]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge branch 'for-3.10/drivers' of git://git.kernel.dk/linux-block
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 unsigned long len, unsigned long pgoff,
324 unsigned long flags);
325 extern void arch_unmap_area(struct mm_struct *, unsigned long);
326 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
327 #else
328 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
329 #endif
330
331
332 extern void set_dumpable(struct mm_struct *mm, int value);
333 extern int get_dumpable(struct mm_struct *mm);
334
335 /* mm flags */
336 /* dumpable bits */
337 #define MMF_DUMPABLE 0 /* core dump is permitted */
338 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
339
340 #define MMF_DUMPABLE_BITS 2
341 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
342
343 /* coredump filter bits */
344 #define MMF_DUMP_ANON_PRIVATE 2
345 #define MMF_DUMP_ANON_SHARED 3
346 #define MMF_DUMP_MAPPED_PRIVATE 4
347 #define MMF_DUMP_MAPPED_SHARED 5
348 #define MMF_DUMP_ELF_HEADERS 6
349 #define MMF_DUMP_HUGETLB_PRIVATE 7
350 #define MMF_DUMP_HUGETLB_SHARED 8
351
352 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
353 #define MMF_DUMP_FILTER_BITS 7
354 #define MMF_DUMP_FILTER_MASK \
355 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
356 #define MMF_DUMP_FILTER_DEFAULT \
357 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
358 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
359
360 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
361 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
362 #else
363 # define MMF_DUMP_MASK_DEFAULT_ELF 0
364 #endif
365 /* leave room for more dump flags */
366 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
367 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
368 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
369
370 #define MMF_HAS_UPROBES 19 /* has uprobes */
371 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
372
373 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
374
375 struct sighand_struct {
376 atomic_t count;
377 struct k_sigaction action[_NSIG];
378 spinlock_t siglock;
379 wait_queue_head_t signalfd_wqh;
380 };
381
382 struct pacct_struct {
383 int ac_flag;
384 long ac_exitcode;
385 unsigned long ac_mem;
386 cputime_t ac_utime, ac_stime;
387 unsigned long ac_minflt, ac_majflt;
388 };
389
390 struct cpu_itimer {
391 cputime_t expires;
392 cputime_t incr;
393 u32 error;
394 u32 incr_error;
395 };
396
397 /**
398 * struct cputime - snaphsot of system and user cputime
399 * @utime: time spent in user mode
400 * @stime: time spent in system mode
401 *
402 * Gathers a generic snapshot of user and system time.
403 */
404 struct cputime {
405 cputime_t utime;
406 cputime_t stime;
407 };
408
409 /**
410 * struct task_cputime - collected CPU time counts
411 * @utime: time spent in user mode, in &cputime_t units
412 * @stime: time spent in kernel mode, in &cputime_t units
413 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
414 *
415 * This is an extension of struct cputime that includes the total runtime
416 * spent by the task from the scheduler point of view.
417 *
418 * As a result, this structure groups together three kinds of CPU time
419 * that are tracked for threads and thread groups. Most things considering
420 * CPU time want to group these counts together and treat all three
421 * of them in parallel.
422 */
423 struct task_cputime {
424 cputime_t utime;
425 cputime_t stime;
426 unsigned long long sum_exec_runtime;
427 };
428 /* Alternate field names when used to cache expirations. */
429 #define prof_exp stime
430 #define virt_exp utime
431 #define sched_exp sum_exec_runtime
432
433 #define INIT_CPUTIME \
434 (struct task_cputime) { \
435 .utime = 0, \
436 .stime = 0, \
437 .sum_exec_runtime = 0, \
438 }
439
440 /*
441 * Disable preemption until the scheduler is running.
442 * Reset by start_kernel()->sched_init()->init_idle().
443 *
444 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
445 * before the scheduler is active -- see should_resched().
446 */
447 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
448
449 /**
450 * struct thread_group_cputimer - thread group interval timer counts
451 * @cputime: thread group interval timers.
452 * @running: non-zero when there are timers running and
453 * @cputime receives updates.
454 * @lock: lock for fields in this struct.
455 *
456 * This structure contains the version of task_cputime, above, that is
457 * used for thread group CPU timer calculations.
458 */
459 struct thread_group_cputimer {
460 struct task_cputime cputime;
461 int running;
462 raw_spinlock_t lock;
463 };
464
465 #include <linux/rwsem.h>
466 struct autogroup;
467
468 /*
469 * NOTE! "signal_struct" does not have its own
470 * locking, because a shared signal_struct always
471 * implies a shared sighand_struct, so locking
472 * sighand_struct is always a proper superset of
473 * the locking of signal_struct.
474 */
475 struct signal_struct {
476 atomic_t sigcnt;
477 atomic_t live;
478 int nr_threads;
479
480 wait_queue_head_t wait_chldexit; /* for wait4() */
481
482 /* current thread group signal load-balancing target: */
483 struct task_struct *curr_target;
484
485 /* shared signal handling: */
486 struct sigpending shared_pending;
487
488 /* thread group exit support */
489 int group_exit_code;
490 /* overloaded:
491 * - notify group_exit_task when ->count is equal to notify_count
492 * - everyone except group_exit_task is stopped during signal delivery
493 * of fatal signals, group_exit_task processes the signal.
494 */
495 int notify_count;
496 struct task_struct *group_exit_task;
497
498 /* thread group stop support, overloads group_exit_code too */
499 int group_stop_count;
500 unsigned int flags; /* see SIGNAL_* flags below */
501
502 /*
503 * PR_SET_CHILD_SUBREAPER marks a process, like a service
504 * manager, to re-parent orphan (double-forking) child processes
505 * to this process instead of 'init'. The service manager is
506 * able to receive SIGCHLD signals and is able to investigate
507 * the process until it calls wait(). All children of this
508 * process will inherit a flag if they should look for a
509 * child_subreaper process at exit.
510 */
511 unsigned int is_child_subreaper:1;
512 unsigned int has_child_subreaper:1;
513
514 /* POSIX.1b Interval Timers */
515 int posix_timer_id;
516 struct list_head posix_timers;
517
518 /* ITIMER_REAL timer for the process */
519 struct hrtimer real_timer;
520 struct pid *leader_pid;
521 ktime_t it_real_incr;
522
523 /*
524 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
525 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
526 * values are defined to 0 and 1 respectively
527 */
528 struct cpu_itimer it[2];
529
530 /*
531 * Thread group totals for process CPU timers.
532 * See thread_group_cputimer(), et al, for details.
533 */
534 struct thread_group_cputimer cputimer;
535
536 /* Earliest-expiration cache. */
537 struct task_cputime cputime_expires;
538
539 struct list_head cpu_timers[3];
540
541 struct pid *tty_old_pgrp;
542
543 /* boolean value for session group leader */
544 int leader;
545
546 struct tty_struct *tty; /* NULL if no tty */
547
548 #ifdef CONFIG_SCHED_AUTOGROUP
549 struct autogroup *autogroup;
550 #endif
551 /*
552 * Cumulative resource counters for dead threads in the group,
553 * and for reaped dead child processes forked by this group.
554 * Live threads maintain their own counters and add to these
555 * in __exit_signal, except for the group leader.
556 */
557 cputime_t utime, stime, cutime, cstime;
558 cputime_t gtime;
559 cputime_t cgtime;
560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
561 struct cputime prev_cputime;
562 #endif
563 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
564 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
565 unsigned long inblock, oublock, cinblock, coublock;
566 unsigned long maxrss, cmaxrss;
567 struct task_io_accounting ioac;
568
569 /*
570 * Cumulative ns of schedule CPU time fo dead threads in the
571 * group, not including a zombie group leader, (This only differs
572 * from jiffies_to_ns(utime + stime) if sched_clock uses something
573 * other than jiffies.)
574 */
575 unsigned long long sum_sched_runtime;
576
577 /*
578 * We don't bother to synchronize most readers of this at all,
579 * because there is no reader checking a limit that actually needs
580 * to get both rlim_cur and rlim_max atomically, and either one
581 * alone is a single word that can safely be read normally.
582 * getrlimit/setrlimit use task_lock(current->group_leader) to
583 * protect this instead of the siglock, because they really
584 * have no need to disable irqs.
585 */
586 struct rlimit rlim[RLIM_NLIMITS];
587
588 #ifdef CONFIG_BSD_PROCESS_ACCT
589 struct pacct_struct pacct; /* per-process accounting information */
590 #endif
591 #ifdef CONFIG_TASKSTATS
592 struct taskstats *stats;
593 #endif
594 #ifdef CONFIG_AUDIT
595 unsigned audit_tty;
596 struct tty_audit_buf *tty_audit_buf;
597 #endif
598 #ifdef CONFIG_CGROUPS
599 /*
600 * group_rwsem prevents new tasks from entering the threadgroup and
601 * member tasks from exiting,a more specifically, setting of
602 * PF_EXITING. fork and exit paths are protected with this rwsem
603 * using threadgroup_change_begin/end(). Users which require
604 * threadgroup to remain stable should use threadgroup_[un]lock()
605 * which also takes care of exec path. Currently, cgroup is the
606 * only user.
607 */
608 struct rw_semaphore group_rwsem;
609 #endif
610
611 oom_flags_t oom_flags;
612 short oom_score_adj; /* OOM kill score adjustment */
613 short oom_score_adj_min; /* OOM kill score adjustment min value.
614 * Only settable by CAP_SYS_RESOURCE. */
615
616 struct mutex cred_guard_mutex; /* guard against foreign influences on
617 * credential calculations
618 * (notably. ptrace) */
619 };
620
621 /*
622 * Bits in flags field of signal_struct.
623 */
624 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
625 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
626 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
627 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
628 /*
629 * Pending notifications to parent.
630 */
631 #define SIGNAL_CLD_STOPPED 0x00000010
632 #define SIGNAL_CLD_CONTINUED 0x00000020
633 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
636
637 /* If true, all threads except ->group_exit_task have pending SIGKILL */
638 static inline int signal_group_exit(const struct signal_struct *sig)
639 {
640 return (sig->flags & SIGNAL_GROUP_EXIT) ||
641 (sig->group_exit_task != NULL);
642 }
643
644 /*
645 * Some day this will be a full-fledged user tracking system..
646 */
647 struct user_struct {
648 atomic_t __count; /* reference count */
649 atomic_t processes; /* How many processes does this user have? */
650 atomic_t files; /* How many open files does this user have? */
651 atomic_t sigpending; /* How many pending signals does this user have? */
652 #ifdef CONFIG_INOTIFY_USER
653 atomic_t inotify_watches; /* How many inotify watches does this user have? */
654 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
655 #endif
656 #ifdef CONFIG_FANOTIFY
657 atomic_t fanotify_listeners;
658 #endif
659 #ifdef CONFIG_EPOLL
660 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661 #endif
662 #ifdef CONFIG_POSIX_MQUEUE
663 /* protected by mq_lock */
664 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
665 #endif
666 unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668 #ifdef CONFIG_KEYS
669 struct key *uid_keyring; /* UID specific keyring */
670 struct key *session_keyring; /* UID's default session keyring */
671 #endif
672
673 /* Hash table maintenance information */
674 struct hlist_node uidhash_node;
675 kuid_t uid;
676
677 #ifdef CONFIG_PERF_EVENTS
678 atomic_long_t locked_vm;
679 #endif
680 };
681
682 extern int uids_sysfs_init(void);
683
684 extern struct user_struct *find_user(kuid_t);
685
686 extern struct user_struct root_user;
687 #define INIT_USER (&root_user)
688
689
690 struct backing_dev_info;
691 struct reclaim_state;
692
693 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694 struct sched_info {
695 /* cumulative counters */
696 unsigned long pcount; /* # of times run on this cpu */
697 unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699 /* timestamps */
700 unsigned long long last_arrival,/* when we last ran on a cpu */
701 last_queued; /* when we were last queued to run */
702 };
703 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705 #ifdef CONFIG_TASK_DELAY_ACCT
706 struct task_delay_info {
707 spinlock_t lock;
708 unsigned int flags; /* Private per-task flags */
709
710 /* For each stat XXX, add following, aligned appropriately
711 *
712 * struct timespec XXX_start, XXX_end;
713 * u64 XXX_delay;
714 * u32 XXX_count;
715 *
716 * Atomicity of updates to XXX_delay, XXX_count protected by
717 * single lock above (split into XXX_lock if contention is an issue).
718 */
719
720 /*
721 * XXX_count is incremented on every XXX operation, the delay
722 * associated with the operation is added to XXX_delay.
723 * XXX_delay contains the accumulated delay time in nanoseconds.
724 */
725 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726 u64 blkio_delay; /* wait for sync block io completion */
727 u64 swapin_delay; /* wait for swapin block io completion */
728 u32 blkio_count; /* total count of the number of sync block */
729 /* io operations performed */
730 u32 swapin_count; /* total count of the number of swapin block */
731 /* io operations performed */
732
733 struct timespec freepages_start, freepages_end;
734 u64 freepages_delay; /* wait for memory reclaim */
735 u32 freepages_count; /* total count of memory reclaim */
736 };
737 #endif /* CONFIG_TASK_DELAY_ACCT */
738
739 static inline int sched_info_on(void)
740 {
741 #ifdef CONFIG_SCHEDSTATS
742 return 1;
743 #elif defined(CONFIG_TASK_DELAY_ACCT)
744 extern int delayacct_on;
745 return delayacct_on;
746 #else
747 return 0;
748 #endif
749 }
750
751 enum cpu_idle_type {
752 CPU_IDLE,
753 CPU_NOT_IDLE,
754 CPU_NEWLY_IDLE,
755 CPU_MAX_IDLE_TYPES
756 };
757
758 /*
759 * Increase resolution of cpu_power calculations
760 */
761 #define SCHED_POWER_SHIFT 10
762 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
763
764 /*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767 #ifdef CONFIG_SMP
768 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
769 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
770 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
771 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
772 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
773 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
774 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
775 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
776 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
777 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
778 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
779 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
780
781 extern int __weak arch_sd_sibiling_asym_packing(void);
782
783 struct sched_domain_attr {
784 int relax_domain_level;
785 };
786
787 #define SD_ATTR_INIT (struct sched_domain_attr) { \
788 .relax_domain_level = -1, \
789 }
790
791 extern int sched_domain_level_max;
792
793 struct sched_group;
794
795 struct sched_domain {
796 /* These fields must be setup */
797 struct sched_domain *parent; /* top domain must be null terminated */
798 struct sched_domain *child; /* bottom domain must be null terminated */
799 struct sched_group *groups; /* the balancing groups of the domain */
800 unsigned long min_interval; /* Minimum balance interval ms */
801 unsigned long max_interval; /* Maximum balance interval ms */
802 unsigned int busy_factor; /* less balancing by factor if busy */
803 unsigned int imbalance_pct; /* No balance until over watermark */
804 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
805 unsigned int busy_idx;
806 unsigned int idle_idx;
807 unsigned int newidle_idx;
808 unsigned int wake_idx;
809 unsigned int forkexec_idx;
810 unsigned int smt_gain;
811
812 int nohz_idle; /* NOHZ IDLE status */
813 int flags; /* See SD_* */
814 int level;
815
816 /* Runtime fields. */
817 unsigned long last_balance; /* init to jiffies. units in jiffies */
818 unsigned int balance_interval; /* initialise to 1. units in ms. */
819 unsigned int nr_balance_failed; /* initialise to 0 */
820
821 u64 last_update;
822
823 #ifdef CONFIG_SCHEDSTATS
824 /* load_balance() stats */
825 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
826 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
827 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
833
834 /* Active load balancing */
835 unsigned int alb_count;
836 unsigned int alb_failed;
837 unsigned int alb_pushed;
838
839 /* SD_BALANCE_EXEC stats */
840 unsigned int sbe_count;
841 unsigned int sbe_balanced;
842 unsigned int sbe_pushed;
843
844 /* SD_BALANCE_FORK stats */
845 unsigned int sbf_count;
846 unsigned int sbf_balanced;
847 unsigned int sbf_pushed;
848
849 /* try_to_wake_up() stats */
850 unsigned int ttwu_wake_remote;
851 unsigned int ttwu_move_affine;
852 unsigned int ttwu_move_balance;
853 #endif
854 #ifdef CONFIG_SCHED_DEBUG
855 char *name;
856 #endif
857 union {
858 void *private; /* used during construction */
859 struct rcu_head rcu; /* used during destruction */
860 };
861
862 unsigned int span_weight;
863 /*
864 * Span of all CPUs in this domain.
865 *
866 * NOTE: this field is variable length. (Allocated dynamically
867 * by attaching extra space to the end of the structure,
868 * depending on how many CPUs the kernel has booted up with)
869 */
870 unsigned long span[0];
871 };
872
873 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
874 {
875 return to_cpumask(sd->span);
876 }
877
878 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
879 struct sched_domain_attr *dattr_new);
880
881 /* Allocate an array of sched domains, for partition_sched_domains(). */
882 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
883 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
884
885 bool cpus_share_cache(int this_cpu, int that_cpu);
886
887 #else /* CONFIG_SMP */
888
889 struct sched_domain_attr;
890
891 static inline void
892 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
893 struct sched_domain_attr *dattr_new)
894 {
895 }
896
897 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
898 {
899 return true;
900 }
901
902 #endif /* !CONFIG_SMP */
903
904
905 struct io_context; /* See blkdev.h */
906
907
908 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
909 extern void prefetch_stack(struct task_struct *t);
910 #else
911 static inline void prefetch_stack(struct task_struct *t) { }
912 #endif
913
914 struct audit_context; /* See audit.c */
915 struct mempolicy;
916 struct pipe_inode_info;
917 struct uts_namespace;
918
919 struct load_weight {
920 unsigned long weight, inv_weight;
921 };
922
923 struct sched_avg {
924 /*
925 * These sums represent an infinite geometric series and so are bound
926 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
927 * choices of y < 1-2^(-32)*1024.
928 */
929 u32 runnable_avg_sum, runnable_avg_period;
930 u64 last_runnable_update;
931 s64 decay_count;
932 unsigned long load_avg_contrib;
933 };
934
935 #ifdef CONFIG_SCHEDSTATS
936 struct sched_statistics {
937 u64 wait_start;
938 u64 wait_max;
939 u64 wait_count;
940 u64 wait_sum;
941 u64 iowait_count;
942 u64 iowait_sum;
943
944 u64 sleep_start;
945 u64 sleep_max;
946 s64 sum_sleep_runtime;
947
948 u64 block_start;
949 u64 block_max;
950 u64 exec_max;
951 u64 slice_max;
952
953 u64 nr_migrations_cold;
954 u64 nr_failed_migrations_affine;
955 u64 nr_failed_migrations_running;
956 u64 nr_failed_migrations_hot;
957 u64 nr_forced_migrations;
958
959 u64 nr_wakeups;
960 u64 nr_wakeups_sync;
961 u64 nr_wakeups_migrate;
962 u64 nr_wakeups_local;
963 u64 nr_wakeups_remote;
964 u64 nr_wakeups_affine;
965 u64 nr_wakeups_affine_attempts;
966 u64 nr_wakeups_passive;
967 u64 nr_wakeups_idle;
968 };
969 #endif
970
971 struct sched_entity {
972 struct load_weight load; /* for load-balancing */
973 struct rb_node run_node;
974 struct list_head group_node;
975 unsigned int on_rq;
976
977 u64 exec_start;
978 u64 sum_exec_runtime;
979 u64 vruntime;
980 u64 prev_sum_exec_runtime;
981
982 u64 nr_migrations;
983
984 #ifdef CONFIG_SCHEDSTATS
985 struct sched_statistics statistics;
986 #endif
987
988 #ifdef CONFIG_FAIR_GROUP_SCHED
989 struct sched_entity *parent;
990 /* rq on which this entity is (to be) queued: */
991 struct cfs_rq *cfs_rq;
992 /* rq "owned" by this entity/group: */
993 struct cfs_rq *my_q;
994 #endif
995
996 /*
997 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
998 * removed when useful for applications beyond shares distribution (e.g.
999 * load-balance).
1000 */
1001 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1002 /* Per-entity load-tracking */
1003 struct sched_avg avg;
1004 #endif
1005 };
1006
1007 struct sched_rt_entity {
1008 struct list_head run_list;
1009 unsigned long timeout;
1010 unsigned long watchdog_stamp;
1011 unsigned int time_slice;
1012
1013 struct sched_rt_entity *back;
1014 #ifdef CONFIG_RT_GROUP_SCHED
1015 struct sched_rt_entity *parent;
1016 /* rq on which this entity is (to be) queued: */
1017 struct rt_rq *rt_rq;
1018 /* rq "owned" by this entity/group: */
1019 struct rt_rq *my_q;
1020 #endif
1021 };
1022
1023
1024 struct rcu_node;
1025
1026 enum perf_event_task_context {
1027 perf_invalid_context = -1,
1028 perf_hw_context = 0,
1029 perf_sw_context,
1030 perf_nr_task_contexts,
1031 };
1032
1033 struct task_struct {
1034 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1035 void *stack;
1036 atomic_t usage;
1037 unsigned int flags; /* per process flags, defined below */
1038 unsigned int ptrace;
1039
1040 #ifdef CONFIG_SMP
1041 struct llist_node wake_entry;
1042 int on_cpu;
1043 #endif
1044 int on_rq;
1045
1046 int prio, static_prio, normal_prio;
1047 unsigned int rt_priority;
1048 const struct sched_class *sched_class;
1049 struct sched_entity se;
1050 struct sched_rt_entity rt;
1051 #ifdef CONFIG_CGROUP_SCHED
1052 struct task_group *sched_task_group;
1053 #endif
1054
1055 #ifdef CONFIG_PREEMPT_NOTIFIERS
1056 /* list of struct preempt_notifier: */
1057 struct hlist_head preempt_notifiers;
1058 #endif
1059
1060 /*
1061 * fpu_counter contains the number of consecutive context switches
1062 * that the FPU is used. If this is over a threshold, the lazy fpu
1063 * saving becomes unlazy to save the trap. This is an unsigned char
1064 * so that after 256 times the counter wraps and the behavior turns
1065 * lazy again; this to deal with bursty apps that only use FPU for
1066 * a short time
1067 */
1068 unsigned char fpu_counter;
1069 #ifdef CONFIG_BLK_DEV_IO_TRACE
1070 unsigned int btrace_seq;
1071 #endif
1072
1073 unsigned int policy;
1074 int nr_cpus_allowed;
1075 cpumask_t cpus_allowed;
1076
1077 #ifdef CONFIG_PREEMPT_RCU
1078 int rcu_read_lock_nesting;
1079 char rcu_read_unlock_special;
1080 struct list_head rcu_node_entry;
1081 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1082 #ifdef CONFIG_TREE_PREEMPT_RCU
1083 struct rcu_node *rcu_blocked_node;
1084 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1085 #ifdef CONFIG_RCU_BOOST
1086 struct rt_mutex *rcu_boost_mutex;
1087 #endif /* #ifdef CONFIG_RCU_BOOST */
1088
1089 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1090 struct sched_info sched_info;
1091 #endif
1092
1093 struct list_head tasks;
1094 #ifdef CONFIG_SMP
1095 struct plist_node pushable_tasks;
1096 #endif
1097
1098 struct mm_struct *mm, *active_mm;
1099 #ifdef CONFIG_COMPAT_BRK
1100 unsigned brk_randomized:1;
1101 #endif
1102 #if defined(SPLIT_RSS_COUNTING)
1103 struct task_rss_stat rss_stat;
1104 #endif
1105 /* task state */
1106 int exit_state;
1107 int exit_code, exit_signal;
1108 int pdeath_signal; /* The signal sent when the parent dies */
1109 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1110
1111 /* Used for emulating ABI behavior of previous Linux versions */
1112 unsigned int personality;
1113
1114 unsigned did_exec:1;
1115 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1116 * execve */
1117 unsigned in_iowait:1;
1118
1119 /* task may not gain privileges */
1120 unsigned no_new_privs:1;
1121
1122 /* Revert to default priority/policy when forking */
1123 unsigned sched_reset_on_fork:1;
1124 unsigned sched_contributes_to_load:1;
1125
1126 pid_t pid;
1127 pid_t tgid;
1128
1129 #ifdef CONFIG_CC_STACKPROTECTOR
1130 /* Canary value for the -fstack-protector gcc feature */
1131 unsigned long stack_canary;
1132 #endif
1133 /*
1134 * pointers to (original) parent process, youngest child, younger sibling,
1135 * older sibling, respectively. (p->father can be replaced with
1136 * p->real_parent->pid)
1137 */
1138 struct task_struct __rcu *real_parent; /* real parent process */
1139 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1140 /*
1141 * children/sibling forms the list of my natural children
1142 */
1143 struct list_head children; /* list of my children */
1144 struct list_head sibling; /* linkage in my parent's children list */
1145 struct task_struct *group_leader; /* threadgroup leader */
1146
1147 /*
1148 * ptraced is the list of tasks this task is using ptrace on.
1149 * This includes both natural children and PTRACE_ATTACH targets.
1150 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1151 */
1152 struct list_head ptraced;
1153 struct list_head ptrace_entry;
1154
1155 /* PID/PID hash table linkage. */
1156 struct pid_link pids[PIDTYPE_MAX];
1157 struct list_head thread_group;
1158
1159 struct completion *vfork_done; /* for vfork() */
1160 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1161 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1162
1163 cputime_t utime, stime, utimescaled, stimescaled;
1164 cputime_t gtime;
1165 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1166 struct cputime prev_cputime;
1167 #endif
1168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1169 seqlock_t vtime_seqlock;
1170 unsigned long long vtime_snap;
1171 enum {
1172 VTIME_SLEEPING = 0,
1173 VTIME_USER,
1174 VTIME_SYS,
1175 } vtime_snap_whence;
1176 #endif
1177 unsigned long nvcsw, nivcsw; /* context switch counts */
1178 struct timespec start_time; /* monotonic time */
1179 struct timespec real_start_time; /* boot based time */
1180 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1181 unsigned long min_flt, maj_flt;
1182
1183 struct task_cputime cputime_expires;
1184 struct list_head cpu_timers[3];
1185
1186 /* process credentials */
1187 const struct cred __rcu *real_cred; /* objective and real subjective task
1188 * credentials (COW) */
1189 const struct cred __rcu *cred; /* effective (overridable) subjective task
1190 * credentials (COW) */
1191 char comm[TASK_COMM_LEN]; /* executable name excluding path
1192 - access with [gs]et_task_comm (which lock
1193 it with task_lock())
1194 - initialized normally by setup_new_exec */
1195 /* file system info */
1196 int link_count, total_link_count;
1197 #ifdef CONFIG_SYSVIPC
1198 /* ipc stuff */
1199 struct sysv_sem sysvsem;
1200 #endif
1201 #ifdef CONFIG_DETECT_HUNG_TASK
1202 /* hung task detection */
1203 unsigned long last_switch_count;
1204 #endif
1205 /* CPU-specific state of this task */
1206 struct thread_struct thread;
1207 /* filesystem information */
1208 struct fs_struct *fs;
1209 /* open file information */
1210 struct files_struct *files;
1211 /* namespaces */
1212 struct nsproxy *nsproxy;
1213 /* signal handlers */
1214 struct signal_struct *signal;
1215 struct sighand_struct *sighand;
1216
1217 sigset_t blocked, real_blocked;
1218 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1219 struct sigpending pending;
1220
1221 unsigned long sas_ss_sp;
1222 size_t sas_ss_size;
1223 int (*notifier)(void *priv);
1224 void *notifier_data;
1225 sigset_t *notifier_mask;
1226 struct callback_head *task_works;
1227
1228 struct audit_context *audit_context;
1229 #ifdef CONFIG_AUDITSYSCALL
1230 kuid_t loginuid;
1231 unsigned int sessionid;
1232 #endif
1233 struct seccomp seccomp;
1234
1235 /* Thread group tracking */
1236 u32 parent_exec_id;
1237 u32 self_exec_id;
1238 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1239 * mempolicy */
1240 spinlock_t alloc_lock;
1241
1242 /* Protection of the PI data structures: */
1243 raw_spinlock_t pi_lock;
1244
1245 #ifdef CONFIG_RT_MUTEXES
1246 /* PI waiters blocked on a rt_mutex held by this task */
1247 struct plist_head pi_waiters;
1248 /* Deadlock detection and priority inheritance handling */
1249 struct rt_mutex_waiter *pi_blocked_on;
1250 #endif
1251
1252 #ifdef CONFIG_DEBUG_MUTEXES
1253 /* mutex deadlock detection */
1254 struct mutex_waiter *blocked_on;
1255 #endif
1256 #ifdef CONFIG_TRACE_IRQFLAGS
1257 unsigned int irq_events;
1258 unsigned long hardirq_enable_ip;
1259 unsigned long hardirq_disable_ip;
1260 unsigned int hardirq_enable_event;
1261 unsigned int hardirq_disable_event;
1262 int hardirqs_enabled;
1263 int hardirq_context;
1264 unsigned long softirq_disable_ip;
1265 unsigned long softirq_enable_ip;
1266 unsigned int softirq_disable_event;
1267 unsigned int softirq_enable_event;
1268 int softirqs_enabled;
1269 int softirq_context;
1270 #endif
1271 #ifdef CONFIG_LOCKDEP
1272 # define MAX_LOCK_DEPTH 48UL
1273 u64 curr_chain_key;
1274 int lockdep_depth;
1275 unsigned int lockdep_recursion;
1276 struct held_lock held_locks[MAX_LOCK_DEPTH];
1277 gfp_t lockdep_reclaim_gfp;
1278 #endif
1279
1280 /* journalling filesystem info */
1281 void *journal_info;
1282
1283 /* stacked block device info */
1284 struct bio_list *bio_list;
1285
1286 #ifdef CONFIG_BLOCK
1287 /* stack plugging */
1288 struct blk_plug *plug;
1289 #endif
1290
1291 /* VM state */
1292 struct reclaim_state *reclaim_state;
1293
1294 struct backing_dev_info *backing_dev_info;
1295
1296 struct io_context *io_context;
1297
1298 unsigned long ptrace_message;
1299 siginfo_t *last_siginfo; /* For ptrace use. */
1300 struct task_io_accounting ioac;
1301 #if defined(CONFIG_TASK_XACCT)
1302 u64 acct_rss_mem1; /* accumulated rss usage */
1303 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1304 cputime_t acct_timexpd; /* stime + utime since last update */
1305 #endif
1306 #ifdef CONFIG_CPUSETS
1307 nodemask_t mems_allowed; /* Protected by alloc_lock */
1308 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1309 int cpuset_mem_spread_rotor;
1310 int cpuset_slab_spread_rotor;
1311 #endif
1312 #ifdef CONFIG_CGROUPS
1313 /* Control Group info protected by css_set_lock */
1314 struct css_set __rcu *cgroups;
1315 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1316 struct list_head cg_list;
1317 #endif
1318 #ifdef CONFIG_FUTEX
1319 struct robust_list_head __user *robust_list;
1320 #ifdef CONFIG_COMPAT
1321 struct compat_robust_list_head __user *compat_robust_list;
1322 #endif
1323 struct list_head pi_state_list;
1324 struct futex_pi_state *pi_state_cache;
1325 #endif
1326 #ifdef CONFIG_PERF_EVENTS
1327 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1328 struct mutex perf_event_mutex;
1329 struct list_head perf_event_list;
1330 #endif
1331 #ifdef CONFIG_NUMA
1332 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1333 short il_next;
1334 short pref_node_fork;
1335 #endif
1336 #ifdef CONFIG_NUMA_BALANCING
1337 int numa_scan_seq;
1338 int numa_migrate_seq;
1339 unsigned int numa_scan_period;
1340 u64 node_stamp; /* migration stamp */
1341 struct callback_head numa_work;
1342 #endif /* CONFIG_NUMA_BALANCING */
1343
1344 struct rcu_head rcu;
1345
1346 /*
1347 * cache last used pipe for splice
1348 */
1349 struct pipe_inode_info *splice_pipe;
1350
1351 struct page_frag task_frag;
1352
1353 #ifdef CONFIG_TASK_DELAY_ACCT
1354 struct task_delay_info *delays;
1355 #endif
1356 #ifdef CONFIG_FAULT_INJECTION
1357 int make_it_fail;
1358 #endif
1359 /*
1360 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1361 * balance_dirty_pages() for some dirty throttling pause
1362 */
1363 int nr_dirtied;
1364 int nr_dirtied_pause;
1365 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1366
1367 #ifdef CONFIG_LATENCYTOP
1368 int latency_record_count;
1369 struct latency_record latency_record[LT_SAVECOUNT];
1370 #endif
1371 /*
1372 * time slack values; these are used to round up poll() and
1373 * select() etc timeout values. These are in nanoseconds.
1374 */
1375 unsigned long timer_slack_ns;
1376 unsigned long default_timer_slack_ns;
1377
1378 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1379 /* Index of current stored address in ret_stack */
1380 int curr_ret_stack;
1381 /* Stack of return addresses for return function tracing */
1382 struct ftrace_ret_stack *ret_stack;
1383 /* time stamp for last schedule */
1384 unsigned long long ftrace_timestamp;
1385 /*
1386 * Number of functions that haven't been traced
1387 * because of depth overrun.
1388 */
1389 atomic_t trace_overrun;
1390 /* Pause for the tracing */
1391 atomic_t tracing_graph_pause;
1392 #endif
1393 #ifdef CONFIG_TRACING
1394 /* state flags for use by tracers */
1395 unsigned long trace;
1396 /* bitmask and counter of trace recursion */
1397 unsigned long trace_recursion;
1398 #endif /* CONFIG_TRACING */
1399 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1400 struct memcg_batch_info {
1401 int do_batch; /* incremented when batch uncharge started */
1402 struct mem_cgroup *memcg; /* target memcg of uncharge */
1403 unsigned long nr_pages; /* uncharged usage */
1404 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1405 } memcg_batch;
1406 unsigned int memcg_kmem_skip_account;
1407 #endif
1408 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1409 atomic_t ptrace_bp_refcnt;
1410 #endif
1411 #ifdef CONFIG_UPROBES
1412 struct uprobe_task *utask;
1413 #endif
1414 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1415 unsigned int sequential_io;
1416 unsigned int sequential_io_avg;
1417 #endif
1418 };
1419
1420 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1421 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1422
1423 #ifdef CONFIG_NUMA_BALANCING
1424 extern void task_numa_fault(int node, int pages, bool migrated);
1425 extern void set_numabalancing_state(bool enabled);
1426 #else
1427 static inline void task_numa_fault(int node, int pages, bool migrated)
1428 {
1429 }
1430 static inline void set_numabalancing_state(bool enabled)
1431 {
1432 }
1433 #endif
1434
1435 static inline struct pid *task_pid(struct task_struct *task)
1436 {
1437 return task->pids[PIDTYPE_PID].pid;
1438 }
1439
1440 static inline struct pid *task_tgid(struct task_struct *task)
1441 {
1442 return task->group_leader->pids[PIDTYPE_PID].pid;
1443 }
1444
1445 /*
1446 * Without tasklist or rcu lock it is not safe to dereference
1447 * the result of task_pgrp/task_session even if task == current,
1448 * we can race with another thread doing sys_setsid/sys_setpgid.
1449 */
1450 static inline struct pid *task_pgrp(struct task_struct *task)
1451 {
1452 return task->group_leader->pids[PIDTYPE_PGID].pid;
1453 }
1454
1455 static inline struct pid *task_session(struct task_struct *task)
1456 {
1457 return task->group_leader->pids[PIDTYPE_SID].pid;
1458 }
1459
1460 struct pid_namespace;
1461
1462 /*
1463 * the helpers to get the task's different pids as they are seen
1464 * from various namespaces
1465 *
1466 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1467 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1468 * current.
1469 * task_xid_nr_ns() : id seen from the ns specified;
1470 *
1471 * set_task_vxid() : assigns a virtual id to a task;
1472 *
1473 * see also pid_nr() etc in include/linux/pid.h
1474 */
1475 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1476 struct pid_namespace *ns);
1477
1478 static inline pid_t task_pid_nr(struct task_struct *tsk)
1479 {
1480 return tsk->pid;
1481 }
1482
1483 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1484 struct pid_namespace *ns)
1485 {
1486 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1487 }
1488
1489 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1490 {
1491 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1492 }
1493
1494
1495 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1496 {
1497 return tsk->tgid;
1498 }
1499
1500 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1501
1502 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1503 {
1504 return pid_vnr(task_tgid(tsk));
1505 }
1506
1507
1508 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1509 struct pid_namespace *ns)
1510 {
1511 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1512 }
1513
1514 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1515 {
1516 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1517 }
1518
1519
1520 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1521 struct pid_namespace *ns)
1522 {
1523 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1524 }
1525
1526 static inline pid_t task_session_vnr(struct task_struct *tsk)
1527 {
1528 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1529 }
1530
1531 /* obsolete, do not use */
1532 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1533 {
1534 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1535 }
1536
1537 /**
1538 * pid_alive - check that a task structure is not stale
1539 * @p: Task structure to be checked.
1540 *
1541 * Test if a process is not yet dead (at most zombie state)
1542 * If pid_alive fails, then pointers within the task structure
1543 * can be stale and must not be dereferenced.
1544 */
1545 static inline int pid_alive(struct task_struct *p)
1546 {
1547 return p->pids[PIDTYPE_PID].pid != NULL;
1548 }
1549
1550 /**
1551 * is_global_init - check if a task structure is init
1552 * @tsk: Task structure to be checked.
1553 *
1554 * Check if a task structure is the first user space task the kernel created.
1555 */
1556 static inline int is_global_init(struct task_struct *tsk)
1557 {
1558 return tsk->pid == 1;
1559 }
1560
1561 extern struct pid *cad_pid;
1562
1563 extern void free_task(struct task_struct *tsk);
1564 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1565
1566 extern void __put_task_struct(struct task_struct *t);
1567
1568 static inline void put_task_struct(struct task_struct *t)
1569 {
1570 if (atomic_dec_and_test(&t->usage))
1571 __put_task_struct(t);
1572 }
1573
1574 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1575 extern void task_cputime(struct task_struct *t,
1576 cputime_t *utime, cputime_t *stime);
1577 extern void task_cputime_scaled(struct task_struct *t,
1578 cputime_t *utimescaled, cputime_t *stimescaled);
1579 extern cputime_t task_gtime(struct task_struct *t);
1580 #else
1581 static inline void task_cputime(struct task_struct *t,
1582 cputime_t *utime, cputime_t *stime)
1583 {
1584 if (utime)
1585 *utime = t->utime;
1586 if (stime)
1587 *stime = t->stime;
1588 }
1589
1590 static inline void task_cputime_scaled(struct task_struct *t,
1591 cputime_t *utimescaled,
1592 cputime_t *stimescaled)
1593 {
1594 if (utimescaled)
1595 *utimescaled = t->utimescaled;
1596 if (stimescaled)
1597 *stimescaled = t->stimescaled;
1598 }
1599
1600 static inline cputime_t task_gtime(struct task_struct *t)
1601 {
1602 return t->gtime;
1603 }
1604 #endif
1605 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1606 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1607
1608 /*
1609 * Per process flags
1610 */
1611 #define PF_EXITING 0x00000004 /* getting shut down */
1612 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1613 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1614 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1615 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1616 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1617 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1618 #define PF_DUMPCORE 0x00000200 /* dumped core */
1619 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1620 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1621 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1622 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1623 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1624 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1625 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1626 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1627 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1628 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1629 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1630 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1631 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1632 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1633 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1634 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1635 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1636 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1637 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1638 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1639 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1640
1641 /*
1642 * Only the _current_ task can read/write to tsk->flags, but other
1643 * tasks can access tsk->flags in readonly mode for example
1644 * with tsk_used_math (like during threaded core dumping).
1645 * There is however an exception to this rule during ptrace
1646 * or during fork: the ptracer task is allowed to write to the
1647 * child->flags of its traced child (same goes for fork, the parent
1648 * can write to the child->flags), because we're guaranteed the
1649 * child is not running and in turn not changing child->flags
1650 * at the same time the parent does it.
1651 */
1652 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1653 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1654 #define clear_used_math() clear_stopped_child_used_math(current)
1655 #define set_used_math() set_stopped_child_used_math(current)
1656 #define conditional_stopped_child_used_math(condition, child) \
1657 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1658 #define conditional_used_math(condition) \
1659 conditional_stopped_child_used_math(condition, current)
1660 #define copy_to_stopped_child_used_math(child) \
1661 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1662 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1663 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1664 #define used_math() tsk_used_math(current)
1665
1666 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1667 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1668 {
1669 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1670 flags &= ~__GFP_IO;
1671 return flags;
1672 }
1673
1674 static inline unsigned int memalloc_noio_save(void)
1675 {
1676 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1677 current->flags |= PF_MEMALLOC_NOIO;
1678 return flags;
1679 }
1680
1681 static inline void memalloc_noio_restore(unsigned int flags)
1682 {
1683 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1684 }
1685
1686 /*
1687 * task->jobctl flags
1688 */
1689 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1690
1691 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1692 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1693 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1694 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1695 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1696 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1697 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1698
1699 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1700 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1701 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1702 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1703 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1704 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1705 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1706
1707 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1708 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1709
1710 extern bool task_set_jobctl_pending(struct task_struct *task,
1711 unsigned int mask);
1712 extern void task_clear_jobctl_trapping(struct task_struct *task);
1713 extern void task_clear_jobctl_pending(struct task_struct *task,
1714 unsigned int mask);
1715
1716 #ifdef CONFIG_PREEMPT_RCU
1717
1718 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1719 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1720
1721 static inline void rcu_copy_process(struct task_struct *p)
1722 {
1723 p->rcu_read_lock_nesting = 0;
1724 p->rcu_read_unlock_special = 0;
1725 #ifdef CONFIG_TREE_PREEMPT_RCU
1726 p->rcu_blocked_node = NULL;
1727 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1728 #ifdef CONFIG_RCU_BOOST
1729 p->rcu_boost_mutex = NULL;
1730 #endif /* #ifdef CONFIG_RCU_BOOST */
1731 INIT_LIST_HEAD(&p->rcu_node_entry);
1732 }
1733
1734 #else
1735
1736 static inline void rcu_copy_process(struct task_struct *p)
1737 {
1738 }
1739
1740 #endif
1741
1742 static inline void tsk_restore_flags(struct task_struct *task,
1743 unsigned long orig_flags, unsigned long flags)
1744 {
1745 task->flags &= ~flags;
1746 task->flags |= orig_flags & flags;
1747 }
1748
1749 #ifdef CONFIG_SMP
1750 extern void do_set_cpus_allowed(struct task_struct *p,
1751 const struct cpumask *new_mask);
1752
1753 extern int set_cpus_allowed_ptr(struct task_struct *p,
1754 const struct cpumask *new_mask);
1755 #else
1756 static inline void do_set_cpus_allowed(struct task_struct *p,
1757 const struct cpumask *new_mask)
1758 {
1759 }
1760 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1761 const struct cpumask *new_mask)
1762 {
1763 if (!cpumask_test_cpu(0, new_mask))
1764 return -EINVAL;
1765 return 0;
1766 }
1767 #endif
1768
1769 #ifdef CONFIG_NO_HZ_COMMON
1770 void calc_load_enter_idle(void);
1771 void calc_load_exit_idle(void);
1772 #else
1773 static inline void calc_load_enter_idle(void) { }
1774 static inline void calc_load_exit_idle(void) { }
1775 #endif /* CONFIG_NO_HZ_COMMON */
1776
1777 #ifndef CONFIG_CPUMASK_OFFSTACK
1778 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1779 {
1780 return set_cpus_allowed_ptr(p, &new_mask);
1781 }
1782 #endif
1783
1784 /*
1785 * Do not use outside of architecture code which knows its limitations.
1786 *
1787 * sched_clock() has no promise of monotonicity or bounded drift between
1788 * CPUs, use (which you should not) requires disabling IRQs.
1789 *
1790 * Please use one of the three interfaces below.
1791 */
1792 extern unsigned long long notrace sched_clock(void);
1793 /*
1794 * See the comment in kernel/sched/clock.c
1795 */
1796 extern u64 cpu_clock(int cpu);
1797 extern u64 local_clock(void);
1798 extern u64 sched_clock_cpu(int cpu);
1799
1800
1801 extern void sched_clock_init(void);
1802
1803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804 static inline void sched_clock_tick(void)
1805 {
1806 }
1807
1808 static inline void sched_clock_idle_sleep_event(void)
1809 {
1810 }
1811
1812 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1813 {
1814 }
1815 #else
1816 /*
1817 * Architectures can set this to 1 if they have specified
1818 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1819 * but then during bootup it turns out that sched_clock()
1820 * is reliable after all:
1821 */
1822 extern int sched_clock_stable;
1823
1824 extern void sched_clock_tick(void);
1825 extern void sched_clock_idle_sleep_event(void);
1826 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1827 #endif
1828
1829 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1830 /*
1831 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1832 * The reason for this explicit opt-in is not to have perf penalty with
1833 * slow sched_clocks.
1834 */
1835 extern void enable_sched_clock_irqtime(void);
1836 extern void disable_sched_clock_irqtime(void);
1837 #else
1838 static inline void enable_sched_clock_irqtime(void) {}
1839 static inline void disable_sched_clock_irqtime(void) {}
1840 #endif
1841
1842 extern unsigned long long
1843 task_sched_runtime(struct task_struct *task);
1844
1845 /* sched_exec is called by processes performing an exec */
1846 #ifdef CONFIG_SMP
1847 extern void sched_exec(void);
1848 #else
1849 #define sched_exec() {}
1850 #endif
1851
1852 extern void sched_clock_idle_sleep_event(void);
1853 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1854
1855 #ifdef CONFIG_HOTPLUG_CPU
1856 extern void idle_task_exit(void);
1857 #else
1858 static inline void idle_task_exit(void) {}
1859 #endif
1860
1861 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1862 extern void wake_up_nohz_cpu(int cpu);
1863 #else
1864 static inline void wake_up_nohz_cpu(int cpu) { }
1865 #endif
1866
1867 #ifdef CONFIG_NO_HZ_FULL
1868 extern bool sched_can_stop_tick(void);
1869 extern u64 scheduler_tick_max_deferment(void);
1870 #else
1871 static inline bool sched_can_stop_tick(void) { return false; }
1872 #endif
1873
1874 #ifdef CONFIG_SCHED_AUTOGROUP
1875 extern void sched_autogroup_create_attach(struct task_struct *p);
1876 extern void sched_autogroup_detach(struct task_struct *p);
1877 extern void sched_autogroup_fork(struct signal_struct *sig);
1878 extern void sched_autogroup_exit(struct signal_struct *sig);
1879 #ifdef CONFIG_PROC_FS
1880 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1881 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1882 #endif
1883 #else
1884 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1885 static inline void sched_autogroup_detach(struct task_struct *p) { }
1886 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1887 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1888 #endif
1889
1890 extern bool yield_to(struct task_struct *p, bool preempt);
1891 extern void set_user_nice(struct task_struct *p, long nice);
1892 extern int task_prio(const struct task_struct *p);
1893 extern int task_nice(const struct task_struct *p);
1894 extern int can_nice(const struct task_struct *p, const int nice);
1895 extern int task_curr(const struct task_struct *p);
1896 extern int idle_cpu(int cpu);
1897 extern int sched_setscheduler(struct task_struct *, int,
1898 const struct sched_param *);
1899 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1900 const struct sched_param *);
1901 extern struct task_struct *idle_task(int cpu);
1902 /**
1903 * is_idle_task - is the specified task an idle task?
1904 * @p: the task in question.
1905 */
1906 static inline bool is_idle_task(const struct task_struct *p)
1907 {
1908 return p->pid == 0;
1909 }
1910 extern struct task_struct *curr_task(int cpu);
1911 extern void set_curr_task(int cpu, struct task_struct *p);
1912
1913 void yield(void);
1914
1915 /*
1916 * The default (Linux) execution domain.
1917 */
1918 extern struct exec_domain default_exec_domain;
1919
1920 union thread_union {
1921 struct thread_info thread_info;
1922 unsigned long stack[THREAD_SIZE/sizeof(long)];
1923 };
1924
1925 #ifndef __HAVE_ARCH_KSTACK_END
1926 static inline int kstack_end(void *addr)
1927 {
1928 /* Reliable end of stack detection:
1929 * Some APM bios versions misalign the stack
1930 */
1931 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1932 }
1933 #endif
1934
1935 extern union thread_union init_thread_union;
1936 extern struct task_struct init_task;
1937
1938 extern struct mm_struct init_mm;
1939
1940 extern struct pid_namespace init_pid_ns;
1941
1942 /*
1943 * find a task by one of its numerical ids
1944 *
1945 * find_task_by_pid_ns():
1946 * finds a task by its pid in the specified namespace
1947 * find_task_by_vpid():
1948 * finds a task by its virtual pid
1949 *
1950 * see also find_vpid() etc in include/linux/pid.h
1951 */
1952
1953 extern struct task_struct *find_task_by_vpid(pid_t nr);
1954 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1955 struct pid_namespace *ns);
1956
1957 extern void __set_special_pids(struct pid *pid);
1958
1959 /* per-UID process charging. */
1960 extern struct user_struct * alloc_uid(kuid_t);
1961 static inline struct user_struct *get_uid(struct user_struct *u)
1962 {
1963 atomic_inc(&u->__count);
1964 return u;
1965 }
1966 extern void free_uid(struct user_struct *);
1967
1968 #include <asm/current.h>
1969
1970 extern void xtime_update(unsigned long ticks);
1971
1972 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1973 extern int wake_up_process(struct task_struct *tsk);
1974 extern void wake_up_new_task(struct task_struct *tsk);
1975 #ifdef CONFIG_SMP
1976 extern void kick_process(struct task_struct *tsk);
1977 #else
1978 static inline void kick_process(struct task_struct *tsk) { }
1979 #endif
1980 extern void sched_fork(struct task_struct *p);
1981 extern void sched_dead(struct task_struct *p);
1982
1983 extern void proc_caches_init(void);
1984 extern void flush_signals(struct task_struct *);
1985 extern void __flush_signals(struct task_struct *);
1986 extern void ignore_signals(struct task_struct *);
1987 extern void flush_signal_handlers(struct task_struct *, int force_default);
1988 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1989
1990 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1991 {
1992 unsigned long flags;
1993 int ret;
1994
1995 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1996 ret = dequeue_signal(tsk, mask, info);
1997 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1998
1999 return ret;
2000 }
2001
2002 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2003 sigset_t *mask);
2004 extern void unblock_all_signals(void);
2005 extern void release_task(struct task_struct * p);
2006 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2007 extern int force_sigsegv(int, struct task_struct *);
2008 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2009 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2010 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2011 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2012 const struct cred *, u32);
2013 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2014 extern int kill_pid(struct pid *pid, int sig, int priv);
2015 extern int kill_proc_info(int, struct siginfo *, pid_t);
2016 extern __must_check bool do_notify_parent(struct task_struct *, int);
2017 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2018 extern void force_sig(int, struct task_struct *);
2019 extern int send_sig(int, struct task_struct *, int);
2020 extern int zap_other_threads(struct task_struct *p);
2021 extern struct sigqueue *sigqueue_alloc(void);
2022 extern void sigqueue_free(struct sigqueue *);
2023 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2024 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2025
2026 static inline void restore_saved_sigmask(void)
2027 {
2028 if (test_and_clear_restore_sigmask())
2029 __set_current_blocked(&current->saved_sigmask);
2030 }
2031
2032 static inline sigset_t *sigmask_to_save(void)
2033 {
2034 sigset_t *res = &current->blocked;
2035 if (unlikely(test_restore_sigmask()))
2036 res = &current->saved_sigmask;
2037 return res;
2038 }
2039
2040 static inline int kill_cad_pid(int sig, int priv)
2041 {
2042 return kill_pid(cad_pid, sig, priv);
2043 }
2044
2045 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2046 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2047 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2048 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2049
2050 /*
2051 * True if we are on the alternate signal stack.
2052 */
2053 static inline int on_sig_stack(unsigned long sp)
2054 {
2055 #ifdef CONFIG_STACK_GROWSUP
2056 return sp >= current->sas_ss_sp &&
2057 sp - current->sas_ss_sp < current->sas_ss_size;
2058 #else
2059 return sp > current->sas_ss_sp &&
2060 sp - current->sas_ss_sp <= current->sas_ss_size;
2061 #endif
2062 }
2063
2064 static inline int sas_ss_flags(unsigned long sp)
2065 {
2066 return (current->sas_ss_size == 0 ? SS_DISABLE
2067 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2068 }
2069
2070 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2071 {
2072 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2073 #ifdef CONFIG_STACK_GROWSUP
2074 return current->sas_ss_sp;
2075 #else
2076 return current->sas_ss_sp + current->sas_ss_size;
2077 #endif
2078 return sp;
2079 }
2080
2081 /*
2082 * Routines for handling mm_structs
2083 */
2084 extern struct mm_struct * mm_alloc(void);
2085
2086 /* mmdrop drops the mm and the page tables */
2087 extern void __mmdrop(struct mm_struct *);
2088 static inline void mmdrop(struct mm_struct * mm)
2089 {
2090 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2091 __mmdrop(mm);
2092 }
2093
2094 /* mmput gets rid of the mappings and all user-space */
2095 extern void mmput(struct mm_struct *);
2096 /* Grab a reference to a task's mm, if it is not already going away */
2097 extern struct mm_struct *get_task_mm(struct task_struct *task);
2098 /*
2099 * Grab a reference to a task's mm, if it is not already going away
2100 * and ptrace_may_access with the mode parameter passed to it
2101 * succeeds.
2102 */
2103 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2104 /* Remove the current tasks stale references to the old mm_struct */
2105 extern void mm_release(struct task_struct *, struct mm_struct *);
2106 /* Allocate a new mm structure and copy contents from tsk->mm */
2107 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2108
2109 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2110 struct task_struct *);
2111 extern void flush_thread(void);
2112 extern void exit_thread(void);
2113
2114 extern void exit_files(struct task_struct *);
2115 extern void __cleanup_sighand(struct sighand_struct *);
2116
2117 extern void exit_itimers(struct signal_struct *);
2118 extern void flush_itimer_signals(void);
2119
2120 extern void do_group_exit(int);
2121
2122 extern int allow_signal(int);
2123 extern int disallow_signal(int);
2124
2125 extern int do_execve(const char *,
2126 const char __user * const __user *,
2127 const char __user * const __user *);
2128 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2129 struct task_struct *fork_idle(int);
2130 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2131
2132 extern void set_task_comm(struct task_struct *tsk, char *from);
2133 extern char *get_task_comm(char *to, struct task_struct *tsk);
2134
2135 #ifdef CONFIG_SMP
2136 void scheduler_ipi(void);
2137 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2138 #else
2139 static inline void scheduler_ipi(void) { }
2140 static inline unsigned long wait_task_inactive(struct task_struct *p,
2141 long match_state)
2142 {
2143 return 1;
2144 }
2145 #endif
2146
2147 #define next_task(p) \
2148 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2149
2150 #define for_each_process(p) \
2151 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2152
2153 extern bool current_is_single_threaded(void);
2154
2155 /*
2156 * Careful: do_each_thread/while_each_thread is a double loop so
2157 * 'break' will not work as expected - use goto instead.
2158 */
2159 #define do_each_thread(g, t) \
2160 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2161
2162 #define while_each_thread(g, t) \
2163 while ((t = next_thread(t)) != g)
2164
2165 static inline int get_nr_threads(struct task_struct *tsk)
2166 {
2167 return tsk->signal->nr_threads;
2168 }
2169
2170 static inline bool thread_group_leader(struct task_struct *p)
2171 {
2172 return p->exit_signal >= 0;
2173 }
2174
2175 /* Do to the insanities of de_thread it is possible for a process
2176 * to have the pid of the thread group leader without actually being
2177 * the thread group leader. For iteration through the pids in proc
2178 * all we care about is that we have a task with the appropriate
2179 * pid, we don't actually care if we have the right task.
2180 */
2181 static inline int has_group_leader_pid(struct task_struct *p)
2182 {
2183 return p->pid == p->tgid;
2184 }
2185
2186 static inline
2187 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2188 {
2189 return p1->tgid == p2->tgid;
2190 }
2191
2192 static inline struct task_struct *next_thread(const struct task_struct *p)
2193 {
2194 return list_entry_rcu(p->thread_group.next,
2195 struct task_struct, thread_group);
2196 }
2197
2198 static inline int thread_group_empty(struct task_struct *p)
2199 {
2200 return list_empty(&p->thread_group);
2201 }
2202
2203 #define delay_group_leader(p) \
2204 (thread_group_leader(p) && !thread_group_empty(p))
2205
2206 /*
2207 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2208 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2209 * pins the final release of task.io_context. Also protects ->cpuset and
2210 * ->cgroup.subsys[]. And ->vfork_done.
2211 *
2212 * Nests both inside and outside of read_lock(&tasklist_lock).
2213 * It must not be nested with write_lock_irq(&tasklist_lock),
2214 * neither inside nor outside.
2215 */
2216 static inline void task_lock(struct task_struct *p)
2217 {
2218 spin_lock(&p->alloc_lock);
2219 }
2220
2221 static inline void task_unlock(struct task_struct *p)
2222 {
2223 spin_unlock(&p->alloc_lock);
2224 }
2225
2226 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2227 unsigned long *flags);
2228
2229 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2230 unsigned long *flags)
2231 {
2232 struct sighand_struct *ret;
2233
2234 ret = __lock_task_sighand(tsk, flags);
2235 (void)__cond_lock(&tsk->sighand->siglock, ret);
2236 return ret;
2237 }
2238
2239 static inline void unlock_task_sighand(struct task_struct *tsk,
2240 unsigned long *flags)
2241 {
2242 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2243 }
2244
2245 #ifdef CONFIG_CGROUPS
2246 static inline void threadgroup_change_begin(struct task_struct *tsk)
2247 {
2248 down_read(&tsk->signal->group_rwsem);
2249 }
2250 static inline void threadgroup_change_end(struct task_struct *tsk)
2251 {
2252 up_read(&tsk->signal->group_rwsem);
2253 }
2254
2255 /**
2256 * threadgroup_lock - lock threadgroup
2257 * @tsk: member task of the threadgroup to lock
2258 *
2259 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2260 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2261 * change ->group_leader/pid. This is useful for cases where the threadgroup
2262 * needs to stay stable across blockable operations.
2263 *
2264 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2265 * synchronization. While held, no new task will be added to threadgroup
2266 * and no existing live task will have its PF_EXITING set.
2267 *
2268 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2269 * sub-thread becomes a new leader.
2270 */
2271 static inline void threadgroup_lock(struct task_struct *tsk)
2272 {
2273 down_write(&tsk->signal->group_rwsem);
2274 }
2275
2276 /**
2277 * threadgroup_unlock - unlock threadgroup
2278 * @tsk: member task of the threadgroup to unlock
2279 *
2280 * Reverse threadgroup_lock().
2281 */
2282 static inline void threadgroup_unlock(struct task_struct *tsk)
2283 {
2284 up_write(&tsk->signal->group_rwsem);
2285 }
2286 #else
2287 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2288 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2289 static inline void threadgroup_lock(struct task_struct *tsk) {}
2290 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2291 #endif
2292
2293 #ifndef __HAVE_THREAD_FUNCTIONS
2294
2295 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2296 #define task_stack_page(task) ((task)->stack)
2297
2298 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2299 {
2300 *task_thread_info(p) = *task_thread_info(org);
2301 task_thread_info(p)->task = p;
2302 }
2303
2304 static inline unsigned long *end_of_stack(struct task_struct *p)
2305 {
2306 return (unsigned long *)(task_thread_info(p) + 1);
2307 }
2308
2309 #endif
2310
2311 static inline int object_is_on_stack(void *obj)
2312 {
2313 void *stack = task_stack_page(current);
2314
2315 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2316 }
2317
2318 extern void thread_info_cache_init(void);
2319
2320 #ifdef CONFIG_DEBUG_STACK_USAGE
2321 static inline unsigned long stack_not_used(struct task_struct *p)
2322 {
2323 unsigned long *n = end_of_stack(p);
2324
2325 do { /* Skip over canary */
2326 n++;
2327 } while (!*n);
2328
2329 return (unsigned long)n - (unsigned long)end_of_stack(p);
2330 }
2331 #endif
2332
2333 /* set thread flags in other task's structures
2334 * - see asm/thread_info.h for TIF_xxxx flags available
2335 */
2336 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2337 {
2338 set_ti_thread_flag(task_thread_info(tsk), flag);
2339 }
2340
2341 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2342 {
2343 clear_ti_thread_flag(task_thread_info(tsk), flag);
2344 }
2345
2346 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2347 {
2348 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2349 }
2350
2351 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2352 {
2353 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2354 }
2355
2356 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2357 {
2358 return test_ti_thread_flag(task_thread_info(tsk), flag);
2359 }
2360
2361 static inline void set_tsk_need_resched(struct task_struct *tsk)
2362 {
2363 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2364 }
2365
2366 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2367 {
2368 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2369 }
2370
2371 static inline int test_tsk_need_resched(struct task_struct *tsk)
2372 {
2373 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2374 }
2375
2376 static inline int restart_syscall(void)
2377 {
2378 set_tsk_thread_flag(current, TIF_SIGPENDING);
2379 return -ERESTARTNOINTR;
2380 }
2381
2382 static inline int signal_pending(struct task_struct *p)
2383 {
2384 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2385 }
2386
2387 static inline int __fatal_signal_pending(struct task_struct *p)
2388 {
2389 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2390 }
2391
2392 static inline int fatal_signal_pending(struct task_struct *p)
2393 {
2394 return signal_pending(p) && __fatal_signal_pending(p);
2395 }
2396
2397 static inline int signal_pending_state(long state, struct task_struct *p)
2398 {
2399 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2400 return 0;
2401 if (!signal_pending(p))
2402 return 0;
2403
2404 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2405 }
2406
2407 static inline int need_resched(void)
2408 {
2409 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2410 }
2411
2412 /*
2413 * cond_resched() and cond_resched_lock(): latency reduction via
2414 * explicit rescheduling in places that are safe. The return
2415 * value indicates whether a reschedule was done in fact.
2416 * cond_resched_lock() will drop the spinlock before scheduling,
2417 * cond_resched_softirq() will enable bhs before scheduling.
2418 */
2419 extern int _cond_resched(void);
2420
2421 #define cond_resched() ({ \
2422 __might_sleep(__FILE__, __LINE__, 0); \
2423 _cond_resched(); \
2424 })
2425
2426 extern int __cond_resched_lock(spinlock_t *lock);
2427
2428 #ifdef CONFIG_PREEMPT_COUNT
2429 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2430 #else
2431 #define PREEMPT_LOCK_OFFSET 0
2432 #endif
2433
2434 #define cond_resched_lock(lock) ({ \
2435 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2436 __cond_resched_lock(lock); \
2437 })
2438
2439 extern int __cond_resched_softirq(void);
2440
2441 #define cond_resched_softirq() ({ \
2442 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2443 __cond_resched_softirq(); \
2444 })
2445
2446 /*
2447 * Does a critical section need to be broken due to another
2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449 * but a general need for low latency)
2450 */
2451 static inline int spin_needbreak(spinlock_t *lock)
2452 {
2453 #ifdef CONFIG_PREEMPT
2454 return spin_is_contended(lock);
2455 #else
2456 return 0;
2457 #endif
2458 }
2459
2460 /*
2461 * Idle thread specific functions to determine the need_resched
2462 * polling state. We have two versions, one based on TS_POLLING in
2463 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2464 * thread_info.flags
2465 */
2466 #ifdef TS_POLLING
2467 static inline int tsk_is_polling(struct task_struct *p)
2468 {
2469 return task_thread_info(p)->status & TS_POLLING;
2470 }
2471 static inline void current_set_polling(void)
2472 {
2473 current_thread_info()->status |= TS_POLLING;
2474 }
2475
2476 static inline void current_clr_polling(void)
2477 {
2478 current_thread_info()->status &= ~TS_POLLING;
2479 smp_mb__after_clear_bit();
2480 }
2481 #elif defined(TIF_POLLING_NRFLAG)
2482 static inline int tsk_is_polling(struct task_struct *p)
2483 {
2484 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2485 }
2486 static inline void current_set_polling(void)
2487 {
2488 set_thread_flag(TIF_POLLING_NRFLAG);
2489 }
2490
2491 static inline void current_clr_polling(void)
2492 {
2493 clear_thread_flag(TIF_POLLING_NRFLAG);
2494 }
2495 #else
2496 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2497 static inline void current_set_polling(void) { }
2498 static inline void current_clr_polling(void) { }
2499 #endif
2500
2501 /*
2502 * Thread group CPU time accounting.
2503 */
2504 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2505 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2506
2507 static inline void thread_group_cputime_init(struct signal_struct *sig)
2508 {
2509 raw_spin_lock_init(&sig->cputimer.lock);
2510 }
2511
2512 /*
2513 * Reevaluate whether the task has signals pending delivery.
2514 * Wake the task if so.
2515 * This is required every time the blocked sigset_t changes.
2516 * callers must hold sighand->siglock.
2517 */
2518 extern void recalc_sigpending_and_wake(struct task_struct *t);
2519 extern void recalc_sigpending(void);
2520
2521 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2522
2523 static inline void signal_wake_up(struct task_struct *t, bool resume)
2524 {
2525 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2526 }
2527 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2528 {
2529 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2530 }
2531
2532 /*
2533 * Wrappers for p->thread_info->cpu access. No-op on UP.
2534 */
2535 #ifdef CONFIG_SMP
2536
2537 static inline unsigned int task_cpu(const struct task_struct *p)
2538 {
2539 return task_thread_info(p)->cpu;
2540 }
2541
2542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2543
2544 #else
2545
2546 static inline unsigned int task_cpu(const struct task_struct *p)
2547 {
2548 return 0;
2549 }
2550
2551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2552 {
2553 }
2554
2555 #endif /* CONFIG_SMP */
2556
2557 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2558 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2559
2560 #ifdef CONFIG_CGROUP_SCHED
2561 extern struct task_group root_task_group;
2562 #endif /* CONFIG_CGROUP_SCHED */
2563
2564 extern int task_can_switch_user(struct user_struct *up,
2565 struct task_struct *tsk);
2566
2567 #ifdef CONFIG_TASK_XACCT
2568 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2569 {
2570 tsk->ioac.rchar += amt;
2571 }
2572
2573 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2574 {
2575 tsk->ioac.wchar += amt;
2576 }
2577
2578 static inline void inc_syscr(struct task_struct *tsk)
2579 {
2580 tsk->ioac.syscr++;
2581 }
2582
2583 static inline void inc_syscw(struct task_struct *tsk)
2584 {
2585 tsk->ioac.syscw++;
2586 }
2587 #else
2588 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2589 {
2590 }
2591
2592 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2593 {
2594 }
2595
2596 static inline void inc_syscr(struct task_struct *tsk)
2597 {
2598 }
2599
2600 static inline void inc_syscw(struct task_struct *tsk)
2601 {
2602 }
2603 #endif
2604
2605 #ifndef TASK_SIZE_OF
2606 #define TASK_SIZE_OF(tsk) TASK_SIZE
2607 #endif
2608
2609 #ifdef CONFIG_MM_OWNER
2610 extern void mm_update_next_owner(struct mm_struct *mm);
2611 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2612 #else
2613 static inline void mm_update_next_owner(struct mm_struct *mm)
2614 {
2615 }
2616
2617 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2618 {
2619 }
2620 #endif /* CONFIG_MM_OWNER */
2621
2622 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2623 unsigned int limit)
2624 {
2625 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2626 }
2627
2628 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2629 unsigned int limit)
2630 {
2631 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2632 }
2633
2634 static inline unsigned long rlimit(unsigned int limit)
2635 {
2636 return task_rlimit(current, limit);
2637 }
2638
2639 static inline unsigned long rlimit_max(unsigned int limit)
2640 {
2641 return task_rlimit_max(current, limit);
2642 }
2643
2644 #endif