]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/sched.h
watchdog: Disable watchdog when thresh is zero
[mirror_ubuntu-kernels.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93
94 #include <asm/processor.h>
95
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 struct blk_plug;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(unsigned long ticks);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 static inline void lockup_detector_init(void)
330 {
331 }
332 #endif
333
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
346
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched __attribute__((__section__(".sched.text")))
349
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
352
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
355
356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
363
364 struct nsproxy;
365 struct user_namespace;
366
367 /*
368 * Default maximum number of active map areas, this limits the number of vmas
369 * per mm struct. Users can overwrite this number by sysctl but there is a
370 * problem.
371 *
372 * When a program's coredump is generated as ELF format, a section is created
373 * per a vma. In ELF, the number of sections is represented in unsigned short.
374 * This means the number of sections should be smaller than 65535 at coredump.
375 * Because the kernel adds some informative sections to a image of program at
376 * generating coredump, we need some margin. The number of extra sections is
377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
378 */
379 #define MAPCOUNT_ELF_CORE_MARGIN (5)
380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
381
382 extern int sysctl_max_map_count;
383
384 #include <linux/aio.h>
385
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 unsigned long len, unsigned long pgoff,
394 unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
400
401
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
404
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE 0 /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
409
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
412
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE 2
415 #define MMF_DUMP_ANON_SHARED 3
416 #define MMF_DUMP_MAPPED_PRIVATE 4
417 #define MMF_DUMP_MAPPED_SHARED 5
418 #define MMF_DUMP_ELF_HEADERS 6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED 8
421
422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS 7
424 #define MMF_DUMP_FILTER_MASK \
425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
429
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF 0
434 #endif
435 /* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
437 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
438
439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440
441 struct sighand_struct {
442 atomic_t count;
443 struct k_sigaction action[_NSIG];
444 spinlock_t siglock;
445 wait_queue_head_t signalfd_wqh;
446 };
447
448 struct pacct_struct {
449 int ac_flag;
450 long ac_exitcode;
451 unsigned long ac_mem;
452 cputime_t ac_utime, ac_stime;
453 unsigned long ac_minflt, ac_majflt;
454 };
455
456 struct cpu_itimer {
457 cputime_t expires;
458 cputime_t incr;
459 u32 error;
460 u32 incr_error;
461 };
462
463 /**
464 * struct task_cputime - collected CPU time counts
465 * @utime: time spent in user mode, in &cputime_t units
466 * @stime: time spent in kernel mode, in &cputime_t units
467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
468 *
469 * This structure groups together three kinds of CPU time that are
470 * tracked for threads and thread groups. Most things considering
471 * CPU time want to group these counts together and treat all three
472 * of them in parallel.
473 */
474 struct task_cputime {
475 cputime_t utime;
476 cputime_t stime;
477 unsigned long long sum_exec_runtime;
478 };
479 /* Alternate field names when used to cache expirations. */
480 #define prof_exp stime
481 #define virt_exp utime
482 #define sched_exp sum_exec_runtime
483
484 #define INIT_CPUTIME \
485 (struct task_cputime) { \
486 .utime = cputime_zero, \
487 .stime = cputime_zero, \
488 .sum_exec_runtime = 0, \
489 }
490
491 /*
492 * Disable preemption until the scheduler is running.
493 * Reset by start_kernel()->sched_init()->init_idle().
494 *
495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496 * before the scheduler is active -- see should_resched().
497 */
498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
499
500 /**
501 * struct thread_group_cputimer - thread group interval timer counts
502 * @cputime: thread group interval timers.
503 * @running: non-zero when there are timers running and
504 * @cputime receives updates.
505 * @lock: lock for fields in this struct.
506 *
507 * This structure contains the version of task_cputime, above, that is
508 * used for thread group CPU timer calculations.
509 */
510 struct thread_group_cputimer {
511 struct task_cputime cputime;
512 int running;
513 spinlock_t lock;
514 };
515
516 struct autogroup;
517
518 /*
519 * NOTE! "signal_struct" does not have its own
520 * locking, because a shared signal_struct always
521 * implies a shared sighand_struct, so locking
522 * sighand_struct is always a proper superset of
523 * the locking of signal_struct.
524 */
525 struct signal_struct {
526 atomic_t sigcnt;
527 atomic_t live;
528 int nr_threads;
529
530 wait_queue_head_t wait_chldexit; /* for wait4() */
531
532 /* current thread group signal load-balancing target: */
533 struct task_struct *curr_target;
534
535 /* shared signal handling: */
536 struct sigpending shared_pending;
537
538 /* thread group exit support */
539 int group_exit_code;
540 /* overloaded:
541 * - notify group_exit_task when ->count is equal to notify_count
542 * - everyone except group_exit_task is stopped during signal delivery
543 * of fatal signals, group_exit_task processes the signal.
544 */
545 int notify_count;
546 struct task_struct *group_exit_task;
547
548 /* thread group stop support, overloads group_exit_code too */
549 int group_stop_count;
550 unsigned int flags; /* see SIGNAL_* flags below */
551
552 /* POSIX.1b Interval Timers */
553 struct list_head posix_timers;
554
555 /* ITIMER_REAL timer for the process */
556 struct hrtimer real_timer;
557 struct pid *leader_pid;
558 ktime_t it_real_incr;
559
560 /*
561 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
562 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
563 * values are defined to 0 and 1 respectively
564 */
565 struct cpu_itimer it[2];
566
567 /*
568 * Thread group totals for process CPU timers.
569 * See thread_group_cputimer(), et al, for details.
570 */
571 struct thread_group_cputimer cputimer;
572
573 /* Earliest-expiration cache. */
574 struct task_cputime cputime_expires;
575
576 struct list_head cpu_timers[3];
577
578 struct pid *tty_old_pgrp;
579
580 /* boolean value for session group leader */
581 int leader;
582
583 struct tty_struct *tty; /* NULL if no tty */
584
585 #ifdef CONFIG_SCHED_AUTOGROUP
586 struct autogroup *autogroup;
587 #endif
588 /*
589 * Cumulative resource counters for dead threads in the group,
590 * and for reaped dead child processes forked by this group.
591 * Live threads maintain their own counters and add to these
592 * in __exit_signal, except for the group leader.
593 */
594 cputime_t utime, stime, cutime, cstime;
595 cputime_t gtime;
596 cputime_t cgtime;
597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
598 cputime_t prev_utime, prev_stime;
599 #endif
600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 unsigned long inblock, oublock, cinblock, coublock;
603 unsigned long maxrss, cmaxrss;
604 struct task_io_accounting ioac;
605
606 /*
607 * Cumulative ns of schedule CPU time fo dead threads in the
608 * group, not including a zombie group leader, (This only differs
609 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 * other than jiffies.)
611 */
612 unsigned long long sum_sched_runtime;
613
614 /*
615 * We don't bother to synchronize most readers of this at all,
616 * because there is no reader checking a limit that actually needs
617 * to get both rlim_cur and rlim_max atomically, and either one
618 * alone is a single word that can safely be read normally.
619 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 * protect this instead of the siglock, because they really
621 * have no need to disable irqs.
622 */
623 struct rlimit rlim[RLIM_NLIMITS];
624
625 #ifdef CONFIG_BSD_PROCESS_ACCT
626 struct pacct_struct pacct; /* per-process accounting information */
627 #endif
628 #ifdef CONFIG_TASKSTATS
629 struct taskstats *stats;
630 #endif
631 #ifdef CONFIG_AUDIT
632 unsigned audit_tty;
633 struct tty_audit_buf *tty_audit_buf;
634 #endif
635
636 int oom_adj; /* OOM kill score adjustment (bit shift) */
637 int oom_score_adj; /* OOM kill score adjustment */
638 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
639 * Only settable by CAP_SYS_RESOURCE. */
640
641 struct mutex cred_guard_mutex; /* guard against foreign influences on
642 * credential calculations
643 * (notably. ptrace) */
644 };
645
646 /* Context switch must be unlocked if interrupts are to be enabled */
647 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
648 # define __ARCH_WANT_UNLOCKED_CTXSW
649 #endif
650
651 /*
652 * Bits in flags field of signal_struct.
653 */
654 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
655 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
656 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
657 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
658 /*
659 * Pending notifications to parent.
660 */
661 #define SIGNAL_CLD_STOPPED 0x00000010
662 #define SIGNAL_CLD_CONTINUED 0x00000020
663 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
664
665 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
666
667 /* If true, all threads except ->group_exit_task have pending SIGKILL */
668 static inline int signal_group_exit(const struct signal_struct *sig)
669 {
670 return (sig->flags & SIGNAL_GROUP_EXIT) ||
671 (sig->group_exit_task != NULL);
672 }
673
674 /*
675 * Some day this will be a full-fledged user tracking system..
676 */
677 struct user_struct {
678 atomic_t __count; /* reference count */
679 atomic_t processes; /* How many processes does this user have? */
680 atomic_t files; /* How many open files does this user have? */
681 atomic_t sigpending; /* How many pending signals does this user have? */
682 #ifdef CONFIG_INOTIFY_USER
683 atomic_t inotify_watches; /* How many inotify watches does this user have? */
684 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
685 #endif
686 #ifdef CONFIG_FANOTIFY
687 atomic_t fanotify_listeners;
688 #endif
689 #ifdef CONFIG_EPOLL
690 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
691 #endif
692 #ifdef CONFIG_POSIX_MQUEUE
693 /* protected by mq_lock */
694 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
695 #endif
696 unsigned long locked_shm; /* How many pages of mlocked shm ? */
697
698 #ifdef CONFIG_KEYS
699 struct key *uid_keyring; /* UID specific keyring */
700 struct key *session_keyring; /* UID's default session keyring */
701 #endif
702
703 /* Hash table maintenance information */
704 struct hlist_node uidhash_node;
705 uid_t uid;
706 struct user_namespace *user_ns;
707
708 #ifdef CONFIG_PERF_EVENTS
709 atomic_long_t locked_vm;
710 #endif
711 };
712
713 extern int uids_sysfs_init(void);
714
715 extern struct user_struct *find_user(uid_t);
716
717 extern struct user_struct root_user;
718 #define INIT_USER (&root_user)
719
720
721 struct backing_dev_info;
722 struct reclaim_state;
723
724 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
725 struct sched_info {
726 /* cumulative counters */
727 unsigned long pcount; /* # of times run on this cpu */
728 unsigned long long run_delay; /* time spent waiting on a runqueue */
729
730 /* timestamps */
731 unsigned long long last_arrival,/* when we last ran on a cpu */
732 last_queued; /* when we were last queued to run */
733 };
734 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
735
736 #ifdef CONFIG_TASK_DELAY_ACCT
737 struct task_delay_info {
738 spinlock_t lock;
739 unsigned int flags; /* Private per-task flags */
740
741 /* For each stat XXX, add following, aligned appropriately
742 *
743 * struct timespec XXX_start, XXX_end;
744 * u64 XXX_delay;
745 * u32 XXX_count;
746 *
747 * Atomicity of updates to XXX_delay, XXX_count protected by
748 * single lock above (split into XXX_lock if contention is an issue).
749 */
750
751 /*
752 * XXX_count is incremented on every XXX operation, the delay
753 * associated with the operation is added to XXX_delay.
754 * XXX_delay contains the accumulated delay time in nanoseconds.
755 */
756 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
757 u64 blkio_delay; /* wait for sync block io completion */
758 u64 swapin_delay; /* wait for swapin block io completion */
759 u32 blkio_count; /* total count of the number of sync block */
760 /* io operations performed */
761 u32 swapin_count; /* total count of the number of swapin block */
762 /* io operations performed */
763
764 struct timespec freepages_start, freepages_end;
765 u64 freepages_delay; /* wait for memory reclaim */
766 u32 freepages_count; /* total count of memory reclaim */
767 };
768 #endif /* CONFIG_TASK_DELAY_ACCT */
769
770 static inline int sched_info_on(void)
771 {
772 #ifdef CONFIG_SCHEDSTATS
773 return 1;
774 #elif defined(CONFIG_TASK_DELAY_ACCT)
775 extern int delayacct_on;
776 return delayacct_on;
777 #else
778 return 0;
779 #endif
780 }
781
782 enum cpu_idle_type {
783 CPU_IDLE,
784 CPU_NOT_IDLE,
785 CPU_NEWLY_IDLE,
786 CPU_MAX_IDLE_TYPES
787 };
788
789 /*
790 * sched-domains (multiprocessor balancing) declarations:
791 */
792
793 /*
794 * Increase resolution of nice-level calculations:
795 */
796 #define SCHED_LOAD_SHIFT 10
797 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
798
799 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
800
801 #ifdef CONFIG_SMP
802 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
803 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
804 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
805 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
806 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
807 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
808 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
809 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
810 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
811 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
812 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
813 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
814 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
815
816 enum powersavings_balance_level {
817 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
818 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
819 * first for long running threads
820 */
821 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
822 * cpu package for power savings
823 */
824 MAX_POWERSAVINGS_BALANCE_LEVELS
825 };
826
827 extern int sched_mc_power_savings, sched_smt_power_savings;
828
829 static inline int sd_balance_for_mc_power(void)
830 {
831 if (sched_smt_power_savings)
832 return SD_POWERSAVINGS_BALANCE;
833
834 if (!sched_mc_power_savings)
835 return SD_PREFER_SIBLING;
836
837 return 0;
838 }
839
840 static inline int sd_balance_for_package_power(void)
841 {
842 if (sched_mc_power_savings | sched_smt_power_savings)
843 return SD_POWERSAVINGS_BALANCE;
844
845 return SD_PREFER_SIBLING;
846 }
847
848 extern int __weak arch_sd_sibiling_asym_packing(void);
849
850 /*
851 * Optimise SD flags for power savings:
852 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
853 * Keep default SD flags if sched_{smt,mc}_power_saving=0
854 */
855
856 static inline int sd_power_saving_flags(void)
857 {
858 if (sched_mc_power_savings | sched_smt_power_savings)
859 return SD_BALANCE_NEWIDLE;
860
861 return 0;
862 }
863
864 struct sched_group {
865 struct sched_group *next; /* Must be a circular list */
866 atomic_t ref;
867
868 /*
869 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
870 * single CPU.
871 */
872 unsigned int cpu_power, cpu_power_orig;
873 unsigned int group_weight;
874
875 /*
876 * The CPUs this group covers.
877 *
878 * NOTE: this field is variable length. (Allocated dynamically
879 * by attaching extra space to the end of the structure,
880 * depending on how many CPUs the kernel has booted up with)
881 */
882 unsigned long cpumask[0];
883 };
884
885 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
886 {
887 return to_cpumask(sg->cpumask);
888 }
889
890 struct sched_domain_attr {
891 int relax_domain_level;
892 };
893
894 #define SD_ATTR_INIT (struct sched_domain_attr) { \
895 .relax_domain_level = -1, \
896 }
897
898 extern int sched_domain_level_max;
899
900 struct sched_domain {
901 /* These fields must be setup */
902 struct sched_domain *parent; /* top domain must be null terminated */
903 struct sched_domain *child; /* bottom domain must be null terminated */
904 struct sched_group *groups; /* the balancing groups of the domain */
905 unsigned long min_interval; /* Minimum balance interval ms */
906 unsigned long max_interval; /* Maximum balance interval ms */
907 unsigned int busy_factor; /* less balancing by factor if busy */
908 unsigned int imbalance_pct; /* No balance until over watermark */
909 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
910 unsigned int busy_idx;
911 unsigned int idle_idx;
912 unsigned int newidle_idx;
913 unsigned int wake_idx;
914 unsigned int forkexec_idx;
915 unsigned int smt_gain;
916 int flags; /* See SD_* */
917 int level;
918
919 /* Runtime fields. */
920 unsigned long last_balance; /* init to jiffies. units in jiffies */
921 unsigned int balance_interval; /* initialise to 1. units in ms. */
922 unsigned int nr_balance_failed; /* initialise to 0 */
923
924 u64 last_update;
925
926 #ifdef CONFIG_SCHEDSTATS
927 /* load_balance() stats */
928 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
936
937 /* Active load balancing */
938 unsigned int alb_count;
939 unsigned int alb_failed;
940 unsigned int alb_pushed;
941
942 /* SD_BALANCE_EXEC stats */
943 unsigned int sbe_count;
944 unsigned int sbe_balanced;
945 unsigned int sbe_pushed;
946
947 /* SD_BALANCE_FORK stats */
948 unsigned int sbf_count;
949 unsigned int sbf_balanced;
950 unsigned int sbf_pushed;
951
952 /* try_to_wake_up() stats */
953 unsigned int ttwu_wake_remote;
954 unsigned int ttwu_move_affine;
955 unsigned int ttwu_move_balance;
956 #endif
957 #ifdef CONFIG_SCHED_DEBUG
958 char *name;
959 #endif
960 union {
961 void *private; /* used during construction */
962 struct rcu_head rcu; /* used during destruction */
963 };
964
965 unsigned int span_weight;
966 /*
967 * Span of all CPUs in this domain.
968 *
969 * NOTE: this field is variable length. (Allocated dynamically
970 * by attaching extra space to the end of the structure,
971 * depending on how many CPUs the kernel has booted up with)
972 */
973 unsigned long span[0];
974 };
975
976 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
977 {
978 return to_cpumask(sd->span);
979 }
980
981 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
982 struct sched_domain_attr *dattr_new);
983
984 /* Allocate an array of sched domains, for partition_sched_domains(). */
985 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
986 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
987
988 /* Test a flag in parent sched domain */
989 static inline int test_sd_parent(struct sched_domain *sd, int flag)
990 {
991 if (sd->parent && (sd->parent->flags & flag))
992 return 1;
993
994 return 0;
995 }
996
997 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
998 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
999
1000 #else /* CONFIG_SMP */
1001
1002 struct sched_domain_attr;
1003
1004 static inline void
1005 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1006 struct sched_domain_attr *dattr_new)
1007 {
1008 }
1009 #endif /* !CONFIG_SMP */
1010
1011
1012 struct io_context; /* See blkdev.h */
1013
1014
1015 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1016 extern void prefetch_stack(struct task_struct *t);
1017 #else
1018 static inline void prefetch_stack(struct task_struct *t) { }
1019 #endif
1020
1021 struct audit_context; /* See audit.c */
1022 struct mempolicy;
1023 struct pipe_inode_info;
1024 struct uts_namespace;
1025
1026 struct rq;
1027 struct sched_domain;
1028
1029 /*
1030 * wake flags
1031 */
1032 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1033 #define WF_FORK 0x02 /* child wakeup after fork */
1034
1035 #define ENQUEUE_WAKEUP 1
1036 #define ENQUEUE_HEAD 2
1037 #ifdef CONFIG_SMP
1038 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1039 #else
1040 #define ENQUEUE_WAKING 0
1041 #endif
1042
1043 #define DEQUEUE_SLEEP 1
1044
1045 struct sched_class {
1046 const struct sched_class *next;
1047
1048 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1049 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1050 void (*yield_task) (struct rq *rq);
1051 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1052
1053 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1054
1055 struct task_struct * (*pick_next_task) (struct rq *rq);
1056 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1057
1058 #ifdef CONFIG_SMP
1059 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1060
1061 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1062 void (*post_schedule) (struct rq *this_rq);
1063 void (*task_waking) (struct task_struct *task);
1064 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1065
1066 void (*set_cpus_allowed)(struct task_struct *p,
1067 const struct cpumask *newmask);
1068
1069 void (*rq_online)(struct rq *rq);
1070 void (*rq_offline)(struct rq *rq);
1071 #endif
1072
1073 void (*set_curr_task) (struct rq *rq);
1074 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1075 void (*task_fork) (struct task_struct *p);
1076
1077 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1078 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1079 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1080 int oldprio);
1081
1082 unsigned int (*get_rr_interval) (struct rq *rq,
1083 struct task_struct *task);
1084
1085 #ifdef CONFIG_FAIR_GROUP_SCHED
1086 void (*task_move_group) (struct task_struct *p, int on_rq);
1087 #endif
1088 };
1089
1090 struct load_weight {
1091 unsigned long weight, inv_weight;
1092 };
1093
1094 #ifdef CONFIG_SCHEDSTATS
1095 struct sched_statistics {
1096 u64 wait_start;
1097 u64 wait_max;
1098 u64 wait_count;
1099 u64 wait_sum;
1100 u64 iowait_count;
1101 u64 iowait_sum;
1102
1103 u64 sleep_start;
1104 u64 sleep_max;
1105 s64 sum_sleep_runtime;
1106
1107 u64 block_start;
1108 u64 block_max;
1109 u64 exec_max;
1110 u64 slice_max;
1111
1112 u64 nr_migrations_cold;
1113 u64 nr_failed_migrations_affine;
1114 u64 nr_failed_migrations_running;
1115 u64 nr_failed_migrations_hot;
1116 u64 nr_forced_migrations;
1117
1118 u64 nr_wakeups;
1119 u64 nr_wakeups_sync;
1120 u64 nr_wakeups_migrate;
1121 u64 nr_wakeups_local;
1122 u64 nr_wakeups_remote;
1123 u64 nr_wakeups_affine;
1124 u64 nr_wakeups_affine_attempts;
1125 u64 nr_wakeups_passive;
1126 u64 nr_wakeups_idle;
1127 };
1128 #endif
1129
1130 struct sched_entity {
1131 struct load_weight load; /* for load-balancing */
1132 struct rb_node run_node;
1133 struct list_head group_node;
1134 unsigned int on_rq;
1135
1136 u64 exec_start;
1137 u64 sum_exec_runtime;
1138 u64 vruntime;
1139 u64 prev_sum_exec_runtime;
1140
1141 u64 nr_migrations;
1142
1143 #ifdef CONFIG_SCHEDSTATS
1144 struct sched_statistics statistics;
1145 #endif
1146
1147 #ifdef CONFIG_FAIR_GROUP_SCHED
1148 struct sched_entity *parent;
1149 /* rq on which this entity is (to be) queued: */
1150 struct cfs_rq *cfs_rq;
1151 /* rq "owned" by this entity/group: */
1152 struct cfs_rq *my_q;
1153 #endif
1154 };
1155
1156 struct sched_rt_entity {
1157 struct list_head run_list;
1158 unsigned long timeout;
1159 unsigned int time_slice;
1160 int nr_cpus_allowed;
1161
1162 struct sched_rt_entity *back;
1163 #ifdef CONFIG_RT_GROUP_SCHED
1164 struct sched_rt_entity *parent;
1165 /* rq on which this entity is (to be) queued: */
1166 struct rt_rq *rt_rq;
1167 /* rq "owned" by this entity/group: */
1168 struct rt_rq *my_q;
1169 #endif
1170 };
1171
1172 struct rcu_node;
1173
1174 enum perf_event_task_context {
1175 perf_invalid_context = -1,
1176 perf_hw_context = 0,
1177 perf_sw_context,
1178 perf_nr_task_contexts,
1179 };
1180
1181 struct task_struct {
1182 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1183 void *stack;
1184 atomic_t usage;
1185 unsigned int flags; /* per process flags, defined below */
1186 unsigned int ptrace;
1187
1188 #ifdef CONFIG_SMP
1189 struct task_struct *wake_entry;
1190 int on_cpu;
1191 #endif
1192 int on_rq;
1193
1194 int prio, static_prio, normal_prio;
1195 unsigned int rt_priority;
1196 const struct sched_class *sched_class;
1197 struct sched_entity se;
1198 struct sched_rt_entity rt;
1199
1200 #ifdef CONFIG_PREEMPT_NOTIFIERS
1201 /* list of struct preempt_notifier: */
1202 struct hlist_head preempt_notifiers;
1203 #endif
1204
1205 /*
1206 * fpu_counter contains the number of consecutive context switches
1207 * that the FPU is used. If this is over a threshold, the lazy fpu
1208 * saving becomes unlazy to save the trap. This is an unsigned char
1209 * so that after 256 times the counter wraps and the behavior turns
1210 * lazy again; this to deal with bursty apps that only use FPU for
1211 * a short time
1212 */
1213 unsigned char fpu_counter;
1214 #ifdef CONFIG_BLK_DEV_IO_TRACE
1215 unsigned int btrace_seq;
1216 #endif
1217
1218 unsigned int policy;
1219 cpumask_t cpus_allowed;
1220
1221 #ifdef CONFIG_PREEMPT_RCU
1222 int rcu_read_lock_nesting;
1223 char rcu_read_unlock_special;
1224 struct list_head rcu_node_entry;
1225 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1226 #ifdef CONFIG_TREE_PREEMPT_RCU
1227 struct rcu_node *rcu_blocked_node;
1228 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1229 #ifdef CONFIG_RCU_BOOST
1230 struct rt_mutex *rcu_boost_mutex;
1231 #endif /* #ifdef CONFIG_RCU_BOOST */
1232
1233 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1234 struct sched_info sched_info;
1235 #endif
1236
1237 struct list_head tasks;
1238 #ifdef CONFIG_SMP
1239 struct plist_node pushable_tasks;
1240 #endif
1241
1242 struct mm_struct *mm, *active_mm;
1243 #ifdef CONFIG_COMPAT_BRK
1244 unsigned brk_randomized:1;
1245 #endif
1246 #if defined(SPLIT_RSS_COUNTING)
1247 struct task_rss_stat rss_stat;
1248 #endif
1249 /* task state */
1250 int exit_state;
1251 int exit_code, exit_signal;
1252 int pdeath_signal; /* The signal sent when the parent dies */
1253 /* ??? */
1254 unsigned int personality;
1255 unsigned did_exec:1;
1256 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1257 * execve */
1258 unsigned in_iowait:1;
1259
1260
1261 /* Revert to default priority/policy when forking */
1262 unsigned sched_reset_on_fork:1;
1263 unsigned sched_contributes_to_load:1;
1264
1265 pid_t pid;
1266 pid_t tgid;
1267
1268 #ifdef CONFIG_CC_STACKPROTECTOR
1269 /* Canary value for the -fstack-protector gcc feature */
1270 unsigned long stack_canary;
1271 #endif
1272
1273 /*
1274 * pointers to (original) parent process, youngest child, younger sibling,
1275 * older sibling, respectively. (p->father can be replaced with
1276 * p->real_parent->pid)
1277 */
1278 struct task_struct *real_parent; /* real parent process */
1279 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1280 /*
1281 * children/sibling forms the list of my natural children
1282 */
1283 struct list_head children; /* list of my children */
1284 struct list_head sibling; /* linkage in my parent's children list */
1285 struct task_struct *group_leader; /* threadgroup leader */
1286
1287 /*
1288 * ptraced is the list of tasks this task is using ptrace on.
1289 * This includes both natural children and PTRACE_ATTACH targets.
1290 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1291 */
1292 struct list_head ptraced;
1293 struct list_head ptrace_entry;
1294
1295 /* PID/PID hash table linkage. */
1296 struct pid_link pids[PIDTYPE_MAX];
1297 struct list_head thread_group;
1298
1299 struct completion *vfork_done; /* for vfork() */
1300 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1301 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1302
1303 cputime_t utime, stime, utimescaled, stimescaled;
1304 cputime_t gtime;
1305 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1306 cputime_t prev_utime, prev_stime;
1307 #endif
1308 unsigned long nvcsw, nivcsw; /* context switch counts */
1309 struct timespec start_time; /* monotonic time */
1310 struct timespec real_start_time; /* boot based time */
1311 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1312 unsigned long min_flt, maj_flt;
1313
1314 struct task_cputime cputime_expires;
1315 struct list_head cpu_timers[3];
1316
1317 /* process credentials */
1318 const struct cred __rcu *real_cred; /* objective and real subjective task
1319 * credentials (COW) */
1320 const struct cred __rcu *cred; /* effective (overridable) subjective task
1321 * credentials (COW) */
1322 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1323
1324 char comm[TASK_COMM_LEN]; /* executable name excluding path
1325 - access with [gs]et_task_comm (which lock
1326 it with task_lock())
1327 - initialized normally by setup_new_exec */
1328 /* file system info */
1329 int link_count, total_link_count;
1330 #ifdef CONFIG_SYSVIPC
1331 /* ipc stuff */
1332 struct sysv_sem sysvsem;
1333 #endif
1334 #ifdef CONFIG_DETECT_HUNG_TASK
1335 /* hung task detection */
1336 unsigned long last_switch_count;
1337 #endif
1338 /* CPU-specific state of this task */
1339 struct thread_struct thread;
1340 /* filesystem information */
1341 struct fs_struct *fs;
1342 /* open file information */
1343 struct files_struct *files;
1344 /* namespaces */
1345 struct nsproxy *nsproxy;
1346 /* signal handlers */
1347 struct signal_struct *signal;
1348 struct sighand_struct *sighand;
1349
1350 sigset_t blocked, real_blocked;
1351 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1352 struct sigpending pending;
1353
1354 unsigned long sas_ss_sp;
1355 size_t sas_ss_size;
1356 int (*notifier)(void *priv);
1357 void *notifier_data;
1358 sigset_t *notifier_mask;
1359 struct audit_context *audit_context;
1360 #ifdef CONFIG_AUDITSYSCALL
1361 uid_t loginuid;
1362 unsigned int sessionid;
1363 #endif
1364 seccomp_t seccomp;
1365
1366 /* Thread group tracking */
1367 u32 parent_exec_id;
1368 u32 self_exec_id;
1369 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1370 * mempolicy */
1371 spinlock_t alloc_lock;
1372
1373 #ifdef CONFIG_GENERIC_HARDIRQS
1374 /* IRQ handler threads */
1375 struct irqaction *irqaction;
1376 #endif
1377
1378 /* Protection of the PI data structures: */
1379 raw_spinlock_t pi_lock;
1380
1381 #ifdef CONFIG_RT_MUTEXES
1382 /* PI waiters blocked on a rt_mutex held by this task */
1383 struct plist_head pi_waiters;
1384 /* Deadlock detection and priority inheritance handling */
1385 struct rt_mutex_waiter *pi_blocked_on;
1386 #endif
1387
1388 #ifdef CONFIG_DEBUG_MUTEXES
1389 /* mutex deadlock detection */
1390 struct mutex_waiter *blocked_on;
1391 #endif
1392 #ifdef CONFIG_TRACE_IRQFLAGS
1393 unsigned int irq_events;
1394 unsigned long hardirq_enable_ip;
1395 unsigned long hardirq_disable_ip;
1396 unsigned int hardirq_enable_event;
1397 unsigned int hardirq_disable_event;
1398 int hardirqs_enabled;
1399 int hardirq_context;
1400 unsigned long softirq_disable_ip;
1401 unsigned long softirq_enable_ip;
1402 unsigned int softirq_disable_event;
1403 unsigned int softirq_enable_event;
1404 int softirqs_enabled;
1405 int softirq_context;
1406 #endif
1407 #ifdef CONFIG_LOCKDEP
1408 # define MAX_LOCK_DEPTH 48UL
1409 u64 curr_chain_key;
1410 int lockdep_depth;
1411 unsigned int lockdep_recursion;
1412 struct held_lock held_locks[MAX_LOCK_DEPTH];
1413 gfp_t lockdep_reclaim_gfp;
1414 #endif
1415
1416 /* journalling filesystem info */
1417 void *journal_info;
1418
1419 /* stacked block device info */
1420 struct bio_list *bio_list;
1421
1422 #ifdef CONFIG_BLOCK
1423 /* stack plugging */
1424 struct blk_plug *plug;
1425 #endif
1426
1427 /* VM state */
1428 struct reclaim_state *reclaim_state;
1429
1430 struct backing_dev_info *backing_dev_info;
1431
1432 struct io_context *io_context;
1433
1434 unsigned long ptrace_message;
1435 siginfo_t *last_siginfo; /* For ptrace use. */
1436 struct task_io_accounting ioac;
1437 #if defined(CONFIG_TASK_XACCT)
1438 u64 acct_rss_mem1; /* accumulated rss usage */
1439 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1440 cputime_t acct_timexpd; /* stime + utime since last update */
1441 #endif
1442 #ifdef CONFIG_CPUSETS
1443 nodemask_t mems_allowed; /* Protected by alloc_lock */
1444 int mems_allowed_change_disable;
1445 int cpuset_mem_spread_rotor;
1446 int cpuset_slab_spread_rotor;
1447 #endif
1448 #ifdef CONFIG_CGROUPS
1449 /* Control Group info protected by css_set_lock */
1450 struct css_set __rcu *cgroups;
1451 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1452 struct list_head cg_list;
1453 #endif
1454 #ifdef CONFIG_FUTEX
1455 struct robust_list_head __user *robust_list;
1456 #ifdef CONFIG_COMPAT
1457 struct compat_robust_list_head __user *compat_robust_list;
1458 #endif
1459 struct list_head pi_state_list;
1460 struct futex_pi_state *pi_state_cache;
1461 #endif
1462 #ifdef CONFIG_PERF_EVENTS
1463 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1464 struct mutex perf_event_mutex;
1465 struct list_head perf_event_list;
1466 #endif
1467 #ifdef CONFIG_NUMA
1468 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1469 short il_next;
1470 short pref_node_fork;
1471 #endif
1472 atomic_t fs_excl; /* holding fs exclusive resources */
1473 struct rcu_head rcu;
1474
1475 /*
1476 * cache last used pipe for splice
1477 */
1478 struct pipe_inode_info *splice_pipe;
1479 #ifdef CONFIG_TASK_DELAY_ACCT
1480 struct task_delay_info *delays;
1481 #endif
1482 #ifdef CONFIG_FAULT_INJECTION
1483 int make_it_fail;
1484 #endif
1485 struct prop_local_single dirties;
1486 #ifdef CONFIG_LATENCYTOP
1487 int latency_record_count;
1488 struct latency_record latency_record[LT_SAVECOUNT];
1489 #endif
1490 /*
1491 * time slack values; these are used to round up poll() and
1492 * select() etc timeout values. These are in nanoseconds.
1493 */
1494 unsigned long timer_slack_ns;
1495 unsigned long default_timer_slack_ns;
1496
1497 struct list_head *scm_work_list;
1498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1499 /* Index of current stored address in ret_stack */
1500 int curr_ret_stack;
1501 /* Stack of return addresses for return function tracing */
1502 struct ftrace_ret_stack *ret_stack;
1503 /* time stamp for last schedule */
1504 unsigned long long ftrace_timestamp;
1505 /*
1506 * Number of functions that haven't been traced
1507 * because of depth overrun.
1508 */
1509 atomic_t trace_overrun;
1510 /* Pause for the tracing */
1511 atomic_t tracing_graph_pause;
1512 #endif
1513 #ifdef CONFIG_TRACING
1514 /* state flags for use by tracers */
1515 unsigned long trace;
1516 /* bitmask of trace recursion */
1517 unsigned long trace_recursion;
1518 #endif /* CONFIG_TRACING */
1519 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1520 struct memcg_batch_info {
1521 int do_batch; /* incremented when batch uncharge started */
1522 struct mem_cgroup *memcg; /* target memcg of uncharge */
1523 unsigned long nr_pages; /* uncharged usage */
1524 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1525 } memcg_batch;
1526 #endif
1527 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1528 atomic_t ptrace_bp_refcnt;
1529 #endif
1530 };
1531
1532 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1533 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1534
1535 /*
1536 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1537 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1538 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1539 * values are inverted: lower p->prio value means higher priority.
1540 *
1541 * The MAX_USER_RT_PRIO value allows the actual maximum
1542 * RT priority to be separate from the value exported to
1543 * user-space. This allows kernel threads to set their
1544 * priority to a value higher than any user task. Note:
1545 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1546 */
1547
1548 #define MAX_USER_RT_PRIO 100
1549 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1550
1551 #define MAX_PRIO (MAX_RT_PRIO + 40)
1552 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1553
1554 static inline int rt_prio(int prio)
1555 {
1556 if (unlikely(prio < MAX_RT_PRIO))
1557 return 1;
1558 return 0;
1559 }
1560
1561 static inline int rt_task(struct task_struct *p)
1562 {
1563 return rt_prio(p->prio);
1564 }
1565
1566 static inline struct pid *task_pid(struct task_struct *task)
1567 {
1568 return task->pids[PIDTYPE_PID].pid;
1569 }
1570
1571 static inline struct pid *task_tgid(struct task_struct *task)
1572 {
1573 return task->group_leader->pids[PIDTYPE_PID].pid;
1574 }
1575
1576 /*
1577 * Without tasklist or rcu lock it is not safe to dereference
1578 * the result of task_pgrp/task_session even if task == current,
1579 * we can race with another thread doing sys_setsid/sys_setpgid.
1580 */
1581 static inline struct pid *task_pgrp(struct task_struct *task)
1582 {
1583 return task->group_leader->pids[PIDTYPE_PGID].pid;
1584 }
1585
1586 static inline struct pid *task_session(struct task_struct *task)
1587 {
1588 return task->group_leader->pids[PIDTYPE_SID].pid;
1589 }
1590
1591 struct pid_namespace;
1592
1593 /*
1594 * the helpers to get the task's different pids as they are seen
1595 * from various namespaces
1596 *
1597 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1598 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1599 * current.
1600 * task_xid_nr_ns() : id seen from the ns specified;
1601 *
1602 * set_task_vxid() : assigns a virtual id to a task;
1603 *
1604 * see also pid_nr() etc in include/linux/pid.h
1605 */
1606 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1607 struct pid_namespace *ns);
1608
1609 static inline pid_t task_pid_nr(struct task_struct *tsk)
1610 {
1611 return tsk->pid;
1612 }
1613
1614 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1615 struct pid_namespace *ns)
1616 {
1617 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1618 }
1619
1620 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1621 {
1622 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1623 }
1624
1625
1626 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1627 {
1628 return tsk->tgid;
1629 }
1630
1631 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1632
1633 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1634 {
1635 return pid_vnr(task_tgid(tsk));
1636 }
1637
1638
1639 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1640 struct pid_namespace *ns)
1641 {
1642 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1643 }
1644
1645 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1646 {
1647 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1648 }
1649
1650
1651 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1652 struct pid_namespace *ns)
1653 {
1654 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1655 }
1656
1657 static inline pid_t task_session_vnr(struct task_struct *tsk)
1658 {
1659 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1660 }
1661
1662 /* obsolete, do not use */
1663 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1664 {
1665 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1666 }
1667
1668 /**
1669 * pid_alive - check that a task structure is not stale
1670 * @p: Task structure to be checked.
1671 *
1672 * Test if a process is not yet dead (at most zombie state)
1673 * If pid_alive fails, then pointers within the task structure
1674 * can be stale and must not be dereferenced.
1675 */
1676 static inline int pid_alive(struct task_struct *p)
1677 {
1678 return p->pids[PIDTYPE_PID].pid != NULL;
1679 }
1680
1681 /**
1682 * is_global_init - check if a task structure is init
1683 * @tsk: Task structure to be checked.
1684 *
1685 * Check if a task structure is the first user space task the kernel created.
1686 */
1687 static inline int is_global_init(struct task_struct *tsk)
1688 {
1689 return tsk->pid == 1;
1690 }
1691
1692 /*
1693 * is_container_init:
1694 * check whether in the task is init in its own pid namespace.
1695 */
1696 extern int is_container_init(struct task_struct *tsk);
1697
1698 extern struct pid *cad_pid;
1699
1700 extern void free_task(struct task_struct *tsk);
1701 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1702
1703 extern void __put_task_struct(struct task_struct *t);
1704
1705 static inline void put_task_struct(struct task_struct *t)
1706 {
1707 if (atomic_dec_and_test(&t->usage))
1708 __put_task_struct(t);
1709 }
1710
1711 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1712 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1713
1714 /*
1715 * Per process flags
1716 */
1717 #define PF_STARTING 0x00000002 /* being created */
1718 #define PF_EXITING 0x00000004 /* getting shut down */
1719 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1720 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1721 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1722 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1723 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1724 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1725 #define PF_DUMPCORE 0x00000200 /* dumped core */
1726 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1727 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1728 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1729 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1730 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1731 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1732 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1733 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1734 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1735 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1736 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1737 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1738 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1739 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1740 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1741 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1742 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1743 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1744 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1745 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1746 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1747
1748 /*
1749 * Only the _current_ task can read/write to tsk->flags, but other
1750 * tasks can access tsk->flags in readonly mode for example
1751 * with tsk_used_math (like during threaded core dumping).
1752 * There is however an exception to this rule during ptrace
1753 * or during fork: the ptracer task is allowed to write to the
1754 * child->flags of its traced child (same goes for fork, the parent
1755 * can write to the child->flags), because we're guaranteed the
1756 * child is not running and in turn not changing child->flags
1757 * at the same time the parent does it.
1758 */
1759 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1760 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1761 #define clear_used_math() clear_stopped_child_used_math(current)
1762 #define set_used_math() set_stopped_child_used_math(current)
1763 #define conditional_stopped_child_used_math(condition, child) \
1764 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1765 #define conditional_used_math(condition) \
1766 conditional_stopped_child_used_math(condition, current)
1767 #define copy_to_stopped_child_used_math(child) \
1768 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1769 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1770 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1771 #define used_math() tsk_used_math(current)
1772
1773 #ifdef CONFIG_PREEMPT_RCU
1774
1775 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1776 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1777 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1778
1779 static inline void rcu_copy_process(struct task_struct *p)
1780 {
1781 p->rcu_read_lock_nesting = 0;
1782 p->rcu_read_unlock_special = 0;
1783 #ifdef CONFIG_TREE_PREEMPT_RCU
1784 p->rcu_blocked_node = NULL;
1785 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1786 #ifdef CONFIG_RCU_BOOST
1787 p->rcu_boost_mutex = NULL;
1788 #endif /* #ifdef CONFIG_RCU_BOOST */
1789 INIT_LIST_HEAD(&p->rcu_node_entry);
1790 }
1791
1792 #else
1793
1794 static inline void rcu_copy_process(struct task_struct *p)
1795 {
1796 }
1797
1798 #endif
1799
1800 #ifdef CONFIG_SMP
1801 extern int set_cpus_allowed_ptr(struct task_struct *p,
1802 const struct cpumask *new_mask);
1803 #else
1804 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1805 const struct cpumask *new_mask)
1806 {
1807 if (!cpumask_test_cpu(0, new_mask))
1808 return -EINVAL;
1809 return 0;
1810 }
1811 #endif
1812
1813 #ifndef CONFIG_CPUMASK_OFFSTACK
1814 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1815 {
1816 return set_cpus_allowed_ptr(p, &new_mask);
1817 }
1818 #endif
1819
1820 /*
1821 * Do not use outside of architecture code which knows its limitations.
1822 *
1823 * sched_clock() has no promise of monotonicity or bounded drift between
1824 * CPUs, use (which you should not) requires disabling IRQs.
1825 *
1826 * Please use one of the three interfaces below.
1827 */
1828 extern unsigned long long notrace sched_clock(void);
1829 /*
1830 * See the comment in kernel/sched_clock.c
1831 */
1832 extern u64 cpu_clock(int cpu);
1833 extern u64 local_clock(void);
1834 extern u64 sched_clock_cpu(int cpu);
1835
1836
1837 extern void sched_clock_init(void);
1838
1839 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1840 static inline void sched_clock_tick(void)
1841 {
1842 }
1843
1844 static inline void sched_clock_idle_sleep_event(void)
1845 {
1846 }
1847
1848 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1849 {
1850 }
1851 #else
1852 /*
1853 * Architectures can set this to 1 if they have specified
1854 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1855 * but then during bootup it turns out that sched_clock()
1856 * is reliable after all:
1857 */
1858 extern int sched_clock_stable;
1859
1860 extern void sched_clock_tick(void);
1861 extern void sched_clock_idle_sleep_event(void);
1862 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1863 #endif
1864
1865 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1866 /*
1867 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1868 * The reason for this explicit opt-in is not to have perf penalty with
1869 * slow sched_clocks.
1870 */
1871 extern void enable_sched_clock_irqtime(void);
1872 extern void disable_sched_clock_irqtime(void);
1873 #else
1874 static inline void enable_sched_clock_irqtime(void) {}
1875 static inline void disable_sched_clock_irqtime(void) {}
1876 #endif
1877
1878 extern unsigned long long
1879 task_sched_runtime(struct task_struct *task);
1880 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1881
1882 /* sched_exec is called by processes performing an exec */
1883 #ifdef CONFIG_SMP
1884 extern void sched_exec(void);
1885 #else
1886 #define sched_exec() {}
1887 #endif
1888
1889 extern void sched_clock_idle_sleep_event(void);
1890 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1891
1892 #ifdef CONFIG_HOTPLUG_CPU
1893 extern void idle_task_exit(void);
1894 #else
1895 static inline void idle_task_exit(void) {}
1896 #endif
1897
1898 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1899 extern void wake_up_idle_cpu(int cpu);
1900 #else
1901 static inline void wake_up_idle_cpu(int cpu) { }
1902 #endif
1903
1904 extern unsigned int sysctl_sched_latency;
1905 extern unsigned int sysctl_sched_min_granularity;
1906 extern unsigned int sysctl_sched_wakeup_granularity;
1907 extern unsigned int sysctl_sched_child_runs_first;
1908
1909 enum sched_tunable_scaling {
1910 SCHED_TUNABLESCALING_NONE,
1911 SCHED_TUNABLESCALING_LOG,
1912 SCHED_TUNABLESCALING_LINEAR,
1913 SCHED_TUNABLESCALING_END,
1914 };
1915 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1916
1917 #ifdef CONFIG_SCHED_DEBUG
1918 extern unsigned int sysctl_sched_migration_cost;
1919 extern unsigned int sysctl_sched_nr_migrate;
1920 extern unsigned int sysctl_sched_time_avg;
1921 extern unsigned int sysctl_timer_migration;
1922 extern unsigned int sysctl_sched_shares_window;
1923
1924 int sched_proc_update_handler(struct ctl_table *table, int write,
1925 void __user *buffer, size_t *length,
1926 loff_t *ppos);
1927 #endif
1928 #ifdef CONFIG_SCHED_DEBUG
1929 static inline unsigned int get_sysctl_timer_migration(void)
1930 {
1931 return sysctl_timer_migration;
1932 }
1933 #else
1934 static inline unsigned int get_sysctl_timer_migration(void)
1935 {
1936 return 1;
1937 }
1938 #endif
1939 extern unsigned int sysctl_sched_rt_period;
1940 extern int sysctl_sched_rt_runtime;
1941
1942 int sched_rt_handler(struct ctl_table *table, int write,
1943 void __user *buffer, size_t *lenp,
1944 loff_t *ppos);
1945
1946 #ifdef CONFIG_SCHED_AUTOGROUP
1947 extern unsigned int sysctl_sched_autogroup_enabled;
1948
1949 extern void sched_autogroup_create_attach(struct task_struct *p);
1950 extern void sched_autogroup_detach(struct task_struct *p);
1951 extern void sched_autogroup_fork(struct signal_struct *sig);
1952 extern void sched_autogroup_exit(struct signal_struct *sig);
1953 #ifdef CONFIG_PROC_FS
1954 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1955 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1956 #endif
1957 #else
1958 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1959 static inline void sched_autogroup_detach(struct task_struct *p) { }
1960 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1961 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1962 #endif
1963
1964 #ifdef CONFIG_RT_MUTEXES
1965 extern int rt_mutex_getprio(struct task_struct *p);
1966 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1967 extern void rt_mutex_adjust_pi(struct task_struct *p);
1968 #else
1969 static inline int rt_mutex_getprio(struct task_struct *p)
1970 {
1971 return p->normal_prio;
1972 }
1973 # define rt_mutex_adjust_pi(p) do { } while (0)
1974 #endif
1975
1976 extern bool yield_to(struct task_struct *p, bool preempt);
1977 extern void set_user_nice(struct task_struct *p, long nice);
1978 extern int task_prio(const struct task_struct *p);
1979 extern int task_nice(const struct task_struct *p);
1980 extern int can_nice(const struct task_struct *p, const int nice);
1981 extern int task_curr(const struct task_struct *p);
1982 extern int idle_cpu(int cpu);
1983 extern int sched_setscheduler(struct task_struct *, int,
1984 const struct sched_param *);
1985 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1986 const struct sched_param *);
1987 extern struct task_struct *idle_task(int cpu);
1988 extern struct task_struct *curr_task(int cpu);
1989 extern void set_curr_task(int cpu, struct task_struct *p);
1990
1991 void yield(void);
1992
1993 /*
1994 * The default (Linux) execution domain.
1995 */
1996 extern struct exec_domain default_exec_domain;
1997
1998 union thread_union {
1999 struct thread_info thread_info;
2000 unsigned long stack[THREAD_SIZE/sizeof(long)];
2001 };
2002
2003 #ifndef __HAVE_ARCH_KSTACK_END
2004 static inline int kstack_end(void *addr)
2005 {
2006 /* Reliable end of stack detection:
2007 * Some APM bios versions misalign the stack
2008 */
2009 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2010 }
2011 #endif
2012
2013 extern union thread_union init_thread_union;
2014 extern struct task_struct init_task;
2015
2016 extern struct mm_struct init_mm;
2017
2018 extern struct pid_namespace init_pid_ns;
2019
2020 /*
2021 * find a task by one of its numerical ids
2022 *
2023 * find_task_by_pid_ns():
2024 * finds a task by its pid in the specified namespace
2025 * find_task_by_vpid():
2026 * finds a task by its virtual pid
2027 *
2028 * see also find_vpid() etc in include/linux/pid.h
2029 */
2030
2031 extern struct task_struct *find_task_by_vpid(pid_t nr);
2032 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2033 struct pid_namespace *ns);
2034
2035 extern void __set_special_pids(struct pid *pid);
2036
2037 /* per-UID process charging. */
2038 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2039 static inline struct user_struct *get_uid(struct user_struct *u)
2040 {
2041 atomic_inc(&u->__count);
2042 return u;
2043 }
2044 extern void free_uid(struct user_struct *);
2045 extern void release_uids(struct user_namespace *ns);
2046
2047 #include <asm/current.h>
2048
2049 extern void xtime_update(unsigned long ticks);
2050
2051 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2052 extern int wake_up_process(struct task_struct *tsk);
2053 extern void wake_up_new_task(struct task_struct *tsk);
2054 #ifdef CONFIG_SMP
2055 extern void kick_process(struct task_struct *tsk);
2056 #else
2057 static inline void kick_process(struct task_struct *tsk) { }
2058 #endif
2059 extern void sched_fork(struct task_struct *p);
2060 extern void sched_dead(struct task_struct *p);
2061
2062 extern void proc_caches_init(void);
2063 extern void flush_signals(struct task_struct *);
2064 extern void __flush_signals(struct task_struct *);
2065 extern void ignore_signals(struct task_struct *);
2066 extern void flush_signal_handlers(struct task_struct *, int force_default);
2067 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2068
2069 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2070 {
2071 unsigned long flags;
2072 int ret;
2073
2074 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2075 ret = dequeue_signal(tsk, mask, info);
2076 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2077
2078 return ret;
2079 }
2080
2081 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2082 sigset_t *mask);
2083 extern void unblock_all_signals(void);
2084 extern void release_task(struct task_struct * p);
2085 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2086 extern int force_sigsegv(int, struct task_struct *);
2087 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2088 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2089 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2090 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2091 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2092 extern int kill_pid(struct pid *pid, int sig, int priv);
2093 extern int kill_proc_info(int, struct siginfo *, pid_t);
2094 extern int do_notify_parent(struct task_struct *, int);
2095 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2096 extern void force_sig(int, struct task_struct *);
2097 extern int send_sig(int, struct task_struct *, int);
2098 extern int zap_other_threads(struct task_struct *p);
2099 extern struct sigqueue *sigqueue_alloc(void);
2100 extern void sigqueue_free(struct sigqueue *);
2101 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2102 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2103 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2104
2105 static inline int kill_cad_pid(int sig, int priv)
2106 {
2107 return kill_pid(cad_pid, sig, priv);
2108 }
2109
2110 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2111 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2112 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2113 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2114
2115 /*
2116 * True if we are on the alternate signal stack.
2117 */
2118 static inline int on_sig_stack(unsigned long sp)
2119 {
2120 #ifdef CONFIG_STACK_GROWSUP
2121 return sp >= current->sas_ss_sp &&
2122 sp - current->sas_ss_sp < current->sas_ss_size;
2123 #else
2124 return sp > current->sas_ss_sp &&
2125 sp - current->sas_ss_sp <= current->sas_ss_size;
2126 #endif
2127 }
2128
2129 static inline int sas_ss_flags(unsigned long sp)
2130 {
2131 return (current->sas_ss_size == 0 ? SS_DISABLE
2132 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2133 }
2134
2135 /*
2136 * Routines for handling mm_structs
2137 */
2138 extern struct mm_struct * mm_alloc(void);
2139
2140 /* mmdrop drops the mm and the page tables */
2141 extern void __mmdrop(struct mm_struct *);
2142 static inline void mmdrop(struct mm_struct * mm)
2143 {
2144 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2145 __mmdrop(mm);
2146 }
2147
2148 /* mmput gets rid of the mappings and all user-space */
2149 extern void mmput(struct mm_struct *);
2150 /* Grab a reference to a task's mm, if it is not already going away */
2151 extern struct mm_struct *get_task_mm(struct task_struct *task);
2152 /* Remove the current tasks stale references to the old mm_struct */
2153 extern void mm_release(struct task_struct *, struct mm_struct *);
2154 /* Allocate a new mm structure and copy contents from tsk->mm */
2155 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2156
2157 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2158 struct task_struct *, struct pt_regs *);
2159 extern void flush_thread(void);
2160 extern void exit_thread(void);
2161
2162 extern void exit_files(struct task_struct *);
2163 extern void __cleanup_sighand(struct sighand_struct *);
2164
2165 extern void exit_itimers(struct signal_struct *);
2166 extern void flush_itimer_signals(void);
2167
2168 extern NORET_TYPE void do_group_exit(int);
2169
2170 extern void daemonize(const char *, ...);
2171 extern int allow_signal(int);
2172 extern int disallow_signal(int);
2173
2174 extern int do_execve(const char *,
2175 const char __user * const __user *,
2176 const char __user * const __user *, struct pt_regs *);
2177 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2178 struct task_struct *fork_idle(int);
2179
2180 extern void set_task_comm(struct task_struct *tsk, char *from);
2181 extern char *get_task_comm(char *to, struct task_struct *tsk);
2182
2183 #ifdef CONFIG_SMP
2184 void scheduler_ipi(void);
2185 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2186 #else
2187 static inline void scheduler_ipi(void) { }
2188 static inline unsigned long wait_task_inactive(struct task_struct *p,
2189 long match_state)
2190 {
2191 return 1;
2192 }
2193 #endif
2194
2195 #define next_task(p) \
2196 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2197
2198 #define for_each_process(p) \
2199 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2200
2201 extern bool current_is_single_threaded(void);
2202
2203 /*
2204 * Careful: do_each_thread/while_each_thread is a double loop so
2205 * 'break' will not work as expected - use goto instead.
2206 */
2207 #define do_each_thread(g, t) \
2208 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2209
2210 #define while_each_thread(g, t) \
2211 while ((t = next_thread(t)) != g)
2212
2213 static inline int get_nr_threads(struct task_struct *tsk)
2214 {
2215 return tsk->signal->nr_threads;
2216 }
2217
2218 /* de_thread depends on thread_group_leader not being a pid based check */
2219 #define thread_group_leader(p) (p == p->group_leader)
2220
2221 /* Do to the insanities of de_thread it is possible for a process
2222 * to have the pid of the thread group leader without actually being
2223 * the thread group leader. For iteration through the pids in proc
2224 * all we care about is that we have a task with the appropriate
2225 * pid, we don't actually care if we have the right task.
2226 */
2227 static inline int has_group_leader_pid(struct task_struct *p)
2228 {
2229 return p->pid == p->tgid;
2230 }
2231
2232 static inline
2233 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2234 {
2235 return p1->tgid == p2->tgid;
2236 }
2237
2238 static inline struct task_struct *next_thread(const struct task_struct *p)
2239 {
2240 return list_entry_rcu(p->thread_group.next,
2241 struct task_struct, thread_group);
2242 }
2243
2244 static inline int thread_group_empty(struct task_struct *p)
2245 {
2246 return list_empty(&p->thread_group);
2247 }
2248
2249 #define delay_group_leader(p) \
2250 (thread_group_leader(p) && !thread_group_empty(p))
2251
2252 static inline int task_detached(struct task_struct *p)
2253 {
2254 return p->exit_signal == -1;
2255 }
2256
2257 /*
2258 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2259 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2260 * pins the final release of task.io_context. Also protects ->cpuset and
2261 * ->cgroup.subsys[].
2262 *
2263 * Nests both inside and outside of read_lock(&tasklist_lock).
2264 * It must not be nested with write_lock_irq(&tasklist_lock),
2265 * neither inside nor outside.
2266 */
2267 static inline void task_lock(struct task_struct *p)
2268 {
2269 spin_lock(&p->alloc_lock);
2270 }
2271
2272 static inline void task_unlock(struct task_struct *p)
2273 {
2274 spin_unlock(&p->alloc_lock);
2275 }
2276
2277 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2278 unsigned long *flags);
2279
2280 #define lock_task_sighand(tsk, flags) \
2281 ({ struct sighand_struct *__ss; \
2282 __cond_lock(&(tsk)->sighand->siglock, \
2283 (__ss = __lock_task_sighand(tsk, flags))); \
2284 __ss; \
2285 }) \
2286
2287 static inline void unlock_task_sighand(struct task_struct *tsk,
2288 unsigned long *flags)
2289 {
2290 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2291 }
2292
2293 #ifndef __HAVE_THREAD_FUNCTIONS
2294
2295 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2296 #define task_stack_page(task) ((task)->stack)
2297
2298 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2299 {
2300 *task_thread_info(p) = *task_thread_info(org);
2301 task_thread_info(p)->task = p;
2302 }
2303
2304 static inline unsigned long *end_of_stack(struct task_struct *p)
2305 {
2306 return (unsigned long *)(task_thread_info(p) + 1);
2307 }
2308
2309 #endif
2310
2311 static inline int object_is_on_stack(void *obj)
2312 {
2313 void *stack = task_stack_page(current);
2314
2315 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2316 }
2317
2318 extern void thread_info_cache_init(void);
2319
2320 #ifdef CONFIG_DEBUG_STACK_USAGE
2321 static inline unsigned long stack_not_used(struct task_struct *p)
2322 {
2323 unsigned long *n = end_of_stack(p);
2324
2325 do { /* Skip over canary */
2326 n++;
2327 } while (!*n);
2328
2329 return (unsigned long)n - (unsigned long)end_of_stack(p);
2330 }
2331 #endif
2332
2333 /* set thread flags in other task's structures
2334 * - see asm/thread_info.h for TIF_xxxx flags available
2335 */
2336 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2337 {
2338 set_ti_thread_flag(task_thread_info(tsk), flag);
2339 }
2340
2341 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2342 {
2343 clear_ti_thread_flag(task_thread_info(tsk), flag);
2344 }
2345
2346 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2347 {
2348 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2349 }
2350
2351 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2352 {
2353 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2354 }
2355
2356 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2357 {
2358 return test_ti_thread_flag(task_thread_info(tsk), flag);
2359 }
2360
2361 static inline void set_tsk_need_resched(struct task_struct *tsk)
2362 {
2363 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2364 }
2365
2366 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2367 {
2368 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2369 }
2370
2371 static inline int test_tsk_need_resched(struct task_struct *tsk)
2372 {
2373 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2374 }
2375
2376 static inline int restart_syscall(void)
2377 {
2378 set_tsk_thread_flag(current, TIF_SIGPENDING);
2379 return -ERESTARTNOINTR;
2380 }
2381
2382 static inline int signal_pending(struct task_struct *p)
2383 {
2384 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2385 }
2386
2387 static inline int __fatal_signal_pending(struct task_struct *p)
2388 {
2389 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2390 }
2391
2392 static inline int fatal_signal_pending(struct task_struct *p)
2393 {
2394 return signal_pending(p) && __fatal_signal_pending(p);
2395 }
2396
2397 static inline int signal_pending_state(long state, struct task_struct *p)
2398 {
2399 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2400 return 0;
2401 if (!signal_pending(p))
2402 return 0;
2403
2404 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2405 }
2406
2407 static inline int need_resched(void)
2408 {
2409 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2410 }
2411
2412 /*
2413 * cond_resched() and cond_resched_lock(): latency reduction via
2414 * explicit rescheduling in places that are safe. The return
2415 * value indicates whether a reschedule was done in fact.
2416 * cond_resched_lock() will drop the spinlock before scheduling,
2417 * cond_resched_softirq() will enable bhs before scheduling.
2418 */
2419 extern int _cond_resched(void);
2420
2421 #define cond_resched() ({ \
2422 __might_sleep(__FILE__, __LINE__, 0); \
2423 _cond_resched(); \
2424 })
2425
2426 extern int __cond_resched_lock(spinlock_t *lock);
2427
2428 #ifdef CONFIG_PREEMPT
2429 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2430 #else
2431 #define PREEMPT_LOCK_OFFSET 0
2432 #endif
2433
2434 #define cond_resched_lock(lock) ({ \
2435 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2436 __cond_resched_lock(lock); \
2437 })
2438
2439 extern int __cond_resched_softirq(void);
2440
2441 #define cond_resched_softirq() ({ \
2442 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2443 __cond_resched_softirq(); \
2444 })
2445
2446 /*
2447 * Does a critical section need to be broken due to another
2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449 * but a general need for low latency)
2450 */
2451 static inline int spin_needbreak(spinlock_t *lock)
2452 {
2453 #ifdef CONFIG_PREEMPT
2454 return spin_is_contended(lock);
2455 #else
2456 return 0;
2457 #endif
2458 }
2459
2460 /*
2461 * Thread group CPU time accounting.
2462 */
2463 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2464 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2465
2466 static inline void thread_group_cputime_init(struct signal_struct *sig)
2467 {
2468 spin_lock_init(&sig->cputimer.lock);
2469 }
2470
2471 /*
2472 * Reevaluate whether the task has signals pending delivery.
2473 * Wake the task if so.
2474 * This is required every time the blocked sigset_t changes.
2475 * callers must hold sighand->siglock.
2476 */
2477 extern void recalc_sigpending_and_wake(struct task_struct *t);
2478 extern void recalc_sigpending(void);
2479
2480 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2481
2482 /*
2483 * Wrappers for p->thread_info->cpu access. No-op on UP.
2484 */
2485 #ifdef CONFIG_SMP
2486
2487 static inline unsigned int task_cpu(const struct task_struct *p)
2488 {
2489 return task_thread_info(p)->cpu;
2490 }
2491
2492 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2493
2494 #else
2495
2496 static inline unsigned int task_cpu(const struct task_struct *p)
2497 {
2498 return 0;
2499 }
2500
2501 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2502 {
2503 }
2504
2505 #endif /* CONFIG_SMP */
2506
2507 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2508 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2509
2510 extern void normalize_rt_tasks(void);
2511
2512 #ifdef CONFIG_CGROUP_SCHED
2513
2514 extern struct task_group root_task_group;
2515
2516 extern struct task_group *sched_create_group(struct task_group *parent);
2517 extern void sched_destroy_group(struct task_group *tg);
2518 extern void sched_move_task(struct task_struct *tsk);
2519 #ifdef CONFIG_FAIR_GROUP_SCHED
2520 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2521 extern unsigned long sched_group_shares(struct task_group *tg);
2522 #endif
2523 #ifdef CONFIG_RT_GROUP_SCHED
2524 extern int sched_group_set_rt_runtime(struct task_group *tg,
2525 long rt_runtime_us);
2526 extern long sched_group_rt_runtime(struct task_group *tg);
2527 extern int sched_group_set_rt_period(struct task_group *tg,
2528 long rt_period_us);
2529 extern long sched_group_rt_period(struct task_group *tg);
2530 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2531 #endif
2532 #endif
2533
2534 extern int task_can_switch_user(struct user_struct *up,
2535 struct task_struct *tsk);
2536
2537 #ifdef CONFIG_TASK_XACCT
2538 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2539 {
2540 tsk->ioac.rchar += amt;
2541 }
2542
2543 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2544 {
2545 tsk->ioac.wchar += amt;
2546 }
2547
2548 static inline void inc_syscr(struct task_struct *tsk)
2549 {
2550 tsk->ioac.syscr++;
2551 }
2552
2553 static inline void inc_syscw(struct task_struct *tsk)
2554 {
2555 tsk->ioac.syscw++;
2556 }
2557 #else
2558 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2559 {
2560 }
2561
2562 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2563 {
2564 }
2565
2566 static inline void inc_syscr(struct task_struct *tsk)
2567 {
2568 }
2569
2570 static inline void inc_syscw(struct task_struct *tsk)
2571 {
2572 }
2573 #endif
2574
2575 #ifndef TASK_SIZE_OF
2576 #define TASK_SIZE_OF(tsk) TASK_SIZE
2577 #endif
2578
2579 #ifdef CONFIG_MM_OWNER
2580 extern void mm_update_next_owner(struct mm_struct *mm);
2581 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2582 #else
2583 static inline void mm_update_next_owner(struct mm_struct *mm)
2584 {
2585 }
2586
2587 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2588 {
2589 }
2590 #endif /* CONFIG_MM_OWNER */
2591
2592 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2593 unsigned int limit)
2594 {
2595 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2596 }
2597
2598 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2599 unsigned int limit)
2600 {
2601 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2602 }
2603
2604 static inline unsigned long rlimit(unsigned int limit)
2605 {
2606 return task_rlimit(current, limit);
2607 }
2608
2609 static inline unsigned long rlimit_max(unsigned int limit)
2610 {
2611 return task_rlimit_max(current, limit);
2612 }
2613
2614 #endif /* __KERNEL__ */
2615
2616 #endif