]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
sched: Dynamic sched_domain::level
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93
94 #include <asm/processor.h>
95
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 struct blk_plug;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(unsigned long ticks);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 void lockup_detector_init(void);
320 #else
321 static inline void touch_softlockup_watchdog(void)
322 {
323 }
324 static inline void touch_softlockup_watchdog_sync(void)
325 {
326 }
327 static inline void touch_all_softlockup_watchdogs(void)
328 {
329 }
330 static inline void lockup_detector_init(void)
331 {
332 }
333 #endif
334
335 #ifdef CONFIG_DETECT_HUNG_TASK
336 extern unsigned int sysctl_hung_task_panic;
337 extern unsigned long sysctl_hung_task_check_count;
338 extern unsigned long sysctl_hung_task_timeout_secs;
339 extern unsigned long sysctl_hung_task_warnings;
340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
341 void __user *buffer,
342 size_t *lenp, loff_t *ppos);
343 #else
344 /* Avoid need for ifdefs elsewhere in the code */
345 enum { sysctl_hung_task_timeout_secs = 0 };
346 #endif
347
348 /* Attach to any functions which should be ignored in wchan output. */
349 #define __sched __attribute__((__section__(".sched.text")))
350
351 /* Linker adds these: start and end of __sched functions */
352 extern char __sched_text_start[], __sched_text_end[];
353
354 /* Is this address in the __sched functions? */
355 extern int in_sched_functions(unsigned long addr);
356
357 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
358 extern signed long schedule_timeout(signed long timeout);
359 extern signed long schedule_timeout_interruptible(signed long timeout);
360 extern signed long schedule_timeout_killable(signed long timeout);
361 extern signed long schedule_timeout_uninterruptible(signed long timeout);
362 asmlinkage void schedule(void);
363 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
364
365 struct nsproxy;
366 struct user_namespace;
367
368 /*
369 * Default maximum number of active map areas, this limits the number of vmas
370 * per mm struct. Users can overwrite this number by sysctl but there is a
371 * problem.
372 *
373 * When a program's coredump is generated as ELF format, a section is created
374 * per a vma. In ELF, the number of sections is represented in unsigned short.
375 * This means the number of sections should be smaller than 65535 at coredump.
376 * Because the kernel adds some informative sections to a image of program at
377 * generating coredump, we need some margin. The number of extra sections is
378 * 1-3 now and depends on arch. We use "5" as safe margin, here.
379 */
380 #define MAPCOUNT_ELF_CORE_MARGIN (5)
381 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
382
383 extern int sysctl_max_map_count;
384
385 #include <linux/aio.h>
386
387 #ifdef CONFIG_MMU
388 extern void arch_pick_mmap_layout(struct mm_struct *mm);
389 extern unsigned long
390 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
391 unsigned long, unsigned long);
392 extern unsigned long
393 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
394 unsigned long len, unsigned long pgoff,
395 unsigned long flags);
396 extern void arch_unmap_area(struct mm_struct *, unsigned long);
397 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
398 #else
399 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
400 #endif
401
402
403 extern void set_dumpable(struct mm_struct *mm, int value);
404 extern int get_dumpable(struct mm_struct *mm);
405
406 /* mm flags */
407 /* dumpable bits */
408 #define MMF_DUMPABLE 0 /* core dump is permitted */
409 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
410
411 #define MMF_DUMPABLE_BITS 2
412 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
413
414 /* coredump filter bits */
415 #define MMF_DUMP_ANON_PRIVATE 2
416 #define MMF_DUMP_ANON_SHARED 3
417 #define MMF_DUMP_MAPPED_PRIVATE 4
418 #define MMF_DUMP_MAPPED_SHARED 5
419 #define MMF_DUMP_ELF_HEADERS 6
420 #define MMF_DUMP_HUGETLB_PRIVATE 7
421 #define MMF_DUMP_HUGETLB_SHARED 8
422
423 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
424 #define MMF_DUMP_FILTER_BITS 7
425 #define MMF_DUMP_FILTER_MASK \
426 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
427 #define MMF_DUMP_FILTER_DEFAULT \
428 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
429 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
430
431 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
432 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
433 #else
434 # define MMF_DUMP_MASK_DEFAULT_ELF 0
435 #endif
436 /* leave room for more dump flags */
437 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
438 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
439
440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441
442 struct sighand_struct {
443 atomic_t count;
444 struct k_sigaction action[_NSIG];
445 spinlock_t siglock;
446 wait_queue_head_t signalfd_wqh;
447 };
448
449 struct pacct_struct {
450 int ac_flag;
451 long ac_exitcode;
452 unsigned long ac_mem;
453 cputime_t ac_utime, ac_stime;
454 unsigned long ac_minflt, ac_majflt;
455 };
456
457 struct cpu_itimer {
458 cputime_t expires;
459 cputime_t incr;
460 u32 error;
461 u32 incr_error;
462 };
463
464 /**
465 * struct task_cputime - collected CPU time counts
466 * @utime: time spent in user mode, in &cputime_t units
467 * @stime: time spent in kernel mode, in &cputime_t units
468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
469 *
470 * This structure groups together three kinds of CPU time that are
471 * tracked for threads and thread groups. Most things considering
472 * CPU time want to group these counts together and treat all three
473 * of them in parallel.
474 */
475 struct task_cputime {
476 cputime_t utime;
477 cputime_t stime;
478 unsigned long long sum_exec_runtime;
479 };
480 /* Alternate field names when used to cache expirations. */
481 #define prof_exp stime
482 #define virt_exp utime
483 #define sched_exp sum_exec_runtime
484
485 #define INIT_CPUTIME \
486 (struct task_cputime) { \
487 .utime = cputime_zero, \
488 .stime = cputime_zero, \
489 .sum_exec_runtime = 0, \
490 }
491
492 /*
493 * Disable preemption until the scheduler is running.
494 * Reset by start_kernel()->sched_init()->init_idle().
495 *
496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
497 * before the scheduler is active -- see should_resched().
498 */
499 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
500
501 /**
502 * struct thread_group_cputimer - thread group interval timer counts
503 * @cputime: thread group interval timers.
504 * @running: non-zero when there are timers running and
505 * @cputime receives updates.
506 * @lock: lock for fields in this struct.
507 *
508 * This structure contains the version of task_cputime, above, that is
509 * used for thread group CPU timer calculations.
510 */
511 struct thread_group_cputimer {
512 struct task_cputime cputime;
513 int running;
514 spinlock_t lock;
515 };
516
517 struct autogroup;
518
519 /*
520 * NOTE! "signal_struct" does not have its own
521 * locking, because a shared signal_struct always
522 * implies a shared sighand_struct, so locking
523 * sighand_struct is always a proper superset of
524 * the locking of signal_struct.
525 */
526 struct signal_struct {
527 atomic_t sigcnt;
528 atomic_t live;
529 int nr_threads;
530
531 wait_queue_head_t wait_chldexit; /* for wait4() */
532
533 /* current thread group signal load-balancing target: */
534 struct task_struct *curr_target;
535
536 /* shared signal handling: */
537 struct sigpending shared_pending;
538
539 /* thread group exit support */
540 int group_exit_code;
541 /* overloaded:
542 * - notify group_exit_task when ->count is equal to notify_count
543 * - everyone except group_exit_task is stopped during signal delivery
544 * of fatal signals, group_exit_task processes the signal.
545 */
546 int notify_count;
547 struct task_struct *group_exit_task;
548
549 /* thread group stop support, overloads group_exit_code too */
550 int group_stop_count;
551 unsigned int flags; /* see SIGNAL_* flags below */
552
553 /* POSIX.1b Interval Timers */
554 struct list_head posix_timers;
555
556 /* ITIMER_REAL timer for the process */
557 struct hrtimer real_timer;
558 struct pid *leader_pid;
559 ktime_t it_real_incr;
560
561 /*
562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
564 * values are defined to 0 and 1 respectively
565 */
566 struct cpu_itimer it[2];
567
568 /*
569 * Thread group totals for process CPU timers.
570 * See thread_group_cputimer(), et al, for details.
571 */
572 struct thread_group_cputimer cputimer;
573
574 /* Earliest-expiration cache. */
575 struct task_cputime cputime_expires;
576
577 struct list_head cpu_timers[3];
578
579 struct pid *tty_old_pgrp;
580
581 /* boolean value for session group leader */
582 int leader;
583
584 struct tty_struct *tty; /* NULL if no tty */
585
586 #ifdef CONFIG_SCHED_AUTOGROUP
587 struct autogroup *autogroup;
588 #endif
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
599 cputime_t prev_utime, prev_stime;
600 #endif
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 unsigned long maxrss, cmaxrss;
605 struct task_io_accounting ioac;
606
607 /*
608 * Cumulative ns of schedule CPU time fo dead threads in the
609 * group, not including a zombie group leader, (This only differs
610 * from jiffies_to_ns(utime + stime) if sched_clock uses something
611 * other than jiffies.)
612 */
613 unsigned long long sum_sched_runtime;
614
615 /*
616 * We don't bother to synchronize most readers of this at all,
617 * because there is no reader checking a limit that actually needs
618 * to get both rlim_cur and rlim_max atomically, and either one
619 * alone is a single word that can safely be read normally.
620 * getrlimit/setrlimit use task_lock(current->group_leader) to
621 * protect this instead of the siglock, because they really
622 * have no need to disable irqs.
623 */
624 struct rlimit rlim[RLIM_NLIMITS];
625
626 #ifdef CONFIG_BSD_PROCESS_ACCT
627 struct pacct_struct pacct; /* per-process accounting information */
628 #endif
629 #ifdef CONFIG_TASKSTATS
630 struct taskstats *stats;
631 #endif
632 #ifdef CONFIG_AUDIT
633 unsigned audit_tty;
634 struct tty_audit_buf *tty_audit_buf;
635 #endif
636
637 int oom_adj; /* OOM kill score adjustment (bit shift) */
638 int oom_score_adj; /* OOM kill score adjustment */
639 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
640 * Only settable by CAP_SYS_RESOURCE. */
641
642 struct mutex cred_guard_mutex; /* guard against foreign influences on
643 * credential calculations
644 * (notably. ptrace) */
645 };
646
647 /* Context switch must be unlocked if interrupts are to be enabled */
648 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
649 # define __ARCH_WANT_UNLOCKED_CTXSW
650 #endif
651
652 /*
653 * Bits in flags field of signal_struct.
654 */
655 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
656 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
657 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
658 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
659 /*
660 * Pending notifications to parent.
661 */
662 #define SIGNAL_CLD_STOPPED 0x00000010
663 #define SIGNAL_CLD_CONTINUED 0x00000020
664 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
665
666 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
667
668 /* If true, all threads except ->group_exit_task have pending SIGKILL */
669 static inline int signal_group_exit(const struct signal_struct *sig)
670 {
671 return (sig->flags & SIGNAL_GROUP_EXIT) ||
672 (sig->group_exit_task != NULL);
673 }
674
675 /*
676 * Some day this will be a full-fledged user tracking system..
677 */
678 struct user_struct {
679 atomic_t __count; /* reference count */
680 atomic_t processes; /* How many processes does this user have? */
681 atomic_t files; /* How many open files does this user have? */
682 atomic_t sigpending; /* How many pending signals does this user have? */
683 #ifdef CONFIG_INOTIFY_USER
684 atomic_t inotify_watches; /* How many inotify watches does this user have? */
685 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
686 #endif
687 #ifdef CONFIG_FANOTIFY
688 atomic_t fanotify_listeners;
689 #endif
690 #ifdef CONFIG_EPOLL
691 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
692 #endif
693 #ifdef CONFIG_POSIX_MQUEUE
694 /* protected by mq_lock */
695 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
696 #endif
697 unsigned long locked_shm; /* How many pages of mlocked shm ? */
698
699 #ifdef CONFIG_KEYS
700 struct key *uid_keyring; /* UID specific keyring */
701 struct key *session_keyring; /* UID's default session keyring */
702 #endif
703
704 /* Hash table maintenance information */
705 struct hlist_node uidhash_node;
706 uid_t uid;
707 struct user_namespace *user_ns;
708
709 #ifdef CONFIG_PERF_EVENTS
710 atomic_long_t locked_vm;
711 #endif
712 };
713
714 extern int uids_sysfs_init(void);
715
716 extern struct user_struct *find_user(uid_t);
717
718 extern struct user_struct root_user;
719 #define INIT_USER (&root_user)
720
721
722 struct backing_dev_info;
723 struct reclaim_state;
724
725 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
726 struct sched_info {
727 /* cumulative counters */
728 unsigned long pcount; /* # of times run on this cpu */
729 unsigned long long run_delay; /* time spent waiting on a runqueue */
730
731 /* timestamps */
732 unsigned long long last_arrival,/* when we last ran on a cpu */
733 last_queued; /* when we were last queued to run */
734 #ifdef CONFIG_SCHEDSTATS
735 /* BKL stats */
736 unsigned int bkl_count;
737 #endif
738 };
739 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
740
741 #ifdef CONFIG_TASK_DELAY_ACCT
742 struct task_delay_info {
743 spinlock_t lock;
744 unsigned int flags; /* Private per-task flags */
745
746 /* For each stat XXX, add following, aligned appropriately
747 *
748 * struct timespec XXX_start, XXX_end;
749 * u64 XXX_delay;
750 * u32 XXX_count;
751 *
752 * Atomicity of updates to XXX_delay, XXX_count protected by
753 * single lock above (split into XXX_lock if contention is an issue).
754 */
755
756 /*
757 * XXX_count is incremented on every XXX operation, the delay
758 * associated with the operation is added to XXX_delay.
759 * XXX_delay contains the accumulated delay time in nanoseconds.
760 */
761 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
762 u64 blkio_delay; /* wait for sync block io completion */
763 u64 swapin_delay; /* wait for swapin block io completion */
764 u32 blkio_count; /* total count of the number of sync block */
765 /* io operations performed */
766 u32 swapin_count; /* total count of the number of swapin block */
767 /* io operations performed */
768
769 struct timespec freepages_start, freepages_end;
770 u64 freepages_delay; /* wait for memory reclaim */
771 u32 freepages_count; /* total count of memory reclaim */
772 };
773 #endif /* CONFIG_TASK_DELAY_ACCT */
774
775 static inline int sched_info_on(void)
776 {
777 #ifdef CONFIG_SCHEDSTATS
778 return 1;
779 #elif defined(CONFIG_TASK_DELAY_ACCT)
780 extern int delayacct_on;
781 return delayacct_on;
782 #else
783 return 0;
784 #endif
785 }
786
787 enum cpu_idle_type {
788 CPU_IDLE,
789 CPU_NOT_IDLE,
790 CPU_NEWLY_IDLE,
791 CPU_MAX_IDLE_TYPES
792 };
793
794 /*
795 * sched-domains (multiprocessor balancing) declarations:
796 */
797
798 /*
799 * Increase resolution of nice-level calculations:
800 */
801 #define SCHED_LOAD_SHIFT 10
802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
803
804 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
805
806 #ifdef CONFIG_SMP
807 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
808 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
809 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
810 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
811 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
812 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
813 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
814 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
815 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
816 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
817 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
818 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
819 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
820
821 enum powersavings_balance_level {
822 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
823 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
824 * first for long running threads
825 */
826 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
827 * cpu package for power savings
828 */
829 MAX_POWERSAVINGS_BALANCE_LEVELS
830 };
831
832 extern int sched_mc_power_savings, sched_smt_power_savings;
833
834 static inline int sd_balance_for_mc_power(void)
835 {
836 if (sched_smt_power_savings)
837 return SD_POWERSAVINGS_BALANCE;
838
839 if (!sched_mc_power_savings)
840 return SD_PREFER_SIBLING;
841
842 return 0;
843 }
844
845 static inline int sd_balance_for_package_power(void)
846 {
847 if (sched_mc_power_savings | sched_smt_power_savings)
848 return SD_POWERSAVINGS_BALANCE;
849
850 return SD_PREFER_SIBLING;
851 }
852
853 extern int __weak arch_sd_sibiling_asym_packing(void);
854
855 /*
856 * Optimise SD flags for power savings:
857 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
858 * Keep default SD flags if sched_{smt,mc}_power_saving=0
859 */
860
861 static inline int sd_power_saving_flags(void)
862 {
863 if (sched_mc_power_savings | sched_smt_power_savings)
864 return SD_BALANCE_NEWIDLE;
865
866 return 0;
867 }
868
869 struct sched_group {
870 struct sched_group *next; /* Must be a circular list */
871 atomic_t ref;
872
873 /*
874 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
875 * single CPU.
876 */
877 unsigned int cpu_power, cpu_power_orig;
878 unsigned int group_weight;
879
880 /*
881 * The CPUs this group covers.
882 *
883 * NOTE: this field is variable length. (Allocated dynamically
884 * by attaching extra space to the end of the structure,
885 * depending on how many CPUs the kernel has booted up with)
886 */
887 unsigned long cpumask[0];
888 };
889
890 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
891 {
892 return to_cpumask(sg->cpumask);
893 }
894
895 struct sched_domain_attr {
896 int relax_domain_level;
897 };
898
899 #define SD_ATTR_INIT (struct sched_domain_attr) { \
900 .relax_domain_level = -1, \
901 }
902
903 extern int sched_domain_level_max;
904
905 struct sched_domain {
906 /* These fields must be setup */
907 struct sched_domain *parent; /* top domain must be null terminated */
908 struct sched_domain *child; /* bottom domain must be null terminated */
909 struct sched_group *groups; /* the balancing groups of the domain */
910 unsigned long min_interval; /* Minimum balance interval ms */
911 unsigned long max_interval; /* Maximum balance interval ms */
912 unsigned int busy_factor; /* less balancing by factor if busy */
913 unsigned int imbalance_pct; /* No balance until over watermark */
914 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
915 unsigned int busy_idx;
916 unsigned int idle_idx;
917 unsigned int newidle_idx;
918 unsigned int wake_idx;
919 unsigned int forkexec_idx;
920 unsigned int smt_gain;
921 int flags; /* See SD_* */
922 int level;
923
924 /* Runtime fields. */
925 unsigned long last_balance; /* init to jiffies. units in jiffies */
926 unsigned int balance_interval; /* initialise to 1. units in ms. */
927 unsigned int nr_balance_failed; /* initialise to 0 */
928
929 u64 last_update;
930
931 #ifdef CONFIG_SCHEDSTATS
932 /* load_balance() stats */
933 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
941
942 /* Active load balancing */
943 unsigned int alb_count;
944 unsigned int alb_failed;
945 unsigned int alb_pushed;
946
947 /* SD_BALANCE_EXEC stats */
948 unsigned int sbe_count;
949 unsigned int sbe_balanced;
950 unsigned int sbe_pushed;
951
952 /* SD_BALANCE_FORK stats */
953 unsigned int sbf_count;
954 unsigned int sbf_balanced;
955 unsigned int sbf_pushed;
956
957 /* try_to_wake_up() stats */
958 unsigned int ttwu_wake_remote;
959 unsigned int ttwu_move_affine;
960 unsigned int ttwu_move_balance;
961 #endif
962 #ifdef CONFIG_SCHED_DEBUG
963 char *name;
964 #endif
965 union {
966 void *private; /* used during construction */
967 struct rcu_head rcu; /* used during destruction */
968 };
969
970 unsigned int span_weight;
971 /*
972 * Span of all CPUs in this domain.
973 *
974 * NOTE: this field is variable length. (Allocated dynamically
975 * by attaching extra space to the end of the structure,
976 * depending on how many CPUs the kernel has booted up with)
977 */
978 unsigned long span[0];
979 };
980
981 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
982 {
983 return to_cpumask(sd->span);
984 }
985
986 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
987 struct sched_domain_attr *dattr_new);
988
989 /* Allocate an array of sched domains, for partition_sched_domains(). */
990 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
991 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
992
993 /* Test a flag in parent sched domain */
994 static inline int test_sd_parent(struct sched_domain *sd, int flag)
995 {
996 if (sd->parent && (sd->parent->flags & flag))
997 return 1;
998
999 return 0;
1000 }
1001
1002 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1003 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1004
1005 #else /* CONFIG_SMP */
1006
1007 struct sched_domain_attr;
1008
1009 static inline void
1010 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1011 struct sched_domain_attr *dattr_new)
1012 {
1013 }
1014 #endif /* !CONFIG_SMP */
1015
1016
1017 struct io_context; /* See blkdev.h */
1018
1019
1020 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1021 extern void prefetch_stack(struct task_struct *t);
1022 #else
1023 static inline void prefetch_stack(struct task_struct *t) { }
1024 #endif
1025
1026 struct audit_context; /* See audit.c */
1027 struct mempolicy;
1028 struct pipe_inode_info;
1029 struct uts_namespace;
1030
1031 struct rq;
1032 struct sched_domain;
1033
1034 /*
1035 * wake flags
1036 */
1037 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1038 #define WF_FORK 0x02 /* child wakeup after fork */
1039
1040 #define ENQUEUE_WAKEUP 1
1041 #define ENQUEUE_WAKING 2
1042 #define ENQUEUE_HEAD 4
1043
1044 #define DEQUEUE_SLEEP 1
1045
1046 struct sched_class {
1047 const struct sched_class *next;
1048
1049 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1050 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1051 void (*yield_task) (struct rq *rq);
1052 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1053
1054 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1055
1056 struct task_struct * (*pick_next_task) (struct rq *rq);
1057 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1058
1059 #ifdef CONFIG_SMP
1060 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1061 int sd_flag, int flags);
1062
1063 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1064 void (*post_schedule) (struct rq *this_rq);
1065 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1066 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1067
1068 void (*set_cpus_allowed)(struct task_struct *p,
1069 const struct cpumask *newmask);
1070
1071 void (*rq_online)(struct rq *rq);
1072 void (*rq_offline)(struct rq *rq);
1073 #endif
1074
1075 void (*set_curr_task) (struct rq *rq);
1076 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1077 void (*task_fork) (struct task_struct *p);
1078
1079 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1080 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1081 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1082 int oldprio);
1083
1084 unsigned int (*get_rr_interval) (struct rq *rq,
1085 struct task_struct *task);
1086
1087 #ifdef CONFIG_FAIR_GROUP_SCHED
1088 void (*task_move_group) (struct task_struct *p, int on_rq);
1089 #endif
1090 };
1091
1092 struct load_weight {
1093 unsigned long weight, inv_weight;
1094 };
1095
1096 #ifdef CONFIG_SCHEDSTATS
1097 struct sched_statistics {
1098 u64 wait_start;
1099 u64 wait_max;
1100 u64 wait_count;
1101 u64 wait_sum;
1102 u64 iowait_count;
1103 u64 iowait_sum;
1104
1105 u64 sleep_start;
1106 u64 sleep_max;
1107 s64 sum_sleep_runtime;
1108
1109 u64 block_start;
1110 u64 block_max;
1111 u64 exec_max;
1112 u64 slice_max;
1113
1114 u64 nr_migrations_cold;
1115 u64 nr_failed_migrations_affine;
1116 u64 nr_failed_migrations_running;
1117 u64 nr_failed_migrations_hot;
1118 u64 nr_forced_migrations;
1119
1120 u64 nr_wakeups;
1121 u64 nr_wakeups_sync;
1122 u64 nr_wakeups_migrate;
1123 u64 nr_wakeups_local;
1124 u64 nr_wakeups_remote;
1125 u64 nr_wakeups_affine;
1126 u64 nr_wakeups_affine_attempts;
1127 u64 nr_wakeups_passive;
1128 u64 nr_wakeups_idle;
1129 };
1130 #endif
1131
1132 struct sched_entity {
1133 struct load_weight load; /* for load-balancing */
1134 struct rb_node run_node;
1135 struct list_head group_node;
1136 unsigned int on_rq;
1137
1138 u64 exec_start;
1139 u64 sum_exec_runtime;
1140 u64 vruntime;
1141 u64 prev_sum_exec_runtime;
1142
1143 u64 nr_migrations;
1144
1145 #ifdef CONFIG_SCHEDSTATS
1146 struct sched_statistics statistics;
1147 #endif
1148
1149 #ifdef CONFIG_FAIR_GROUP_SCHED
1150 struct sched_entity *parent;
1151 /* rq on which this entity is (to be) queued: */
1152 struct cfs_rq *cfs_rq;
1153 /* rq "owned" by this entity/group: */
1154 struct cfs_rq *my_q;
1155 #endif
1156 };
1157
1158 struct sched_rt_entity {
1159 struct list_head run_list;
1160 unsigned long timeout;
1161 unsigned int time_slice;
1162 int nr_cpus_allowed;
1163
1164 struct sched_rt_entity *back;
1165 #ifdef CONFIG_RT_GROUP_SCHED
1166 struct sched_rt_entity *parent;
1167 /* rq on which this entity is (to be) queued: */
1168 struct rt_rq *rt_rq;
1169 /* rq "owned" by this entity/group: */
1170 struct rt_rq *my_q;
1171 #endif
1172 };
1173
1174 struct rcu_node;
1175
1176 enum perf_event_task_context {
1177 perf_invalid_context = -1,
1178 perf_hw_context = 0,
1179 perf_sw_context,
1180 perf_nr_task_contexts,
1181 };
1182
1183 struct task_struct {
1184 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1185 void *stack;
1186 atomic_t usage;
1187 unsigned int flags; /* per process flags, defined below */
1188 unsigned int ptrace;
1189
1190 int lock_depth; /* BKL lock depth */
1191
1192 #ifdef CONFIG_SMP
1193 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1194 int oncpu;
1195 #endif
1196 #endif
1197
1198 int prio, static_prio, normal_prio;
1199 unsigned int rt_priority;
1200 const struct sched_class *sched_class;
1201 struct sched_entity se;
1202 struct sched_rt_entity rt;
1203
1204 #ifdef CONFIG_PREEMPT_NOTIFIERS
1205 /* list of struct preempt_notifier: */
1206 struct hlist_head preempt_notifiers;
1207 #endif
1208
1209 /*
1210 * fpu_counter contains the number of consecutive context switches
1211 * that the FPU is used. If this is over a threshold, the lazy fpu
1212 * saving becomes unlazy to save the trap. This is an unsigned char
1213 * so that after 256 times the counter wraps and the behavior turns
1214 * lazy again; this to deal with bursty apps that only use FPU for
1215 * a short time
1216 */
1217 unsigned char fpu_counter;
1218 #ifdef CONFIG_BLK_DEV_IO_TRACE
1219 unsigned int btrace_seq;
1220 #endif
1221
1222 unsigned int policy;
1223 cpumask_t cpus_allowed;
1224
1225 #ifdef CONFIG_PREEMPT_RCU
1226 int rcu_read_lock_nesting;
1227 char rcu_read_unlock_special;
1228 struct list_head rcu_node_entry;
1229 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1230 #ifdef CONFIG_TREE_PREEMPT_RCU
1231 struct rcu_node *rcu_blocked_node;
1232 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1233 #ifdef CONFIG_RCU_BOOST
1234 struct rt_mutex *rcu_boost_mutex;
1235 #endif /* #ifdef CONFIG_RCU_BOOST */
1236
1237 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1238 struct sched_info sched_info;
1239 #endif
1240
1241 struct list_head tasks;
1242 #ifdef CONFIG_SMP
1243 struct plist_node pushable_tasks;
1244 #endif
1245
1246 struct mm_struct *mm, *active_mm;
1247 #if defined(SPLIT_RSS_COUNTING)
1248 struct task_rss_stat rss_stat;
1249 #endif
1250 /* task state */
1251 int exit_state;
1252 int exit_code, exit_signal;
1253 int pdeath_signal; /* The signal sent when the parent dies */
1254 /* ??? */
1255 unsigned int personality;
1256 unsigned did_exec:1;
1257 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1258 * execve */
1259 unsigned in_iowait:1;
1260
1261
1262 /* Revert to default priority/policy when forking */
1263 unsigned sched_reset_on_fork:1;
1264
1265 pid_t pid;
1266 pid_t tgid;
1267
1268 #ifdef CONFIG_CC_STACKPROTECTOR
1269 /* Canary value for the -fstack-protector gcc feature */
1270 unsigned long stack_canary;
1271 #endif
1272
1273 /*
1274 * pointers to (original) parent process, youngest child, younger sibling,
1275 * older sibling, respectively. (p->father can be replaced with
1276 * p->real_parent->pid)
1277 */
1278 struct task_struct *real_parent; /* real parent process */
1279 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1280 /*
1281 * children/sibling forms the list of my natural children
1282 */
1283 struct list_head children; /* list of my children */
1284 struct list_head sibling; /* linkage in my parent's children list */
1285 struct task_struct *group_leader; /* threadgroup leader */
1286
1287 /*
1288 * ptraced is the list of tasks this task is using ptrace on.
1289 * This includes both natural children and PTRACE_ATTACH targets.
1290 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1291 */
1292 struct list_head ptraced;
1293 struct list_head ptrace_entry;
1294
1295 /* PID/PID hash table linkage. */
1296 struct pid_link pids[PIDTYPE_MAX];
1297 struct list_head thread_group;
1298
1299 struct completion *vfork_done; /* for vfork() */
1300 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1301 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1302
1303 cputime_t utime, stime, utimescaled, stimescaled;
1304 cputime_t gtime;
1305 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1306 cputime_t prev_utime, prev_stime;
1307 #endif
1308 unsigned long nvcsw, nivcsw; /* context switch counts */
1309 struct timespec start_time; /* monotonic time */
1310 struct timespec real_start_time; /* boot based time */
1311 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1312 unsigned long min_flt, maj_flt;
1313
1314 struct task_cputime cputime_expires;
1315 struct list_head cpu_timers[3];
1316
1317 /* process credentials */
1318 const struct cred __rcu *real_cred; /* objective and real subjective task
1319 * credentials (COW) */
1320 const struct cred __rcu *cred; /* effective (overridable) subjective task
1321 * credentials (COW) */
1322 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1323
1324 char comm[TASK_COMM_LEN]; /* executable name excluding path
1325 - access with [gs]et_task_comm (which lock
1326 it with task_lock())
1327 - initialized normally by setup_new_exec */
1328 /* file system info */
1329 int link_count, total_link_count;
1330 #ifdef CONFIG_SYSVIPC
1331 /* ipc stuff */
1332 struct sysv_sem sysvsem;
1333 #endif
1334 #ifdef CONFIG_DETECT_HUNG_TASK
1335 /* hung task detection */
1336 unsigned long last_switch_count;
1337 #endif
1338 /* CPU-specific state of this task */
1339 struct thread_struct thread;
1340 /* filesystem information */
1341 struct fs_struct *fs;
1342 /* open file information */
1343 struct files_struct *files;
1344 /* namespaces */
1345 struct nsproxy *nsproxy;
1346 /* signal handlers */
1347 struct signal_struct *signal;
1348 struct sighand_struct *sighand;
1349
1350 sigset_t blocked, real_blocked;
1351 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1352 struct sigpending pending;
1353
1354 unsigned long sas_ss_sp;
1355 size_t sas_ss_size;
1356 int (*notifier)(void *priv);
1357 void *notifier_data;
1358 sigset_t *notifier_mask;
1359 struct audit_context *audit_context;
1360 #ifdef CONFIG_AUDITSYSCALL
1361 uid_t loginuid;
1362 unsigned int sessionid;
1363 #endif
1364 seccomp_t seccomp;
1365
1366 /* Thread group tracking */
1367 u32 parent_exec_id;
1368 u32 self_exec_id;
1369 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1370 * mempolicy */
1371 spinlock_t alloc_lock;
1372
1373 #ifdef CONFIG_GENERIC_HARDIRQS
1374 /* IRQ handler threads */
1375 struct irqaction *irqaction;
1376 #endif
1377
1378 /* Protection of the PI data structures: */
1379 raw_spinlock_t pi_lock;
1380
1381 #ifdef CONFIG_RT_MUTEXES
1382 /* PI waiters blocked on a rt_mutex held by this task */
1383 struct plist_head pi_waiters;
1384 /* Deadlock detection and priority inheritance handling */
1385 struct rt_mutex_waiter *pi_blocked_on;
1386 #endif
1387
1388 #ifdef CONFIG_DEBUG_MUTEXES
1389 /* mutex deadlock detection */
1390 struct mutex_waiter *blocked_on;
1391 #endif
1392 #ifdef CONFIG_TRACE_IRQFLAGS
1393 unsigned int irq_events;
1394 unsigned long hardirq_enable_ip;
1395 unsigned long hardirq_disable_ip;
1396 unsigned int hardirq_enable_event;
1397 unsigned int hardirq_disable_event;
1398 int hardirqs_enabled;
1399 int hardirq_context;
1400 unsigned long softirq_disable_ip;
1401 unsigned long softirq_enable_ip;
1402 unsigned int softirq_disable_event;
1403 unsigned int softirq_enable_event;
1404 int softirqs_enabled;
1405 int softirq_context;
1406 #endif
1407 #ifdef CONFIG_LOCKDEP
1408 # define MAX_LOCK_DEPTH 48UL
1409 u64 curr_chain_key;
1410 int lockdep_depth;
1411 unsigned int lockdep_recursion;
1412 struct held_lock held_locks[MAX_LOCK_DEPTH];
1413 gfp_t lockdep_reclaim_gfp;
1414 #endif
1415
1416 /* journalling filesystem info */
1417 void *journal_info;
1418
1419 /* stacked block device info */
1420 struct bio_list *bio_list;
1421
1422 #ifdef CONFIG_BLOCK
1423 /* stack plugging */
1424 struct blk_plug *plug;
1425 #endif
1426
1427 /* VM state */
1428 struct reclaim_state *reclaim_state;
1429
1430 struct backing_dev_info *backing_dev_info;
1431
1432 struct io_context *io_context;
1433
1434 unsigned long ptrace_message;
1435 siginfo_t *last_siginfo; /* For ptrace use. */
1436 struct task_io_accounting ioac;
1437 #if defined(CONFIG_TASK_XACCT)
1438 u64 acct_rss_mem1; /* accumulated rss usage */
1439 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1440 cputime_t acct_timexpd; /* stime + utime since last update */
1441 #endif
1442 #ifdef CONFIG_CPUSETS
1443 nodemask_t mems_allowed; /* Protected by alloc_lock */
1444 int mems_allowed_change_disable;
1445 int cpuset_mem_spread_rotor;
1446 int cpuset_slab_spread_rotor;
1447 #endif
1448 #ifdef CONFIG_CGROUPS
1449 /* Control Group info protected by css_set_lock */
1450 struct css_set __rcu *cgroups;
1451 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1452 struct list_head cg_list;
1453 #endif
1454 #ifdef CONFIG_FUTEX
1455 struct robust_list_head __user *robust_list;
1456 #ifdef CONFIG_COMPAT
1457 struct compat_robust_list_head __user *compat_robust_list;
1458 #endif
1459 struct list_head pi_state_list;
1460 struct futex_pi_state *pi_state_cache;
1461 #endif
1462 #ifdef CONFIG_PERF_EVENTS
1463 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1464 struct mutex perf_event_mutex;
1465 struct list_head perf_event_list;
1466 #endif
1467 #ifdef CONFIG_NUMA
1468 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1469 short il_next;
1470 short pref_node_fork;
1471 #endif
1472 atomic_t fs_excl; /* holding fs exclusive resources */
1473 struct rcu_head rcu;
1474
1475 /*
1476 * cache last used pipe for splice
1477 */
1478 struct pipe_inode_info *splice_pipe;
1479 #ifdef CONFIG_TASK_DELAY_ACCT
1480 struct task_delay_info *delays;
1481 #endif
1482 #ifdef CONFIG_FAULT_INJECTION
1483 int make_it_fail;
1484 #endif
1485 struct prop_local_single dirties;
1486 #ifdef CONFIG_LATENCYTOP
1487 int latency_record_count;
1488 struct latency_record latency_record[LT_SAVECOUNT];
1489 #endif
1490 /*
1491 * time slack values; these are used to round up poll() and
1492 * select() etc timeout values. These are in nanoseconds.
1493 */
1494 unsigned long timer_slack_ns;
1495 unsigned long default_timer_slack_ns;
1496
1497 struct list_head *scm_work_list;
1498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1499 /* Index of current stored address in ret_stack */
1500 int curr_ret_stack;
1501 /* Stack of return addresses for return function tracing */
1502 struct ftrace_ret_stack *ret_stack;
1503 /* time stamp for last schedule */
1504 unsigned long long ftrace_timestamp;
1505 /*
1506 * Number of functions that haven't been traced
1507 * because of depth overrun.
1508 */
1509 atomic_t trace_overrun;
1510 /* Pause for the tracing */
1511 atomic_t tracing_graph_pause;
1512 #endif
1513 #ifdef CONFIG_TRACING
1514 /* state flags for use by tracers */
1515 unsigned long trace;
1516 /* bitmask of trace recursion */
1517 unsigned long trace_recursion;
1518 #endif /* CONFIG_TRACING */
1519 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1520 struct memcg_batch_info {
1521 int do_batch; /* incremented when batch uncharge started */
1522 struct mem_cgroup *memcg; /* target memcg of uncharge */
1523 unsigned long nr_pages; /* uncharged usage */
1524 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1525 } memcg_batch;
1526 #endif
1527 };
1528
1529 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1530 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1531
1532 /*
1533 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1534 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1535 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1536 * values are inverted: lower p->prio value means higher priority.
1537 *
1538 * The MAX_USER_RT_PRIO value allows the actual maximum
1539 * RT priority to be separate from the value exported to
1540 * user-space. This allows kernel threads to set their
1541 * priority to a value higher than any user task. Note:
1542 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1543 */
1544
1545 #define MAX_USER_RT_PRIO 100
1546 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1547
1548 #define MAX_PRIO (MAX_RT_PRIO + 40)
1549 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1550
1551 static inline int rt_prio(int prio)
1552 {
1553 if (unlikely(prio < MAX_RT_PRIO))
1554 return 1;
1555 return 0;
1556 }
1557
1558 static inline int rt_task(struct task_struct *p)
1559 {
1560 return rt_prio(p->prio);
1561 }
1562
1563 static inline struct pid *task_pid(struct task_struct *task)
1564 {
1565 return task->pids[PIDTYPE_PID].pid;
1566 }
1567
1568 static inline struct pid *task_tgid(struct task_struct *task)
1569 {
1570 return task->group_leader->pids[PIDTYPE_PID].pid;
1571 }
1572
1573 /*
1574 * Without tasklist or rcu lock it is not safe to dereference
1575 * the result of task_pgrp/task_session even if task == current,
1576 * we can race with another thread doing sys_setsid/sys_setpgid.
1577 */
1578 static inline struct pid *task_pgrp(struct task_struct *task)
1579 {
1580 return task->group_leader->pids[PIDTYPE_PGID].pid;
1581 }
1582
1583 static inline struct pid *task_session(struct task_struct *task)
1584 {
1585 return task->group_leader->pids[PIDTYPE_SID].pid;
1586 }
1587
1588 struct pid_namespace;
1589
1590 /*
1591 * the helpers to get the task's different pids as they are seen
1592 * from various namespaces
1593 *
1594 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1595 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1596 * current.
1597 * task_xid_nr_ns() : id seen from the ns specified;
1598 *
1599 * set_task_vxid() : assigns a virtual id to a task;
1600 *
1601 * see also pid_nr() etc in include/linux/pid.h
1602 */
1603 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1604 struct pid_namespace *ns);
1605
1606 static inline pid_t task_pid_nr(struct task_struct *tsk)
1607 {
1608 return tsk->pid;
1609 }
1610
1611 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1612 struct pid_namespace *ns)
1613 {
1614 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1615 }
1616
1617 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1618 {
1619 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1620 }
1621
1622
1623 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1624 {
1625 return tsk->tgid;
1626 }
1627
1628 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1629
1630 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1631 {
1632 return pid_vnr(task_tgid(tsk));
1633 }
1634
1635
1636 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1637 struct pid_namespace *ns)
1638 {
1639 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1640 }
1641
1642 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1643 {
1644 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1645 }
1646
1647
1648 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1649 struct pid_namespace *ns)
1650 {
1651 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1652 }
1653
1654 static inline pid_t task_session_vnr(struct task_struct *tsk)
1655 {
1656 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1657 }
1658
1659 /* obsolete, do not use */
1660 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1661 {
1662 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1663 }
1664
1665 /**
1666 * pid_alive - check that a task structure is not stale
1667 * @p: Task structure to be checked.
1668 *
1669 * Test if a process is not yet dead (at most zombie state)
1670 * If pid_alive fails, then pointers within the task structure
1671 * can be stale and must not be dereferenced.
1672 */
1673 static inline int pid_alive(struct task_struct *p)
1674 {
1675 return p->pids[PIDTYPE_PID].pid != NULL;
1676 }
1677
1678 /**
1679 * is_global_init - check if a task structure is init
1680 * @tsk: Task structure to be checked.
1681 *
1682 * Check if a task structure is the first user space task the kernel created.
1683 */
1684 static inline int is_global_init(struct task_struct *tsk)
1685 {
1686 return tsk->pid == 1;
1687 }
1688
1689 /*
1690 * is_container_init:
1691 * check whether in the task is init in its own pid namespace.
1692 */
1693 extern int is_container_init(struct task_struct *tsk);
1694
1695 extern struct pid *cad_pid;
1696
1697 extern void free_task(struct task_struct *tsk);
1698 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1699
1700 extern void __put_task_struct(struct task_struct *t);
1701
1702 static inline void put_task_struct(struct task_struct *t)
1703 {
1704 if (atomic_dec_and_test(&t->usage))
1705 __put_task_struct(t);
1706 }
1707
1708 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1709 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1710
1711 /*
1712 * Per process flags
1713 */
1714 #define PF_STARTING 0x00000002 /* being created */
1715 #define PF_EXITING 0x00000004 /* getting shut down */
1716 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1717 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1718 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1719 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1720 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1721 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1722 #define PF_DUMPCORE 0x00000200 /* dumped core */
1723 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1724 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1725 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1726 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1727 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1728 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1729 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1730 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1731 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1732 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1733 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1734 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1735 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1736 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1737 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1738 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1739 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1740 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1741 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1742 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1743 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1744
1745 /*
1746 * Only the _current_ task can read/write to tsk->flags, but other
1747 * tasks can access tsk->flags in readonly mode for example
1748 * with tsk_used_math (like during threaded core dumping).
1749 * There is however an exception to this rule during ptrace
1750 * or during fork: the ptracer task is allowed to write to the
1751 * child->flags of its traced child (same goes for fork, the parent
1752 * can write to the child->flags), because we're guaranteed the
1753 * child is not running and in turn not changing child->flags
1754 * at the same time the parent does it.
1755 */
1756 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1757 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1758 #define clear_used_math() clear_stopped_child_used_math(current)
1759 #define set_used_math() set_stopped_child_used_math(current)
1760 #define conditional_stopped_child_used_math(condition, child) \
1761 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1762 #define conditional_used_math(condition) \
1763 conditional_stopped_child_used_math(condition, current)
1764 #define copy_to_stopped_child_used_math(child) \
1765 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1766 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1767 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1768 #define used_math() tsk_used_math(current)
1769
1770 #ifdef CONFIG_PREEMPT_RCU
1771
1772 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1773 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1774 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1775
1776 static inline void rcu_copy_process(struct task_struct *p)
1777 {
1778 p->rcu_read_lock_nesting = 0;
1779 p->rcu_read_unlock_special = 0;
1780 #ifdef CONFIG_TREE_PREEMPT_RCU
1781 p->rcu_blocked_node = NULL;
1782 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1783 #ifdef CONFIG_RCU_BOOST
1784 p->rcu_boost_mutex = NULL;
1785 #endif /* #ifdef CONFIG_RCU_BOOST */
1786 INIT_LIST_HEAD(&p->rcu_node_entry);
1787 }
1788
1789 #else
1790
1791 static inline void rcu_copy_process(struct task_struct *p)
1792 {
1793 }
1794
1795 #endif
1796
1797 #ifdef CONFIG_SMP
1798 extern int set_cpus_allowed_ptr(struct task_struct *p,
1799 const struct cpumask *new_mask);
1800 #else
1801 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1802 const struct cpumask *new_mask)
1803 {
1804 if (!cpumask_test_cpu(0, new_mask))
1805 return -EINVAL;
1806 return 0;
1807 }
1808 #endif
1809
1810 #ifndef CONFIG_CPUMASK_OFFSTACK
1811 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1812 {
1813 return set_cpus_allowed_ptr(p, &new_mask);
1814 }
1815 #endif
1816
1817 /*
1818 * Do not use outside of architecture code which knows its limitations.
1819 *
1820 * sched_clock() has no promise of monotonicity or bounded drift between
1821 * CPUs, use (which you should not) requires disabling IRQs.
1822 *
1823 * Please use one of the three interfaces below.
1824 */
1825 extern unsigned long long notrace sched_clock(void);
1826 /*
1827 * See the comment in kernel/sched_clock.c
1828 */
1829 extern u64 cpu_clock(int cpu);
1830 extern u64 local_clock(void);
1831 extern u64 sched_clock_cpu(int cpu);
1832
1833
1834 extern void sched_clock_init(void);
1835
1836 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1837 static inline void sched_clock_tick(void)
1838 {
1839 }
1840
1841 static inline void sched_clock_idle_sleep_event(void)
1842 {
1843 }
1844
1845 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1846 {
1847 }
1848 #else
1849 /*
1850 * Architectures can set this to 1 if they have specified
1851 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1852 * but then during bootup it turns out that sched_clock()
1853 * is reliable after all:
1854 */
1855 extern int sched_clock_stable;
1856
1857 extern void sched_clock_tick(void);
1858 extern void sched_clock_idle_sleep_event(void);
1859 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1860 #endif
1861
1862 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1863 /*
1864 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1865 * The reason for this explicit opt-in is not to have perf penalty with
1866 * slow sched_clocks.
1867 */
1868 extern void enable_sched_clock_irqtime(void);
1869 extern void disable_sched_clock_irqtime(void);
1870 #else
1871 static inline void enable_sched_clock_irqtime(void) {}
1872 static inline void disable_sched_clock_irqtime(void) {}
1873 #endif
1874
1875 extern unsigned long long
1876 task_sched_runtime(struct task_struct *task);
1877 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1878
1879 /* sched_exec is called by processes performing an exec */
1880 #ifdef CONFIG_SMP
1881 extern void sched_exec(void);
1882 #else
1883 #define sched_exec() {}
1884 #endif
1885
1886 extern void sched_clock_idle_sleep_event(void);
1887 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1888
1889 #ifdef CONFIG_HOTPLUG_CPU
1890 extern void idle_task_exit(void);
1891 #else
1892 static inline void idle_task_exit(void) {}
1893 #endif
1894
1895 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1896 extern void wake_up_idle_cpu(int cpu);
1897 #else
1898 static inline void wake_up_idle_cpu(int cpu) { }
1899 #endif
1900
1901 extern unsigned int sysctl_sched_latency;
1902 extern unsigned int sysctl_sched_min_granularity;
1903 extern unsigned int sysctl_sched_wakeup_granularity;
1904 extern unsigned int sysctl_sched_child_runs_first;
1905
1906 enum sched_tunable_scaling {
1907 SCHED_TUNABLESCALING_NONE,
1908 SCHED_TUNABLESCALING_LOG,
1909 SCHED_TUNABLESCALING_LINEAR,
1910 SCHED_TUNABLESCALING_END,
1911 };
1912 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1913
1914 #ifdef CONFIG_SCHED_DEBUG
1915 extern unsigned int sysctl_sched_migration_cost;
1916 extern unsigned int sysctl_sched_nr_migrate;
1917 extern unsigned int sysctl_sched_time_avg;
1918 extern unsigned int sysctl_timer_migration;
1919 extern unsigned int sysctl_sched_shares_window;
1920
1921 int sched_proc_update_handler(struct ctl_table *table, int write,
1922 void __user *buffer, size_t *length,
1923 loff_t *ppos);
1924 #endif
1925 #ifdef CONFIG_SCHED_DEBUG
1926 static inline unsigned int get_sysctl_timer_migration(void)
1927 {
1928 return sysctl_timer_migration;
1929 }
1930 #else
1931 static inline unsigned int get_sysctl_timer_migration(void)
1932 {
1933 return 1;
1934 }
1935 #endif
1936 extern unsigned int sysctl_sched_rt_period;
1937 extern int sysctl_sched_rt_runtime;
1938
1939 int sched_rt_handler(struct ctl_table *table, int write,
1940 void __user *buffer, size_t *lenp,
1941 loff_t *ppos);
1942
1943 #ifdef CONFIG_SCHED_AUTOGROUP
1944 extern unsigned int sysctl_sched_autogroup_enabled;
1945
1946 extern void sched_autogroup_create_attach(struct task_struct *p);
1947 extern void sched_autogroup_detach(struct task_struct *p);
1948 extern void sched_autogroup_fork(struct signal_struct *sig);
1949 extern void sched_autogroup_exit(struct signal_struct *sig);
1950 #ifdef CONFIG_PROC_FS
1951 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1952 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1953 #endif
1954 #else
1955 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1956 static inline void sched_autogroup_detach(struct task_struct *p) { }
1957 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1958 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1959 #endif
1960
1961 #ifdef CONFIG_RT_MUTEXES
1962 extern int rt_mutex_getprio(struct task_struct *p);
1963 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1964 extern void rt_mutex_adjust_pi(struct task_struct *p);
1965 #else
1966 static inline int rt_mutex_getprio(struct task_struct *p)
1967 {
1968 return p->normal_prio;
1969 }
1970 # define rt_mutex_adjust_pi(p) do { } while (0)
1971 #endif
1972
1973 extern bool yield_to(struct task_struct *p, bool preempt);
1974 extern void set_user_nice(struct task_struct *p, long nice);
1975 extern int task_prio(const struct task_struct *p);
1976 extern int task_nice(const struct task_struct *p);
1977 extern int can_nice(const struct task_struct *p, const int nice);
1978 extern int task_curr(const struct task_struct *p);
1979 extern int idle_cpu(int cpu);
1980 extern int sched_setscheduler(struct task_struct *, int,
1981 const struct sched_param *);
1982 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1983 const struct sched_param *);
1984 extern struct task_struct *idle_task(int cpu);
1985 extern struct task_struct *curr_task(int cpu);
1986 extern void set_curr_task(int cpu, struct task_struct *p);
1987
1988 void yield(void);
1989
1990 /*
1991 * The default (Linux) execution domain.
1992 */
1993 extern struct exec_domain default_exec_domain;
1994
1995 union thread_union {
1996 struct thread_info thread_info;
1997 unsigned long stack[THREAD_SIZE/sizeof(long)];
1998 };
1999
2000 #ifndef __HAVE_ARCH_KSTACK_END
2001 static inline int kstack_end(void *addr)
2002 {
2003 /* Reliable end of stack detection:
2004 * Some APM bios versions misalign the stack
2005 */
2006 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2007 }
2008 #endif
2009
2010 extern union thread_union init_thread_union;
2011 extern struct task_struct init_task;
2012
2013 extern struct mm_struct init_mm;
2014
2015 extern struct pid_namespace init_pid_ns;
2016
2017 /*
2018 * find a task by one of its numerical ids
2019 *
2020 * find_task_by_pid_ns():
2021 * finds a task by its pid in the specified namespace
2022 * find_task_by_vpid():
2023 * finds a task by its virtual pid
2024 *
2025 * see also find_vpid() etc in include/linux/pid.h
2026 */
2027
2028 extern struct task_struct *find_task_by_vpid(pid_t nr);
2029 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2030 struct pid_namespace *ns);
2031
2032 extern void __set_special_pids(struct pid *pid);
2033
2034 /* per-UID process charging. */
2035 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2036 static inline struct user_struct *get_uid(struct user_struct *u)
2037 {
2038 atomic_inc(&u->__count);
2039 return u;
2040 }
2041 extern void free_uid(struct user_struct *);
2042 extern void release_uids(struct user_namespace *ns);
2043
2044 #include <asm/current.h>
2045
2046 extern void xtime_update(unsigned long ticks);
2047
2048 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2049 extern int wake_up_process(struct task_struct *tsk);
2050 extern void wake_up_new_task(struct task_struct *tsk,
2051 unsigned long clone_flags);
2052 #ifdef CONFIG_SMP
2053 extern void kick_process(struct task_struct *tsk);
2054 #else
2055 static inline void kick_process(struct task_struct *tsk) { }
2056 #endif
2057 extern void sched_fork(struct task_struct *p, int clone_flags);
2058 extern void sched_dead(struct task_struct *p);
2059
2060 extern void proc_caches_init(void);
2061 extern void flush_signals(struct task_struct *);
2062 extern void __flush_signals(struct task_struct *);
2063 extern void ignore_signals(struct task_struct *);
2064 extern void flush_signal_handlers(struct task_struct *, int force_default);
2065 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2066
2067 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2068 {
2069 unsigned long flags;
2070 int ret;
2071
2072 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2073 ret = dequeue_signal(tsk, mask, info);
2074 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2075
2076 return ret;
2077 }
2078
2079 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2080 sigset_t *mask);
2081 extern void unblock_all_signals(void);
2082 extern void release_task(struct task_struct * p);
2083 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2084 extern int force_sigsegv(int, struct task_struct *);
2085 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2086 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2087 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2088 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2089 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2090 extern int kill_pid(struct pid *pid, int sig, int priv);
2091 extern int kill_proc_info(int, struct siginfo *, pid_t);
2092 extern int do_notify_parent(struct task_struct *, int);
2093 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2094 extern void force_sig(int, struct task_struct *);
2095 extern int send_sig(int, struct task_struct *, int);
2096 extern int zap_other_threads(struct task_struct *p);
2097 extern struct sigqueue *sigqueue_alloc(void);
2098 extern void sigqueue_free(struct sigqueue *);
2099 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2100 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2101 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2102
2103 static inline int kill_cad_pid(int sig, int priv)
2104 {
2105 return kill_pid(cad_pid, sig, priv);
2106 }
2107
2108 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2109 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2110 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2111 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2112
2113 /*
2114 * True if we are on the alternate signal stack.
2115 */
2116 static inline int on_sig_stack(unsigned long sp)
2117 {
2118 #ifdef CONFIG_STACK_GROWSUP
2119 return sp >= current->sas_ss_sp &&
2120 sp - current->sas_ss_sp < current->sas_ss_size;
2121 #else
2122 return sp > current->sas_ss_sp &&
2123 sp - current->sas_ss_sp <= current->sas_ss_size;
2124 #endif
2125 }
2126
2127 static inline int sas_ss_flags(unsigned long sp)
2128 {
2129 return (current->sas_ss_size == 0 ? SS_DISABLE
2130 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2131 }
2132
2133 /*
2134 * Routines for handling mm_structs
2135 */
2136 extern struct mm_struct * mm_alloc(void);
2137
2138 /* mmdrop drops the mm and the page tables */
2139 extern void __mmdrop(struct mm_struct *);
2140 static inline void mmdrop(struct mm_struct * mm)
2141 {
2142 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2143 __mmdrop(mm);
2144 }
2145
2146 /* mmput gets rid of the mappings and all user-space */
2147 extern void mmput(struct mm_struct *);
2148 /* Grab a reference to a task's mm, if it is not already going away */
2149 extern struct mm_struct *get_task_mm(struct task_struct *task);
2150 /* Remove the current tasks stale references to the old mm_struct */
2151 extern void mm_release(struct task_struct *, struct mm_struct *);
2152 /* Allocate a new mm structure and copy contents from tsk->mm */
2153 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2154
2155 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2156 struct task_struct *, struct pt_regs *);
2157 extern void flush_thread(void);
2158 extern void exit_thread(void);
2159
2160 extern void exit_files(struct task_struct *);
2161 extern void __cleanup_sighand(struct sighand_struct *);
2162
2163 extern void exit_itimers(struct signal_struct *);
2164 extern void flush_itimer_signals(void);
2165
2166 extern NORET_TYPE void do_group_exit(int);
2167
2168 extern void daemonize(const char *, ...);
2169 extern int allow_signal(int);
2170 extern int disallow_signal(int);
2171
2172 extern int do_execve(const char *,
2173 const char __user * const __user *,
2174 const char __user * const __user *, struct pt_regs *);
2175 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2176 struct task_struct *fork_idle(int);
2177
2178 extern void set_task_comm(struct task_struct *tsk, char *from);
2179 extern char *get_task_comm(char *to, struct task_struct *tsk);
2180
2181 #ifdef CONFIG_SMP
2182 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2183 #else
2184 static inline unsigned long wait_task_inactive(struct task_struct *p,
2185 long match_state)
2186 {
2187 return 1;
2188 }
2189 #endif
2190
2191 #define next_task(p) \
2192 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2193
2194 #define for_each_process(p) \
2195 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2196
2197 extern bool current_is_single_threaded(void);
2198
2199 /*
2200 * Careful: do_each_thread/while_each_thread is a double loop so
2201 * 'break' will not work as expected - use goto instead.
2202 */
2203 #define do_each_thread(g, t) \
2204 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2205
2206 #define while_each_thread(g, t) \
2207 while ((t = next_thread(t)) != g)
2208
2209 static inline int get_nr_threads(struct task_struct *tsk)
2210 {
2211 return tsk->signal->nr_threads;
2212 }
2213
2214 /* de_thread depends on thread_group_leader not being a pid based check */
2215 #define thread_group_leader(p) (p == p->group_leader)
2216
2217 /* Do to the insanities of de_thread it is possible for a process
2218 * to have the pid of the thread group leader without actually being
2219 * the thread group leader. For iteration through the pids in proc
2220 * all we care about is that we have a task with the appropriate
2221 * pid, we don't actually care if we have the right task.
2222 */
2223 static inline int has_group_leader_pid(struct task_struct *p)
2224 {
2225 return p->pid == p->tgid;
2226 }
2227
2228 static inline
2229 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2230 {
2231 return p1->tgid == p2->tgid;
2232 }
2233
2234 static inline struct task_struct *next_thread(const struct task_struct *p)
2235 {
2236 return list_entry_rcu(p->thread_group.next,
2237 struct task_struct, thread_group);
2238 }
2239
2240 static inline int thread_group_empty(struct task_struct *p)
2241 {
2242 return list_empty(&p->thread_group);
2243 }
2244
2245 #define delay_group_leader(p) \
2246 (thread_group_leader(p) && !thread_group_empty(p))
2247
2248 static inline int task_detached(struct task_struct *p)
2249 {
2250 return p->exit_signal == -1;
2251 }
2252
2253 /*
2254 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2255 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2256 * pins the final release of task.io_context. Also protects ->cpuset and
2257 * ->cgroup.subsys[].
2258 *
2259 * Nests both inside and outside of read_lock(&tasklist_lock).
2260 * It must not be nested with write_lock_irq(&tasklist_lock),
2261 * neither inside nor outside.
2262 */
2263 static inline void task_lock(struct task_struct *p)
2264 {
2265 spin_lock(&p->alloc_lock);
2266 }
2267
2268 static inline void task_unlock(struct task_struct *p)
2269 {
2270 spin_unlock(&p->alloc_lock);
2271 }
2272
2273 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2274 unsigned long *flags);
2275
2276 #define lock_task_sighand(tsk, flags) \
2277 ({ struct sighand_struct *__ss; \
2278 __cond_lock(&(tsk)->sighand->siglock, \
2279 (__ss = __lock_task_sighand(tsk, flags))); \
2280 __ss; \
2281 }) \
2282
2283 static inline void unlock_task_sighand(struct task_struct *tsk,
2284 unsigned long *flags)
2285 {
2286 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2287 }
2288
2289 #ifndef __HAVE_THREAD_FUNCTIONS
2290
2291 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2292 #define task_stack_page(task) ((task)->stack)
2293
2294 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2295 {
2296 *task_thread_info(p) = *task_thread_info(org);
2297 task_thread_info(p)->task = p;
2298 }
2299
2300 static inline unsigned long *end_of_stack(struct task_struct *p)
2301 {
2302 return (unsigned long *)(task_thread_info(p) + 1);
2303 }
2304
2305 #endif
2306
2307 static inline int object_is_on_stack(void *obj)
2308 {
2309 void *stack = task_stack_page(current);
2310
2311 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2312 }
2313
2314 extern void thread_info_cache_init(void);
2315
2316 #ifdef CONFIG_DEBUG_STACK_USAGE
2317 static inline unsigned long stack_not_used(struct task_struct *p)
2318 {
2319 unsigned long *n = end_of_stack(p);
2320
2321 do { /* Skip over canary */
2322 n++;
2323 } while (!*n);
2324
2325 return (unsigned long)n - (unsigned long)end_of_stack(p);
2326 }
2327 #endif
2328
2329 /* set thread flags in other task's structures
2330 * - see asm/thread_info.h for TIF_xxxx flags available
2331 */
2332 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2333 {
2334 set_ti_thread_flag(task_thread_info(tsk), flag);
2335 }
2336
2337 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339 clear_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341
2342 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346
2347 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2348 {
2349 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2350 }
2351
2352 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2353 {
2354 return test_ti_thread_flag(task_thread_info(tsk), flag);
2355 }
2356
2357 static inline void set_tsk_need_resched(struct task_struct *tsk)
2358 {
2359 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360 }
2361
2362 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2363 {
2364 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2365 }
2366
2367 static inline int test_tsk_need_resched(struct task_struct *tsk)
2368 {
2369 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2370 }
2371
2372 static inline int restart_syscall(void)
2373 {
2374 set_tsk_thread_flag(current, TIF_SIGPENDING);
2375 return -ERESTARTNOINTR;
2376 }
2377
2378 static inline int signal_pending(struct task_struct *p)
2379 {
2380 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2381 }
2382
2383 static inline int __fatal_signal_pending(struct task_struct *p)
2384 {
2385 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2386 }
2387
2388 static inline int fatal_signal_pending(struct task_struct *p)
2389 {
2390 return signal_pending(p) && __fatal_signal_pending(p);
2391 }
2392
2393 static inline int signal_pending_state(long state, struct task_struct *p)
2394 {
2395 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2396 return 0;
2397 if (!signal_pending(p))
2398 return 0;
2399
2400 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2401 }
2402
2403 static inline int need_resched(void)
2404 {
2405 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2406 }
2407
2408 /*
2409 * cond_resched() and cond_resched_lock(): latency reduction via
2410 * explicit rescheduling in places that are safe. The return
2411 * value indicates whether a reschedule was done in fact.
2412 * cond_resched_lock() will drop the spinlock before scheduling,
2413 * cond_resched_softirq() will enable bhs before scheduling.
2414 */
2415 extern int _cond_resched(void);
2416
2417 #define cond_resched() ({ \
2418 __might_sleep(__FILE__, __LINE__, 0); \
2419 _cond_resched(); \
2420 })
2421
2422 extern int __cond_resched_lock(spinlock_t *lock);
2423
2424 #ifdef CONFIG_PREEMPT
2425 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2426 #else
2427 #define PREEMPT_LOCK_OFFSET 0
2428 #endif
2429
2430 #define cond_resched_lock(lock) ({ \
2431 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2432 __cond_resched_lock(lock); \
2433 })
2434
2435 extern int __cond_resched_softirq(void);
2436
2437 #define cond_resched_softirq() ({ \
2438 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2439 __cond_resched_softirq(); \
2440 })
2441
2442 /*
2443 * Does a critical section need to be broken due to another
2444 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2445 * but a general need for low latency)
2446 */
2447 static inline int spin_needbreak(spinlock_t *lock)
2448 {
2449 #ifdef CONFIG_PREEMPT
2450 return spin_is_contended(lock);
2451 #else
2452 return 0;
2453 #endif
2454 }
2455
2456 /*
2457 * Thread group CPU time accounting.
2458 */
2459 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2460 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2461
2462 static inline void thread_group_cputime_init(struct signal_struct *sig)
2463 {
2464 spin_lock_init(&sig->cputimer.lock);
2465 }
2466
2467 /*
2468 * Reevaluate whether the task has signals pending delivery.
2469 * Wake the task if so.
2470 * This is required every time the blocked sigset_t changes.
2471 * callers must hold sighand->siglock.
2472 */
2473 extern void recalc_sigpending_and_wake(struct task_struct *t);
2474 extern void recalc_sigpending(void);
2475
2476 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2477
2478 /*
2479 * Wrappers for p->thread_info->cpu access. No-op on UP.
2480 */
2481 #ifdef CONFIG_SMP
2482
2483 static inline unsigned int task_cpu(const struct task_struct *p)
2484 {
2485 return task_thread_info(p)->cpu;
2486 }
2487
2488 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2489
2490 #else
2491
2492 static inline unsigned int task_cpu(const struct task_struct *p)
2493 {
2494 return 0;
2495 }
2496
2497 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2498 {
2499 }
2500
2501 #endif /* CONFIG_SMP */
2502
2503 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2504 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2505
2506 extern void normalize_rt_tasks(void);
2507
2508 #ifdef CONFIG_CGROUP_SCHED
2509
2510 extern struct task_group root_task_group;
2511
2512 extern struct task_group *sched_create_group(struct task_group *parent);
2513 extern void sched_destroy_group(struct task_group *tg);
2514 extern void sched_move_task(struct task_struct *tsk);
2515 #ifdef CONFIG_FAIR_GROUP_SCHED
2516 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2517 extern unsigned long sched_group_shares(struct task_group *tg);
2518 #endif
2519 #ifdef CONFIG_RT_GROUP_SCHED
2520 extern int sched_group_set_rt_runtime(struct task_group *tg,
2521 long rt_runtime_us);
2522 extern long sched_group_rt_runtime(struct task_group *tg);
2523 extern int sched_group_set_rt_period(struct task_group *tg,
2524 long rt_period_us);
2525 extern long sched_group_rt_period(struct task_group *tg);
2526 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2527 #endif
2528 #endif
2529
2530 extern int task_can_switch_user(struct user_struct *up,
2531 struct task_struct *tsk);
2532
2533 #ifdef CONFIG_TASK_XACCT
2534 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2535 {
2536 tsk->ioac.rchar += amt;
2537 }
2538
2539 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2540 {
2541 tsk->ioac.wchar += amt;
2542 }
2543
2544 static inline void inc_syscr(struct task_struct *tsk)
2545 {
2546 tsk->ioac.syscr++;
2547 }
2548
2549 static inline void inc_syscw(struct task_struct *tsk)
2550 {
2551 tsk->ioac.syscw++;
2552 }
2553 #else
2554 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2555 {
2556 }
2557
2558 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2559 {
2560 }
2561
2562 static inline void inc_syscr(struct task_struct *tsk)
2563 {
2564 }
2565
2566 static inline void inc_syscw(struct task_struct *tsk)
2567 {
2568 }
2569 #endif
2570
2571 #ifndef TASK_SIZE_OF
2572 #define TASK_SIZE_OF(tsk) TASK_SIZE
2573 #endif
2574
2575 #ifdef CONFIG_MM_OWNER
2576 extern void mm_update_next_owner(struct mm_struct *mm);
2577 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2578 #else
2579 static inline void mm_update_next_owner(struct mm_struct *mm)
2580 {
2581 }
2582
2583 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2584 {
2585 }
2586 #endif /* CONFIG_MM_OWNER */
2587
2588 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2589 unsigned int limit)
2590 {
2591 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2592 }
2593
2594 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2595 unsigned int limit)
2596 {
2597 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2598 }
2599
2600 static inline unsigned long rlimit(unsigned int limit)
2601 {
2602 return task_rlimit(current, limit);
2603 }
2604
2605 static inline unsigned long rlimit_max(unsigned int limit)
2606 {
2607 return task_rlimit_max(current, limit);
2608 }
2609
2610 #endif /* __KERNEL__ */
2611
2612 #endif