]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(unsigned long ticks);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #else
340 /* Avoid need for ifdefs elsewhere in the code */
341 enum { sysctl_hung_task_timeout_secs = 0 };
342 #endif
343
344 /* Attach to any functions which should be ignored in wchan output. */
345 #define __sched __attribute__((__section__(".sched.text")))
346
347 /* Linker adds these: start and end of __sched functions */
348 extern char __sched_text_start[], __sched_text_end[];
349
350 /* Is this address in the __sched functions? */
351 extern int in_sched_functions(unsigned long addr);
352
353 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
354 extern signed long schedule_timeout(signed long timeout);
355 extern signed long schedule_timeout_interruptible(signed long timeout);
356 extern signed long schedule_timeout_killable(signed long timeout);
357 extern signed long schedule_timeout_uninterruptible(signed long timeout);
358 asmlinkage void schedule(void);
359 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
360
361 struct nsproxy;
362 struct user_namespace;
363
364 /*
365 * Default maximum number of active map areas, this limits the number of vmas
366 * per mm struct. Users can overwrite this number by sysctl but there is a
367 * problem.
368 *
369 * When a program's coredump is generated as ELF format, a section is created
370 * per a vma. In ELF, the number of sections is represented in unsigned short.
371 * This means the number of sections should be smaller than 65535 at coredump.
372 * Because the kernel adds some informative sections to a image of program at
373 * generating coredump, we need some margin. The number of extra sections is
374 * 1-3 now and depends on arch. We use "5" as safe margin, here.
375 */
376 #define MAPCOUNT_ELF_CORE_MARGIN (5)
377 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
378
379 extern int sysctl_max_map_count;
380
381 #include <linux/aio.h>
382
383 #ifdef CONFIG_MMU
384 extern void arch_pick_mmap_layout(struct mm_struct *mm);
385 extern unsigned long
386 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
387 unsigned long, unsigned long);
388 extern unsigned long
389 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
390 unsigned long len, unsigned long pgoff,
391 unsigned long flags);
392 extern void arch_unmap_area(struct mm_struct *, unsigned long);
393 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
394 #else
395 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
396 #endif
397
398
399 extern void set_dumpable(struct mm_struct *mm, int value);
400 extern int get_dumpable(struct mm_struct *mm);
401
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
406
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
409
410 /* coredump filter bits */
411 #define MMF_DUMP_ANON_PRIVATE 2
412 #define MMF_DUMP_ANON_SHARED 3
413 #define MMF_DUMP_MAPPED_PRIVATE 4
414 #define MMF_DUMP_MAPPED_SHARED 5
415 #define MMF_DUMP_ELF_HEADERS 6
416 #define MMF_DUMP_HUGETLB_PRIVATE 7
417 #define MMF_DUMP_HUGETLB_SHARED 8
418
419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
420 #define MMF_DUMP_FILTER_BITS 7
421 #define MMF_DUMP_FILTER_MASK \
422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
423 #define MMF_DUMP_FILTER_DEFAULT \
424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
426
427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
429 #else
430 # define MMF_DUMP_MASK_DEFAULT_ELF 0
431 #endif
432 /* leave room for more dump flags */
433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
434
435 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
436
437 struct sighand_struct {
438 atomic_t count;
439 struct k_sigaction action[_NSIG];
440 spinlock_t siglock;
441 wait_queue_head_t signalfd_wqh;
442 };
443
444 struct pacct_struct {
445 int ac_flag;
446 long ac_exitcode;
447 unsigned long ac_mem;
448 cputime_t ac_utime, ac_stime;
449 unsigned long ac_minflt, ac_majflt;
450 };
451
452 struct cpu_itimer {
453 cputime_t expires;
454 cputime_t incr;
455 u32 error;
456 u32 incr_error;
457 };
458
459 /**
460 * struct task_cputime - collected CPU time counts
461 * @utime: time spent in user mode, in &cputime_t units
462 * @stime: time spent in kernel mode, in &cputime_t units
463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
464 *
465 * This structure groups together three kinds of CPU time that are
466 * tracked for threads and thread groups. Most things considering
467 * CPU time want to group these counts together and treat all three
468 * of them in parallel.
469 */
470 struct task_cputime {
471 cputime_t utime;
472 cputime_t stime;
473 unsigned long long sum_exec_runtime;
474 };
475 /* Alternate field names when used to cache expirations. */
476 #define prof_exp stime
477 #define virt_exp utime
478 #define sched_exp sum_exec_runtime
479
480 #define INIT_CPUTIME \
481 (struct task_cputime) { \
482 .utime = cputime_zero, \
483 .stime = cputime_zero, \
484 .sum_exec_runtime = 0, \
485 }
486
487 /*
488 * Disable preemption until the scheduler is running.
489 * Reset by start_kernel()->sched_init()->init_idle().
490 *
491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
492 * before the scheduler is active -- see should_resched().
493 */
494 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
495
496 /**
497 * struct thread_group_cputimer - thread group interval timer counts
498 * @cputime: thread group interval timers.
499 * @running: non-zero when there are timers running and
500 * @cputime receives updates.
501 * @lock: lock for fields in this struct.
502 *
503 * This structure contains the version of task_cputime, above, that is
504 * used for thread group CPU timer calculations.
505 */
506 struct thread_group_cputimer {
507 struct task_cputime cputime;
508 int running;
509 spinlock_t lock;
510 };
511
512 /*
513 * NOTE! "signal_struct" does not have it's own
514 * locking, because a shared signal_struct always
515 * implies a shared sighand_struct, so locking
516 * sighand_struct is always a proper superset of
517 * the locking of signal_struct.
518 */
519 struct signal_struct {
520 atomic_t sigcnt;
521 atomic_t live;
522 int nr_threads;
523
524 wait_queue_head_t wait_chldexit; /* for wait4() */
525
526 /* current thread group signal load-balancing target: */
527 struct task_struct *curr_target;
528
529 /* shared signal handling: */
530 struct sigpending shared_pending;
531
532 /* thread group exit support */
533 int group_exit_code;
534 /* overloaded:
535 * - notify group_exit_task when ->count is equal to notify_count
536 * - everyone except group_exit_task is stopped during signal delivery
537 * of fatal signals, group_exit_task processes the signal.
538 */
539 int notify_count;
540 struct task_struct *group_exit_task;
541
542 /* thread group stop support, overloads group_exit_code too */
543 int group_stop_count;
544 unsigned int flags; /* see SIGNAL_* flags below */
545
546 /* POSIX.1b Interval Timers */
547 struct list_head posix_timers;
548
549 /* ITIMER_REAL timer for the process */
550 struct hrtimer real_timer;
551 struct pid *leader_pid;
552 ktime_t it_real_incr;
553
554 /*
555 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
556 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
557 * values are defined to 0 and 1 respectively
558 */
559 struct cpu_itimer it[2];
560
561 /*
562 * Thread group totals for process CPU timers.
563 * See thread_group_cputimer(), et al, for details.
564 */
565 struct thread_group_cputimer cputimer;
566
567 /* Earliest-expiration cache. */
568 struct task_cputime cputime_expires;
569
570 struct list_head cpu_timers[3];
571
572 struct pid *tty_old_pgrp;
573
574 /* boolean value for session group leader */
575 int leader;
576
577 struct tty_struct *tty; /* NULL if no tty */
578
579 /*
580 * Cumulative resource counters for dead threads in the group,
581 * and for reaped dead child processes forked by this group.
582 * Live threads maintain their own counters and add to these
583 * in __exit_signal, except for the group leader.
584 */
585 cputime_t utime, stime, cutime, cstime;
586 cputime_t gtime;
587 cputime_t cgtime;
588 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
589 cputime_t prev_utime, prev_stime;
590 #endif
591 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
592 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
593 unsigned long inblock, oublock, cinblock, coublock;
594 unsigned long maxrss, cmaxrss;
595 struct task_io_accounting ioac;
596
597 /*
598 * Cumulative ns of schedule CPU time fo dead threads in the
599 * group, not including a zombie group leader, (This only differs
600 * from jiffies_to_ns(utime + stime) if sched_clock uses something
601 * other than jiffies.)
602 */
603 unsigned long long sum_sched_runtime;
604
605 /*
606 * We don't bother to synchronize most readers of this at all,
607 * because there is no reader checking a limit that actually needs
608 * to get both rlim_cur and rlim_max atomically, and either one
609 * alone is a single word that can safely be read normally.
610 * getrlimit/setrlimit use task_lock(current->group_leader) to
611 * protect this instead of the siglock, because they really
612 * have no need to disable irqs.
613 */
614 struct rlimit rlim[RLIM_NLIMITS];
615
616 #ifdef CONFIG_BSD_PROCESS_ACCT
617 struct pacct_struct pacct; /* per-process accounting information */
618 #endif
619 #ifdef CONFIG_TASKSTATS
620 struct taskstats *stats;
621 #endif
622 #ifdef CONFIG_AUDIT
623 unsigned audit_tty;
624 struct tty_audit_buf *tty_audit_buf;
625 #endif
626
627 int oom_adj; /* OOM kill score adjustment (bit shift) */
628 int oom_score_adj; /* OOM kill score adjustment */
629
630 struct mutex cred_guard_mutex; /* guard against foreign influences on
631 * credential calculations
632 * (notably. ptrace) */
633 };
634
635 /* Context switch must be unlocked if interrupts are to be enabled */
636 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
637 # define __ARCH_WANT_UNLOCKED_CTXSW
638 #endif
639
640 /*
641 * Bits in flags field of signal_struct.
642 */
643 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
644 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
645 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
646 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
647 /*
648 * Pending notifications to parent.
649 */
650 #define SIGNAL_CLD_STOPPED 0x00000010
651 #define SIGNAL_CLD_CONTINUED 0x00000020
652 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
653
654 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
655
656 /* If true, all threads except ->group_exit_task have pending SIGKILL */
657 static inline int signal_group_exit(const struct signal_struct *sig)
658 {
659 return (sig->flags & SIGNAL_GROUP_EXIT) ||
660 (sig->group_exit_task != NULL);
661 }
662
663 /*
664 * Some day this will be a full-fledged user tracking system..
665 */
666 struct user_struct {
667 atomic_t __count; /* reference count */
668 atomic_t processes; /* How many processes does this user have? */
669 atomic_t files; /* How many open files does this user have? */
670 atomic_t sigpending; /* How many pending signals does this user have? */
671 #ifdef CONFIG_INOTIFY_USER
672 atomic_t inotify_watches; /* How many inotify watches does this user have? */
673 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
674 #endif
675 #ifdef CONFIG_FANOTIFY
676 atomic_t fanotify_listeners;
677 #endif
678 #ifdef CONFIG_EPOLL
679 atomic_t epoll_watches; /* The number of file descriptors currently watched */
680 #endif
681 #ifdef CONFIG_POSIX_MQUEUE
682 /* protected by mq_lock */
683 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
684 #endif
685 unsigned long locked_shm; /* How many pages of mlocked shm ? */
686
687 #ifdef CONFIG_KEYS
688 struct key *uid_keyring; /* UID specific keyring */
689 struct key *session_keyring; /* UID's default session keyring */
690 #endif
691
692 /* Hash table maintenance information */
693 struct hlist_node uidhash_node;
694 uid_t uid;
695 struct user_namespace *user_ns;
696
697 #ifdef CONFIG_PERF_EVENTS
698 atomic_long_t locked_vm;
699 #endif
700 };
701
702 extern int uids_sysfs_init(void);
703
704 extern struct user_struct *find_user(uid_t);
705
706 extern struct user_struct root_user;
707 #define INIT_USER (&root_user)
708
709
710 struct backing_dev_info;
711 struct reclaim_state;
712
713 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
714 struct sched_info {
715 /* cumulative counters */
716 unsigned long pcount; /* # of times run on this cpu */
717 unsigned long long run_delay; /* time spent waiting on a runqueue */
718
719 /* timestamps */
720 unsigned long long last_arrival,/* when we last ran on a cpu */
721 last_queued; /* when we were last queued to run */
722 #ifdef CONFIG_SCHEDSTATS
723 /* BKL stats */
724 unsigned int bkl_count;
725 #endif
726 };
727 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
728
729 #ifdef CONFIG_TASK_DELAY_ACCT
730 struct task_delay_info {
731 spinlock_t lock;
732 unsigned int flags; /* Private per-task flags */
733
734 /* For each stat XXX, add following, aligned appropriately
735 *
736 * struct timespec XXX_start, XXX_end;
737 * u64 XXX_delay;
738 * u32 XXX_count;
739 *
740 * Atomicity of updates to XXX_delay, XXX_count protected by
741 * single lock above (split into XXX_lock if contention is an issue).
742 */
743
744 /*
745 * XXX_count is incremented on every XXX operation, the delay
746 * associated with the operation is added to XXX_delay.
747 * XXX_delay contains the accumulated delay time in nanoseconds.
748 */
749 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
750 u64 blkio_delay; /* wait for sync block io completion */
751 u64 swapin_delay; /* wait for swapin block io completion */
752 u32 blkio_count; /* total count of the number of sync block */
753 /* io operations performed */
754 u32 swapin_count; /* total count of the number of swapin block */
755 /* io operations performed */
756
757 struct timespec freepages_start, freepages_end;
758 u64 freepages_delay; /* wait for memory reclaim */
759 u32 freepages_count; /* total count of memory reclaim */
760 };
761 #endif /* CONFIG_TASK_DELAY_ACCT */
762
763 static inline int sched_info_on(void)
764 {
765 #ifdef CONFIG_SCHEDSTATS
766 return 1;
767 #elif defined(CONFIG_TASK_DELAY_ACCT)
768 extern int delayacct_on;
769 return delayacct_on;
770 #else
771 return 0;
772 #endif
773 }
774
775 enum cpu_idle_type {
776 CPU_IDLE,
777 CPU_NOT_IDLE,
778 CPU_NEWLY_IDLE,
779 CPU_MAX_IDLE_TYPES
780 };
781
782 /*
783 * sched-domains (multiprocessor balancing) declarations:
784 */
785
786 /*
787 * Increase resolution of nice-level calculations:
788 */
789 #define SCHED_LOAD_SHIFT 10
790 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
791
792 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
793
794 #ifdef CONFIG_SMP
795 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
796 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
797 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
798 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
799 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
800 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
801 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
802 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
803 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
804 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
805 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
806 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
807 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
808
809 enum powersavings_balance_level {
810 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
811 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
812 * first for long running threads
813 */
814 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
815 * cpu package for power savings
816 */
817 MAX_POWERSAVINGS_BALANCE_LEVELS
818 };
819
820 extern int sched_mc_power_savings, sched_smt_power_savings;
821
822 static inline int sd_balance_for_mc_power(void)
823 {
824 if (sched_smt_power_savings)
825 return SD_POWERSAVINGS_BALANCE;
826
827 if (!sched_mc_power_savings)
828 return SD_PREFER_SIBLING;
829
830 return 0;
831 }
832
833 static inline int sd_balance_for_package_power(void)
834 {
835 if (sched_mc_power_savings | sched_smt_power_savings)
836 return SD_POWERSAVINGS_BALANCE;
837
838 return SD_PREFER_SIBLING;
839 }
840
841 extern int __weak arch_sd_sibiling_asym_packing(void);
842
843 /*
844 * Optimise SD flags for power savings:
845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
846 * Keep default SD flags if sched_{smt,mc}_power_saving=0
847 */
848
849 static inline int sd_power_saving_flags(void)
850 {
851 if (sched_mc_power_savings | sched_smt_power_savings)
852 return SD_BALANCE_NEWIDLE;
853
854 return 0;
855 }
856
857 struct sched_group {
858 struct sched_group *next; /* Must be a circular list */
859
860 /*
861 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
862 * single CPU.
863 */
864 unsigned int cpu_power, cpu_power_orig;
865 unsigned int group_weight;
866
867 /*
868 * The CPUs this group covers.
869 *
870 * NOTE: this field is variable length. (Allocated dynamically
871 * by attaching extra space to the end of the structure,
872 * depending on how many CPUs the kernel has booted up with)
873 *
874 * It is also be embedded into static data structures at build
875 * time. (See 'struct static_sched_group' in kernel/sched.c)
876 */
877 unsigned long cpumask[0];
878 };
879
880 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
881 {
882 return to_cpumask(sg->cpumask);
883 }
884
885 enum sched_domain_level {
886 SD_LV_NONE = 0,
887 SD_LV_SIBLING,
888 SD_LV_MC,
889 SD_LV_BOOK,
890 SD_LV_CPU,
891 SD_LV_NODE,
892 SD_LV_ALLNODES,
893 SD_LV_MAX
894 };
895
896 struct sched_domain_attr {
897 int relax_domain_level;
898 };
899
900 #define SD_ATTR_INIT (struct sched_domain_attr) { \
901 .relax_domain_level = -1, \
902 }
903
904 struct sched_domain {
905 /* These fields must be setup */
906 struct sched_domain *parent; /* top domain must be null terminated */
907 struct sched_domain *child; /* bottom domain must be null terminated */
908 struct sched_group *groups; /* the balancing groups of the domain */
909 unsigned long min_interval; /* Minimum balance interval ms */
910 unsigned long max_interval; /* Maximum balance interval ms */
911 unsigned int busy_factor; /* less balancing by factor if busy */
912 unsigned int imbalance_pct; /* No balance until over watermark */
913 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
914 unsigned int busy_idx;
915 unsigned int idle_idx;
916 unsigned int newidle_idx;
917 unsigned int wake_idx;
918 unsigned int forkexec_idx;
919 unsigned int smt_gain;
920 int flags; /* See SD_* */
921 enum sched_domain_level level;
922
923 /* Runtime fields. */
924 unsigned long last_balance; /* init to jiffies. units in jiffies */
925 unsigned int balance_interval; /* initialise to 1. units in ms. */
926 unsigned int nr_balance_failed; /* initialise to 0 */
927
928 u64 last_update;
929
930 #ifdef CONFIG_SCHEDSTATS
931 /* load_balance() stats */
932 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
940
941 /* Active load balancing */
942 unsigned int alb_count;
943 unsigned int alb_failed;
944 unsigned int alb_pushed;
945
946 /* SD_BALANCE_EXEC stats */
947 unsigned int sbe_count;
948 unsigned int sbe_balanced;
949 unsigned int sbe_pushed;
950
951 /* SD_BALANCE_FORK stats */
952 unsigned int sbf_count;
953 unsigned int sbf_balanced;
954 unsigned int sbf_pushed;
955
956 /* try_to_wake_up() stats */
957 unsigned int ttwu_wake_remote;
958 unsigned int ttwu_move_affine;
959 unsigned int ttwu_move_balance;
960 #endif
961 #ifdef CONFIG_SCHED_DEBUG
962 char *name;
963 #endif
964
965 unsigned int span_weight;
966 /*
967 * Span of all CPUs in this domain.
968 *
969 * NOTE: this field is variable length. (Allocated dynamically
970 * by attaching extra space to the end of the structure,
971 * depending on how many CPUs the kernel has booted up with)
972 *
973 * It is also be embedded into static data structures at build
974 * time. (See 'struct static_sched_domain' in kernel/sched.c)
975 */
976 unsigned long span[0];
977 };
978
979 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
980 {
981 return to_cpumask(sd->span);
982 }
983
984 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
985 struct sched_domain_attr *dattr_new);
986
987 /* Allocate an array of sched domains, for partition_sched_domains(). */
988 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
989 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
990
991 /* Test a flag in parent sched domain */
992 static inline int test_sd_parent(struct sched_domain *sd, int flag)
993 {
994 if (sd->parent && (sd->parent->flags & flag))
995 return 1;
996
997 return 0;
998 }
999
1000 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1001 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1002
1003 #else /* CONFIG_SMP */
1004
1005 struct sched_domain_attr;
1006
1007 static inline void
1008 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1009 struct sched_domain_attr *dattr_new)
1010 {
1011 }
1012 #endif /* !CONFIG_SMP */
1013
1014
1015 struct io_context; /* See blkdev.h */
1016
1017
1018 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1019 extern void prefetch_stack(struct task_struct *t);
1020 #else
1021 static inline void prefetch_stack(struct task_struct *t) { }
1022 #endif
1023
1024 struct audit_context; /* See audit.c */
1025 struct mempolicy;
1026 struct pipe_inode_info;
1027 struct uts_namespace;
1028
1029 struct rq;
1030 struct sched_domain;
1031
1032 /*
1033 * wake flags
1034 */
1035 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1036 #define WF_FORK 0x02 /* child wakeup after fork */
1037
1038 #define ENQUEUE_WAKEUP 1
1039 #define ENQUEUE_WAKING 2
1040 #define ENQUEUE_HEAD 4
1041
1042 #define DEQUEUE_SLEEP 1
1043
1044 struct sched_class {
1045 const struct sched_class *next;
1046
1047 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1048 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1049 void (*yield_task) (struct rq *rq);
1050
1051 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1052
1053 struct task_struct * (*pick_next_task) (struct rq *rq);
1054 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1055
1056 #ifdef CONFIG_SMP
1057 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1058 int sd_flag, int flags);
1059
1060 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1061 void (*post_schedule) (struct rq *this_rq);
1062 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1063 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1064
1065 void (*set_cpus_allowed)(struct task_struct *p,
1066 const struct cpumask *newmask);
1067
1068 void (*rq_online)(struct rq *rq);
1069 void (*rq_offline)(struct rq *rq);
1070 #endif
1071
1072 void (*set_curr_task) (struct rq *rq);
1073 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1074 void (*task_fork) (struct task_struct *p);
1075
1076 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1077 int running);
1078 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1079 int running);
1080 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1081 int oldprio, int running);
1082
1083 unsigned int (*get_rr_interval) (struct rq *rq,
1084 struct task_struct *task);
1085
1086 #ifdef CONFIG_FAIR_GROUP_SCHED
1087 void (*task_move_group) (struct task_struct *p, int on_rq);
1088 #endif
1089 };
1090
1091 struct load_weight {
1092 unsigned long weight, inv_weight;
1093 };
1094
1095 #ifdef CONFIG_SCHEDSTATS
1096 struct sched_statistics {
1097 u64 wait_start;
1098 u64 wait_max;
1099 u64 wait_count;
1100 u64 wait_sum;
1101 u64 iowait_count;
1102 u64 iowait_sum;
1103
1104 u64 sleep_start;
1105 u64 sleep_max;
1106 s64 sum_sleep_runtime;
1107
1108 u64 block_start;
1109 u64 block_max;
1110 u64 exec_max;
1111 u64 slice_max;
1112
1113 u64 nr_migrations_cold;
1114 u64 nr_failed_migrations_affine;
1115 u64 nr_failed_migrations_running;
1116 u64 nr_failed_migrations_hot;
1117 u64 nr_forced_migrations;
1118
1119 u64 nr_wakeups;
1120 u64 nr_wakeups_sync;
1121 u64 nr_wakeups_migrate;
1122 u64 nr_wakeups_local;
1123 u64 nr_wakeups_remote;
1124 u64 nr_wakeups_affine;
1125 u64 nr_wakeups_affine_attempts;
1126 u64 nr_wakeups_passive;
1127 u64 nr_wakeups_idle;
1128 };
1129 #endif
1130
1131 struct sched_entity {
1132 struct load_weight load; /* for load-balancing */
1133 struct rb_node run_node;
1134 struct list_head group_node;
1135 unsigned int on_rq;
1136
1137 u64 exec_start;
1138 u64 sum_exec_runtime;
1139 u64 vruntime;
1140 u64 prev_sum_exec_runtime;
1141
1142 u64 nr_migrations;
1143
1144 #ifdef CONFIG_SCHEDSTATS
1145 struct sched_statistics statistics;
1146 #endif
1147
1148 #ifdef CONFIG_FAIR_GROUP_SCHED
1149 struct sched_entity *parent;
1150 /* rq on which this entity is (to be) queued: */
1151 struct cfs_rq *cfs_rq;
1152 /* rq "owned" by this entity/group: */
1153 struct cfs_rq *my_q;
1154 #endif
1155 };
1156
1157 struct sched_rt_entity {
1158 struct list_head run_list;
1159 unsigned long timeout;
1160 unsigned int time_slice;
1161 int nr_cpus_allowed;
1162
1163 struct sched_rt_entity *back;
1164 #ifdef CONFIG_RT_GROUP_SCHED
1165 struct sched_rt_entity *parent;
1166 /* rq on which this entity is (to be) queued: */
1167 struct rt_rq *rt_rq;
1168 /* rq "owned" by this entity/group: */
1169 struct rt_rq *my_q;
1170 #endif
1171 };
1172
1173 struct rcu_node;
1174
1175 enum perf_event_task_context {
1176 perf_invalid_context = -1,
1177 perf_hw_context = 0,
1178 perf_sw_context,
1179 perf_nr_task_contexts,
1180 };
1181
1182 struct task_struct {
1183 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1184 void *stack;
1185 atomic_t usage;
1186 unsigned int flags; /* per process flags, defined below */
1187 unsigned int ptrace;
1188
1189 int lock_depth; /* BKL lock depth */
1190
1191 #ifdef CONFIG_SMP
1192 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1193 int oncpu;
1194 #endif
1195 #endif
1196
1197 int prio, static_prio, normal_prio;
1198 unsigned int rt_priority;
1199 const struct sched_class *sched_class;
1200 struct sched_entity se;
1201 struct sched_rt_entity rt;
1202
1203 #ifdef CONFIG_PREEMPT_NOTIFIERS
1204 /* list of struct preempt_notifier: */
1205 struct hlist_head preempt_notifiers;
1206 #endif
1207
1208 /*
1209 * fpu_counter contains the number of consecutive context switches
1210 * that the FPU is used. If this is over a threshold, the lazy fpu
1211 * saving becomes unlazy to save the trap. This is an unsigned char
1212 * so that after 256 times the counter wraps and the behavior turns
1213 * lazy again; this to deal with bursty apps that only use FPU for
1214 * a short time
1215 */
1216 unsigned char fpu_counter;
1217 #ifdef CONFIG_BLK_DEV_IO_TRACE
1218 unsigned int btrace_seq;
1219 #endif
1220
1221 unsigned int policy;
1222 cpumask_t cpus_allowed;
1223
1224 #ifdef CONFIG_PREEMPT_RCU
1225 int rcu_read_lock_nesting;
1226 char rcu_read_unlock_special;
1227 struct list_head rcu_node_entry;
1228 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1229 #ifdef CONFIG_TREE_PREEMPT_RCU
1230 struct rcu_node *rcu_blocked_node;
1231 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1232 #ifdef CONFIG_RCU_BOOST
1233 struct rt_mutex *rcu_boost_mutex;
1234 #endif /* #ifdef CONFIG_RCU_BOOST */
1235
1236 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1237 struct sched_info sched_info;
1238 #endif
1239
1240 struct list_head tasks;
1241 struct plist_node pushable_tasks;
1242
1243 struct mm_struct *mm, *active_mm;
1244 #if defined(SPLIT_RSS_COUNTING)
1245 struct task_rss_stat rss_stat;
1246 #endif
1247 /* task state */
1248 int exit_state;
1249 int exit_code, exit_signal;
1250 int pdeath_signal; /* The signal sent when the parent dies */
1251 /* ??? */
1252 unsigned int personality;
1253 unsigned did_exec:1;
1254 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1255 * execve */
1256 unsigned in_iowait:1;
1257
1258
1259 /* Revert to default priority/policy when forking */
1260 unsigned sched_reset_on_fork:1;
1261
1262 pid_t pid;
1263 pid_t tgid;
1264
1265 #ifdef CONFIG_CC_STACKPROTECTOR
1266 /* Canary value for the -fstack-protector gcc feature */
1267 unsigned long stack_canary;
1268 #endif
1269
1270 /*
1271 * pointers to (original) parent process, youngest child, younger sibling,
1272 * older sibling, respectively. (p->father can be replaced with
1273 * p->real_parent->pid)
1274 */
1275 struct task_struct *real_parent; /* real parent process */
1276 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1277 /*
1278 * children/sibling forms the list of my natural children
1279 */
1280 struct list_head children; /* list of my children */
1281 struct list_head sibling; /* linkage in my parent's children list */
1282 struct task_struct *group_leader; /* threadgroup leader */
1283
1284 /*
1285 * ptraced is the list of tasks this task is using ptrace on.
1286 * This includes both natural children and PTRACE_ATTACH targets.
1287 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1288 */
1289 struct list_head ptraced;
1290 struct list_head ptrace_entry;
1291
1292 /* PID/PID hash table linkage. */
1293 struct pid_link pids[PIDTYPE_MAX];
1294 struct list_head thread_group;
1295
1296 struct completion *vfork_done; /* for vfork() */
1297 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1298 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1299
1300 cputime_t utime, stime, utimescaled, stimescaled;
1301 cputime_t gtime;
1302 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1303 cputime_t prev_utime, prev_stime;
1304 #endif
1305 unsigned long nvcsw, nivcsw; /* context switch counts */
1306 struct timespec start_time; /* monotonic time */
1307 struct timespec real_start_time; /* boot based time */
1308 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1309 unsigned long min_flt, maj_flt;
1310
1311 struct task_cputime cputime_expires;
1312 struct list_head cpu_timers[3];
1313
1314 /* process credentials */
1315 const struct cred __rcu *real_cred; /* objective and real subjective task
1316 * credentials (COW) */
1317 const struct cred __rcu *cred; /* effective (overridable) subjective task
1318 * credentials (COW) */
1319 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1320
1321 char comm[TASK_COMM_LEN]; /* executable name excluding path
1322 - access with [gs]et_task_comm (which lock
1323 it with task_lock())
1324 - initialized normally by setup_new_exec */
1325 /* file system info */
1326 int link_count, total_link_count;
1327 #ifdef CONFIG_SYSVIPC
1328 /* ipc stuff */
1329 struct sysv_sem sysvsem;
1330 #endif
1331 #ifdef CONFIG_DETECT_HUNG_TASK
1332 /* hung task detection */
1333 unsigned long last_switch_count;
1334 #endif
1335 /* CPU-specific state of this task */
1336 struct thread_struct thread;
1337 /* filesystem information */
1338 struct fs_struct *fs;
1339 /* open file information */
1340 struct files_struct *files;
1341 /* namespaces */
1342 struct nsproxy *nsproxy;
1343 /* signal handlers */
1344 struct signal_struct *signal;
1345 struct sighand_struct *sighand;
1346
1347 sigset_t blocked, real_blocked;
1348 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1349 struct sigpending pending;
1350
1351 unsigned long sas_ss_sp;
1352 size_t sas_ss_size;
1353 int (*notifier)(void *priv);
1354 void *notifier_data;
1355 sigset_t *notifier_mask;
1356 struct audit_context *audit_context;
1357 #ifdef CONFIG_AUDITSYSCALL
1358 uid_t loginuid;
1359 unsigned int sessionid;
1360 #endif
1361 seccomp_t seccomp;
1362
1363 /* Thread group tracking */
1364 u32 parent_exec_id;
1365 u32 self_exec_id;
1366 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1367 * mempolicy */
1368 spinlock_t alloc_lock;
1369
1370 #ifdef CONFIG_GENERIC_HARDIRQS
1371 /* IRQ handler threads */
1372 struct irqaction *irqaction;
1373 #endif
1374
1375 /* Protection of the PI data structures: */
1376 raw_spinlock_t pi_lock;
1377
1378 #ifdef CONFIG_RT_MUTEXES
1379 /* PI waiters blocked on a rt_mutex held by this task */
1380 struct plist_head pi_waiters;
1381 /* Deadlock detection and priority inheritance handling */
1382 struct rt_mutex_waiter *pi_blocked_on;
1383 #endif
1384
1385 #ifdef CONFIG_DEBUG_MUTEXES
1386 /* mutex deadlock detection */
1387 struct mutex_waiter *blocked_on;
1388 #endif
1389 #ifdef CONFIG_TRACE_IRQFLAGS
1390 unsigned int irq_events;
1391 unsigned long hardirq_enable_ip;
1392 unsigned long hardirq_disable_ip;
1393 unsigned int hardirq_enable_event;
1394 unsigned int hardirq_disable_event;
1395 int hardirqs_enabled;
1396 int hardirq_context;
1397 unsigned long softirq_disable_ip;
1398 unsigned long softirq_enable_ip;
1399 unsigned int softirq_disable_event;
1400 unsigned int softirq_enable_event;
1401 int softirqs_enabled;
1402 int softirq_context;
1403 #endif
1404 #ifdef CONFIG_LOCKDEP
1405 # define MAX_LOCK_DEPTH 48UL
1406 u64 curr_chain_key;
1407 int lockdep_depth;
1408 unsigned int lockdep_recursion;
1409 struct held_lock held_locks[MAX_LOCK_DEPTH];
1410 gfp_t lockdep_reclaim_gfp;
1411 #endif
1412
1413 /* journalling filesystem info */
1414 void *journal_info;
1415
1416 /* stacked block device info */
1417 struct bio_list *bio_list;
1418
1419 /* VM state */
1420 struct reclaim_state *reclaim_state;
1421
1422 struct backing_dev_info *backing_dev_info;
1423
1424 struct io_context *io_context;
1425
1426 unsigned long ptrace_message;
1427 siginfo_t *last_siginfo; /* For ptrace use. */
1428 struct task_io_accounting ioac;
1429 #if defined(CONFIG_TASK_XACCT)
1430 u64 acct_rss_mem1; /* accumulated rss usage */
1431 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1432 cputime_t acct_timexpd; /* stime + utime since last update */
1433 #endif
1434 #ifdef CONFIG_CPUSETS
1435 nodemask_t mems_allowed; /* Protected by alloc_lock */
1436 int mems_allowed_change_disable;
1437 int cpuset_mem_spread_rotor;
1438 int cpuset_slab_spread_rotor;
1439 #endif
1440 #ifdef CONFIG_CGROUPS
1441 /* Control Group info protected by css_set_lock */
1442 struct css_set __rcu *cgroups;
1443 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1444 struct list_head cg_list;
1445 #endif
1446 #ifdef CONFIG_FUTEX
1447 struct robust_list_head __user *robust_list;
1448 #ifdef CONFIG_COMPAT
1449 struct compat_robust_list_head __user *compat_robust_list;
1450 #endif
1451 struct list_head pi_state_list;
1452 struct futex_pi_state *pi_state_cache;
1453 #endif
1454 #ifdef CONFIG_PERF_EVENTS
1455 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1456 struct mutex perf_event_mutex;
1457 struct list_head perf_event_list;
1458 #endif
1459 #ifdef CONFIG_NUMA
1460 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1461 short il_next;
1462 #endif
1463 atomic_t fs_excl; /* holding fs exclusive resources */
1464 struct rcu_head rcu;
1465
1466 /*
1467 * cache last used pipe for splice
1468 */
1469 struct pipe_inode_info *splice_pipe;
1470 #ifdef CONFIG_TASK_DELAY_ACCT
1471 struct task_delay_info *delays;
1472 #endif
1473 #ifdef CONFIG_FAULT_INJECTION
1474 int make_it_fail;
1475 #endif
1476 struct prop_local_single dirties;
1477 #ifdef CONFIG_LATENCYTOP
1478 int latency_record_count;
1479 struct latency_record latency_record[LT_SAVECOUNT];
1480 #endif
1481 /*
1482 * time slack values; these are used to round up poll() and
1483 * select() etc timeout values. These are in nanoseconds.
1484 */
1485 unsigned long timer_slack_ns;
1486 unsigned long default_timer_slack_ns;
1487
1488 struct list_head *scm_work_list;
1489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1490 /* Index of current stored address in ret_stack */
1491 int curr_ret_stack;
1492 /* Stack of return addresses for return function tracing */
1493 struct ftrace_ret_stack *ret_stack;
1494 /* time stamp for last schedule */
1495 unsigned long long ftrace_timestamp;
1496 /*
1497 * Number of functions that haven't been traced
1498 * because of depth overrun.
1499 */
1500 atomic_t trace_overrun;
1501 /* Pause for the tracing */
1502 atomic_t tracing_graph_pause;
1503 #endif
1504 #ifdef CONFIG_TRACING
1505 /* state flags for use by tracers */
1506 unsigned long trace;
1507 /* bitmask of trace recursion */
1508 unsigned long trace_recursion;
1509 #endif /* CONFIG_TRACING */
1510 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1511 struct memcg_batch_info {
1512 int do_batch; /* incremented when batch uncharge started */
1513 struct mem_cgroup *memcg; /* target memcg of uncharge */
1514 unsigned long bytes; /* uncharged usage */
1515 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1516 } memcg_batch;
1517 #endif
1518 };
1519
1520 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1521 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1522
1523 /*
1524 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1525 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1526 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1527 * values are inverted: lower p->prio value means higher priority.
1528 *
1529 * The MAX_USER_RT_PRIO value allows the actual maximum
1530 * RT priority to be separate from the value exported to
1531 * user-space. This allows kernel threads to set their
1532 * priority to a value higher than any user task. Note:
1533 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1534 */
1535
1536 #define MAX_USER_RT_PRIO 100
1537 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1538
1539 #define MAX_PRIO (MAX_RT_PRIO + 40)
1540 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1541
1542 static inline int rt_prio(int prio)
1543 {
1544 if (unlikely(prio < MAX_RT_PRIO))
1545 return 1;
1546 return 0;
1547 }
1548
1549 static inline int rt_task(struct task_struct *p)
1550 {
1551 return rt_prio(p->prio);
1552 }
1553
1554 static inline struct pid *task_pid(struct task_struct *task)
1555 {
1556 return task->pids[PIDTYPE_PID].pid;
1557 }
1558
1559 static inline struct pid *task_tgid(struct task_struct *task)
1560 {
1561 return task->group_leader->pids[PIDTYPE_PID].pid;
1562 }
1563
1564 /*
1565 * Without tasklist or rcu lock it is not safe to dereference
1566 * the result of task_pgrp/task_session even if task == current,
1567 * we can race with another thread doing sys_setsid/sys_setpgid.
1568 */
1569 static inline struct pid *task_pgrp(struct task_struct *task)
1570 {
1571 return task->group_leader->pids[PIDTYPE_PGID].pid;
1572 }
1573
1574 static inline struct pid *task_session(struct task_struct *task)
1575 {
1576 return task->group_leader->pids[PIDTYPE_SID].pid;
1577 }
1578
1579 struct pid_namespace;
1580
1581 /*
1582 * the helpers to get the task's different pids as they are seen
1583 * from various namespaces
1584 *
1585 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1586 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1587 * current.
1588 * task_xid_nr_ns() : id seen from the ns specified;
1589 *
1590 * set_task_vxid() : assigns a virtual id to a task;
1591 *
1592 * see also pid_nr() etc in include/linux/pid.h
1593 */
1594 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1595 struct pid_namespace *ns);
1596
1597 static inline pid_t task_pid_nr(struct task_struct *tsk)
1598 {
1599 return tsk->pid;
1600 }
1601
1602 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1603 struct pid_namespace *ns)
1604 {
1605 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1606 }
1607
1608 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1609 {
1610 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1611 }
1612
1613
1614 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1615 {
1616 return tsk->tgid;
1617 }
1618
1619 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1620
1621 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1622 {
1623 return pid_vnr(task_tgid(tsk));
1624 }
1625
1626
1627 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1628 struct pid_namespace *ns)
1629 {
1630 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1631 }
1632
1633 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1634 {
1635 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1636 }
1637
1638
1639 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1640 struct pid_namespace *ns)
1641 {
1642 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1643 }
1644
1645 static inline pid_t task_session_vnr(struct task_struct *tsk)
1646 {
1647 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1648 }
1649
1650 /* obsolete, do not use */
1651 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1652 {
1653 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1654 }
1655
1656 /**
1657 * pid_alive - check that a task structure is not stale
1658 * @p: Task structure to be checked.
1659 *
1660 * Test if a process is not yet dead (at most zombie state)
1661 * If pid_alive fails, then pointers within the task structure
1662 * can be stale and must not be dereferenced.
1663 */
1664 static inline int pid_alive(struct task_struct *p)
1665 {
1666 return p->pids[PIDTYPE_PID].pid != NULL;
1667 }
1668
1669 /**
1670 * is_global_init - check if a task structure is init
1671 * @tsk: Task structure to be checked.
1672 *
1673 * Check if a task structure is the first user space task the kernel created.
1674 */
1675 static inline int is_global_init(struct task_struct *tsk)
1676 {
1677 return tsk->pid == 1;
1678 }
1679
1680 /*
1681 * is_container_init:
1682 * check whether in the task is init in its own pid namespace.
1683 */
1684 extern int is_container_init(struct task_struct *tsk);
1685
1686 extern struct pid *cad_pid;
1687
1688 extern void free_task(struct task_struct *tsk);
1689 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1690
1691 extern void __put_task_struct(struct task_struct *t);
1692
1693 static inline void put_task_struct(struct task_struct *t)
1694 {
1695 if (atomic_dec_and_test(&t->usage))
1696 __put_task_struct(t);
1697 }
1698
1699 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1700 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1701
1702 /*
1703 * Per process flags
1704 */
1705 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1706 #define PF_STARTING 0x00000002 /* being created */
1707 #define PF_EXITING 0x00000004 /* getting shut down */
1708 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1709 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1710 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1711 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1712 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1713 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1714 #define PF_DUMPCORE 0x00000200 /* dumped core */
1715 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1716 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1717 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1718 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1719 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1720 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1721 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1722 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1723 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1724 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1725 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1726 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1727 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1728 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1729 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1730 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1731 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1732 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1733 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1734 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1735 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1736
1737 /*
1738 * Only the _current_ task can read/write to tsk->flags, but other
1739 * tasks can access tsk->flags in readonly mode for example
1740 * with tsk_used_math (like during threaded core dumping).
1741 * There is however an exception to this rule during ptrace
1742 * or during fork: the ptracer task is allowed to write to the
1743 * child->flags of its traced child (same goes for fork, the parent
1744 * can write to the child->flags), because we're guaranteed the
1745 * child is not running and in turn not changing child->flags
1746 * at the same time the parent does it.
1747 */
1748 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1749 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1750 #define clear_used_math() clear_stopped_child_used_math(current)
1751 #define set_used_math() set_stopped_child_used_math(current)
1752 #define conditional_stopped_child_used_math(condition, child) \
1753 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1754 #define conditional_used_math(condition) \
1755 conditional_stopped_child_used_math(condition, current)
1756 #define copy_to_stopped_child_used_math(child) \
1757 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1758 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1759 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1760 #define used_math() tsk_used_math(current)
1761
1762 #ifdef CONFIG_PREEMPT_RCU
1763
1764 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1765 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1766 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1767
1768 static inline void rcu_copy_process(struct task_struct *p)
1769 {
1770 p->rcu_read_lock_nesting = 0;
1771 p->rcu_read_unlock_special = 0;
1772 #ifdef CONFIG_TREE_PREEMPT_RCU
1773 p->rcu_blocked_node = NULL;
1774 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1775 #ifdef CONFIG_RCU_BOOST
1776 p->rcu_boost_mutex = NULL;
1777 #endif /* #ifdef CONFIG_RCU_BOOST */
1778 INIT_LIST_HEAD(&p->rcu_node_entry);
1779 }
1780
1781 #else
1782
1783 static inline void rcu_copy_process(struct task_struct *p)
1784 {
1785 }
1786
1787 #endif
1788
1789 #ifdef CONFIG_SMP
1790 extern int set_cpus_allowed_ptr(struct task_struct *p,
1791 const struct cpumask *new_mask);
1792 #else
1793 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1794 const struct cpumask *new_mask)
1795 {
1796 if (!cpumask_test_cpu(0, new_mask))
1797 return -EINVAL;
1798 return 0;
1799 }
1800 #endif
1801
1802 #ifndef CONFIG_CPUMASK_OFFSTACK
1803 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1804 {
1805 return set_cpus_allowed_ptr(p, &new_mask);
1806 }
1807 #endif
1808
1809 /*
1810 * Do not use outside of architecture code which knows its limitations.
1811 *
1812 * sched_clock() has no promise of monotonicity or bounded drift between
1813 * CPUs, use (which you should not) requires disabling IRQs.
1814 *
1815 * Please use one of the three interfaces below.
1816 */
1817 extern unsigned long long notrace sched_clock(void);
1818 /*
1819 * See the comment in kernel/sched_clock.c
1820 */
1821 extern u64 cpu_clock(int cpu);
1822 extern u64 local_clock(void);
1823 extern u64 sched_clock_cpu(int cpu);
1824
1825
1826 extern void sched_clock_init(void);
1827
1828 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1829 static inline void sched_clock_tick(void)
1830 {
1831 }
1832
1833 static inline void sched_clock_idle_sleep_event(void)
1834 {
1835 }
1836
1837 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1838 {
1839 }
1840 #else
1841 /*
1842 * Architectures can set this to 1 if they have specified
1843 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1844 * but then during bootup it turns out that sched_clock()
1845 * is reliable after all:
1846 */
1847 extern int sched_clock_stable;
1848
1849 extern void sched_clock_tick(void);
1850 extern void sched_clock_idle_sleep_event(void);
1851 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1852 #endif
1853
1854 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1855 /*
1856 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1857 * The reason for this explicit opt-in is not to have perf penalty with
1858 * slow sched_clocks.
1859 */
1860 extern void enable_sched_clock_irqtime(void);
1861 extern void disable_sched_clock_irqtime(void);
1862 #else
1863 static inline void enable_sched_clock_irqtime(void) {}
1864 static inline void disable_sched_clock_irqtime(void) {}
1865 #endif
1866
1867 extern unsigned long long
1868 task_sched_runtime(struct task_struct *task);
1869 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1870
1871 /* sched_exec is called by processes performing an exec */
1872 #ifdef CONFIG_SMP
1873 extern void sched_exec(void);
1874 #else
1875 #define sched_exec() {}
1876 #endif
1877
1878 extern void sched_clock_idle_sleep_event(void);
1879 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1880
1881 #ifdef CONFIG_HOTPLUG_CPU
1882 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1883 extern void idle_task_exit(void);
1884 #else
1885 static inline void idle_task_exit(void) {}
1886 #endif
1887
1888 extern void sched_idle_next(void);
1889
1890 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1891 extern void wake_up_idle_cpu(int cpu);
1892 #else
1893 static inline void wake_up_idle_cpu(int cpu) { }
1894 #endif
1895
1896 extern unsigned int sysctl_sched_latency;
1897 extern unsigned int sysctl_sched_min_granularity;
1898 extern unsigned int sysctl_sched_wakeup_granularity;
1899 extern unsigned int sysctl_sched_shares_ratelimit;
1900 extern unsigned int sysctl_sched_shares_thresh;
1901 extern unsigned int sysctl_sched_child_runs_first;
1902
1903 enum sched_tunable_scaling {
1904 SCHED_TUNABLESCALING_NONE,
1905 SCHED_TUNABLESCALING_LOG,
1906 SCHED_TUNABLESCALING_LINEAR,
1907 SCHED_TUNABLESCALING_END,
1908 };
1909 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1910
1911 #ifdef CONFIG_SCHED_DEBUG
1912 extern unsigned int sysctl_sched_migration_cost;
1913 extern unsigned int sysctl_sched_nr_migrate;
1914 extern unsigned int sysctl_sched_time_avg;
1915 extern unsigned int sysctl_timer_migration;
1916
1917 int sched_proc_update_handler(struct ctl_table *table, int write,
1918 void __user *buffer, size_t *length,
1919 loff_t *ppos);
1920 #endif
1921 #ifdef CONFIG_SCHED_DEBUG
1922 static inline unsigned int get_sysctl_timer_migration(void)
1923 {
1924 return sysctl_timer_migration;
1925 }
1926 #else
1927 static inline unsigned int get_sysctl_timer_migration(void)
1928 {
1929 return 1;
1930 }
1931 #endif
1932 extern unsigned int sysctl_sched_rt_period;
1933 extern int sysctl_sched_rt_runtime;
1934
1935 int sched_rt_handler(struct ctl_table *table, int write,
1936 void __user *buffer, size_t *lenp,
1937 loff_t *ppos);
1938
1939 extern unsigned int sysctl_sched_compat_yield;
1940
1941 #ifdef CONFIG_RT_MUTEXES
1942 extern int rt_mutex_getprio(struct task_struct *p);
1943 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1944 extern void rt_mutex_adjust_pi(struct task_struct *p);
1945 #else
1946 static inline int rt_mutex_getprio(struct task_struct *p)
1947 {
1948 return p->normal_prio;
1949 }
1950 # define rt_mutex_adjust_pi(p) do { } while (0)
1951 #endif
1952
1953 extern void set_user_nice(struct task_struct *p, long nice);
1954 extern int task_prio(const struct task_struct *p);
1955 extern int task_nice(const struct task_struct *p);
1956 extern int can_nice(const struct task_struct *p, const int nice);
1957 extern int task_curr(const struct task_struct *p);
1958 extern int idle_cpu(int cpu);
1959 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1960 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1961 struct sched_param *);
1962 extern struct task_struct *idle_task(int cpu);
1963 extern struct task_struct *curr_task(int cpu);
1964 extern void set_curr_task(int cpu, struct task_struct *p);
1965
1966 void yield(void);
1967
1968 /*
1969 * The default (Linux) execution domain.
1970 */
1971 extern struct exec_domain default_exec_domain;
1972
1973 union thread_union {
1974 struct thread_info thread_info;
1975 unsigned long stack[THREAD_SIZE/sizeof(long)];
1976 };
1977
1978 #ifndef __HAVE_ARCH_KSTACK_END
1979 static inline int kstack_end(void *addr)
1980 {
1981 /* Reliable end of stack detection:
1982 * Some APM bios versions misalign the stack
1983 */
1984 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1985 }
1986 #endif
1987
1988 extern union thread_union init_thread_union;
1989 extern struct task_struct init_task;
1990
1991 extern struct mm_struct init_mm;
1992
1993 extern struct pid_namespace init_pid_ns;
1994
1995 /*
1996 * find a task by one of its numerical ids
1997 *
1998 * find_task_by_pid_ns():
1999 * finds a task by its pid in the specified namespace
2000 * find_task_by_vpid():
2001 * finds a task by its virtual pid
2002 *
2003 * see also find_vpid() etc in include/linux/pid.h
2004 */
2005
2006 extern struct task_struct *find_task_by_vpid(pid_t nr);
2007 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2008 struct pid_namespace *ns);
2009
2010 extern void __set_special_pids(struct pid *pid);
2011
2012 /* per-UID process charging. */
2013 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2014 static inline struct user_struct *get_uid(struct user_struct *u)
2015 {
2016 atomic_inc(&u->__count);
2017 return u;
2018 }
2019 extern void free_uid(struct user_struct *);
2020 extern void release_uids(struct user_namespace *ns);
2021
2022 #include <asm/current.h>
2023
2024 extern void do_timer(unsigned long ticks);
2025
2026 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2027 extern int wake_up_process(struct task_struct *tsk);
2028 extern void wake_up_new_task(struct task_struct *tsk,
2029 unsigned long clone_flags);
2030 #ifdef CONFIG_SMP
2031 extern void kick_process(struct task_struct *tsk);
2032 #else
2033 static inline void kick_process(struct task_struct *tsk) { }
2034 #endif
2035 extern void sched_fork(struct task_struct *p, int clone_flags);
2036 extern void sched_dead(struct task_struct *p);
2037
2038 extern void proc_caches_init(void);
2039 extern void flush_signals(struct task_struct *);
2040 extern void __flush_signals(struct task_struct *);
2041 extern void ignore_signals(struct task_struct *);
2042 extern void flush_signal_handlers(struct task_struct *, int force_default);
2043 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2044
2045 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2046 {
2047 unsigned long flags;
2048 int ret;
2049
2050 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2051 ret = dequeue_signal(tsk, mask, info);
2052 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2053
2054 return ret;
2055 }
2056
2057 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2058 sigset_t *mask);
2059 extern void unblock_all_signals(void);
2060 extern void release_task(struct task_struct * p);
2061 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2062 extern int force_sigsegv(int, struct task_struct *);
2063 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2064 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2065 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2066 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2067 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2068 extern int kill_pid(struct pid *pid, int sig, int priv);
2069 extern int kill_proc_info(int, struct siginfo *, pid_t);
2070 extern int do_notify_parent(struct task_struct *, int);
2071 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2072 extern void force_sig(int, struct task_struct *);
2073 extern int send_sig(int, struct task_struct *, int);
2074 extern int zap_other_threads(struct task_struct *p);
2075 extern struct sigqueue *sigqueue_alloc(void);
2076 extern void sigqueue_free(struct sigqueue *);
2077 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2078 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2079 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2080
2081 static inline int kill_cad_pid(int sig, int priv)
2082 {
2083 return kill_pid(cad_pid, sig, priv);
2084 }
2085
2086 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2087 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2088 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2089 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2090
2091 /*
2092 * True if we are on the alternate signal stack.
2093 */
2094 static inline int on_sig_stack(unsigned long sp)
2095 {
2096 #ifdef CONFIG_STACK_GROWSUP
2097 return sp >= current->sas_ss_sp &&
2098 sp - current->sas_ss_sp < current->sas_ss_size;
2099 #else
2100 return sp > current->sas_ss_sp &&
2101 sp - current->sas_ss_sp <= current->sas_ss_size;
2102 #endif
2103 }
2104
2105 static inline int sas_ss_flags(unsigned long sp)
2106 {
2107 return (current->sas_ss_size == 0 ? SS_DISABLE
2108 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2109 }
2110
2111 /*
2112 * Routines for handling mm_structs
2113 */
2114 extern struct mm_struct * mm_alloc(void);
2115
2116 /* mmdrop drops the mm and the page tables */
2117 extern void __mmdrop(struct mm_struct *);
2118 static inline void mmdrop(struct mm_struct * mm)
2119 {
2120 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2121 __mmdrop(mm);
2122 }
2123
2124 /* mmput gets rid of the mappings and all user-space */
2125 extern void mmput(struct mm_struct *);
2126 /* Grab a reference to a task's mm, if it is not already going away */
2127 extern struct mm_struct *get_task_mm(struct task_struct *task);
2128 /* Remove the current tasks stale references to the old mm_struct */
2129 extern void mm_release(struct task_struct *, struct mm_struct *);
2130 /* Allocate a new mm structure and copy contents from tsk->mm */
2131 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2132
2133 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2134 struct task_struct *, struct pt_regs *);
2135 extern void flush_thread(void);
2136 extern void exit_thread(void);
2137
2138 extern void exit_files(struct task_struct *);
2139 extern void __cleanup_sighand(struct sighand_struct *);
2140
2141 extern void exit_itimers(struct signal_struct *);
2142 extern void flush_itimer_signals(void);
2143
2144 extern NORET_TYPE void do_group_exit(int);
2145
2146 extern void daemonize(const char *, ...);
2147 extern int allow_signal(int);
2148 extern int disallow_signal(int);
2149
2150 extern int do_execve(const char *,
2151 const char __user * const __user *,
2152 const char __user * const __user *, struct pt_regs *);
2153 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2154 struct task_struct *fork_idle(int);
2155
2156 extern void set_task_comm(struct task_struct *tsk, char *from);
2157 extern char *get_task_comm(char *to, struct task_struct *tsk);
2158
2159 #ifdef CONFIG_SMP
2160 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2161 #else
2162 static inline unsigned long wait_task_inactive(struct task_struct *p,
2163 long match_state)
2164 {
2165 return 1;
2166 }
2167 #endif
2168
2169 #define next_task(p) \
2170 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2171
2172 #define for_each_process(p) \
2173 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2174
2175 extern bool current_is_single_threaded(void);
2176
2177 /*
2178 * Careful: do_each_thread/while_each_thread is a double loop so
2179 * 'break' will not work as expected - use goto instead.
2180 */
2181 #define do_each_thread(g, t) \
2182 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2183
2184 #define while_each_thread(g, t) \
2185 while ((t = next_thread(t)) != g)
2186
2187 static inline int get_nr_threads(struct task_struct *tsk)
2188 {
2189 return tsk->signal->nr_threads;
2190 }
2191
2192 /* de_thread depends on thread_group_leader not being a pid based check */
2193 #define thread_group_leader(p) (p == p->group_leader)
2194
2195 /* Do to the insanities of de_thread it is possible for a process
2196 * to have the pid of the thread group leader without actually being
2197 * the thread group leader. For iteration through the pids in proc
2198 * all we care about is that we have a task with the appropriate
2199 * pid, we don't actually care if we have the right task.
2200 */
2201 static inline int has_group_leader_pid(struct task_struct *p)
2202 {
2203 return p->pid == p->tgid;
2204 }
2205
2206 static inline
2207 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2208 {
2209 return p1->tgid == p2->tgid;
2210 }
2211
2212 static inline struct task_struct *next_thread(const struct task_struct *p)
2213 {
2214 return list_entry_rcu(p->thread_group.next,
2215 struct task_struct, thread_group);
2216 }
2217
2218 static inline int thread_group_empty(struct task_struct *p)
2219 {
2220 return list_empty(&p->thread_group);
2221 }
2222
2223 #define delay_group_leader(p) \
2224 (thread_group_leader(p) && !thread_group_empty(p))
2225
2226 static inline int task_detached(struct task_struct *p)
2227 {
2228 return p->exit_signal == -1;
2229 }
2230
2231 /*
2232 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2233 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2234 * pins the final release of task.io_context. Also protects ->cpuset and
2235 * ->cgroup.subsys[].
2236 *
2237 * Nests both inside and outside of read_lock(&tasklist_lock).
2238 * It must not be nested with write_lock_irq(&tasklist_lock),
2239 * neither inside nor outside.
2240 */
2241 static inline void task_lock(struct task_struct *p)
2242 {
2243 spin_lock(&p->alloc_lock);
2244 }
2245
2246 static inline void task_unlock(struct task_struct *p)
2247 {
2248 spin_unlock(&p->alloc_lock);
2249 }
2250
2251 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2252 unsigned long *flags);
2253
2254 #define lock_task_sighand(tsk, flags) \
2255 ({ struct sighand_struct *__ss; \
2256 __cond_lock(&(tsk)->sighand->siglock, \
2257 (__ss = __lock_task_sighand(tsk, flags))); \
2258 __ss; \
2259 }) \
2260
2261 static inline void unlock_task_sighand(struct task_struct *tsk,
2262 unsigned long *flags)
2263 {
2264 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2265 }
2266
2267 #ifndef __HAVE_THREAD_FUNCTIONS
2268
2269 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2270 #define task_stack_page(task) ((task)->stack)
2271
2272 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2273 {
2274 *task_thread_info(p) = *task_thread_info(org);
2275 task_thread_info(p)->task = p;
2276 }
2277
2278 static inline unsigned long *end_of_stack(struct task_struct *p)
2279 {
2280 return (unsigned long *)(task_thread_info(p) + 1);
2281 }
2282
2283 #endif
2284
2285 static inline int object_is_on_stack(void *obj)
2286 {
2287 void *stack = task_stack_page(current);
2288
2289 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2290 }
2291
2292 extern void thread_info_cache_init(void);
2293
2294 #ifdef CONFIG_DEBUG_STACK_USAGE
2295 static inline unsigned long stack_not_used(struct task_struct *p)
2296 {
2297 unsigned long *n = end_of_stack(p);
2298
2299 do { /* Skip over canary */
2300 n++;
2301 } while (!*n);
2302
2303 return (unsigned long)n - (unsigned long)end_of_stack(p);
2304 }
2305 #endif
2306
2307 /* set thread flags in other task's structures
2308 * - see asm/thread_info.h for TIF_xxxx flags available
2309 */
2310 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2311 {
2312 set_ti_thread_flag(task_thread_info(tsk), flag);
2313 }
2314
2315 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2316 {
2317 clear_ti_thread_flag(task_thread_info(tsk), flag);
2318 }
2319
2320 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2321 {
2322 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2323 }
2324
2325 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2326 {
2327 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2328 }
2329
2330 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2331 {
2332 return test_ti_thread_flag(task_thread_info(tsk), flag);
2333 }
2334
2335 static inline void set_tsk_need_resched(struct task_struct *tsk)
2336 {
2337 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2338 }
2339
2340 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2341 {
2342 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2343 }
2344
2345 static inline int test_tsk_need_resched(struct task_struct *tsk)
2346 {
2347 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2348 }
2349
2350 static inline int restart_syscall(void)
2351 {
2352 set_tsk_thread_flag(current, TIF_SIGPENDING);
2353 return -ERESTARTNOINTR;
2354 }
2355
2356 static inline int signal_pending(struct task_struct *p)
2357 {
2358 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2359 }
2360
2361 static inline int __fatal_signal_pending(struct task_struct *p)
2362 {
2363 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2364 }
2365
2366 static inline int fatal_signal_pending(struct task_struct *p)
2367 {
2368 return signal_pending(p) && __fatal_signal_pending(p);
2369 }
2370
2371 static inline int signal_pending_state(long state, struct task_struct *p)
2372 {
2373 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2374 return 0;
2375 if (!signal_pending(p))
2376 return 0;
2377
2378 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2379 }
2380
2381 static inline int need_resched(void)
2382 {
2383 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2384 }
2385
2386 /*
2387 * cond_resched() and cond_resched_lock(): latency reduction via
2388 * explicit rescheduling in places that are safe. The return
2389 * value indicates whether a reschedule was done in fact.
2390 * cond_resched_lock() will drop the spinlock before scheduling,
2391 * cond_resched_softirq() will enable bhs before scheduling.
2392 */
2393 extern int _cond_resched(void);
2394
2395 #define cond_resched() ({ \
2396 __might_sleep(__FILE__, __LINE__, 0); \
2397 _cond_resched(); \
2398 })
2399
2400 extern int __cond_resched_lock(spinlock_t *lock);
2401
2402 #ifdef CONFIG_PREEMPT
2403 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2404 #else
2405 #define PREEMPT_LOCK_OFFSET 0
2406 #endif
2407
2408 #define cond_resched_lock(lock) ({ \
2409 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2410 __cond_resched_lock(lock); \
2411 })
2412
2413 extern int __cond_resched_softirq(void);
2414
2415 #define cond_resched_softirq() ({ \
2416 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2417 __cond_resched_softirq(); \
2418 })
2419
2420 /*
2421 * Does a critical section need to be broken due to another
2422 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2423 * but a general need for low latency)
2424 */
2425 static inline int spin_needbreak(spinlock_t *lock)
2426 {
2427 #ifdef CONFIG_PREEMPT
2428 return spin_is_contended(lock);
2429 #else
2430 return 0;
2431 #endif
2432 }
2433
2434 /*
2435 * Thread group CPU time accounting.
2436 */
2437 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2438 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2439
2440 static inline void thread_group_cputime_init(struct signal_struct *sig)
2441 {
2442 spin_lock_init(&sig->cputimer.lock);
2443 }
2444
2445 /*
2446 * Reevaluate whether the task has signals pending delivery.
2447 * Wake the task if so.
2448 * This is required every time the blocked sigset_t changes.
2449 * callers must hold sighand->siglock.
2450 */
2451 extern void recalc_sigpending_and_wake(struct task_struct *t);
2452 extern void recalc_sigpending(void);
2453
2454 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2455
2456 /*
2457 * Wrappers for p->thread_info->cpu access. No-op on UP.
2458 */
2459 #ifdef CONFIG_SMP
2460
2461 static inline unsigned int task_cpu(const struct task_struct *p)
2462 {
2463 return task_thread_info(p)->cpu;
2464 }
2465
2466 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2467
2468 #else
2469
2470 static inline unsigned int task_cpu(const struct task_struct *p)
2471 {
2472 return 0;
2473 }
2474
2475 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2476 {
2477 }
2478
2479 #endif /* CONFIG_SMP */
2480
2481 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2482 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2483
2484 extern void normalize_rt_tasks(void);
2485
2486 #ifdef CONFIG_CGROUP_SCHED
2487
2488 extern struct task_group init_task_group;
2489
2490 extern struct task_group *sched_create_group(struct task_group *parent);
2491 extern void sched_destroy_group(struct task_group *tg);
2492 extern void sched_move_task(struct task_struct *tsk);
2493 #ifdef CONFIG_FAIR_GROUP_SCHED
2494 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2495 extern unsigned long sched_group_shares(struct task_group *tg);
2496 #endif
2497 #ifdef CONFIG_RT_GROUP_SCHED
2498 extern int sched_group_set_rt_runtime(struct task_group *tg,
2499 long rt_runtime_us);
2500 extern long sched_group_rt_runtime(struct task_group *tg);
2501 extern int sched_group_set_rt_period(struct task_group *tg,
2502 long rt_period_us);
2503 extern long sched_group_rt_period(struct task_group *tg);
2504 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2505 #endif
2506 #endif
2507
2508 extern int task_can_switch_user(struct user_struct *up,
2509 struct task_struct *tsk);
2510
2511 #ifdef CONFIG_TASK_XACCT
2512 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2513 {
2514 tsk->ioac.rchar += amt;
2515 }
2516
2517 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2518 {
2519 tsk->ioac.wchar += amt;
2520 }
2521
2522 static inline void inc_syscr(struct task_struct *tsk)
2523 {
2524 tsk->ioac.syscr++;
2525 }
2526
2527 static inline void inc_syscw(struct task_struct *tsk)
2528 {
2529 tsk->ioac.syscw++;
2530 }
2531 #else
2532 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2533 {
2534 }
2535
2536 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2537 {
2538 }
2539
2540 static inline void inc_syscr(struct task_struct *tsk)
2541 {
2542 }
2543
2544 static inline void inc_syscw(struct task_struct *tsk)
2545 {
2546 }
2547 #endif
2548
2549 #ifndef TASK_SIZE_OF
2550 #define TASK_SIZE_OF(tsk) TASK_SIZE
2551 #endif
2552
2553 /*
2554 * Call the function if the target task is executing on a CPU right now:
2555 */
2556 extern void task_oncpu_function_call(struct task_struct *p,
2557 void (*func) (void *info), void *info);
2558
2559
2560 #ifdef CONFIG_MM_OWNER
2561 extern void mm_update_next_owner(struct mm_struct *mm);
2562 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2563 #else
2564 static inline void mm_update_next_owner(struct mm_struct *mm)
2565 {
2566 }
2567
2568 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2569 {
2570 }
2571 #endif /* CONFIG_MM_OWNER */
2572
2573 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2574 unsigned int limit)
2575 {
2576 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2577 }
2578
2579 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2580 unsigned int limit)
2581 {
2582 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2583 }
2584
2585 static inline unsigned long rlimit(unsigned int limit)
2586 {
2587 return task_rlimit(current, limit);
2588 }
2589
2590 static inline unsigned long rlimit_max(unsigned int limit)
2591 {
2592 return task_rlimit_max(current, limit);
2593 }
2594
2595 #endif /* __KERNEL__ */
2596
2597 #endif