]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93 #include <linux/llist.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_dead(task) ((task)->exit_state != 0)
219 #define task_is_stopped_or_traced(task) \
220 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221 #define task_contributes_to_load(task) \
222 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223 (task->flags & PF_FROZEN) == 0)
224
225 #define __set_task_state(tsk, state_value) \
226 do { (tsk)->state = (state_value); } while (0)
227 #define set_task_state(tsk, state_value) \
228 set_mb((tsk)->state, (state_value))
229
230 /*
231 * set_current_state() includes a barrier so that the write of current->state
232 * is correctly serialised wrt the caller's subsequent test of whether to
233 * actually sleep:
234 *
235 * set_current_state(TASK_UNINTERRUPTIBLE);
236 * if (do_i_need_to_sleep())
237 * schedule();
238 *
239 * If the caller does not need such serialisation then use __set_current_state()
240 */
241 #define __set_current_state(state_value) \
242 do { current->state = (state_value); } while (0)
243 #define set_current_state(state_value) \
244 set_mb(current->state, (state_value))
245
246 /* Task command name length */
247 #define TASK_COMM_LEN 16
248
249 #include <linux/spinlock.h>
250
251 /*
252 * This serializes "schedule()" and also protects
253 * the run-queue from deletions/modifications (but
254 * _adding_ to the beginning of the run-queue has
255 * a separate lock).
256 */
257 extern rwlock_t tasklist_lock;
258 extern spinlock_t mmlist_lock;
259
260 struct task_struct;
261
262 #ifdef CONFIG_PROVE_RCU
263 extern int lockdep_tasklist_lock_is_held(void);
264 #endif /* #ifdef CONFIG_PROVE_RCU */
265
266 extern void sched_init(void);
267 extern void sched_init_smp(void);
268 extern asmlinkage void schedule_tail(struct task_struct *prev);
269 extern void init_idle(struct task_struct *idle, int cpu);
270 extern void init_idle_bootup_task(struct task_struct *idle);
271
272 extern int runqueue_is_locked(int cpu);
273
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern void set_cpu_sd_state_idle(void);
277 extern int get_nohz_timer_target(void);
278 #else
279 static inline void select_nohz_load_balancer(int stop_tick) { }
280 static inline void set_cpu_sd_state_idle(void) { }
281 #endif
282
283 /*
284 * Only dump TASK_* tasks. (0 for all tasks)
285 */
286 extern void show_state_filter(unsigned long state_filter);
287
288 static inline void show_state(void)
289 {
290 show_state_filter(0);
291 }
292
293 extern void show_regs(struct pt_regs *);
294
295 /*
296 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
297 * task), SP is the stack pointer of the first frame that should be shown in the back
298 * trace (or NULL if the entire call-chain of the task should be shown).
299 */
300 extern void show_stack(struct task_struct *task, unsigned long *sp);
301
302 void io_schedule(void);
303 long io_schedule_timeout(long timeout);
304
305 extern void cpu_init (void);
306 extern void trap_init(void);
307 extern void update_process_times(int user);
308 extern void scheduler_tick(void);
309
310 extern void sched_show_task(struct task_struct *p);
311
312 #ifdef CONFIG_LOCKUP_DETECTOR
313 extern void touch_softlockup_watchdog(void);
314 extern void touch_softlockup_watchdog_sync(void);
315 extern void touch_all_softlockup_watchdogs(void);
316 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
317 void __user *buffer,
318 size_t *lenp, loff_t *ppos);
319 extern unsigned int softlockup_panic;
320 void lockup_detector_init(void);
321 #else
322 static inline void touch_softlockup_watchdog(void)
323 {
324 }
325 static inline void touch_softlockup_watchdog_sync(void)
326 {
327 }
328 static inline void touch_all_softlockup_watchdogs(void)
329 {
330 }
331 static inline void lockup_detector_init(void)
332 {
333 }
334 #endif
335
336 #ifdef CONFIG_DETECT_HUNG_TASK
337 extern unsigned int sysctl_hung_task_panic;
338 extern unsigned long sysctl_hung_task_check_count;
339 extern unsigned long sysctl_hung_task_timeout_secs;
340 extern unsigned long sysctl_hung_task_warnings;
341 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
342 void __user *buffer,
343 size_t *lenp, loff_t *ppos);
344 #else
345 /* Avoid need for ifdefs elsewhere in the code */
346 enum { sysctl_hung_task_timeout_secs = 0 };
347 #endif
348
349 /* Attach to any functions which should be ignored in wchan output. */
350 #define __sched __attribute__((__section__(".sched.text")))
351
352 /* Linker adds these: start and end of __sched functions */
353 extern char __sched_text_start[], __sched_text_end[];
354
355 /* Is this address in the __sched functions? */
356 extern int in_sched_functions(unsigned long addr);
357
358 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
359 extern signed long schedule_timeout(signed long timeout);
360 extern signed long schedule_timeout_interruptible(signed long timeout);
361 extern signed long schedule_timeout_killable(signed long timeout);
362 extern signed long schedule_timeout_uninterruptible(signed long timeout);
363 asmlinkage void schedule(void);
364 extern void schedule_preempt_disabled(void);
365 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
366
367 struct nsproxy;
368 struct user_namespace;
369
370 /*
371 * Default maximum number of active map areas, this limits the number of vmas
372 * per mm struct. Users can overwrite this number by sysctl but there is a
373 * problem.
374 *
375 * When a program's coredump is generated as ELF format, a section is created
376 * per a vma. In ELF, the number of sections is represented in unsigned short.
377 * This means the number of sections should be smaller than 65535 at coredump.
378 * Because the kernel adds some informative sections to a image of program at
379 * generating coredump, we need some margin. The number of extra sections is
380 * 1-3 now and depends on arch. We use "5" as safe margin, here.
381 */
382 #define MAPCOUNT_ELF_CORE_MARGIN (5)
383 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
384
385 extern int sysctl_max_map_count;
386
387 #include <linux/aio.h>
388
389 #ifdef CONFIG_MMU
390 extern void arch_pick_mmap_layout(struct mm_struct *mm);
391 extern unsigned long
392 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
393 unsigned long, unsigned long);
394 extern unsigned long
395 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
396 unsigned long len, unsigned long pgoff,
397 unsigned long flags);
398 extern void arch_unmap_area(struct mm_struct *, unsigned long);
399 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
400 #else
401 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
402 #endif
403
404
405 extern void set_dumpable(struct mm_struct *mm, int value);
406 extern int get_dumpable(struct mm_struct *mm);
407
408 /* mm flags */
409 /* dumpable bits */
410 #define MMF_DUMPABLE 0 /* core dump is permitted */
411 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
412
413 #define MMF_DUMPABLE_BITS 2
414 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
415
416 /* coredump filter bits */
417 #define MMF_DUMP_ANON_PRIVATE 2
418 #define MMF_DUMP_ANON_SHARED 3
419 #define MMF_DUMP_MAPPED_PRIVATE 4
420 #define MMF_DUMP_MAPPED_SHARED 5
421 #define MMF_DUMP_ELF_HEADERS 6
422 #define MMF_DUMP_HUGETLB_PRIVATE 7
423 #define MMF_DUMP_HUGETLB_SHARED 8
424
425 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
426 #define MMF_DUMP_FILTER_BITS 7
427 #define MMF_DUMP_FILTER_MASK \
428 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
429 #define MMF_DUMP_FILTER_DEFAULT \
430 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
431 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
432
433 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
434 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
435 #else
436 # define MMF_DUMP_MASK_DEFAULT_ELF 0
437 #endif
438 /* leave room for more dump flags */
439 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
440 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
441
442 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
443
444 struct sighand_struct {
445 atomic_t count;
446 struct k_sigaction action[_NSIG];
447 spinlock_t siglock;
448 wait_queue_head_t signalfd_wqh;
449 };
450
451 struct pacct_struct {
452 int ac_flag;
453 long ac_exitcode;
454 unsigned long ac_mem;
455 cputime_t ac_utime, ac_stime;
456 unsigned long ac_minflt, ac_majflt;
457 };
458
459 struct cpu_itimer {
460 cputime_t expires;
461 cputime_t incr;
462 u32 error;
463 u32 incr_error;
464 };
465
466 /**
467 * struct task_cputime - collected CPU time counts
468 * @utime: time spent in user mode, in &cputime_t units
469 * @stime: time spent in kernel mode, in &cputime_t units
470 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
471 *
472 * This structure groups together three kinds of CPU time that are
473 * tracked for threads and thread groups. Most things considering
474 * CPU time want to group these counts together and treat all three
475 * of them in parallel.
476 */
477 struct task_cputime {
478 cputime_t utime;
479 cputime_t stime;
480 unsigned long long sum_exec_runtime;
481 };
482 /* Alternate field names when used to cache expirations. */
483 #define prof_exp stime
484 #define virt_exp utime
485 #define sched_exp sum_exec_runtime
486
487 #define INIT_CPUTIME \
488 (struct task_cputime) { \
489 .utime = 0, \
490 .stime = 0, \
491 .sum_exec_runtime = 0, \
492 }
493
494 /*
495 * Disable preemption until the scheduler is running.
496 * Reset by start_kernel()->sched_init()->init_idle().
497 *
498 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
499 * before the scheduler is active -- see should_resched().
500 */
501 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
502
503 /**
504 * struct thread_group_cputimer - thread group interval timer counts
505 * @cputime: thread group interval timers.
506 * @running: non-zero when there are timers running and
507 * @cputime receives updates.
508 * @lock: lock for fields in this struct.
509 *
510 * This structure contains the version of task_cputime, above, that is
511 * used for thread group CPU timer calculations.
512 */
513 struct thread_group_cputimer {
514 struct task_cputime cputime;
515 int running;
516 raw_spinlock_t lock;
517 };
518
519 #include <linux/rwsem.h>
520 struct autogroup;
521
522 /*
523 * NOTE! "signal_struct" does not have its own
524 * locking, because a shared signal_struct always
525 * implies a shared sighand_struct, so locking
526 * sighand_struct is always a proper superset of
527 * the locking of signal_struct.
528 */
529 struct signal_struct {
530 atomic_t sigcnt;
531 atomic_t live;
532 int nr_threads;
533
534 wait_queue_head_t wait_chldexit; /* for wait4() */
535
536 /* current thread group signal load-balancing target: */
537 struct task_struct *curr_target;
538
539 /* shared signal handling: */
540 struct sigpending shared_pending;
541
542 /* thread group exit support */
543 int group_exit_code;
544 /* overloaded:
545 * - notify group_exit_task when ->count is equal to notify_count
546 * - everyone except group_exit_task is stopped during signal delivery
547 * of fatal signals, group_exit_task processes the signal.
548 */
549 int notify_count;
550 struct task_struct *group_exit_task;
551
552 /* thread group stop support, overloads group_exit_code too */
553 int group_stop_count;
554 unsigned int flags; /* see SIGNAL_* flags below */
555
556 /* POSIX.1b Interval Timers */
557 struct list_head posix_timers;
558
559 /* ITIMER_REAL timer for the process */
560 struct hrtimer real_timer;
561 struct pid *leader_pid;
562 ktime_t it_real_incr;
563
564 /*
565 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
566 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
567 * values are defined to 0 and 1 respectively
568 */
569 struct cpu_itimer it[2];
570
571 /*
572 * Thread group totals for process CPU timers.
573 * See thread_group_cputimer(), et al, for details.
574 */
575 struct thread_group_cputimer cputimer;
576
577 /* Earliest-expiration cache. */
578 struct task_cputime cputime_expires;
579
580 struct list_head cpu_timers[3];
581
582 struct pid *tty_old_pgrp;
583
584 /* boolean value for session group leader */
585 int leader;
586
587 struct tty_struct *tty; /* NULL if no tty */
588
589 #ifdef CONFIG_SCHED_AUTOGROUP
590 struct autogroup *autogroup;
591 #endif
592 /*
593 * Cumulative resource counters for dead threads in the group,
594 * and for reaped dead child processes forked by this group.
595 * Live threads maintain their own counters and add to these
596 * in __exit_signal, except for the group leader.
597 */
598 cputime_t utime, stime, cutime, cstime;
599 cputime_t gtime;
600 cputime_t cgtime;
601 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
602 cputime_t prev_utime, prev_stime;
603 #endif
604 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
605 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
606 unsigned long inblock, oublock, cinblock, coublock;
607 unsigned long maxrss, cmaxrss;
608 struct task_io_accounting ioac;
609
610 /*
611 * Cumulative ns of schedule CPU time fo dead threads in the
612 * group, not including a zombie group leader, (This only differs
613 * from jiffies_to_ns(utime + stime) if sched_clock uses something
614 * other than jiffies.)
615 */
616 unsigned long long sum_sched_runtime;
617
618 /*
619 * We don't bother to synchronize most readers of this at all,
620 * because there is no reader checking a limit that actually needs
621 * to get both rlim_cur and rlim_max atomically, and either one
622 * alone is a single word that can safely be read normally.
623 * getrlimit/setrlimit use task_lock(current->group_leader) to
624 * protect this instead of the siglock, because they really
625 * have no need to disable irqs.
626 */
627 struct rlimit rlim[RLIM_NLIMITS];
628
629 #ifdef CONFIG_BSD_PROCESS_ACCT
630 struct pacct_struct pacct; /* per-process accounting information */
631 #endif
632 #ifdef CONFIG_TASKSTATS
633 struct taskstats *stats;
634 #endif
635 #ifdef CONFIG_AUDIT
636 unsigned audit_tty;
637 struct tty_audit_buf *tty_audit_buf;
638 #endif
639 #ifdef CONFIG_CGROUPS
640 /*
641 * group_rwsem prevents new tasks from entering the threadgroup and
642 * member tasks from exiting,a more specifically, setting of
643 * PF_EXITING. fork and exit paths are protected with this rwsem
644 * using threadgroup_change_begin/end(). Users which require
645 * threadgroup to remain stable should use threadgroup_[un]lock()
646 * which also takes care of exec path. Currently, cgroup is the
647 * only user.
648 */
649 struct rw_semaphore group_rwsem;
650 #endif
651
652 int oom_adj; /* OOM kill score adjustment (bit shift) */
653 int oom_score_adj; /* OOM kill score adjustment */
654 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
655 * Only settable by CAP_SYS_RESOURCE. */
656
657 struct mutex cred_guard_mutex; /* guard against foreign influences on
658 * credential calculations
659 * (notably. ptrace) */
660 };
661
662 /* Context switch must be unlocked if interrupts are to be enabled */
663 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
664 # define __ARCH_WANT_UNLOCKED_CTXSW
665 #endif
666
667 /*
668 * Bits in flags field of signal_struct.
669 */
670 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
671 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
672 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
673 /*
674 * Pending notifications to parent.
675 */
676 #define SIGNAL_CLD_STOPPED 0x00000010
677 #define SIGNAL_CLD_CONTINUED 0x00000020
678 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
679
680 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
681
682 /* If true, all threads except ->group_exit_task have pending SIGKILL */
683 static inline int signal_group_exit(const struct signal_struct *sig)
684 {
685 return (sig->flags & SIGNAL_GROUP_EXIT) ||
686 (sig->group_exit_task != NULL);
687 }
688
689 /*
690 * Some day this will be a full-fledged user tracking system..
691 */
692 struct user_struct {
693 atomic_t __count; /* reference count */
694 atomic_t processes; /* How many processes does this user have? */
695 atomic_t files; /* How many open files does this user have? */
696 atomic_t sigpending; /* How many pending signals does this user have? */
697 #ifdef CONFIG_INOTIFY_USER
698 atomic_t inotify_watches; /* How many inotify watches does this user have? */
699 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
700 #endif
701 #ifdef CONFIG_FANOTIFY
702 atomic_t fanotify_listeners;
703 #endif
704 #ifdef CONFIG_EPOLL
705 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
706 #endif
707 #ifdef CONFIG_POSIX_MQUEUE
708 /* protected by mq_lock */
709 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
710 #endif
711 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712
713 #ifdef CONFIG_KEYS
714 struct key *uid_keyring; /* UID specific keyring */
715 struct key *session_keyring; /* UID's default session keyring */
716 #endif
717
718 /* Hash table maintenance information */
719 struct hlist_node uidhash_node;
720 uid_t uid;
721 struct user_namespace *user_ns;
722
723 #ifdef CONFIG_PERF_EVENTS
724 atomic_long_t locked_vm;
725 #endif
726 };
727
728 extern int uids_sysfs_init(void);
729
730 extern struct user_struct *find_user(uid_t);
731
732 extern struct user_struct root_user;
733 #define INIT_USER (&root_user)
734
735
736 struct backing_dev_info;
737 struct reclaim_state;
738
739 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
740 struct sched_info {
741 /* cumulative counters */
742 unsigned long pcount; /* # of times run on this cpu */
743 unsigned long long run_delay; /* time spent waiting on a runqueue */
744
745 /* timestamps */
746 unsigned long long last_arrival,/* when we last ran on a cpu */
747 last_queued; /* when we were last queued to run */
748 };
749 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
750
751 #ifdef CONFIG_TASK_DELAY_ACCT
752 struct task_delay_info {
753 spinlock_t lock;
754 unsigned int flags; /* Private per-task flags */
755
756 /* For each stat XXX, add following, aligned appropriately
757 *
758 * struct timespec XXX_start, XXX_end;
759 * u64 XXX_delay;
760 * u32 XXX_count;
761 *
762 * Atomicity of updates to XXX_delay, XXX_count protected by
763 * single lock above (split into XXX_lock if contention is an issue).
764 */
765
766 /*
767 * XXX_count is incremented on every XXX operation, the delay
768 * associated with the operation is added to XXX_delay.
769 * XXX_delay contains the accumulated delay time in nanoseconds.
770 */
771 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
772 u64 blkio_delay; /* wait for sync block io completion */
773 u64 swapin_delay; /* wait for swapin block io completion */
774 u32 blkio_count; /* total count of the number of sync block */
775 /* io operations performed */
776 u32 swapin_count; /* total count of the number of swapin block */
777 /* io operations performed */
778
779 struct timespec freepages_start, freepages_end;
780 u64 freepages_delay; /* wait for memory reclaim */
781 u32 freepages_count; /* total count of memory reclaim */
782 };
783 #endif /* CONFIG_TASK_DELAY_ACCT */
784
785 static inline int sched_info_on(void)
786 {
787 #ifdef CONFIG_SCHEDSTATS
788 return 1;
789 #elif defined(CONFIG_TASK_DELAY_ACCT)
790 extern int delayacct_on;
791 return delayacct_on;
792 #else
793 return 0;
794 #endif
795 }
796
797 enum cpu_idle_type {
798 CPU_IDLE,
799 CPU_NOT_IDLE,
800 CPU_NEWLY_IDLE,
801 CPU_MAX_IDLE_TYPES
802 };
803
804 /*
805 * Increase resolution of nice-level calculations for 64-bit architectures.
806 * The extra resolution improves shares distribution and load balancing of
807 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
808 * hierarchies, especially on larger systems. This is not a user-visible change
809 * and does not change the user-interface for setting shares/weights.
810 *
811 * We increase resolution only if we have enough bits to allow this increased
812 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
813 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
814 * increased costs.
815 */
816 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
817 # define SCHED_LOAD_RESOLUTION 10
818 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
819 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
820 #else
821 # define SCHED_LOAD_RESOLUTION 0
822 # define scale_load(w) (w)
823 # define scale_load_down(w) (w)
824 #endif
825
826 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
827 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
828
829 /*
830 * Increase resolution of cpu_power calculations
831 */
832 #define SCHED_POWER_SHIFT 10
833 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
834
835 /*
836 * sched-domains (multiprocessor balancing) declarations:
837 */
838 #ifdef CONFIG_SMP
839 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
840 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
841 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
842 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
843 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
844 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
845 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
846 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
847 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
848 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
849 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
850 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
851 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
852 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
853
854 enum powersavings_balance_level {
855 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
856 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
857 * first for long running threads
858 */
859 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
860 * cpu package for power savings
861 */
862 MAX_POWERSAVINGS_BALANCE_LEVELS
863 };
864
865 extern int sched_mc_power_savings, sched_smt_power_savings;
866
867 static inline int sd_balance_for_mc_power(void)
868 {
869 if (sched_smt_power_savings)
870 return SD_POWERSAVINGS_BALANCE;
871
872 if (!sched_mc_power_savings)
873 return SD_PREFER_SIBLING;
874
875 return 0;
876 }
877
878 static inline int sd_balance_for_package_power(void)
879 {
880 if (sched_mc_power_savings | sched_smt_power_savings)
881 return SD_POWERSAVINGS_BALANCE;
882
883 return SD_PREFER_SIBLING;
884 }
885
886 extern int __weak arch_sd_sibiling_asym_packing(void);
887
888 /*
889 * Optimise SD flags for power savings:
890 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
891 * Keep default SD flags if sched_{smt,mc}_power_saving=0
892 */
893
894 static inline int sd_power_saving_flags(void)
895 {
896 if (sched_mc_power_savings | sched_smt_power_savings)
897 return SD_BALANCE_NEWIDLE;
898
899 return 0;
900 }
901
902 struct sched_group_power {
903 atomic_t ref;
904 /*
905 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
906 * single CPU.
907 */
908 unsigned int power, power_orig;
909 unsigned long next_update;
910 /*
911 * Number of busy cpus in this group.
912 */
913 atomic_t nr_busy_cpus;
914 };
915
916 struct sched_group {
917 struct sched_group *next; /* Must be a circular list */
918 atomic_t ref;
919
920 unsigned int group_weight;
921 struct sched_group_power *sgp;
922
923 /*
924 * The CPUs this group covers.
925 *
926 * NOTE: this field is variable length. (Allocated dynamically
927 * by attaching extra space to the end of the structure,
928 * depending on how many CPUs the kernel has booted up with)
929 */
930 unsigned long cpumask[0];
931 };
932
933 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
934 {
935 return to_cpumask(sg->cpumask);
936 }
937
938 /**
939 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
940 * @group: The group whose first cpu is to be returned.
941 */
942 static inline unsigned int group_first_cpu(struct sched_group *group)
943 {
944 return cpumask_first(sched_group_cpus(group));
945 }
946
947 struct sched_domain_attr {
948 int relax_domain_level;
949 };
950
951 #define SD_ATTR_INIT (struct sched_domain_attr) { \
952 .relax_domain_level = -1, \
953 }
954
955 extern int sched_domain_level_max;
956
957 struct sched_domain {
958 /* These fields must be setup */
959 struct sched_domain *parent; /* top domain must be null terminated */
960 struct sched_domain *child; /* bottom domain must be null terminated */
961 struct sched_group *groups; /* the balancing groups of the domain */
962 unsigned long min_interval; /* Minimum balance interval ms */
963 unsigned long max_interval; /* Maximum balance interval ms */
964 unsigned int busy_factor; /* less balancing by factor if busy */
965 unsigned int imbalance_pct; /* No balance until over watermark */
966 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
967 unsigned int busy_idx;
968 unsigned int idle_idx;
969 unsigned int newidle_idx;
970 unsigned int wake_idx;
971 unsigned int forkexec_idx;
972 unsigned int smt_gain;
973 int flags; /* See SD_* */
974 int level;
975
976 /* Runtime fields. */
977 unsigned long last_balance; /* init to jiffies. units in jiffies */
978 unsigned int balance_interval; /* initialise to 1. units in ms. */
979 unsigned int nr_balance_failed; /* initialise to 0 */
980
981 u64 last_update;
982
983 #ifdef CONFIG_SCHEDSTATS
984 /* load_balance() stats */
985 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
986 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
987 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
988 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
989 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
990 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
991 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
992 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
993
994 /* Active load balancing */
995 unsigned int alb_count;
996 unsigned int alb_failed;
997 unsigned int alb_pushed;
998
999 /* SD_BALANCE_EXEC stats */
1000 unsigned int sbe_count;
1001 unsigned int sbe_balanced;
1002 unsigned int sbe_pushed;
1003
1004 /* SD_BALANCE_FORK stats */
1005 unsigned int sbf_count;
1006 unsigned int sbf_balanced;
1007 unsigned int sbf_pushed;
1008
1009 /* try_to_wake_up() stats */
1010 unsigned int ttwu_wake_remote;
1011 unsigned int ttwu_move_affine;
1012 unsigned int ttwu_move_balance;
1013 #endif
1014 #ifdef CONFIG_SCHED_DEBUG
1015 char *name;
1016 #endif
1017 union {
1018 void *private; /* used during construction */
1019 struct rcu_head rcu; /* used during destruction */
1020 };
1021
1022 unsigned int span_weight;
1023 /*
1024 * Span of all CPUs in this domain.
1025 *
1026 * NOTE: this field is variable length. (Allocated dynamically
1027 * by attaching extra space to the end of the structure,
1028 * depending on how many CPUs the kernel has booted up with)
1029 */
1030 unsigned long span[0];
1031 };
1032
1033 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1034 {
1035 return to_cpumask(sd->span);
1036 }
1037
1038 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1039 struct sched_domain_attr *dattr_new);
1040
1041 /* Allocate an array of sched domains, for partition_sched_domains(). */
1042 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1043 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1044
1045 /* Test a flag in parent sched domain */
1046 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1047 {
1048 if (sd->parent && (sd->parent->flags & flag))
1049 return 1;
1050
1051 return 0;
1052 }
1053
1054 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1055 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1056
1057 bool cpus_share_cache(int this_cpu, int that_cpu);
1058
1059 #else /* CONFIG_SMP */
1060
1061 struct sched_domain_attr;
1062
1063 static inline void
1064 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1065 struct sched_domain_attr *dattr_new)
1066 {
1067 }
1068
1069 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1070 {
1071 return true;
1072 }
1073
1074 #endif /* !CONFIG_SMP */
1075
1076
1077 struct io_context; /* See blkdev.h */
1078
1079
1080 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1081 extern void prefetch_stack(struct task_struct *t);
1082 #else
1083 static inline void prefetch_stack(struct task_struct *t) { }
1084 #endif
1085
1086 struct audit_context; /* See audit.c */
1087 struct mempolicy;
1088 struct pipe_inode_info;
1089 struct uts_namespace;
1090
1091 struct rq;
1092 struct sched_domain;
1093
1094 /*
1095 * wake flags
1096 */
1097 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1098 #define WF_FORK 0x02 /* child wakeup after fork */
1099 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1100
1101 #define ENQUEUE_WAKEUP 1
1102 #define ENQUEUE_HEAD 2
1103 #ifdef CONFIG_SMP
1104 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1105 #else
1106 #define ENQUEUE_WAKING 0
1107 #endif
1108
1109 #define DEQUEUE_SLEEP 1
1110
1111 struct sched_class {
1112 const struct sched_class *next;
1113
1114 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1115 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1116 void (*yield_task) (struct rq *rq);
1117 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1118
1119 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1120
1121 struct task_struct * (*pick_next_task) (struct rq *rq);
1122 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1123
1124 #ifdef CONFIG_SMP
1125 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1126
1127 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1128 void (*post_schedule) (struct rq *this_rq);
1129 void (*task_waking) (struct task_struct *task);
1130 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1131
1132 void (*set_cpus_allowed)(struct task_struct *p,
1133 const struct cpumask *newmask);
1134
1135 void (*rq_online)(struct rq *rq);
1136 void (*rq_offline)(struct rq *rq);
1137 #endif
1138
1139 void (*set_curr_task) (struct rq *rq);
1140 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1141 void (*task_fork) (struct task_struct *p);
1142
1143 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1144 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1145 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1146 int oldprio);
1147
1148 unsigned int (*get_rr_interval) (struct rq *rq,
1149 struct task_struct *task);
1150
1151 #ifdef CONFIG_FAIR_GROUP_SCHED
1152 void (*task_move_group) (struct task_struct *p, int on_rq);
1153 #endif
1154 };
1155
1156 struct load_weight {
1157 unsigned long weight, inv_weight;
1158 };
1159
1160 #ifdef CONFIG_SCHEDSTATS
1161 struct sched_statistics {
1162 u64 wait_start;
1163 u64 wait_max;
1164 u64 wait_count;
1165 u64 wait_sum;
1166 u64 iowait_count;
1167 u64 iowait_sum;
1168
1169 u64 sleep_start;
1170 u64 sleep_max;
1171 s64 sum_sleep_runtime;
1172
1173 u64 block_start;
1174 u64 block_max;
1175 u64 exec_max;
1176 u64 slice_max;
1177
1178 u64 nr_migrations_cold;
1179 u64 nr_failed_migrations_affine;
1180 u64 nr_failed_migrations_running;
1181 u64 nr_failed_migrations_hot;
1182 u64 nr_forced_migrations;
1183
1184 u64 nr_wakeups;
1185 u64 nr_wakeups_sync;
1186 u64 nr_wakeups_migrate;
1187 u64 nr_wakeups_local;
1188 u64 nr_wakeups_remote;
1189 u64 nr_wakeups_affine;
1190 u64 nr_wakeups_affine_attempts;
1191 u64 nr_wakeups_passive;
1192 u64 nr_wakeups_idle;
1193 };
1194 #endif
1195
1196 struct sched_entity {
1197 struct load_weight load; /* for load-balancing */
1198 struct rb_node run_node;
1199 struct list_head group_node;
1200 unsigned int on_rq;
1201
1202 u64 exec_start;
1203 u64 sum_exec_runtime;
1204 u64 vruntime;
1205 u64 prev_sum_exec_runtime;
1206
1207 u64 nr_migrations;
1208
1209 #ifdef CONFIG_SCHEDSTATS
1210 struct sched_statistics statistics;
1211 #endif
1212
1213 #ifdef CONFIG_FAIR_GROUP_SCHED
1214 struct sched_entity *parent;
1215 /* rq on which this entity is (to be) queued: */
1216 struct cfs_rq *cfs_rq;
1217 /* rq "owned" by this entity/group: */
1218 struct cfs_rq *my_q;
1219 #endif
1220 };
1221
1222 struct sched_rt_entity {
1223 struct list_head run_list;
1224 unsigned long timeout;
1225 unsigned int time_slice;
1226 int nr_cpus_allowed;
1227
1228 struct sched_rt_entity *back;
1229 #ifdef CONFIG_RT_GROUP_SCHED
1230 struct sched_rt_entity *parent;
1231 /* rq on which this entity is (to be) queued: */
1232 struct rt_rq *rt_rq;
1233 /* rq "owned" by this entity/group: */
1234 struct rt_rq *my_q;
1235 #endif
1236 };
1237
1238 /*
1239 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1240 * Timeslices get refilled after they expire.
1241 */
1242 #define RR_TIMESLICE (100 * HZ / 1000)
1243
1244 struct rcu_node;
1245
1246 enum perf_event_task_context {
1247 perf_invalid_context = -1,
1248 perf_hw_context = 0,
1249 perf_sw_context,
1250 perf_nr_task_contexts,
1251 };
1252
1253 struct task_struct {
1254 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1255 void *stack;
1256 atomic_t usage;
1257 unsigned int flags; /* per process flags, defined below */
1258 unsigned int ptrace;
1259
1260 #ifdef CONFIG_SMP
1261 struct llist_node wake_entry;
1262 int on_cpu;
1263 #endif
1264 int on_rq;
1265
1266 int prio, static_prio, normal_prio;
1267 unsigned int rt_priority;
1268 const struct sched_class *sched_class;
1269 struct sched_entity se;
1270 struct sched_rt_entity rt;
1271
1272 #ifdef CONFIG_PREEMPT_NOTIFIERS
1273 /* list of struct preempt_notifier: */
1274 struct hlist_head preempt_notifiers;
1275 #endif
1276
1277 /*
1278 * fpu_counter contains the number of consecutive context switches
1279 * that the FPU is used. If this is over a threshold, the lazy fpu
1280 * saving becomes unlazy to save the trap. This is an unsigned char
1281 * so that after 256 times the counter wraps and the behavior turns
1282 * lazy again; this to deal with bursty apps that only use FPU for
1283 * a short time
1284 */
1285 unsigned char fpu_counter;
1286 #ifdef CONFIG_BLK_DEV_IO_TRACE
1287 unsigned int btrace_seq;
1288 #endif
1289
1290 unsigned int policy;
1291 cpumask_t cpus_allowed;
1292
1293 #ifdef CONFIG_PREEMPT_RCU
1294 int rcu_read_lock_nesting;
1295 char rcu_read_unlock_special;
1296 struct list_head rcu_node_entry;
1297 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1298 #ifdef CONFIG_TREE_PREEMPT_RCU
1299 struct rcu_node *rcu_blocked_node;
1300 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1301 #ifdef CONFIG_RCU_BOOST
1302 struct rt_mutex *rcu_boost_mutex;
1303 #endif /* #ifdef CONFIG_RCU_BOOST */
1304
1305 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1306 struct sched_info sched_info;
1307 #endif
1308
1309 struct list_head tasks;
1310 #ifdef CONFIG_SMP
1311 struct plist_node pushable_tasks;
1312 #endif
1313
1314 struct mm_struct *mm, *active_mm;
1315 #ifdef CONFIG_COMPAT_BRK
1316 unsigned brk_randomized:1;
1317 #endif
1318 #if defined(SPLIT_RSS_COUNTING)
1319 struct task_rss_stat rss_stat;
1320 #endif
1321 /* task state */
1322 int exit_state;
1323 int exit_code, exit_signal;
1324 int pdeath_signal; /* The signal sent when the parent dies */
1325 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1326 /* ??? */
1327 unsigned int personality;
1328 unsigned did_exec:1;
1329 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1330 * execve */
1331 unsigned in_iowait:1;
1332
1333
1334 /* Revert to default priority/policy when forking */
1335 unsigned sched_reset_on_fork:1;
1336 unsigned sched_contributes_to_load:1;
1337
1338 #ifdef CONFIG_GENERIC_HARDIRQS
1339 /* IRQ handler threads */
1340 unsigned irq_thread:1;
1341 #endif
1342
1343 pid_t pid;
1344 pid_t tgid;
1345
1346 #ifdef CONFIG_CC_STACKPROTECTOR
1347 /* Canary value for the -fstack-protector gcc feature */
1348 unsigned long stack_canary;
1349 #endif
1350
1351 /*
1352 * pointers to (original) parent process, youngest child, younger sibling,
1353 * older sibling, respectively. (p->father can be replaced with
1354 * p->real_parent->pid)
1355 */
1356 struct task_struct __rcu *real_parent; /* real parent process */
1357 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1358 /*
1359 * children/sibling forms the list of my natural children
1360 */
1361 struct list_head children; /* list of my children */
1362 struct list_head sibling; /* linkage in my parent's children list */
1363 struct task_struct *group_leader; /* threadgroup leader */
1364
1365 /*
1366 * ptraced is the list of tasks this task is using ptrace on.
1367 * This includes both natural children and PTRACE_ATTACH targets.
1368 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1369 */
1370 struct list_head ptraced;
1371 struct list_head ptrace_entry;
1372
1373 /* PID/PID hash table linkage. */
1374 struct pid_link pids[PIDTYPE_MAX];
1375 struct list_head thread_group;
1376
1377 struct completion *vfork_done; /* for vfork() */
1378 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1379 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1380
1381 cputime_t utime, stime, utimescaled, stimescaled;
1382 cputime_t gtime;
1383 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1384 cputime_t prev_utime, prev_stime;
1385 #endif
1386 unsigned long nvcsw, nivcsw; /* context switch counts */
1387 struct timespec start_time; /* monotonic time */
1388 struct timespec real_start_time; /* boot based time */
1389 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1390 unsigned long min_flt, maj_flt;
1391
1392 struct task_cputime cputime_expires;
1393 struct list_head cpu_timers[3];
1394
1395 /* process credentials */
1396 const struct cred __rcu *real_cred; /* objective and real subjective task
1397 * credentials (COW) */
1398 const struct cred __rcu *cred; /* effective (overridable) subjective task
1399 * credentials (COW) */
1400 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1401
1402 char comm[TASK_COMM_LEN]; /* executable name excluding path
1403 - access with [gs]et_task_comm (which lock
1404 it with task_lock())
1405 - initialized normally by setup_new_exec */
1406 /* file system info */
1407 int link_count, total_link_count;
1408 #ifdef CONFIG_SYSVIPC
1409 /* ipc stuff */
1410 struct sysv_sem sysvsem;
1411 #endif
1412 #ifdef CONFIG_DETECT_HUNG_TASK
1413 /* hung task detection */
1414 unsigned long last_switch_count;
1415 #endif
1416 /* CPU-specific state of this task */
1417 struct thread_struct thread;
1418 /* filesystem information */
1419 struct fs_struct *fs;
1420 /* open file information */
1421 struct files_struct *files;
1422 /* namespaces */
1423 struct nsproxy *nsproxy;
1424 /* signal handlers */
1425 struct signal_struct *signal;
1426 struct sighand_struct *sighand;
1427
1428 sigset_t blocked, real_blocked;
1429 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1430 struct sigpending pending;
1431
1432 unsigned long sas_ss_sp;
1433 size_t sas_ss_size;
1434 int (*notifier)(void *priv);
1435 void *notifier_data;
1436 sigset_t *notifier_mask;
1437 struct audit_context *audit_context;
1438 #ifdef CONFIG_AUDITSYSCALL
1439 uid_t loginuid;
1440 unsigned int sessionid;
1441 #endif
1442 seccomp_t seccomp;
1443
1444 /* Thread group tracking */
1445 u32 parent_exec_id;
1446 u32 self_exec_id;
1447 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1448 * mempolicy */
1449 spinlock_t alloc_lock;
1450
1451 /* Protection of the PI data structures: */
1452 raw_spinlock_t pi_lock;
1453
1454 #ifdef CONFIG_RT_MUTEXES
1455 /* PI waiters blocked on a rt_mutex held by this task */
1456 struct plist_head pi_waiters;
1457 /* Deadlock detection and priority inheritance handling */
1458 struct rt_mutex_waiter *pi_blocked_on;
1459 #endif
1460
1461 #ifdef CONFIG_DEBUG_MUTEXES
1462 /* mutex deadlock detection */
1463 struct mutex_waiter *blocked_on;
1464 #endif
1465 #ifdef CONFIG_TRACE_IRQFLAGS
1466 unsigned int irq_events;
1467 unsigned long hardirq_enable_ip;
1468 unsigned long hardirq_disable_ip;
1469 unsigned int hardirq_enable_event;
1470 unsigned int hardirq_disable_event;
1471 int hardirqs_enabled;
1472 int hardirq_context;
1473 unsigned long softirq_disable_ip;
1474 unsigned long softirq_enable_ip;
1475 unsigned int softirq_disable_event;
1476 unsigned int softirq_enable_event;
1477 int softirqs_enabled;
1478 int softirq_context;
1479 #endif
1480 #ifdef CONFIG_LOCKDEP
1481 # define MAX_LOCK_DEPTH 48UL
1482 u64 curr_chain_key;
1483 int lockdep_depth;
1484 unsigned int lockdep_recursion;
1485 struct held_lock held_locks[MAX_LOCK_DEPTH];
1486 gfp_t lockdep_reclaim_gfp;
1487 #endif
1488
1489 /* journalling filesystem info */
1490 void *journal_info;
1491
1492 /* stacked block device info */
1493 struct bio_list *bio_list;
1494
1495 #ifdef CONFIG_BLOCK
1496 /* stack plugging */
1497 struct blk_plug *plug;
1498 #endif
1499
1500 /* VM state */
1501 struct reclaim_state *reclaim_state;
1502
1503 struct backing_dev_info *backing_dev_info;
1504
1505 struct io_context *io_context;
1506
1507 unsigned long ptrace_message;
1508 siginfo_t *last_siginfo; /* For ptrace use. */
1509 struct task_io_accounting ioac;
1510 #if defined(CONFIG_TASK_XACCT)
1511 u64 acct_rss_mem1; /* accumulated rss usage */
1512 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1513 cputime_t acct_timexpd; /* stime + utime since last update */
1514 #endif
1515 #ifdef CONFIG_CPUSETS
1516 nodemask_t mems_allowed; /* Protected by alloc_lock */
1517 int mems_allowed_change_disable;
1518 int cpuset_mem_spread_rotor;
1519 int cpuset_slab_spread_rotor;
1520 #endif
1521 #ifdef CONFIG_CGROUPS
1522 /* Control Group info protected by css_set_lock */
1523 struct css_set __rcu *cgroups;
1524 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1525 struct list_head cg_list;
1526 #endif
1527 #ifdef CONFIG_FUTEX
1528 struct robust_list_head __user *robust_list;
1529 #ifdef CONFIG_COMPAT
1530 struct compat_robust_list_head __user *compat_robust_list;
1531 #endif
1532 struct list_head pi_state_list;
1533 struct futex_pi_state *pi_state_cache;
1534 #endif
1535 #ifdef CONFIG_PERF_EVENTS
1536 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1537 struct mutex perf_event_mutex;
1538 struct list_head perf_event_list;
1539 #endif
1540 #ifdef CONFIG_NUMA
1541 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1542 short il_next;
1543 short pref_node_fork;
1544 #endif
1545 struct rcu_head rcu;
1546
1547 /*
1548 * cache last used pipe for splice
1549 */
1550 struct pipe_inode_info *splice_pipe;
1551 #ifdef CONFIG_TASK_DELAY_ACCT
1552 struct task_delay_info *delays;
1553 #endif
1554 #ifdef CONFIG_FAULT_INJECTION
1555 int make_it_fail;
1556 #endif
1557 /*
1558 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1559 * balance_dirty_pages() for some dirty throttling pause
1560 */
1561 int nr_dirtied;
1562 int nr_dirtied_pause;
1563 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1564
1565 #ifdef CONFIG_LATENCYTOP
1566 int latency_record_count;
1567 struct latency_record latency_record[LT_SAVECOUNT];
1568 #endif
1569 /*
1570 * time slack values; these are used to round up poll() and
1571 * select() etc timeout values. These are in nanoseconds.
1572 */
1573 unsigned long timer_slack_ns;
1574 unsigned long default_timer_slack_ns;
1575
1576 struct list_head *scm_work_list;
1577 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1578 /* Index of current stored address in ret_stack */
1579 int curr_ret_stack;
1580 /* Stack of return addresses for return function tracing */
1581 struct ftrace_ret_stack *ret_stack;
1582 /* time stamp for last schedule */
1583 unsigned long long ftrace_timestamp;
1584 /*
1585 * Number of functions that haven't been traced
1586 * because of depth overrun.
1587 */
1588 atomic_t trace_overrun;
1589 /* Pause for the tracing */
1590 atomic_t tracing_graph_pause;
1591 #endif
1592 #ifdef CONFIG_TRACING
1593 /* state flags for use by tracers */
1594 unsigned long trace;
1595 /* bitmask and counter of trace recursion */
1596 unsigned long trace_recursion;
1597 #endif /* CONFIG_TRACING */
1598 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1599 struct memcg_batch_info {
1600 int do_batch; /* incremented when batch uncharge started */
1601 struct mem_cgroup *memcg; /* target memcg of uncharge */
1602 unsigned long nr_pages; /* uncharged usage */
1603 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1604 } memcg_batch;
1605 #endif
1606 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1607 atomic_t ptrace_bp_refcnt;
1608 #endif
1609 };
1610
1611 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1612 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1613
1614 /*
1615 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1616 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1617 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1618 * values are inverted: lower p->prio value means higher priority.
1619 *
1620 * The MAX_USER_RT_PRIO value allows the actual maximum
1621 * RT priority to be separate from the value exported to
1622 * user-space. This allows kernel threads to set their
1623 * priority to a value higher than any user task. Note:
1624 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1625 */
1626
1627 #define MAX_USER_RT_PRIO 100
1628 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1629
1630 #define MAX_PRIO (MAX_RT_PRIO + 40)
1631 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1632
1633 static inline int rt_prio(int prio)
1634 {
1635 if (unlikely(prio < MAX_RT_PRIO))
1636 return 1;
1637 return 0;
1638 }
1639
1640 static inline int rt_task(struct task_struct *p)
1641 {
1642 return rt_prio(p->prio);
1643 }
1644
1645 static inline struct pid *task_pid(struct task_struct *task)
1646 {
1647 return task->pids[PIDTYPE_PID].pid;
1648 }
1649
1650 static inline struct pid *task_tgid(struct task_struct *task)
1651 {
1652 return task->group_leader->pids[PIDTYPE_PID].pid;
1653 }
1654
1655 /*
1656 * Without tasklist or rcu lock it is not safe to dereference
1657 * the result of task_pgrp/task_session even if task == current,
1658 * we can race with another thread doing sys_setsid/sys_setpgid.
1659 */
1660 static inline struct pid *task_pgrp(struct task_struct *task)
1661 {
1662 return task->group_leader->pids[PIDTYPE_PGID].pid;
1663 }
1664
1665 static inline struct pid *task_session(struct task_struct *task)
1666 {
1667 return task->group_leader->pids[PIDTYPE_SID].pid;
1668 }
1669
1670 struct pid_namespace;
1671
1672 /*
1673 * the helpers to get the task's different pids as they are seen
1674 * from various namespaces
1675 *
1676 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1677 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1678 * current.
1679 * task_xid_nr_ns() : id seen from the ns specified;
1680 *
1681 * set_task_vxid() : assigns a virtual id to a task;
1682 *
1683 * see also pid_nr() etc in include/linux/pid.h
1684 */
1685 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1686 struct pid_namespace *ns);
1687
1688 static inline pid_t task_pid_nr(struct task_struct *tsk)
1689 {
1690 return tsk->pid;
1691 }
1692
1693 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1694 struct pid_namespace *ns)
1695 {
1696 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1697 }
1698
1699 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1700 {
1701 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1702 }
1703
1704
1705 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1706 {
1707 return tsk->tgid;
1708 }
1709
1710 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1711
1712 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1713 {
1714 return pid_vnr(task_tgid(tsk));
1715 }
1716
1717
1718 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1719 struct pid_namespace *ns)
1720 {
1721 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1722 }
1723
1724 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1725 {
1726 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1727 }
1728
1729
1730 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1731 struct pid_namespace *ns)
1732 {
1733 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1734 }
1735
1736 static inline pid_t task_session_vnr(struct task_struct *tsk)
1737 {
1738 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1739 }
1740
1741 /* obsolete, do not use */
1742 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1743 {
1744 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1745 }
1746
1747 /**
1748 * pid_alive - check that a task structure is not stale
1749 * @p: Task structure to be checked.
1750 *
1751 * Test if a process is not yet dead (at most zombie state)
1752 * If pid_alive fails, then pointers within the task structure
1753 * can be stale and must not be dereferenced.
1754 */
1755 static inline int pid_alive(struct task_struct *p)
1756 {
1757 return p->pids[PIDTYPE_PID].pid != NULL;
1758 }
1759
1760 /**
1761 * is_global_init - check if a task structure is init
1762 * @tsk: Task structure to be checked.
1763 *
1764 * Check if a task structure is the first user space task the kernel created.
1765 */
1766 static inline int is_global_init(struct task_struct *tsk)
1767 {
1768 return tsk->pid == 1;
1769 }
1770
1771 /*
1772 * is_container_init:
1773 * check whether in the task is init in its own pid namespace.
1774 */
1775 extern int is_container_init(struct task_struct *tsk);
1776
1777 extern struct pid *cad_pid;
1778
1779 extern void free_task(struct task_struct *tsk);
1780 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1781
1782 extern void __put_task_struct(struct task_struct *t);
1783
1784 static inline void put_task_struct(struct task_struct *t)
1785 {
1786 if (atomic_dec_and_test(&t->usage))
1787 __put_task_struct(t);
1788 }
1789
1790 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1791 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1792
1793 /*
1794 * Per process flags
1795 */
1796 #define PF_EXITING 0x00000004 /* getting shut down */
1797 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1798 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1799 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1800 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1801 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1802 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1803 #define PF_DUMPCORE 0x00000200 /* dumped core */
1804 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1805 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1806 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1807 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1808 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1809 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1810 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1811 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1812 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1813 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1814 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1815 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1816 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1817 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1818 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1819 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1820 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1821 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1822 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1823
1824 /*
1825 * Only the _current_ task can read/write to tsk->flags, but other
1826 * tasks can access tsk->flags in readonly mode for example
1827 * with tsk_used_math (like during threaded core dumping).
1828 * There is however an exception to this rule during ptrace
1829 * or during fork: the ptracer task is allowed to write to the
1830 * child->flags of its traced child (same goes for fork, the parent
1831 * can write to the child->flags), because we're guaranteed the
1832 * child is not running and in turn not changing child->flags
1833 * at the same time the parent does it.
1834 */
1835 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1836 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1837 #define clear_used_math() clear_stopped_child_used_math(current)
1838 #define set_used_math() set_stopped_child_used_math(current)
1839 #define conditional_stopped_child_used_math(condition, child) \
1840 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1841 #define conditional_used_math(condition) \
1842 conditional_stopped_child_used_math(condition, current)
1843 #define copy_to_stopped_child_used_math(child) \
1844 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1845 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1846 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1847 #define used_math() tsk_used_math(current)
1848
1849 /*
1850 * task->jobctl flags
1851 */
1852 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1853
1854 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1855 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1856 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1857 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1858 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1859 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1860 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1861
1862 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1863 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1864 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1865 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1866 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1867 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1868 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1869
1870 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1871 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1872
1873 extern bool task_set_jobctl_pending(struct task_struct *task,
1874 unsigned int mask);
1875 extern void task_clear_jobctl_trapping(struct task_struct *task);
1876 extern void task_clear_jobctl_pending(struct task_struct *task,
1877 unsigned int mask);
1878
1879 #ifdef CONFIG_PREEMPT_RCU
1880
1881 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1882 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1883
1884 static inline void rcu_copy_process(struct task_struct *p)
1885 {
1886 p->rcu_read_lock_nesting = 0;
1887 p->rcu_read_unlock_special = 0;
1888 #ifdef CONFIG_TREE_PREEMPT_RCU
1889 p->rcu_blocked_node = NULL;
1890 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1891 #ifdef CONFIG_RCU_BOOST
1892 p->rcu_boost_mutex = NULL;
1893 #endif /* #ifdef CONFIG_RCU_BOOST */
1894 INIT_LIST_HEAD(&p->rcu_node_entry);
1895 }
1896
1897 #else
1898
1899 static inline void rcu_copy_process(struct task_struct *p)
1900 {
1901 }
1902
1903 #endif
1904
1905 #ifdef CONFIG_SMP
1906 extern void do_set_cpus_allowed(struct task_struct *p,
1907 const struct cpumask *new_mask);
1908
1909 extern int set_cpus_allowed_ptr(struct task_struct *p,
1910 const struct cpumask *new_mask);
1911 #else
1912 static inline void do_set_cpus_allowed(struct task_struct *p,
1913 const struct cpumask *new_mask)
1914 {
1915 }
1916 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1917 const struct cpumask *new_mask)
1918 {
1919 if (!cpumask_test_cpu(0, new_mask))
1920 return -EINVAL;
1921 return 0;
1922 }
1923 #endif
1924
1925 #ifndef CONFIG_CPUMASK_OFFSTACK
1926 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1927 {
1928 return set_cpus_allowed_ptr(p, &new_mask);
1929 }
1930 #endif
1931
1932 /*
1933 * Do not use outside of architecture code which knows its limitations.
1934 *
1935 * sched_clock() has no promise of monotonicity or bounded drift between
1936 * CPUs, use (which you should not) requires disabling IRQs.
1937 *
1938 * Please use one of the three interfaces below.
1939 */
1940 extern unsigned long long notrace sched_clock(void);
1941 /*
1942 * See the comment in kernel/sched_clock.c
1943 */
1944 extern u64 cpu_clock(int cpu);
1945 extern u64 local_clock(void);
1946 extern u64 sched_clock_cpu(int cpu);
1947
1948
1949 extern void sched_clock_init(void);
1950
1951 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1952 static inline void sched_clock_tick(void)
1953 {
1954 }
1955
1956 static inline void sched_clock_idle_sleep_event(void)
1957 {
1958 }
1959
1960 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1961 {
1962 }
1963 #else
1964 /*
1965 * Architectures can set this to 1 if they have specified
1966 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1967 * but then during bootup it turns out that sched_clock()
1968 * is reliable after all:
1969 */
1970 extern int sched_clock_stable;
1971
1972 extern void sched_clock_tick(void);
1973 extern void sched_clock_idle_sleep_event(void);
1974 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1975 #endif
1976
1977 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1978 /*
1979 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1980 * The reason for this explicit opt-in is not to have perf penalty with
1981 * slow sched_clocks.
1982 */
1983 extern void enable_sched_clock_irqtime(void);
1984 extern void disable_sched_clock_irqtime(void);
1985 #else
1986 static inline void enable_sched_clock_irqtime(void) {}
1987 static inline void disable_sched_clock_irqtime(void) {}
1988 #endif
1989
1990 extern unsigned long long
1991 task_sched_runtime(struct task_struct *task);
1992
1993 /* sched_exec is called by processes performing an exec */
1994 #ifdef CONFIG_SMP
1995 extern void sched_exec(void);
1996 #else
1997 #define sched_exec() {}
1998 #endif
1999
2000 extern void sched_clock_idle_sleep_event(void);
2001 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2002
2003 #ifdef CONFIG_HOTPLUG_CPU
2004 extern void idle_task_exit(void);
2005 #else
2006 static inline void idle_task_exit(void) {}
2007 #endif
2008
2009 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2010 extern void wake_up_idle_cpu(int cpu);
2011 #else
2012 static inline void wake_up_idle_cpu(int cpu) { }
2013 #endif
2014
2015 extern unsigned int sysctl_sched_latency;
2016 extern unsigned int sysctl_sched_min_granularity;
2017 extern unsigned int sysctl_sched_wakeup_granularity;
2018 extern unsigned int sysctl_sched_child_runs_first;
2019
2020 enum sched_tunable_scaling {
2021 SCHED_TUNABLESCALING_NONE,
2022 SCHED_TUNABLESCALING_LOG,
2023 SCHED_TUNABLESCALING_LINEAR,
2024 SCHED_TUNABLESCALING_END,
2025 };
2026 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2027
2028 #ifdef CONFIG_SCHED_DEBUG
2029 extern unsigned int sysctl_sched_migration_cost;
2030 extern unsigned int sysctl_sched_nr_migrate;
2031 extern unsigned int sysctl_sched_time_avg;
2032 extern unsigned int sysctl_timer_migration;
2033 extern unsigned int sysctl_sched_shares_window;
2034
2035 int sched_proc_update_handler(struct ctl_table *table, int write,
2036 void __user *buffer, size_t *length,
2037 loff_t *ppos);
2038 #endif
2039 #ifdef CONFIG_SCHED_DEBUG
2040 static inline unsigned int get_sysctl_timer_migration(void)
2041 {
2042 return sysctl_timer_migration;
2043 }
2044 #else
2045 static inline unsigned int get_sysctl_timer_migration(void)
2046 {
2047 return 1;
2048 }
2049 #endif
2050 extern unsigned int sysctl_sched_rt_period;
2051 extern int sysctl_sched_rt_runtime;
2052
2053 int sched_rt_handler(struct ctl_table *table, int write,
2054 void __user *buffer, size_t *lenp,
2055 loff_t *ppos);
2056
2057 #ifdef CONFIG_SCHED_AUTOGROUP
2058 extern unsigned int sysctl_sched_autogroup_enabled;
2059
2060 extern void sched_autogroup_create_attach(struct task_struct *p);
2061 extern void sched_autogroup_detach(struct task_struct *p);
2062 extern void sched_autogroup_fork(struct signal_struct *sig);
2063 extern void sched_autogroup_exit(struct signal_struct *sig);
2064 #ifdef CONFIG_PROC_FS
2065 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2066 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2067 #endif
2068 #else
2069 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2070 static inline void sched_autogroup_detach(struct task_struct *p) { }
2071 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2072 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2073 #endif
2074
2075 #ifdef CONFIG_CFS_BANDWIDTH
2076 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2077 #endif
2078
2079 #ifdef CONFIG_RT_MUTEXES
2080 extern int rt_mutex_getprio(struct task_struct *p);
2081 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2082 extern void rt_mutex_adjust_pi(struct task_struct *p);
2083 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2084 {
2085 return tsk->pi_blocked_on != NULL;
2086 }
2087 #else
2088 static inline int rt_mutex_getprio(struct task_struct *p)
2089 {
2090 return p->normal_prio;
2091 }
2092 # define rt_mutex_adjust_pi(p) do { } while (0)
2093 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2094 {
2095 return false;
2096 }
2097 #endif
2098
2099 extern bool yield_to(struct task_struct *p, bool preempt);
2100 extern void set_user_nice(struct task_struct *p, long nice);
2101 extern int task_prio(const struct task_struct *p);
2102 extern int task_nice(const struct task_struct *p);
2103 extern int can_nice(const struct task_struct *p, const int nice);
2104 extern int task_curr(const struct task_struct *p);
2105 extern int idle_cpu(int cpu);
2106 extern int sched_setscheduler(struct task_struct *, int,
2107 const struct sched_param *);
2108 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2109 const struct sched_param *);
2110 extern struct task_struct *idle_task(int cpu);
2111 /**
2112 * is_idle_task - is the specified task an idle task?
2113 * @p: the task in question.
2114 */
2115 static inline bool is_idle_task(const struct task_struct *p)
2116 {
2117 return p->pid == 0;
2118 }
2119 extern struct task_struct *curr_task(int cpu);
2120 extern void set_curr_task(int cpu, struct task_struct *p);
2121
2122 void yield(void);
2123
2124 /*
2125 * The default (Linux) execution domain.
2126 */
2127 extern struct exec_domain default_exec_domain;
2128
2129 union thread_union {
2130 struct thread_info thread_info;
2131 unsigned long stack[THREAD_SIZE/sizeof(long)];
2132 };
2133
2134 #ifndef __HAVE_ARCH_KSTACK_END
2135 static inline int kstack_end(void *addr)
2136 {
2137 /* Reliable end of stack detection:
2138 * Some APM bios versions misalign the stack
2139 */
2140 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2141 }
2142 #endif
2143
2144 extern union thread_union init_thread_union;
2145 extern struct task_struct init_task;
2146
2147 extern struct mm_struct init_mm;
2148
2149 extern struct pid_namespace init_pid_ns;
2150
2151 /*
2152 * find a task by one of its numerical ids
2153 *
2154 * find_task_by_pid_ns():
2155 * finds a task by its pid in the specified namespace
2156 * find_task_by_vpid():
2157 * finds a task by its virtual pid
2158 *
2159 * see also find_vpid() etc in include/linux/pid.h
2160 */
2161
2162 extern struct task_struct *find_task_by_vpid(pid_t nr);
2163 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2164 struct pid_namespace *ns);
2165
2166 extern void __set_special_pids(struct pid *pid);
2167
2168 /* per-UID process charging. */
2169 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2170 static inline struct user_struct *get_uid(struct user_struct *u)
2171 {
2172 atomic_inc(&u->__count);
2173 return u;
2174 }
2175 extern void free_uid(struct user_struct *);
2176 extern void release_uids(struct user_namespace *ns);
2177
2178 #include <asm/current.h>
2179
2180 extern void xtime_update(unsigned long ticks);
2181
2182 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2183 extern int wake_up_process(struct task_struct *tsk);
2184 extern void wake_up_new_task(struct task_struct *tsk);
2185 #ifdef CONFIG_SMP
2186 extern void kick_process(struct task_struct *tsk);
2187 #else
2188 static inline void kick_process(struct task_struct *tsk) { }
2189 #endif
2190 extern void sched_fork(struct task_struct *p);
2191 extern void sched_dead(struct task_struct *p);
2192
2193 extern void proc_caches_init(void);
2194 extern void flush_signals(struct task_struct *);
2195 extern void __flush_signals(struct task_struct *);
2196 extern void ignore_signals(struct task_struct *);
2197 extern void flush_signal_handlers(struct task_struct *, int force_default);
2198 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2199
2200 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2201 {
2202 unsigned long flags;
2203 int ret;
2204
2205 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2206 ret = dequeue_signal(tsk, mask, info);
2207 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2208
2209 return ret;
2210 }
2211
2212 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2213 sigset_t *mask);
2214 extern void unblock_all_signals(void);
2215 extern void release_task(struct task_struct * p);
2216 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2217 extern int force_sigsegv(int, struct task_struct *);
2218 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2219 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2220 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2221 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2222 const struct cred *, u32);
2223 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2224 extern int kill_pid(struct pid *pid, int sig, int priv);
2225 extern int kill_proc_info(int, struct siginfo *, pid_t);
2226 extern __must_check bool do_notify_parent(struct task_struct *, int);
2227 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2228 extern void force_sig(int, struct task_struct *);
2229 extern int send_sig(int, struct task_struct *, int);
2230 extern int zap_other_threads(struct task_struct *p);
2231 extern struct sigqueue *sigqueue_alloc(void);
2232 extern void sigqueue_free(struct sigqueue *);
2233 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2234 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2235 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2236
2237 static inline int kill_cad_pid(int sig, int priv)
2238 {
2239 return kill_pid(cad_pid, sig, priv);
2240 }
2241
2242 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2243 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2244 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2245 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2246
2247 /*
2248 * True if we are on the alternate signal stack.
2249 */
2250 static inline int on_sig_stack(unsigned long sp)
2251 {
2252 #ifdef CONFIG_STACK_GROWSUP
2253 return sp >= current->sas_ss_sp &&
2254 sp - current->sas_ss_sp < current->sas_ss_size;
2255 #else
2256 return sp > current->sas_ss_sp &&
2257 sp - current->sas_ss_sp <= current->sas_ss_size;
2258 #endif
2259 }
2260
2261 static inline int sas_ss_flags(unsigned long sp)
2262 {
2263 return (current->sas_ss_size == 0 ? SS_DISABLE
2264 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2265 }
2266
2267 /*
2268 * Routines for handling mm_structs
2269 */
2270 extern struct mm_struct * mm_alloc(void);
2271
2272 /* mmdrop drops the mm and the page tables */
2273 extern void __mmdrop(struct mm_struct *);
2274 static inline void mmdrop(struct mm_struct * mm)
2275 {
2276 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2277 __mmdrop(mm);
2278 }
2279
2280 /* mmput gets rid of the mappings and all user-space */
2281 extern void mmput(struct mm_struct *);
2282 /* Grab a reference to a task's mm, if it is not already going away */
2283 extern struct mm_struct *get_task_mm(struct task_struct *task);
2284 /*
2285 * Grab a reference to a task's mm, if it is not already going away
2286 * and ptrace_may_access with the mode parameter passed to it
2287 * succeeds.
2288 */
2289 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2290 /* Remove the current tasks stale references to the old mm_struct */
2291 extern void mm_release(struct task_struct *, struct mm_struct *);
2292 /* Allocate a new mm structure and copy contents from tsk->mm */
2293 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2294
2295 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2296 struct task_struct *, struct pt_regs *);
2297 extern void flush_thread(void);
2298 extern void exit_thread(void);
2299
2300 extern void exit_files(struct task_struct *);
2301 extern void __cleanup_sighand(struct sighand_struct *);
2302
2303 extern void exit_itimers(struct signal_struct *);
2304 extern void flush_itimer_signals(void);
2305
2306 extern void do_group_exit(int);
2307
2308 extern void daemonize(const char *, ...);
2309 extern int allow_signal(int);
2310 extern int disallow_signal(int);
2311
2312 extern int do_execve(const char *,
2313 const char __user * const __user *,
2314 const char __user * const __user *, struct pt_regs *);
2315 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2316 struct task_struct *fork_idle(int);
2317
2318 extern void set_task_comm(struct task_struct *tsk, char *from);
2319 extern char *get_task_comm(char *to, struct task_struct *tsk);
2320
2321 #ifdef CONFIG_SMP
2322 void scheduler_ipi(void);
2323 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2324 #else
2325 static inline void scheduler_ipi(void) { }
2326 static inline unsigned long wait_task_inactive(struct task_struct *p,
2327 long match_state)
2328 {
2329 return 1;
2330 }
2331 #endif
2332
2333 #define next_task(p) \
2334 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2335
2336 #define for_each_process(p) \
2337 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2338
2339 extern bool current_is_single_threaded(void);
2340
2341 /*
2342 * Careful: do_each_thread/while_each_thread is a double loop so
2343 * 'break' will not work as expected - use goto instead.
2344 */
2345 #define do_each_thread(g, t) \
2346 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2347
2348 #define while_each_thread(g, t) \
2349 while ((t = next_thread(t)) != g)
2350
2351 static inline int get_nr_threads(struct task_struct *tsk)
2352 {
2353 return tsk->signal->nr_threads;
2354 }
2355
2356 static inline bool thread_group_leader(struct task_struct *p)
2357 {
2358 return p->exit_signal >= 0;
2359 }
2360
2361 /* Do to the insanities of de_thread it is possible for a process
2362 * to have the pid of the thread group leader without actually being
2363 * the thread group leader. For iteration through the pids in proc
2364 * all we care about is that we have a task with the appropriate
2365 * pid, we don't actually care if we have the right task.
2366 */
2367 static inline int has_group_leader_pid(struct task_struct *p)
2368 {
2369 return p->pid == p->tgid;
2370 }
2371
2372 static inline
2373 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2374 {
2375 return p1->tgid == p2->tgid;
2376 }
2377
2378 static inline struct task_struct *next_thread(const struct task_struct *p)
2379 {
2380 return list_entry_rcu(p->thread_group.next,
2381 struct task_struct, thread_group);
2382 }
2383
2384 static inline int thread_group_empty(struct task_struct *p)
2385 {
2386 return list_empty(&p->thread_group);
2387 }
2388
2389 #define delay_group_leader(p) \
2390 (thread_group_leader(p) && !thread_group_empty(p))
2391
2392 /*
2393 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2394 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2395 * pins the final release of task.io_context. Also protects ->cpuset and
2396 * ->cgroup.subsys[]. And ->vfork_done.
2397 *
2398 * Nests both inside and outside of read_lock(&tasklist_lock).
2399 * It must not be nested with write_lock_irq(&tasklist_lock),
2400 * neither inside nor outside.
2401 */
2402 static inline void task_lock(struct task_struct *p)
2403 {
2404 spin_lock(&p->alloc_lock);
2405 }
2406
2407 static inline void task_unlock(struct task_struct *p)
2408 {
2409 spin_unlock(&p->alloc_lock);
2410 }
2411
2412 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2413 unsigned long *flags);
2414
2415 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2416 unsigned long *flags)
2417 {
2418 struct sighand_struct *ret;
2419
2420 ret = __lock_task_sighand(tsk, flags);
2421 (void)__cond_lock(&tsk->sighand->siglock, ret);
2422 return ret;
2423 }
2424
2425 static inline void unlock_task_sighand(struct task_struct *tsk,
2426 unsigned long *flags)
2427 {
2428 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2429 }
2430
2431 #ifdef CONFIG_CGROUPS
2432 static inline void threadgroup_change_begin(struct task_struct *tsk)
2433 {
2434 down_read(&tsk->signal->group_rwsem);
2435 }
2436 static inline void threadgroup_change_end(struct task_struct *tsk)
2437 {
2438 up_read(&tsk->signal->group_rwsem);
2439 }
2440
2441 /**
2442 * threadgroup_lock - lock threadgroup
2443 * @tsk: member task of the threadgroup to lock
2444 *
2445 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2446 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2447 * perform exec. This is useful for cases where the threadgroup needs to
2448 * stay stable across blockable operations.
2449 *
2450 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2451 * synchronization. While held, no new task will be added to threadgroup
2452 * and no existing live task will have its PF_EXITING set.
2453 *
2454 * During exec, a task goes and puts its thread group through unusual
2455 * changes. After de-threading, exclusive access is assumed to resources
2456 * which are usually shared by tasks in the same group - e.g. sighand may
2457 * be replaced with a new one. Also, the exec'ing task takes over group
2458 * leader role including its pid. Exclude these changes while locked by
2459 * grabbing cred_guard_mutex which is used to synchronize exec path.
2460 */
2461 static inline void threadgroup_lock(struct task_struct *tsk)
2462 {
2463 /*
2464 * exec uses exit for de-threading nesting group_rwsem inside
2465 * cred_guard_mutex. Grab cred_guard_mutex first.
2466 */
2467 mutex_lock(&tsk->signal->cred_guard_mutex);
2468 down_write(&tsk->signal->group_rwsem);
2469 }
2470
2471 /**
2472 * threadgroup_unlock - unlock threadgroup
2473 * @tsk: member task of the threadgroup to unlock
2474 *
2475 * Reverse threadgroup_lock().
2476 */
2477 static inline void threadgroup_unlock(struct task_struct *tsk)
2478 {
2479 up_write(&tsk->signal->group_rwsem);
2480 mutex_unlock(&tsk->signal->cred_guard_mutex);
2481 }
2482 #else
2483 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2484 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2485 static inline void threadgroup_lock(struct task_struct *tsk) {}
2486 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2487 #endif
2488
2489 #ifndef __HAVE_THREAD_FUNCTIONS
2490
2491 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2492 #define task_stack_page(task) ((task)->stack)
2493
2494 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2495 {
2496 *task_thread_info(p) = *task_thread_info(org);
2497 task_thread_info(p)->task = p;
2498 }
2499
2500 static inline unsigned long *end_of_stack(struct task_struct *p)
2501 {
2502 return (unsigned long *)(task_thread_info(p) + 1);
2503 }
2504
2505 #endif
2506
2507 static inline int object_is_on_stack(void *obj)
2508 {
2509 void *stack = task_stack_page(current);
2510
2511 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2512 }
2513
2514 extern void thread_info_cache_init(void);
2515
2516 #ifdef CONFIG_DEBUG_STACK_USAGE
2517 static inline unsigned long stack_not_used(struct task_struct *p)
2518 {
2519 unsigned long *n = end_of_stack(p);
2520
2521 do { /* Skip over canary */
2522 n++;
2523 } while (!*n);
2524
2525 return (unsigned long)n - (unsigned long)end_of_stack(p);
2526 }
2527 #endif
2528
2529 /* set thread flags in other task's structures
2530 * - see asm/thread_info.h for TIF_xxxx flags available
2531 */
2532 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 set_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536
2537 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2538 {
2539 clear_ti_thread_flag(task_thread_info(tsk), flag);
2540 }
2541
2542 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2543 {
2544 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2545 }
2546
2547 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2548 {
2549 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2550 }
2551
2552 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2553 {
2554 return test_ti_thread_flag(task_thread_info(tsk), flag);
2555 }
2556
2557 static inline void set_tsk_need_resched(struct task_struct *tsk)
2558 {
2559 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2560 }
2561
2562 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2563 {
2564 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2565 }
2566
2567 static inline int test_tsk_need_resched(struct task_struct *tsk)
2568 {
2569 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2570 }
2571
2572 static inline int restart_syscall(void)
2573 {
2574 set_tsk_thread_flag(current, TIF_SIGPENDING);
2575 return -ERESTARTNOINTR;
2576 }
2577
2578 static inline int signal_pending(struct task_struct *p)
2579 {
2580 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2581 }
2582
2583 static inline int __fatal_signal_pending(struct task_struct *p)
2584 {
2585 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2586 }
2587
2588 static inline int fatal_signal_pending(struct task_struct *p)
2589 {
2590 return signal_pending(p) && __fatal_signal_pending(p);
2591 }
2592
2593 static inline int signal_pending_state(long state, struct task_struct *p)
2594 {
2595 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2596 return 0;
2597 if (!signal_pending(p))
2598 return 0;
2599
2600 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2601 }
2602
2603 static inline int need_resched(void)
2604 {
2605 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2606 }
2607
2608 /*
2609 * cond_resched() and cond_resched_lock(): latency reduction via
2610 * explicit rescheduling in places that are safe. The return
2611 * value indicates whether a reschedule was done in fact.
2612 * cond_resched_lock() will drop the spinlock before scheduling,
2613 * cond_resched_softirq() will enable bhs before scheduling.
2614 */
2615 extern int _cond_resched(void);
2616
2617 #define cond_resched() ({ \
2618 __might_sleep(__FILE__, __LINE__, 0); \
2619 _cond_resched(); \
2620 })
2621
2622 extern int __cond_resched_lock(spinlock_t *lock);
2623
2624 #ifdef CONFIG_PREEMPT_COUNT
2625 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2626 #else
2627 #define PREEMPT_LOCK_OFFSET 0
2628 #endif
2629
2630 #define cond_resched_lock(lock) ({ \
2631 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2632 __cond_resched_lock(lock); \
2633 })
2634
2635 extern int __cond_resched_softirq(void);
2636
2637 #define cond_resched_softirq() ({ \
2638 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2639 __cond_resched_softirq(); \
2640 })
2641
2642 /*
2643 * Does a critical section need to be broken due to another
2644 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2645 * but a general need for low latency)
2646 */
2647 static inline int spin_needbreak(spinlock_t *lock)
2648 {
2649 #ifdef CONFIG_PREEMPT
2650 return spin_is_contended(lock);
2651 #else
2652 return 0;
2653 #endif
2654 }
2655
2656 /*
2657 * Thread group CPU time accounting.
2658 */
2659 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2660 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2661
2662 static inline void thread_group_cputime_init(struct signal_struct *sig)
2663 {
2664 raw_spin_lock_init(&sig->cputimer.lock);
2665 }
2666
2667 /*
2668 * Reevaluate whether the task has signals pending delivery.
2669 * Wake the task if so.
2670 * This is required every time the blocked sigset_t changes.
2671 * callers must hold sighand->siglock.
2672 */
2673 extern void recalc_sigpending_and_wake(struct task_struct *t);
2674 extern void recalc_sigpending(void);
2675
2676 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2677
2678 /*
2679 * Wrappers for p->thread_info->cpu access. No-op on UP.
2680 */
2681 #ifdef CONFIG_SMP
2682
2683 static inline unsigned int task_cpu(const struct task_struct *p)
2684 {
2685 return task_thread_info(p)->cpu;
2686 }
2687
2688 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2689
2690 #else
2691
2692 static inline unsigned int task_cpu(const struct task_struct *p)
2693 {
2694 return 0;
2695 }
2696
2697 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2698 {
2699 }
2700
2701 #endif /* CONFIG_SMP */
2702
2703 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2704 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2705
2706 extern void normalize_rt_tasks(void);
2707
2708 #ifdef CONFIG_CGROUP_SCHED
2709
2710 extern struct task_group root_task_group;
2711
2712 extern struct task_group *sched_create_group(struct task_group *parent);
2713 extern void sched_destroy_group(struct task_group *tg);
2714 extern void sched_move_task(struct task_struct *tsk);
2715 #ifdef CONFIG_FAIR_GROUP_SCHED
2716 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2717 extern unsigned long sched_group_shares(struct task_group *tg);
2718 #endif
2719 #ifdef CONFIG_RT_GROUP_SCHED
2720 extern int sched_group_set_rt_runtime(struct task_group *tg,
2721 long rt_runtime_us);
2722 extern long sched_group_rt_runtime(struct task_group *tg);
2723 extern int sched_group_set_rt_period(struct task_group *tg,
2724 long rt_period_us);
2725 extern long sched_group_rt_period(struct task_group *tg);
2726 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2727 #endif
2728 #endif
2729
2730 extern int task_can_switch_user(struct user_struct *up,
2731 struct task_struct *tsk);
2732
2733 #ifdef CONFIG_TASK_XACCT
2734 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2735 {
2736 tsk->ioac.rchar += amt;
2737 }
2738
2739 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2740 {
2741 tsk->ioac.wchar += amt;
2742 }
2743
2744 static inline void inc_syscr(struct task_struct *tsk)
2745 {
2746 tsk->ioac.syscr++;
2747 }
2748
2749 static inline void inc_syscw(struct task_struct *tsk)
2750 {
2751 tsk->ioac.syscw++;
2752 }
2753 #else
2754 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2755 {
2756 }
2757
2758 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2759 {
2760 }
2761
2762 static inline void inc_syscr(struct task_struct *tsk)
2763 {
2764 }
2765
2766 static inline void inc_syscw(struct task_struct *tsk)
2767 {
2768 }
2769 #endif
2770
2771 #ifndef TASK_SIZE_OF
2772 #define TASK_SIZE_OF(tsk) TASK_SIZE
2773 #endif
2774
2775 #ifdef CONFIG_MM_OWNER
2776 extern void mm_update_next_owner(struct mm_struct *mm);
2777 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2778 #else
2779 static inline void mm_update_next_owner(struct mm_struct *mm)
2780 {
2781 }
2782
2783 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2784 {
2785 }
2786 #endif /* CONFIG_MM_OWNER */
2787
2788 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2789 unsigned int limit)
2790 {
2791 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2792 }
2793
2794 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2795 unsigned int limit)
2796 {
2797 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2798 }
2799
2800 static inline unsigned long rlimit(unsigned int limit)
2801 {
2802 return task_rlimit(current, limit);
2803 }
2804
2805 static inline unsigned long rlimit_max(unsigned int limit)
2806 {
2807 return task_rlimit_max(current, limit);
2808 }
2809
2810 #endif /* __KERNEL__ */
2811
2812 #endif