ifdef CONFIG_LIVEPATCH
1293 int patch_state;
1294 #endif
1295 #ifdef CONFIG_SECURITY
1296 /* Used by LSM modules for access restriction: */
1297 void *security;
1298 #endif
1299
1300 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1301 unsigned long lowest_stack;
1302 unsigned long prev_lowest_stack;
1303 #endif
1304
1305 #ifdef CONFIG_X86_MCE
1306 u64 mce_addr;
1307 u64 mce_status;
1308 struct callback_head mce_kill_me;
1309 #endif
1310
1311 /*
1312 * New fields for task_struct should be added above here, so that
1313 * they are included in the randomized portion of task_struct.
1314 */
1315 randomized_struct_fields_end
1316
1317 /* CPU-specific state of this task: */
1318 struct thread_struct thread;
1319
1320 /*
1321 * WARNING: on x86, 'thread_struct' contains a variable-sized
1322 * structure. It *MUST* be at the end of 'task_struct'.
1323 *
1324 * Do not put anything below here!
1325 */
1326 };
1327
1328 static inline struct pid *task_pid(struct task_struct *task)
1329 {
1330 return task->thread_pid;
1331 }
1332
1333 /*
1334 * the helpers to get the task's different pids as they are seen
1335 * from various namespaces
1336 *
1337 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1338 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1339 * current.
1340 * task_xid_nr_ns() : id seen from the ns specified;
1341 *
1342 * see also pid_nr() etc in include/linux/pid.h
1343 */
1344 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1345
1346 static inline pid_t task_pid_nr(struct task_struct *tsk)
1347 {
1348 return tsk->pid;
1349 }
1350
1351 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1352 {
1353 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1354 }
1355
1356 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1357 {
1358 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1359 }
1360
1361
1362 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1363 {
1364 return tsk->tgid;
1365 }
1366
1367 /**
1368 * pid_alive - check that a task structure is not stale
1369 * @p: Task structure to be checked.
1370 *
1371 * Test if a process is not yet dead (at most zombie state)
1372 * If pid_alive fails, then pointers within the task structure
1373 * can be stale and must not be dereferenced.
1374 *
1375 * Return: 1 if the process is alive. 0 otherwise.
1376 */
1377 static inline int pid_alive(const struct task_struct *p)
1378 {
1379 return p->thread_pid != NULL;
1380 }
1381
1382 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1383 {
1384 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1385 }
1386
1387 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1388 {
1389 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1390 }
1391
1392
1393 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1394 {
1395 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1396 }
1397
1398 static inline pid_t task_session_vnr(struct task_struct *tsk)
1399 {
1400 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1401 }
1402
1403 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1404 {
1405 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1406 }
1407
1408 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1409 {
1410 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1411 }
1412
1413 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1414 {
1415 pid_t pid = 0;
1416
1417 rcu_read_lock();
1418 if (pid_alive(tsk))
1419 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1420 rcu_read_unlock();
1421
1422 return pid;
1423 }
1424
1425 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1426 {
1427 return task_ppid_nr_ns(tsk, &init_pid_ns);
1428 }
1429
1430 /* Obsolete, do not use: */
1431 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1432 {
1433 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1434 }
1435
1436 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1437 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1438
1439 static inline unsigned int task_state_index(struct task_struct *tsk)
1440 {
1441 unsigned int tsk_state = READ_ONCE(tsk->state);
1442 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1443
1444 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1445
1446 if (tsk_state == TASK_IDLE)
1447 state = TASK_REPORT_IDLE;
1448
1449 return fls(state);
1450 }
1451
1452 static inline char task_index_to_char(unsigned int state)
1453 {
1454 static const char state_char[] = "RSDTtXZPI";
1455
1456 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1457
1458 return state_char[state];
1459 }
1460
1461 static inline char task_state_to_char(struct task_struct *tsk)
1462 {
1463 return task_index_to_char(task_state_index(tsk));
1464 }
1465
1466 /**
1467 * is_global_init - check if a task structure is init. Since init
1468 * is free to have sub-threads we need to check tgid.
1469 * @tsk: Task structure to be checked.
1470 *
1471 * Check if a task structure is the first user space task the kernel created.
1472 *
1473 * Return: 1 if the task structure is init. 0 otherwise.
1474 */
1475 static inline int is_global_init(struct task_struct *tsk)
1476 {
1477 return task_tgid_nr(tsk) == 1;
1478 }
1479
1480 extern struct pid *cad_pid;
1481
1482 /*
1483 * Per process flags
1484 */
1485 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1486 #define PF_EXITING 0x00000004 /* Getting shut down */
1487 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1488 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1489 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1490 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1491 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1492 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1493 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1494 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1495 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1496 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1497 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1498 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1499 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1500 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1501 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1502 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1503 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1504 * I am cleaning dirty pages from some other bdi. */
1505 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1506 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1507 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1508 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1509 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1510 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1511 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1512 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1513 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1514 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1515
1516 /*
1517 * Only the _current_ task can read/write to tsk->flags, but other
1518 * tasks can access tsk->flags in readonly mode for example
1519 * with tsk_used_math (like during threaded core dumping).
1520 * There is however an exception to this rule during ptrace
1521 * or during fork: the ptracer task is allowed to write to the
1522 * child->flags of its traced child (same goes for fork, the parent
1523 * can write to the child->flags), because we're guaranteed the
1524 * child is not running and in turn not changing child->flags
1525 * at the same time the parent does it.
1526 */
1527 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1528 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1529 #define clear_used_math() clear_stopped_child_used_math(current)
1530 #define set_used_math() set_stopped_child_used_math(current)
1531
1532 #define conditional_stopped_child_used_math(condition, child) \
1533 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1534
1535 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1536
1537 #define copy_to_stopped_child_used_math(child) \
1538 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1539
1540 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1541 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1542 #define used_math() tsk_used_math(current)
1543
1544 static inline bool is_percpu_thread(void)
1545 {
1546 #ifdef CONFIG_SMP
1547 return (current->flags & PF_NO_SETAFFINITY) &&
1548 (current->nr_cpus_allowed == 1);
1549 #else
1550 return true;
1551 #endif
1552 }
1553
1554 /* Per-process atomic flags. */
1555 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1556 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1557 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1558 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1559 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1560 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1561 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1562 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1563
1564 #define TASK_PFA_TEST(name, func) \
1565 static inline bool task_##func(struct task_struct *p) \
1566 { return test_bit(PFA_##name, &p->atomic_flags); }
1567
1568 #define TASK_PFA_SET(name, func) \
1569 static inline void task_set_##func(struct task_struct *p) \
1570 { set_bit(PFA_##name, &p->atomic_flags); }
1571
1572 #define TASK_PFA_CLEAR(name, func) \
1573 static inline void task_clear_##func(struct task_struct *p) \
1574 { clear_bit(PFA_##name, &p->atomic_flags); }
1575
1576 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1577 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1578
1579 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1580 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1581 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1582
1583 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1584 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1585 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1586
1587 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1588 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1589 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1590
1591 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1592 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1593 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1594
1595 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1596 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1597
1598 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1599 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1600 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1601
1602 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1603 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1604
1605 static inline void
1606 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1607 {
1608 current->flags &= ~flags;
1609 current->flags |= orig_flags & flags;
1610 }
1611
1612 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1613 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1614 #ifdef CONFIG_SMP
1615 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1616 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1617 #else
1618 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1619 {
1620 }
1621 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1622 {
1623 if (!cpumask_test_cpu(0, new_mask))
1624 return -EINVAL;
1625 return 0;
1626 }
1627 #endif
1628
1629 extern int yield_to(struct task_struct *p, bool preempt);
1630 extern void set_user_nice(struct task_struct *p, long nice);
1631 extern int task_prio(const struct task_struct *p);
1632
1633 /**
1634 * task_nice - return the nice value of a given task.
1635 * @p: the task in question.
1636 *
1637 * Return: The nice value [ -20 ... 0 ... 19 ].
1638 */
1639 static inline int task_nice(const struct task_struct *p)
1640 {
1641 return PRIO_TO_NICE((p)->static_prio);
1642 }
1643
1644 extern int can_nice(const struct task_struct *p, const int nice);
1645 extern int task_curr(const struct task_struct *p);
1646 extern int idle_cpu(int cpu);
1647 extern int available_idle_cpu(int cpu);
1648 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1649 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1650 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1651 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1652 extern struct task_struct *idle_task(int cpu);
1653
1654 /**
1655 * is_idle_task - is the specified task an idle task?
1656 * @p: the task in question.
1657 *
1658 * Return: 1 if @p is an idle task. 0 otherwise.
1659 */
1660 static inline bool is_idle_task(const struct task_struct *p)
1661 {
1662 return !!(p->flags & PF_IDLE);
1663 }
1664
1665 extern struct task_struct *curr_task(int cpu);
1666 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1667
1668 void yield(void);
1669
1670 union thread_union {
1671 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1672 struct task_struct task;
1673 #endif
1674 #ifndef CONFIG_THREAD_INFO_IN_TASK
1675 struct thread_info thread_info;
1676 #endif
1677 unsigned long stack[THREAD_SIZE/sizeof(long)];
1678 };
1679
1680 #ifndef CONFIG_THREAD_INFO_IN_TASK
1681 extern struct thread_info init_thread_info;
1682 #endif
1683
1684 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1685
1686 #ifdef CONFIG_THREAD_INFO_IN_TASK
1687 static inline struct thread_info *task_thread_info(struct task_struct *task)
1688 {
1689 return &task->thread_info;
1690 }
1691 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1692 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1693 #endif
1694
1695 /*
1696 * find a task by one of its numerical ids
1697 *
1698 * find_task_by_pid_ns():
1699 * finds a task by its pid in the specified namespace
1700 * find_task_by_vpid():
1701 * finds a task by its virtual pid
1702 *
1703 * see also find_vpid() etc in include/linux/pid.h
1704 */
1705
1706 extern struct task_struct *find_task_by_vpid(pid_t nr);
1707 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1708
1709 /*
1710 * find a task by its virtual pid and get the task struct
1711 */
1712 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1713
1714 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1715 extern int wake_up_process(struct task_struct *tsk);
1716 extern void wake_up_new_task(struct task_struct *tsk);
1717
1718 #ifdef CONFIG_SMP
1719 extern void kick_process(struct task_struct *tsk);
1720 #else
1721 static inline void kick_process(struct task_struct *tsk) { }
1722 #endif
1723
1724 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1725
1726 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1727 {
1728 __set_task_comm(tsk, from, false);
1729 }
1730
1731 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1732 #define get_task_comm(buf, tsk) ({ \
1733 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1734 __get_task_comm(buf, sizeof(buf), tsk); \
1735 })
1736
1737 #ifdef CONFIG_SMP
1738 static __always_inline void scheduler_ipi(void)
1739 {
1740 /*
1741 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1742 * TIF_NEED_RESCHED remotely (for the first time) will also send
1743 * this IPI.
1744 */
1745 preempt_fold_need_resched();
1746 }
1747 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1748 #else
1749 static inline void scheduler_ipi(void) { }
1750 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1751 {
1752 return 1;
1753 }
1754 #endif
1755
1756 /*
1757 * Set thread flags in other task's structures.
1758 * See asm/thread_info.h for TIF_xxxx flags available:
1759 */
1760 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1761 {
1762 set_ti_thread_flag(task_thread_info(tsk), flag);
1763 }
1764
1765 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1766 {
1767 clear_ti_thread_flag(task_thread_info(tsk), flag);
1768 }
1769
1770 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1771 bool value)
1772 {
1773 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1774 }
1775
1776 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1777 {
1778 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1779 }
1780
1781 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1782 {
1783 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1784 }
1785
1786 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1787 {
1788 return test_ti_thread_flag(task_thread_info(tsk), flag);
1789 }
1790
1791 static inline void set_tsk_need_resched(struct task_struct *tsk)
1792 {
1793 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1794 }
1795
1796 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1797 {
1798 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1799 }
1800
1801 static inline int test_tsk_need_resched(struct task_struct *tsk)
1802 {
1803 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1804 }
1805
1806 /*
1807 * cond_resched() and cond_resched_lock(): latency reduction via
1808 * explicit rescheduling in places that are safe. The return
1809 * value indicates whether a reschedule was done in fact.
1810 * cond_resched_lock() will drop the spinlock before scheduling,
1811 */
1812 #ifndef CONFIG_PREEMPTION
1813 extern int _cond_resched(void);
1814 #else
1815 static inline int _cond_resched(void) { return 0; }
1816 #endif
1817
1818 #define cond_resched() ({ \
1819 ___might_sleep(__FILE__, __LINE__, 0); \
1820 _cond_resched(); \
1821 })
1822
1823 extern int __cond_resched_lock(spinlock_t *lock);
1824
1825 #define cond_resched_lock(lock) ({ \
1826 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1827 __cond_resched_lock(lock); \
1828 })
1829
1830 static inline void cond_resched_rcu(void)
1831 {
1832 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1833 rcu_read_unlock();
1834 cond_resched();
1835 rcu_read_lock();
1836 #endif
1837 }
1838
1839 /*
1840 * Does a critical section need to be broken due to another
1841 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1842 * but a general need for low latency)
1843 */
1844 static inline int spin_needbreak(spinlock_t *lock)
1845 {
1846 #ifdef CONFIG_PREEMPTION
1847 return spin_is_contended(lock);
1848 #else
1849 return 0;
1850 #endif
1851 }
1852
1853 static __always_inline bool need_resched(void)
1854 {
1855 return unlikely(tif_need_resched());
1856 }
1857
1858 /*
1859 * Wrappers for p->thread_info->cpu access. No-op on UP.
1860 */
1861 #ifdef CONFIG_SMP
1862
1863 static inline unsigned int task_cpu(const struct task_struct *p)
1864 {
1865 #ifdef CONFIG_THREAD_INFO_IN_TASK
1866 return READ_ONCE(p->cpu);
1867 #else
1868 return READ_ONCE(task_thread_info(p)->cpu);
1869 #endif
1870 }
1871
1872 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1873
1874 #else
1875
1876 static inline unsigned int task_cpu(const struct task_struct *p)
1877 {
1878 return 0;
1879 }
1880
1881 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1882 {
1883 }
1884
1885 #endif /* CONFIG_SMP */
1886
1887 /*
1888 * In order to reduce various lock holder preemption latencies provide an
1889 * interface to see if a vCPU is currently running or not.
1890 *
1891 * This allows us to terminate optimistic spin loops and block, analogous to
1892 * the native optimistic spin heuristic of testing if the lock owner task is
1893 * running or not.
1894 */
1895 #ifndef vcpu_is_preempted
1896 static inline bool vcpu_is_preempted(int cpu)
1897 {
1898 return false;
1899 }
1900 #endif
1901
1902 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1903 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1904
1905 #ifndef TASK_SIZE_OF
1906 #define TASK_SIZE_OF(tsk) TASK_SIZE
1907 #endif
1908
1909 #ifdef CONFIG_RSEQ
1910
1911 /*
1912 * Map the event mask on the user-space ABI enum rseq_cs_flags
1913 * for direct mask checks.
1914 */
1915 enum rseq_event_mask_bits {
1916 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1917 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1918 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1919 };
1920
1921 enum rseq_event_mask {
1922 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1923 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1924 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1925 };
1926
1927 static inline void rseq_set_notify_resume(struct task_struct *t)
1928 {
1929 if (t->rseq)
1930 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1931 }
1932
1933 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1934
1935 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1936 struct pt_regs *regs)
1937 {
1938 if (current->rseq)
1939 __rseq_handle_notify_resume(ksig, regs);
1940 }
1941
1942 static inline void rseq_signal_deliver(struct ksignal *ksig,
1943 struct pt_regs *regs)
1944 {
1945 preempt_disable();
1946 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1947 preempt_enable();
1948 rseq_handle_notify_resume(ksig, regs);
1949 }
1950
1951 /* rseq_preempt() requires preemption to be disabled. */
1952 static inline void rseq_preempt(struct task_struct *t)
1953 {
1954 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1955 rseq_set_notify_resume(t);
1956 }
1957
1958 /* rseq_migrate() requires preemption to be disabled. */
1959 static inline void rseq_migrate(struct task_struct *t)
1960 {
1961 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1962 rseq_set_notify_resume(t);
1963 }
1964
1965 /*
1966 * If parent process has a registered restartable sequences area, the
1967 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1968 */
1969 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1970 {
1971 if (clone_flags & CLONE_VM) {
1972 t->rseq = NULL;
1973 t->rseq_sig = 0;
1974 t->rseq_event_mask = 0;
1975 } else {
1976 t->rseq = current->rseq;
1977 t->rseq_sig = current->rseq_sig;
1978 t->rseq_event_mask = current->rseq_event_mask;
1979 }
1980 }
1981
1982 static inline void rseq_execve(struct task_struct *t)
1983 {
1984 t->rseq = NULL;
1985 t->rseq_sig = 0;
1986 t->rseq_event_mask = 0;
1987 }
1988
1989 #else
1990
1991 static inline void rseq_set_notify_resume(struct task_struct *t)
1992 {
1993 }
1994 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1995 struct pt_regs *regs)
1996 {
1997 }
1998 static inline void rseq_signal_deliver(struct ksignal *ksig,
1999 struct pt_regs *regs)
2000 {
2001 }
2002 static inline void rseq_preempt(struct task_struct *t)
2003 {
2004 }
2005 static inline void rseq_migrate(struct task_struct *t)
2006 {
2007 }
2008 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2009 {
2010 }
2011 static inline void rseq_execve(struct task_struct *t)
2012 {
2013 }
2014
2015 #endif
2016
2017 void __exit_umh(struct task_struct *tsk);
2018
2019 static inline void exit_umh(struct task_struct *tsk)
2020 {
2021 if (unlikely(tsk->flags & PF_UMH))
2022 __exit_umh(tsk);
2023 }
2024
2025 #ifdef CONFIG_DEBUG_RSEQ
2026
2027 void rseq_syscall(struct pt_regs *regs);
2028
2029 #else
2030
2031 static inline void rseq_syscall(struct pt_regs *regs)
2032 {
2033 }
2034
2035 #endif
2036
2037 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2038 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2039 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2040
2041 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2042 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2043 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2044
2045 int sched_trace_rq_cpu(struct rq *rq);
2046
2047 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2048
2049 #endif