]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
ACPI: fix acpi_find_child_device() invocation in acpi_preset_companion()
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56
57 /*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
67
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
86
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 /*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120 #define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122
123 #define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130 #define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137 #define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
146 #else
147 /*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * Where wake_up_state() (and all other wakeup primitives) imply enough
171 * barriers to order the store of the variable against wakeup.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184 #define __set_current_state(state_value) \
185 current->state = (state_value)
186
187 #define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190 /*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196 #define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
204 #endif
205
206 /* Task command name length: */
207 #define TASK_COMM_LEN 16
208
209 extern void scheduler_tick(void);
210
211 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213 extern long schedule_timeout(long timeout);
214 extern long schedule_timeout_interruptible(long timeout);
215 extern long schedule_timeout_killable(long timeout);
216 extern long schedule_timeout_uninterruptible(long timeout);
217 extern long schedule_timeout_idle(long timeout);
218 asmlinkage void schedule(void);
219 extern void schedule_preempt_disabled(void);
220
221 extern int __must_check io_schedule_prepare(void);
222 extern void io_schedule_finish(int token);
223 extern long io_schedule_timeout(long timeout);
224 extern void io_schedule(void);
225
226 /**
227 * struct prev_cputime - snapshot of system and user cputime
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
230 * @lock: protects the above two fields
231 *
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
234 */
235 struct prev_cputime {
236 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
240 #endif
241 };
242
243 /**
244 * struct task_cputime - collected CPU time counts
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
248 *
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
252 */
253 struct task_cputime {
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
257 };
258
259 /* Alternate field names when used on cache expirations: */
260 #define virt_exp utime
261 #define prof_exp stime
262 #define sched_exp sum_exec_runtime
263
264 enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271 };
272
273 struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
277 u64 utime;
278 u64 stime;
279 u64 gtime;
280 };
281
282 struct sched_info {
283 #ifdef CONFIG_SCHED_INFO
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
299
300 #endif /* CONFIG_SCHED_INFO */
301 };
302
303 /*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
310 # define SCHED_FIXEDPOINT_SHIFT 10
311 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
312
313 struct load_weight {
314 unsigned long weight;
315 u32 inv_weight;
316 };
317
318 /*
319 * The load_avg/util_avg accumulates an infinite geometric series
320 * (see __update_load_avg() in kernel/sched/fair.c).
321 *
322 * [load_avg definition]
323 *
324 * load_avg = runnable% * scale_load_down(load)
325 *
326 * where runnable% is the time ratio that a sched_entity is runnable.
327 * For cfs_rq, it is the aggregated load_avg of all runnable and
328 * blocked sched_entities.
329 *
330 * load_avg may also take frequency scaling into account:
331 *
332 * load_avg = runnable% * scale_load_down(load) * freq%
333 *
334 * where freq% is the CPU frequency normalized to the highest frequency.
335 *
336 * [util_avg definition]
337 *
338 * util_avg = running% * SCHED_CAPACITY_SCALE
339 *
340 * where running% is the time ratio that a sched_entity is running on
341 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
342 * and blocked sched_entities.
343 *
344 * util_avg may also factor frequency scaling and CPU capacity scaling:
345 *
346 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
347 *
348 * where freq% is the same as above, and capacity% is the CPU capacity
349 * normalized to the greatest capacity (due to uarch differences, etc).
350 *
351 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
352 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
353 * we therefore scale them to as large a range as necessary. This is for
354 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
355 *
356 * [Overflow issue]
357 *
358 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
359 * with the highest load (=88761), always runnable on a single cfs_rq,
360 * and should not overflow as the number already hits PID_MAX_LIMIT.
361 *
362 * For all other cases (including 32-bit kernels), struct load_weight's
363 * weight will overflow first before we do, because:
364 *
365 * Max(load_avg) <= Max(load.weight)
366 *
367 * Then it is the load_weight's responsibility to consider overflow
368 * issues.
369 */
370 struct sched_avg {
371 u64 last_update_time;
372 u64 load_sum;
373 u64 runnable_load_sum;
374 u32 util_sum;
375 u32 period_contrib;
376 unsigned long load_avg;
377 unsigned long runnable_load_avg;
378 unsigned long util_avg;
379 };
380
381 struct sched_statistics {
382 #ifdef CONFIG_SCHEDSTATS
383 u64 wait_start;
384 u64 wait_max;
385 u64 wait_count;
386 u64 wait_sum;
387 u64 iowait_count;
388 u64 iowait_sum;
389
390 u64 sleep_start;
391 u64 sleep_max;
392 s64 sum_sleep_runtime;
393
394 u64 block_start;
395 u64 block_max;
396 u64 exec_max;
397 u64 slice_max;
398
399 u64 nr_migrations_cold;
400 u64 nr_failed_migrations_affine;
401 u64 nr_failed_migrations_running;
402 u64 nr_failed_migrations_hot;
403 u64 nr_forced_migrations;
404
405 u64 nr_wakeups;
406 u64 nr_wakeups_sync;
407 u64 nr_wakeups_migrate;
408 u64 nr_wakeups_local;
409 u64 nr_wakeups_remote;
410 u64 nr_wakeups_affine;
411 u64 nr_wakeups_affine_attempts;
412 u64 nr_wakeups_passive;
413 u64 nr_wakeups_idle;
414 #endif
415 };
416
417 struct sched_entity {
418 /* For load-balancing: */
419 struct load_weight load;
420 unsigned long runnable_weight;
421 struct rb_node run_node;
422 struct list_head group_node;
423 unsigned int on_rq;
424
425 u64 exec_start;
426 u64 sum_exec_runtime;
427 u64 vruntime;
428 u64 prev_sum_exec_runtime;
429
430 u64 nr_migrations;
431
432 struct sched_statistics statistics;
433
434 #ifdef CONFIG_FAIR_GROUP_SCHED
435 int depth;
436 struct sched_entity *parent;
437 /* rq on which this entity is (to be) queued: */
438 struct cfs_rq *cfs_rq;
439 /* rq "owned" by this entity/group: */
440 struct cfs_rq *my_q;
441 #endif
442
443 #ifdef CONFIG_SMP
444 /*
445 * Per entity load average tracking.
446 *
447 * Put into separate cache line so it does not
448 * collide with read-mostly values above.
449 */
450 struct sched_avg avg ____cacheline_aligned_in_smp;
451 #endif
452 };
453
454 struct sched_rt_entity {
455 struct list_head run_list;
456 unsigned long timeout;
457 unsigned long watchdog_stamp;
458 unsigned int time_slice;
459 unsigned short on_rq;
460 unsigned short on_list;
461
462 struct sched_rt_entity *back;
463 #ifdef CONFIG_RT_GROUP_SCHED
464 struct sched_rt_entity *parent;
465 /* rq on which this entity is (to be) queued: */
466 struct rt_rq *rt_rq;
467 /* rq "owned" by this entity/group: */
468 struct rt_rq *my_q;
469 #endif
470 } __randomize_layout;
471
472 struct sched_dl_entity {
473 struct rb_node rb_node;
474
475 /*
476 * Original scheduling parameters. Copied here from sched_attr
477 * during sched_setattr(), they will remain the same until
478 * the next sched_setattr().
479 */
480 u64 dl_runtime; /* Maximum runtime for each instance */
481 u64 dl_deadline; /* Relative deadline of each instance */
482 u64 dl_period; /* Separation of two instances (period) */
483 u64 dl_bw; /* dl_runtime / dl_period */
484 u64 dl_density; /* dl_runtime / dl_deadline */
485
486 /*
487 * Actual scheduling parameters. Initialized with the values above,
488 * they are continously updated during task execution. Note that
489 * the remaining runtime could be < 0 in case we are in overrun.
490 */
491 s64 runtime; /* Remaining runtime for this instance */
492 u64 deadline; /* Absolute deadline for this instance */
493 unsigned int flags; /* Specifying the scheduler behaviour */
494
495 /*
496 * Some bool flags:
497 *
498 * @dl_throttled tells if we exhausted the runtime. If so, the
499 * task has to wait for a replenishment to be performed at the
500 * next firing of dl_timer.
501 *
502 * @dl_boosted tells if we are boosted due to DI. If so we are
503 * outside bandwidth enforcement mechanism (but only until we
504 * exit the critical section);
505 *
506 * @dl_yielded tells if task gave up the CPU before consuming
507 * all its available runtime during the last job.
508 *
509 * @dl_non_contending tells if the task is inactive while still
510 * contributing to the active utilization. In other words, it
511 * indicates if the inactive timer has been armed and its handler
512 * has not been executed yet. This flag is useful to avoid race
513 * conditions between the inactive timer handler and the wakeup
514 * code.
515 */
516 unsigned int dl_throttled : 1;
517 unsigned int dl_boosted : 1;
518 unsigned int dl_yielded : 1;
519 unsigned int dl_non_contending : 1;
520
521 /*
522 * Bandwidth enforcement timer. Each -deadline task has its
523 * own bandwidth to be enforced, thus we need one timer per task.
524 */
525 struct hrtimer dl_timer;
526
527 /*
528 * Inactive timer, responsible for decreasing the active utilization
529 * at the "0-lag time". When a -deadline task blocks, it contributes
530 * to GRUB's active utilization until the "0-lag time", hence a
531 * timer is needed to decrease the active utilization at the correct
532 * time.
533 */
534 struct hrtimer inactive_timer;
535 };
536
537 union rcu_special {
538 struct {
539 u8 blocked;
540 u8 need_qs;
541 u8 exp_need_qs;
542
543 /* Otherwise the compiler can store garbage here: */
544 u8 pad;
545 } b; /* Bits. */
546 u32 s; /* Set of bits. */
547 };
548
549 enum perf_event_task_context {
550 perf_invalid_context = -1,
551 perf_hw_context = 0,
552 perf_sw_context,
553 perf_nr_task_contexts,
554 };
555
556 struct wake_q_node {
557 struct wake_q_node *next;
558 };
559
560 struct task_struct {
561 #ifdef CONFIG_THREAD_INFO_IN_TASK
562 /*
563 * For reasons of header soup (see current_thread_info()), this
564 * must be the first element of task_struct.
565 */
566 struct thread_info thread_info;
567 #endif
568 /* -1 unrunnable, 0 runnable, >0 stopped: */
569 volatile long state;
570
571 /*
572 * This begins the randomizable portion of task_struct. Only
573 * scheduling-critical items should be added above here.
574 */
575 randomized_struct_fields_start
576
577 void *stack;
578 atomic_t usage;
579 /* Per task flags (PF_*), defined further below: */
580 unsigned int flags;
581 unsigned int ptrace;
582
583 #ifdef CONFIG_SMP
584 struct llist_node wake_entry;
585 int on_cpu;
586 #ifdef CONFIG_THREAD_INFO_IN_TASK
587 /* Current CPU: */
588 unsigned int cpu;
589 #endif
590 unsigned int wakee_flips;
591 unsigned long wakee_flip_decay_ts;
592 struct task_struct *last_wakee;
593
594 int wake_cpu;
595 #endif
596 int on_rq;
597
598 int prio;
599 int static_prio;
600 int normal_prio;
601 unsigned int rt_priority;
602
603 const struct sched_class *sched_class;
604 struct sched_entity se;
605 struct sched_rt_entity rt;
606 #ifdef CONFIG_CGROUP_SCHED
607 struct task_group *sched_task_group;
608 #endif
609 struct sched_dl_entity dl;
610
611 #ifdef CONFIG_PREEMPT_NOTIFIERS
612 /* List of struct preempt_notifier: */
613 struct hlist_head preempt_notifiers;
614 #endif
615
616 #ifdef CONFIG_BLK_DEV_IO_TRACE
617 unsigned int btrace_seq;
618 #endif
619
620 unsigned int policy;
621 int nr_cpus_allowed;
622 cpumask_t cpus_allowed;
623
624 #ifdef CONFIG_PREEMPT_RCU
625 int rcu_read_lock_nesting;
626 union rcu_special rcu_read_unlock_special;
627 struct list_head rcu_node_entry;
628 struct rcu_node *rcu_blocked_node;
629 #endif /* #ifdef CONFIG_PREEMPT_RCU */
630
631 #ifdef CONFIG_TASKS_RCU
632 unsigned long rcu_tasks_nvcsw;
633 u8 rcu_tasks_holdout;
634 u8 rcu_tasks_idx;
635 int rcu_tasks_idle_cpu;
636 struct list_head rcu_tasks_holdout_list;
637 #endif /* #ifdef CONFIG_TASKS_RCU */
638
639 struct sched_info sched_info;
640
641 struct list_head tasks;
642 #ifdef CONFIG_SMP
643 struct plist_node pushable_tasks;
644 struct rb_node pushable_dl_tasks;
645 #endif
646
647 struct mm_struct *mm;
648 struct mm_struct *active_mm;
649
650 /* Per-thread vma caching: */
651 struct vmacache vmacache;
652
653 #ifdef SPLIT_RSS_COUNTING
654 struct task_rss_stat rss_stat;
655 #endif
656 int exit_state;
657 int exit_code;
658 int exit_signal;
659 /* The signal sent when the parent dies: */
660 int pdeath_signal;
661 /* JOBCTL_*, siglock protected: */
662 unsigned long jobctl;
663
664 /* Used for emulating ABI behavior of previous Linux versions: */
665 unsigned int personality;
666
667 /* Scheduler bits, serialized by scheduler locks: */
668 unsigned sched_reset_on_fork:1;
669 unsigned sched_contributes_to_load:1;
670 unsigned sched_migrated:1;
671 unsigned sched_remote_wakeup:1;
672 /* Force alignment to the next boundary: */
673 unsigned :0;
674
675 /* Unserialized, strictly 'current' */
676
677 /* Bit to tell LSMs we're in execve(): */
678 unsigned in_execve:1;
679 unsigned in_iowait:1;
680 #ifndef TIF_RESTORE_SIGMASK
681 unsigned restore_sigmask:1;
682 #endif
683 #ifdef CONFIG_MEMCG
684 unsigned memcg_may_oom:1;
685 #ifndef CONFIG_SLOB
686 unsigned memcg_kmem_skip_account:1;
687 #endif
688 #endif
689 #ifdef CONFIG_COMPAT_BRK
690 unsigned brk_randomized:1;
691 #endif
692 #ifdef CONFIG_CGROUPS
693 /* disallow userland-initiated cgroup migration */
694 unsigned no_cgroup_migration:1;
695 #endif
696
697 unsigned long atomic_flags; /* Flags requiring atomic access. */
698
699 struct restart_block restart_block;
700
701 pid_t pid;
702 pid_t tgid;
703
704 #ifdef CONFIG_CC_STACKPROTECTOR
705 /* Canary value for the -fstack-protector GCC feature: */
706 unsigned long stack_canary;
707 #endif
708 /*
709 * Pointers to the (original) parent process, youngest child, younger sibling,
710 * older sibling, respectively. (p->father can be replaced with
711 * p->real_parent->pid)
712 */
713
714 /* Real parent process: */
715 struct task_struct __rcu *real_parent;
716
717 /* Recipient of SIGCHLD, wait4() reports: */
718 struct task_struct __rcu *parent;
719
720 /*
721 * Children/sibling form the list of natural children:
722 */
723 struct list_head children;
724 struct list_head sibling;
725 struct task_struct *group_leader;
726
727 /*
728 * 'ptraced' is the list of tasks this task is using ptrace() on.
729 *
730 * This includes both natural children and PTRACE_ATTACH targets.
731 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
732 */
733 struct list_head ptraced;
734 struct list_head ptrace_entry;
735
736 /* PID/PID hash table linkage. */
737 struct pid_link pids[PIDTYPE_MAX];
738 struct list_head thread_group;
739 struct list_head thread_node;
740
741 struct completion *vfork_done;
742
743 /* CLONE_CHILD_SETTID: */
744 int __user *set_child_tid;
745
746 /* CLONE_CHILD_CLEARTID: */
747 int __user *clear_child_tid;
748
749 u64 utime;
750 u64 stime;
751 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
752 u64 utimescaled;
753 u64 stimescaled;
754 #endif
755 u64 gtime;
756 struct prev_cputime prev_cputime;
757 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
758 struct vtime vtime;
759 #endif
760
761 #ifdef CONFIG_NO_HZ_FULL
762 atomic_t tick_dep_mask;
763 #endif
764 /* Context switch counts: */
765 unsigned long nvcsw;
766 unsigned long nivcsw;
767
768 /* Monotonic time in nsecs: */
769 u64 start_time;
770
771 /* Boot based time in nsecs: */
772 u64 real_start_time;
773
774 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
775 unsigned long min_flt;
776 unsigned long maj_flt;
777
778 #ifdef CONFIG_POSIX_TIMERS
779 struct task_cputime cputime_expires;
780 struct list_head cpu_timers[3];
781 #endif
782
783 /* Process credentials: */
784
785 /* Tracer's credentials at attach: */
786 const struct cred __rcu *ptracer_cred;
787
788 /* Objective and real subjective task credentials (COW): */
789 const struct cred __rcu *real_cred;
790
791 /* Effective (overridable) subjective task credentials (COW): */
792 const struct cred __rcu *cred;
793
794 /*
795 * executable name, excluding path.
796 *
797 * - normally initialized setup_new_exec()
798 * - access it with [gs]et_task_comm()
799 * - lock it with task_lock()
800 */
801 char comm[TASK_COMM_LEN];
802
803 struct nameidata *nameidata;
804
805 #ifdef CONFIG_SYSVIPC
806 struct sysv_sem sysvsem;
807 struct sysv_shm sysvshm;
808 #endif
809 #ifdef CONFIG_DETECT_HUNG_TASK
810 unsigned long last_switch_count;
811 #endif
812 /* Filesystem information: */
813 struct fs_struct *fs;
814
815 /* Open file information: */
816 struct files_struct *files;
817
818 /* Namespaces: */
819 struct nsproxy *nsproxy;
820
821 /* Signal handlers: */
822 struct signal_struct *signal;
823 struct sighand_struct *sighand;
824 sigset_t blocked;
825 sigset_t real_blocked;
826 /* Restored if set_restore_sigmask() was used: */
827 sigset_t saved_sigmask;
828 struct sigpending pending;
829 unsigned long sas_ss_sp;
830 size_t sas_ss_size;
831 unsigned int sas_ss_flags;
832
833 struct callback_head *task_works;
834
835 struct audit_context *audit_context;
836 #ifdef CONFIG_AUDITSYSCALL
837 kuid_t loginuid;
838 unsigned int sessionid;
839 #endif
840 struct seccomp seccomp;
841
842 /* Thread group tracking: */
843 u32 parent_exec_id;
844 u32 self_exec_id;
845
846 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
847 spinlock_t alloc_lock;
848
849 /* Protection of the PI data structures: */
850 raw_spinlock_t pi_lock;
851
852 struct wake_q_node wake_q;
853
854 #ifdef CONFIG_RT_MUTEXES
855 /* PI waiters blocked on a rt_mutex held by this task: */
856 struct rb_root_cached pi_waiters;
857 /* Updated under owner's pi_lock and rq lock */
858 struct task_struct *pi_top_task;
859 /* Deadlock detection and priority inheritance handling: */
860 struct rt_mutex_waiter *pi_blocked_on;
861 #endif
862
863 #ifdef CONFIG_DEBUG_MUTEXES
864 /* Mutex deadlock detection: */
865 struct mutex_waiter *blocked_on;
866 #endif
867
868 #ifdef CONFIG_TRACE_IRQFLAGS
869 unsigned int irq_events;
870 unsigned long hardirq_enable_ip;
871 unsigned long hardirq_disable_ip;
872 unsigned int hardirq_enable_event;
873 unsigned int hardirq_disable_event;
874 int hardirqs_enabled;
875 int hardirq_context;
876 unsigned long softirq_disable_ip;
877 unsigned long softirq_enable_ip;
878 unsigned int softirq_disable_event;
879 unsigned int softirq_enable_event;
880 int softirqs_enabled;
881 int softirq_context;
882 #endif
883
884 #ifdef CONFIG_LOCKDEP
885 # define MAX_LOCK_DEPTH 48UL
886 u64 curr_chain_key;
887 int lockdep_depth;
888 unsigned int lockdep_recursion;
889 struct held_lock held_locks[MAX_LOCK_DEPTH];
890 #endif
891
892 #ifdef CONFIG_UBSAN
893 unsigned int in_ubsan;
894 #endif
895
896 /* Journalling filesystem info: */
897 void *journal_info;
898
899 /* Stacked block device info: */
900 struct bio_list *bio_list;
901
902 #ifdef CONFIG_BLOCK
903 /* Stack plugging: */
904 struct blk_plug *plug;
905 #endif
906
907 /* VM state: */
908 struct reclaim_state *reclaim_state;
909
910 struct backing_dev_info *backing_dev_info;
911
912 struct io_context *io_context;
913
914 /* Ptrace state: */
915 unsigned long ptrace_message;
916 siginfo_t *last_siginfo;
917
918 struct task_io_accounting ioac;
919 #ifdef CONFIG_TASK_XACCT
920 /* Accumulated RSS usage: */
921 u64 acct_rss_mem1;
922 /* Accumulated virtual memory usage: */
923 u64 acct_vm_mem1;
924 /* stime + utime since last update: */
925 u64 acct_timexpd;
926 #endif
927 #ifdef CONFIG_CPUSETS
928 /* Protected by ->alloc_lock: */
929 nodemask_t mems_allowed;
930 /* Seqence number to catch updates: */
931 seqcount_t mems_allowed_seq;
932 int cpuset_mem_spread_rotor;
933 int cpuset_slab_spread_rotor;
934 #endif
935 #ifdef CONFIG_CGROUPS
936 /* Control Group info protected by css_set_lock: */
937 struct css_set __rcu *cgroups;
938 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
939 struct list_head cg_list;
940 #endif
941 #ifdef CONFIG_INTEL_RDT
942 u32 closid;
943 u32 rmid;
944 #endif
945 #ifdef CONFIG_FUTEX
946 struct robust_list_head __user *robust_list;
947 #ifdef CONFIG_COMPAT
948 struct compat_robust_list_head __user *compat_robust_list;
949 #endif
950 struct list_head pi_state_list;
951 struct futex_pi_state *pi_state_cache;
952 struct mutex futex_exit_mutex;
953 unsigned int futex_state;
954 #endif
955 #ifdef CONFIG_PERF_EVENTS
956 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
957 struct mutex perf_event_mutex;
958 struct list_head perf_event_list;
959 #endif
960 #ifdef CONFIG_DEBUG_PREEMPT
961 unsigned long preempt_disable_ip;
962 #endif
963 #ifdef CONFIG_NUMA
964 /* Protected by alloc_lock: */
965 struct mempolicy *mempolicy;
966 short il_prev;
967 short pref_node_fork;
968 #endif
969 #ifdef CONFIG_NUMA_BALANCING
970 int numa_scan_seq;
971 unsigned int numa_scan_period;
972 unsigned int numa_scan_period_max;
973 int numa_preferred_nid;
974 unsigned long numa_migrate_retry;
975 /* Migration stamp: */
976 u64 node_stamp;
977 u64 last_task_numa_placement;
978 u64 last_sum_exec_runtime;
979 struct callback_head numa_work;
980
981 struct list_head numa_entry;
982 struct numa_group *numa_group;
983
984 /*
985 * numa_faults is an array split into four regions:
986 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
987 * in this precise order.
988 *
989 * faults_memory: Exponential decaying average of faults on a per-node
990 * basis. Scheduling placement decisions are made based on these
991 * counts. The values remain static for the duration of a PTE scan.
992 * faults_cpu: Track the nodes the process was running on when a NUMA
993 * hinting fault was incurred.
994 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
995 * during the current scan window. When the scan completes, the counts
996 * in faults_memory and faults_cpu decay and these values are copied.
997 */
998 unsigned long *numa_faults;
999 unsigned long total_numa_faults;
1000
1001 /*
1002 * numa_faults_locality tracks if faults recorded during the last
1003 * scan window were remote/local or failed to migrate. The task scan
1004 * period is adapted based on the locality of the faults with different
1005 * weights depending on whether they were shared or private faults
1006 */
1007 unsigned long numa_faults_locality[3];
1008
1009 unsigned long numa_pages_migrated;
1010 #endif /* CONFIG_NUMA_BALANCING */
1011
1012 struct tlbflush_unmap_batch tlb_ubc;
1013
1014 struct rcu_head rcu;
1015
1016 /* Cache last used pipe for splice(): */
1017 struct pipe_inode_info *splice_pipe;
1018
1019 struct page_frag task_frag;
1020
1021 #ifdef CONFIG_TASK_DELAY_ACCT
1022 struct task_delay_info *delays;
1023 #endif
1024
1025 #ifdef CONFIG_FAULT_INJECTION
1026 int make_it_fail;
1027 unsigned int fail_nth;
1028 #endif
1029 /*
1030 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1031 * balance_dirty_pages() for a dirty throttling pause:
1032 */
1033 int nr_dirtied;
1034 int nr_dirtied_pause;
1035 /* Start of a write-and-pause period: */
1036 unsigned long dirty_paused_when;
1037
1038 #ifdef CONFIG_LATENCYTOP
1039 int latency_record_count;
1040 struct latency_record latency_record[LT_SAVECOUNT];
1041 #endif
1042 /*
1043 * Time slack values; these are used to round up poll() and
1044 * select() etc timeout values. These are in nanoseconds.
1045 */
1046 u64 timer_slack_ns;
1047 u64 default_timer_slack_ns;
1048
1049 #ifdef CONFIG_KASAN
1050 unsigned int kasan_depth;
1051 #endif
1052
1053 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1054 /* Index of current stored address in ret_stack: */
1055 int curr_ret_stack;
1056 int curr_ret_depth;
1057
1058 /* Stack of return addresses for return function tracing: */
1059 struct ftrace_ret_stack *ret_stack;
1060
1061 /* Timestamp for last schedule: */
1062 unsigned long long ftrace_timestamp;
1063
1064 /*
1065 * Number of functions that haven't been traced
1066 * because of depth overrun:
1067 */
1068 atomic_t trace_overrun;
1069
1070 /* Pause tracing: */
1071 atomic_t tracing_graph_pause;
1072 #endif
1073
1074 #ifdef CONFIG_TRACING
1075 /* State flags for use by tracers: */
1076 unsigned long trace;
1077
1078 /* Bitmask and counter of trace recursion: */
1079 unsigned long trace_recursion;
1080 #endif /* CONFIG_TRACING */
1081
1082 #ifdef CONFIG_KCOV
1083 /* Coverage collection mode enabled for this task (0 if disabled): */
1084 enum kcov_mode kcov_mode;
1085
1086 /* Size of the kcov_area: */
1087 unsigned int kcov_size;
1088
1089 /* Buffer for coverage collection: */
1090 void *kcov_area;
1091
1092 /* KCOV descriptor wired with this task or NULL: */
1093 struct kcov *kcov;
1094 #endif
1095
1096 #ifdef CONFIG_MEMCG
1097 struct mem_cgroup *memcg_in_oom;
1098 gfp_t memcg_oom_gfp_mask;
1099 int memcg_oom_order;
1100
1101 /* Number of pages to reclaim on returning to userland: */
1102 unsigned int memcg_nr_pages_over_high;
1103 #endif
1104
1105 #ifdef CONFIG_UPROBES
1106 struct uprobe_task *utask;
1107 #endif
1108 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1109 unsigned int sequential_io;
1110 unsigned int sequential_io_avg;
1111 #endif
1112 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1113 unsigned long task_state_change;
1114 #endif
1115 int pagefault_disabled;
1116 #ifdef CONFIG_MMU
1117 struct task_struct *oom_reaper_list;
1118 #endif
1119 #ifdef CONFIG_VMAP_STACK
1120 struct vm_struct *stack_vm_area;
1121 #endif
1122 #ifdef CONFIG_THREAD_INFO_IN_TASK
1123 /* A live task holds one reference: */
1124 atomic_t stack_refcount;
1125 #endif
1126 #ifdef CONFIG_LIVEPATCH
1127 int patch_state;
1128 #endif
1129 #ifdef CONFIG_SECURITY
1130 /* Used by LSM modules for access restriction: */
1131 void *security;
1132 #endif
1133
1134 /*
1135 * New fields for task_struct should be added above here, so that
1136 * they are included in the randomized portion of task_struct.
1137 */
1138 randomized_struct_fields_end
1139
1140 /* CPU-specific state of this task: */
1141 struct thread_struct thread;
1142
1143 /*
1144 * WARNING: on x86, 'thread_struct' contains a variable-sized
1145 * structure. It *MUST* be at the end of 'task_struct'.
1146 *
1147 * Do not put anything below here!
1148 */
1149 };
1150
1151 static inline struct pid *task_pid(struct task_struct *task)
1152 {
1153 return task->pids[PIDTYPE_PID].pid;
1154 }
1155
1156 static inline struct pid *task_tgid(struct task_struct *task)
1157 {
1158 return task->group_leader->pids[PIDTYPE_PID].pid;
1159 }
1160
1161 /*
1162 * Without tasklist or RCU lock it is not safe to dereference
1163 * the result of task_pgrp/task_session even if task == current,
1164 * we can race with another thread doing sys_setsid/sys_setpgid.
1165 */
1166 static inline struct pid *task_pgrp(struct task_struct *task)
1167 {
1168 return task->group_leader->pids[PIDTYPE_PGID].pid;
1169 }
1170
1171 static inline struct pid *task_session(struct task_struct *task)
1172 {
1173 return task->group_leader->pids[PIDTYPE_SID].pid;
1174 }
1175
1176 /*
1177 * the helpers to get the task's different pids as they are seen
1178 * from various namespaces
1179 *
1180 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1181 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1182 * current.
1183 * task_xid_nr_ns() : id seen from the ns specified;
1184 *
1185 * see also pid_nr() etc in include/linux/pid.h
1186 */
1187 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1188
1189 static inline pid_t task_pid_nr(struct task_struct *tsk)
1190 {
1191 return tsk->pid;
1192 }
1193
1194 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1195 {
1196 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1197 }
1198
1199 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1200 {
1201 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1202 }
1203
1204
1205 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1206 {
1207 return tsk->tgid;
1208 }
1209
1210 /**
1211 * pid_alive - check that a task structure is not stale
1212 * @p: Task structure to be checked.
1213 *
1214 * Test if a process is not yet dead (at most zombie state)
1215 * If pid_alive fails, then pointers within the task structure
1216 * can be stale and must not be dereferenced.
1217 *
1218 * Return: 1 if the process is alive. 0 otherwise.
1219 */
1220 static inline int pid_alive(const struct task_struct *p)
1221 {
1222 return p->pids[PIDTYPE_PID].pid != NULL;
1223 }
1224
1225 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1226 {
1227 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1228 }
1229
1230 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1231 {
1232 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1233 }
1234
1235
1236 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1237 {
1238 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1239 }
1240
1241 static inline pid_t task_session_vnr(struct task_struct *tsk)
1242 {
1243 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1244 }
1245
1246 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1247 {
1248 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1249 }
1250
1251 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1252 {
1253 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1254 }
1255
1256 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1257 {
1258 pid_t pid = 0;
1259
1260 rcu_read_lock();
1261 if (pid_alive(tsk))
1262 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1263 rcu_read_unlock();
1264
1265 return pid;
1266 }
1267
1268 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1269 {
1270 return task_ppid_nr_ns(tsk, &init_pid_ns);
1271 }
1272
1273 /* Obsolete, do not use: */
1274 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1275 {
1276 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1277 }
1278
1279 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1280 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1281
1282 static inline unsigned int task_state_index(struct task_struct *tsk)
1283 {
1284 unsigned int tsk_state = READ_ONCE(tsk->state);
1285 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1286
1287 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1288
1289 if (tsk_state == TASK_IDLE)
1290 state = TASK_REPORT_IDLE;
1291
1292 return fls(state);
1293 }
1294
1295 static inline char task_index_to_char(unsigned int state)
1296 {
1297 static const char state_char[] = "RSDTtXZPI";
1298
1299 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1300
1301 return state_char[state];
1302 }
1303
1304 static inline char task_state_to_char(struct task_struct *tsk)
1305 {
1306 return task_index_to_char(task_state_index(tsk));
1307 }
1308
1309 /**
1310 * is_global_init - check if a task structure is init. Since init
1311 * is free to have sub-threads we need to check tgid.
1312 * @tsk: Task structure to be checked.
1313 *
1314 * Check if a task structure is the first user space task the kernel created.
1315 *
1316 * Return: 1 if the task structure is init. 0 otherwise.
1317 */
1318 static inline int is_global_init(struct task_struct *tsk)
1319 {
1320 return task_tgid_nr(tsk) == 1;
1321 }
1322
1323 extern struct pid *cad_pid;
1324
1325 /*
1326 * Per process flags
1327 */
1328 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1329 #define PF_EXITING 0x00000004 /* Getting shut down */
1330 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1331 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1332 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1333 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1334 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1335 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1336 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1337 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1338 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1339 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1340 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1341 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1342 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1343 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1344 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1345 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1346 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1347 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1348 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1349 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1350 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1351 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1352 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1353 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1354 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1355
1356 /*
1357 * Only the _current_ task can read/write to tsk->flags, but other
1358 * tasks can access tsk->flags in readonly mode for example
1359 * with tsk_used_math (like during threaded core dumping).
1360 * There is however an exception to this rule during ptrace
1361 * or during fork: the ptracer task is allowed to write to the
1362 * child->flags of its traced child (same goes for fork, the parent
1363 * can write to the child->flags), because we're guaranteed the
1364 * child is not running and in turn not changing child->flags
1365 * at the same time the parent does it.
1366 */
1367 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1368 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1369 #define clear_used_math() clear_stopped_child_used_math(current)
1370 #define set_used_math() set_stopped_child_used_math(current)
1371
1372 #define conditional_stopped_child_used_math(condition, child) \
1373 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1374
1375 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1376
1377 #define copy_to_stopped_child_used_math(child) \
1378 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1379
1380 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1381 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1382 #define used_math() tsk_used_math(current)
1383
1384 static inline bool is_percpu_thread(void)
1385 {
1386 #ifdef CONFIG_SMP
1387 return (current->flags & PF_NO_SETAFFINITY) &&
1388 (current->nr_cpus_allowed == 1);
1389 #else
1390 return true;
1391 #endif
1392 }
1393
1394 /* Per-process atomic flags. */
1395 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1396 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1397 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1398 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1399 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1400 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1401 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1402
1403 #define TASK_PFA_TEST(name, func) \
1404 static inline bool task_##func(struct task_struct *p) \
1405 { return test_bit(PFA_##name, &p->atomic_flags); }
1406
1407 #define TASK_PFA_SET(name, func) \
1408 static inline void task_set_##func(struct task_struct *p) \
1409 { set_bit(PFA_##name, &p->atomic_flags); }
1410
1411 #define TASK_PFA_CLEAR(name, func) \
1412 static inline void task_clear_##func(struct task_struct *p) \
1413 { clear_bit(PFA_##name, &p->atomic_flags); }
1414
1415 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1416 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1417
1418 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1419 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1420 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1421
1422 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1423 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1424 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1425
1426 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1427 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1428 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1429
1430 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1431 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1432
1433 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1434 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1435 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1436
1437 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1438 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1439
1440 static inline void
1441 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1442 {
1443 current->flags &= ~flags;
1444 current->flags |= orig_flags & flags;
1445 }
1446
1447 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1448 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1449 #ifdef CONFIG_SMP
1450 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1451 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1452 #else
1453 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1454 {
1455 }
1456 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1457 {
1458 if (!cpumask_test_cpu(0, new_mask))
1459 return -EINVAL;
1460 return 0;
1461 }
1462 #endif
1463
1464 #ifndef cpu_relax_yield
1465 #define cpu_relax_yield() cpu_relax()
1466 #endif
1467
1468 extern int yield_to(struct task_struct *p, bool preempt);
1469 extern void set_user_nice(struct task_struct *p, long nice);
1470 extern int task_prio(const struct task_struct *p);
1471
1472 /**
1473 * task_nice - return the nice value of a given task.
1474 * @p: the task in question.
1475 *
1476 * Return: The nice value [ -20 ... 0 ... 19 ].
1477 */
1478 static inline int task_nice(const struct task_struct *p)
1479 {
1480 return PRIO_TO_NICE((p)->static_prio);
1481 }
1482
1483 extern int can_nice(const struct task_struct *p, const int nice);
1484 extern int task_curr(const struct task_struct *p);
1485 extern int idle_cpu(int cpu);
1486 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1487 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1488 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1489 extern struct task_struct *idle_task(int cpu);
1490
1491 /**
1492 * is_idle_task - is the specified task an idle task?
1493 * @p: the task in question.
1494 *
1495 * Return: 1 if @p is an idle task. 0 otherwise.
1496 */
1497 static inline bool is_idle_task(const struct task_struct *p)
1498 {
1499 return !!(p->flags & PF_IDLE);
1500 }
1501
1502 extern struct task_struct *curr_task(int cpu);
1503 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1504
1505 void yield(void);
1506
1507 union thread_union {
1508 #ifndef CONFIG_THREAD_INFO_IN_TASK
1509 struct thread_info thread_info;
1510 #endif
1511 unsigned long stack[THREAD_SIZE/sizeof(long)];
1512 };
1513
1514 #ifdef CONFIG_THREAD_INFO_IN_TASK
1515 static inline struct thread_info *task_thread_info(struct task_struct *task)
1516 {
1517 return &task->thread_info;
1518 }
1519 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1520 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1521 #endif
1522
1523 /*
1524 * find a task by one of its numerical ids
1525 *
1526 * find_task_by_pid_ns():
1527 * finds a task by its pid in the specified namespace
1528 * find_task_by_vpid():
1529 * finds a task by its virtual pid
1530 *
1531 * see also find_vpid() etc in include/linux/pid.h
1532 */
1533
1534 extern struct task_struct *find_task_by_vpid(pid_t nr);
1535 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1536
1537 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1538 extern int wake_up_process(struct task_struct *tsk);
1539 extern void wake_up_new_task(struct task_struct *tsk);
1540
1541 #ifdef CONFIG_SMP
1542 extern void kick_process(struct task_struct *tsk);
1543 #else
1544 static inline void kick_process(struct task_struct *tsk) { }
1545 #endif
1546
1547 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1548
1549 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1550 {
1551 __set_task_comm(tsk, from, false);
1552 }
1553
1554 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1555 #define get_task_comm(buf, tsk) ({ \
1556 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1557 __get_task_comm(buf, sizeof(buf), tsk); \
1558 })
1559
1560 #ifdef CONFIG_SMP
1561 void scheduler_ipi(void);
1562 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1563 #else
1564 static inline void scheduler_ipi(void) { }
1565 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1566 {
1567 return 1;
1568 }
1569 #endif
1570
1571 /*
1572 * Set thread flags in other task's structures.
1573 * See asm/thread_info.h for TIF_xxxx flags available:
1574 */
1575 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1576 {
1577 set_ti_thread_flag(task_thread_info(tsk), flag);
1578 }
1579
1580 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1581 {
1582 clear_ti_thread_flag(task_thread_info(tsk), flag);
1583 }
1584
1585 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1586 {
1587 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1588 }
1589
1590 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1591 {
1592 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1593 }
1594
1595 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1596 {
1597 return test_ti_thread_flag(task_thread_info(tsk), flag);
1598 }
1599
1600 static inline void set_tsk_need_resched(struct task_struct *tsk)
1601 {
1602 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1603 }
1604
1605 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1606 {
1607 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1608 }
1609
1610 static inline int test_tsk_need_resched(struct task_struct *tsk)
1611 {
1612 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1613 }
1614
1615 /*
1616 * cond_resched() and cond_resched_lock(): latency reduction via
1617 * explicit rescheduling in places that are safe. The return
1618 * value indicates whether a reschedule was done in fact.
1619 * cond_resched_lock() will drop the spinlock before scheduling,
1620 * cond_resched_softirq() will enable bhs before scheduling.
1621 */
1622 #ifndef CONFIG_PREEMPT
1623 extern int _cond_resched(void);
1624 #else
1625 static inline int _cond_resched(void) { return 0; }
1626 #endif
1627
1628 #define cond_resched() ({ \
1629 ___might_sleep(__FILE__, __LINE__, 0); \
1630 _cond_resched(); \
1631 })
1632
1633 extern int __cond_resched_lock(spinlock_t *lock);
1634
1635 #define cond_resched_lock(lock) ({ \
1636 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1637 __cond_resched_lock(lock); \
1638 })
1639
1640 extern int __cond_resched_softirq(void);
1641
1642 #define cond_resched_softirq() ({ \
1643 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1644 __cond_resched_softirq(); \
1645 })
1646
1647 static inline void cond_resched_rcu(void)
1648 {
1649 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1650 rcu_read_unlock();
1651 cond_resched();
1652 rcu_read_lock();
1653 #endif
1654 }
1655
1656 /*
1657 * Does a critical section need to be broken due to another
1658 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1659 * but a general need for low latency)
1660 */
1661 static inline int spin_needbreak(spinlock_t *lock)
1662 {
1663 #ifdef CONFIG_PREEMPT
1664 return spin_is_contended(lock);
1665 #else
1666 return 0;
1667 #endif
1668 }
1669
1670 static __always_inline bool need_resched(void)
1671 {
1672 return unlikely(tif_need_resched());
1673 }
1674
1675 /*
1676 * Wrappers for p->thread_info->cpu access. No-op on UP.
1677 */
1678 #ifdef CONFIG_SMP
1679
1680 static inline unsigned int task_cpu(const struct task_struct *p)
1681 {
1682 #ifdef CONFIG_THREAD_INFO_IN_TASK
1683 return READ_ONCE(p->cpu);
1684 #else
1685 return READ_ONCE(task_thread_info(p)->cpu);
1686 #endif
1687 }
1688
1689 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1690
1691 #else
1692
1693 static inline unsigned int task_cpu(const struct task_struct *p)
1694 {
1695 return 0;
1696 }
1697
1698 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1699 {
1700 }
1701
1702 #endif /* CONFIG_SMP */
1703
1704 /*
1705 * In order to reduce various lock holder preemption latencies provide an
1706 * interface to see if a vCPU is currently running or not.
1707 *
1708 * This allows us to terminate optimistic spin loops and block, analogous to
1709 * the native optimistic spin heuristic of testing if the lock owner task is
1710 * running or not.
1711 */
1712 #ifndef vcpu_is_preempted
1713 # define vcpu_is_preempted(cpu) false
1714 #endif
1715
1716 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1717 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1718
1719 #ifndef TASK_SIZE_OF
1720 #define TASK_SIZE_OF(tsk) TASK_SIZE
1721 #endif
1722
1723 #endif