]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
mm/vmacache, sched/headers: Introduce 'struct vmacache' and move it from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32
33 #include <linux/smp.h>
34 #include <linux/sem.h>
35 #include <linux/shm.h>
36 #include <linux/signal.h>
37 #include <linux/compiler.h>
38 #include <linux/completion.h>
39 #include <linux/pid.h>
40 #include <linux/percpu.h>
41 #include <linux/topology.h>
42 #include <linux/seccomp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/rculist.h>
45 #include <linux/rtmutex.h>
46
47 #include <linux/time.h>
48 #include <linux/param.h>
49 #include <linux/resource.h>
50 #include <linux/timer.h>
51 #include <linux/hrtimer.h>
52 #include <linux/kcov.h>
53 #include <linux/task_io_accounting.h>
54 #include <linux/latencytop.h>
55 #include <linux/cred.h>
56 #include <linux/llist.h>
57 #include <linux/uidgid.h>
58 #include <linux/gfp.h>
59 #include <linux/magic.h>
60 #include <linux/cgroup-defs.h>
61
62 #include <asm/processor.h>
63
64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66 /*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
109 */
110 struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126 };
127
128 struct futex_pi_state;
129 struct robust_list_head;
130 struct bio_list;
131 struct fs_struct;
132 struct perf_event_context;
133 struct blk_plug;
134 struct filename;
135 struct nameidata;
136
137 /*
138 * These are the constant used to fake the fixed-point load-average
139 * counting. Some notes:
140 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
141 * a load-average precision of 10 bits integer + 11 bits fractional
142 * - if you want to count load-averages more often, you need more
143 * precision, or rounding will get you. With 2-second counting freq,
144 * the EXP_n values would be 1981, 2034 and 2043 if still using only
145 * 11 bit fractions.
146 */
147 extern unsigned long avenrun[]; /* Load averages */
148 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
149
150 #define FSHIFT 11 /* nr of bits of precision */
151 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
152 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
153 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
154 #define EXP_5 2014 /* 1/exp(5sec/5min) */
155 #define EXP_15 2037 /* 1/exp(5sec/15min) */
156
157 #define CALC_LOAD(load,exp,n) \
158 load *= exp; \
159 load += n*(FIXED_1-exp); \
160 load >>= FSHIFT;
161
162 extern unsigned long total_forks;
163 extern int nr_threads;
164 DECLARE_PER_CPU(unsigned long, process_counts);
165 extern int nr_processes(void);
166 extern unsigned long nr_running(void);
167 extern bool single_task_running(void);
168 extern unsigned long nr_iowait(void);
169 extern unsigned long nr_iowait_cpu(int cpu);
170 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
171
172 extern void calc_global_load(unsigned long ticks);
173
174 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
175 extern void cpu_load_update_nohz_start(void);
176 extern void cpu_load_update_nohz_stop(void);
177 #else
178 static inline void cpu_load_update_nohz_start(void) { }
179 static inline void cpu_load_update_nohz_stop(void) { }
180 #endif
181
182 extern void dump_cpu_task(int cpu);
183
184 struct seq_file;
185 struct cfs_rq;
186 struct task_group;
187 #ifdef CONFIG_SCHED_DEBUG
188 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
189 extern void proc_sched_set_task(struct task_struct *p);
190 #endif
191
192 /*
193 * Task state bitmask. NOTE! These bits are also
194 * encoded in fs/proc/array.c: get_task_state().
195 *
196 * We have two separate sets of flags: task->state
197 * is about runnability, while task->exit_state are
198 * about the task exiting. Confusing, but this way
199 * modifying one set can't modify the other one by
200 * mistake.
201 */
202 #define TASK_RUNNING 0
203 #define TASK_INTERRUPTIBLE 1
204 #define TASK_UNINTERRUPTIBLE 2
205 #define __TASK_STOPPED 4
206 #define __TASK_TRACED 8
207 /* in tsk->exit_state */
208 #define EXIT_DEAD 16
209 #define EXIT_ZOMBIE 32
210 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
211 /* in tsk->state again */
212 #define TASK_DEAD 64
213 #define TASK_WAKEKILL 128
214 #define TASK_WAKING 256
215 #define TASK_PARKED 512
216 #define TASK_NOLOAD 1024
217 #define TASK_NEW 2048
218 #define TASK_STATE_MAX 4096
219
220 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
221
222 /* Convenience macros for the sake of set_current_state */
223 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
224 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
225 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
226
227 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
228
229 /* Convenience macros for the sake of wake_up */
230 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
231 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
232
233 /* get_task_state() */
234 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
235 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
236 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
237
238 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
239 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
240 #define task_is_stopped_or_traced(task) \
241 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
242 #define task_contributes_to_load(task) \
243 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
244 (task->flags & PF_FROZEN) == 0 && \
245 (task->state & TASK_NOLOAD) == 0)
246
247 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
248
249 #define __set_current_state(state_value) \
250 do { \
251 current->task_state_change = _THIS_IP_; \
252 current->state = (state_value); \
253 } while (0)
254 #define set_current_state(state_value) \
255 do { \
256 current->task_state_change = _THIS_IP_; \
257 smp_store_mb(current->state, (state_value)); \
258 } while (0)
259
260 #else
261 /*
262 * set_current_state() includes a barrier so that the write of current->state
263 * is correctly serialised wrt the caller's subsequent test of whether to
264 * actually sleep:
265 *
266 * for (;;) {
267 * set_current_state(TASK_UNINTERRUPTIBLE);
268 * if (!need_sleep)
269 * break;
270 *
271 * schedule();
272 * }
273 * __set_current_state(TASK_RUNNING);
274 *
275 * If the caller does not need such serialisation (because, for instance, the
276 * condition test and condition change and wakeup are under the same lock) then
277 * use __set_current_state().
278 *
279 * The above is typically ordered against the wakeup, which does:
280 *
281 * need_sleep = false;
282 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
283 *
284 * Where wake_up_state() (and all other wakeup primitives) imply enough
285 * barriers to order the store of the variable against wakeup.
286 *
287 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
288 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
289 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
290 *
291 * This is obviously fine, since they both store the exact same value.
292 *
293 * Also see the comments of try_to_wake_up().
294 */
295 #define __set_current_state(state_value) \
296 do { current->state = (state_value); } while (0)
297 #define set_current_state(state_value) \
298 smp_store_mb(current->state, (state_value))
299
300 #endif
301
302 /* Task command name length */
303 #define TASK_COMM_LEN 16
304
305 #include <linux/spinlock.h>
306
307 /*
308 * This serializes "schedule()" and also protects
309 * the run-queue from deletions/modifications (but
310 * _adding_ to the beginning of the run-queue has
311 * a separate lock).
312 */
313 extern rwlock_t tasklist_lock;
314 extern spinlock_t mmlist_lock;
315
316 struct task_struct;
317
318 #ifdef CONFIG_PROVE_RCU
319 extern int lockdep_tasklist_lock_is_held(void);
320 #endif /* #ifdef CONFIG_PROVE_RCU */
321
322 extern void sched_init(void);
323 extern void sched_init_smp(void);
324 extern asmlinkage void schedule_tail(struct task_struct *prev);
325 extern void init_idle(struct task_struct *idle, int cpu);
326 extern void init_idle_bootup_task(struct task_struct *idle);
327
328 extern cpumask_var_t cpu_isolated_map;
329
330 extern int runqueue_is_locked(int cpu);
331
332 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
333 extern void nohz_balance_enter_idle(int cpu);
334 extern void set_cpu_sd_state_idle(void);
335 extern int get_nohz_timer_target(void);
336 #else
337 static inline void nohz_balance_enter_idle(int cpu) { }
338 static inline void set_cpu_sd_state_idle(void) { }
339 #endif
340
341 /*
342 * Only dump TASK_* tasks. (0 for all tasks)
343 */
344 extern void show_state_filter(unsigned long state_filter);
345
346 static inline void show_state(void)
347 {
348 show_state_filter(0);
349 }
350
351 extern void show_regs(struct pt_regs *);
352
353 /*
354 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
355 * task), SP is the stack pointer of the first frame that should be shown in the back
356 * trace (or NULL if the entire call-chain of the task should be shown).
357 */
358 extern void show_stack(struct task_struct *task, unsigned long *sp);
359
360 extern void cpu_init (void);
361 extern void trap_init(void);
362 extern void update_process_times(int user);
363 extern void scheduler_tick(void);
364 extern int sched_cpu_starting(unsigned int cpu);
365 extern int sched_cpu_activate(unsigned int cpu);
366 extern int sched_cpu_deactivate(unsigned int cpu);
367
368 #ifdef CONFIG_HOTPLUG_CPU
369 extern int sched_cpu_dying(unsigned int cpu);
370 #else
371 # define sched_cpu_dying NULL
372 #endif
373
374 extern void sched_show_task(struct task_struct *p);
375
376 #ifdef CONFIG_LOCKUP_DETECTOR
377 extern void touch_softlockup_watchdog_sched(void);
378 extern void touch_softlockup_watchdog(void);
379 extern void touch_softlockup_watchdog_sync(void);
380 extern void touch_all_softlockup_watchdogs(void);
381 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
382 void __user *buffer,
383 size_t *lenp, loff_t *ppos);
384 extern unsigned int softlockup_panic;
385 extern unsigned int hardlockup_panic;
386 void lockup_detector_init(void);
387 #else
388 static inline void touch_softlockup_watchdog_sched(void)
389 {
390 }
391 static inline void touch_softlockup_watchdog(void)
392 {
393 }
394 static inline void touch_softlockup_watchdog_sync(void)
395 {
396 }
397 static inline void touch_all_softlockup_watchdogs(void)
398 {
399 }
400 static inline void lockup_detector_init(void)
401 {
402 }
403 #endif
404
405 #ifdef CONFIG_DETECT_HUNG_TASK
406 void reset_hung_task_detector(void);
407 #else
408 static inline void reset_hung_task_detector(void)
409 {
410 }
411 #endif
412
413 /* Attach to any functions which should be ignored in wchan output. */
414 #define __sched __attribute__((__section__(".sched.text")))
415
416 /* Linker adds these: start and end of __sched functions */
417 extern char __sched_text_start[], __sched_text_end[];
418
419 /* Is this address in the __sched functions? */
420 extern int in_sched_functions(unsigned long addr);
421
422 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
423 extern signed long schedule_timeout(signed long timeout);
424 extern signed long schedule_timeout_interruptible(signed long timeout);
425 extern signed long schedule_timeout_killable(signed long timeout);
426 extern signed long schedule_timeout_uninterruptible(signed long timeout);
427 extern signed long schedule_timeout_idle(signed long timeout);
428 asmlinkage void schedule(void);
429 extern void schedule_preempt_disabled(void);
430
431 extern int __must_check io_schedule_prepare(void);
432 extern void io_schedule_finish(int token);
433 extern long io_schedule_timeout(long timeout);
434 extern void io_schedule(void);
435
436 void __noreturn do_task_dead(void);
437
438 struct nsproxy;
439 struct user_namespace;
440
441 #ifdef CONFIG_MMU
442 extern void arch_pick_mmap_layout(struct mm_struct *mm);
443 extern unsigned long
444 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
445 unsigned long, unsigned long);
446 extern unsigned long
447 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
448 unsigned long len, unsigned long pgoff,
449 unsigned long flags);
450 #else
451 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
452 #endif
453
454 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
455 #define SUID_DUMP_USER 1 /* Dump as user of process */
456 #define SUID_DUMP_ROOT 2 /* Dump as root */
457
458 /* mm flags */
459
460 /* for SUID_DUMP_* above */
461 #define MMF_DUMPABLE_BITS 2
462 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
463
464 extern void set_dumpable(struct mm_struct *mm, int value);
465 /*
466 * This returns the actual value of the suid_dumpable flag. For things
467 * that are using this for checking for privilege transitions, it must
468 * test against SUID_DUMP_USER rather than treating it as a boolean
469 * value.
470 */
471 static inline int __get_dumpable(unsigned long mm_flags)
472 {
473 return mm_flags & MMF_DUMPABLE_MASK;
474 }
475
476 static inline int get_dumpable(struct mm_struct *mm)
477 {
478 return __get_dumpable(mm->flags);
479 }
480
481 /* coredump filter bits */
482 #define MMF_DUMP_ANON_PRIVATE 2
483 #define MMF_DUMP_ANON_SHARED 3
484 #define MMF_DUMP_MAPPED_PRIVATE 4
485 #define MMF_DUMP_MAPPED_SHARED 5
486 #define MMF_DUMP_ELF_HEADERS 6
487 #define MMF_DUMP_HUGETLB_PRIVATE 7
488 #define MMF_DUMP_HUGETLB_SHARED 8
489 #define MMF_DUMP_DAX_PRIVATE 9
490 #define MMF_DUMP_DAX_SHARED 10
491
492 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
493 #define MMF_DUMP_FILTER_BITS 9
494 #define MMF_DUMP_FILTER_MASK \
495 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
496 #define MMF_DUMP_FILTER_DEFAULT \
497 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
498 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
499
500 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
501 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
502 #else
503 # define MMF_DUMP_MASK_DEFAULT_ELF 0
504 #endif
505 /* leave room for more dump flags */
506 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
507 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
508 /*
509 * This one-shot flag is dropped due to necessity of changing exe once again
510 * on NFS restore
511 */
512 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
513
514 #define MMF_HAS_UPROBES 19 /* has uprobes */
515 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
516 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
517 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
518 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
519
520 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
521
522 struct sighand_struct {
523 atomic_t count;
524 struct k_sigaction action[_NSIG];
525 spinlock_t siglock;
526 wait_queue_head_t signalfd_wqh;
527 };
528
529 struct pacct_struct {
530 int ac_flag;
531 long ac_exitcode;
532 unsigned long ac_mem;
533 u64 ac_utime, ac_stime;
534 unsigned long ac_minflt, ac_majflt;
535 };
536
537 struct cpu_itimer {
538 u64 expires;
539 u64 incr;
540 };
541
542 /**
543 * struct prev_cputime - snaphsot of system and user cputime
544 * @utime: time spent in user mode
545 * @stime: time spent in system mode
546 * @lock: protects the above two fields
547 *
548 * Stores previous user/system time values such that we can guarantee
549 * monotonicity.
550 */
551 struct prev_cputime {
552 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
553 u64 utime;
554 u64 stime;
555 raw_spinlock_t lock;
556 #endif
557 };
558
559 static inline void prev_cputime_init(struct prev_cputime *prev)
560 {
561 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
562 prev->utime = prev->stime = 0;
563 raw_spin_lock_init(&prev->lock);
564 #endif
565 }
566
567 /**
568 * struct task_cputime - collected CPU time counts
569 * @utime: time spent in user mode, in nanoseconds
570 * @stime: time spent in kernel mode, in nanoseconds
571 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
572 *
573 * This structure groups together three kinds of CPU time that are tracked for
574 * threads and thread groups. Most things considering CPU time want to group
575 * these counts together and treat all three of them in parallel.
576 */
577 struct task_cputime {
578 u64 utime;
579 u64 stime;
580 unsigned long long sum_exec_runtime;
581 };
582
583 /* Alternate field names when used to cache expirations. */
584 #define virt_exp utime
585 #define prof_exp stime
586 #define sched_exp sum_exec_runtime
587
588 /*
589 * This is the atomic variant of task_cputime, which can be used for
590 * storing and updating task_cputime statistics without locking.
591 */
592 struct task_cputime_atomic {
593 atomic64_t utime;
594 atomic64_t stime;
595 atomic64_t sum_exec_runtime;
596 };
597
598 #define INIT_CPUTIME_ATOMIC \
599 (struct task_cputime_atomic) { \
600 .utime = ATOMIC64_INIT(0), \
601 .stime = ATOMIC64_INIT(0), \
602 .sum_exec_runtime = ATOMIC64_INIT(0), \
603 }
604
605 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
606
607 /*
608 * Disable preemption until the scheduler is running -- use an unconditional
609 * value so that it also works on !PREEMPT_COUNT kernels.
610 *
611 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
612 */
613 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
614
615 /*
616 * Initial preempt_count value; reflects the preempt_count schedule invariant
617 * which states that during context switches:
618 *
619 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
620 *
621 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
622 * Note: See finish_task_switch().
623 */
624 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
625
626 /**
627 * struct thread_group_cputimer - thread group interval timer counts
628 * @cputime_atomic: atomic thread group interval timers.
629 * @running: true when there are timers running and
630 * @cputime_atomic receives updates.
631 * @checking_timer: true when a thread in the group is in the
632 * process of checking for thread group timers.
633 *
634 * This structure contains the version of task_cputime, above, that is
635 * used for thread group CPU timer calculations.
636 */
637 struct thread_group_cputimer {
638 struct task_cputime_atomic cputime_atomic;
639 bool running;
640 bool checking_timer;
641 };
642
643 #include <linux/rwsem.h>
644 struct autogroup;
645
646 /*
647 * NOTE! "signal_struct" does not have its own
648 * locking, because a shared signal_struct always
649 * implies a shared sighand_struct, so locking
650 * sighand_struct is always a proper superset of
651 * the locking of signal_struct.
652 */
653 struct signal_struct {
654 atomic_t sigcnt;
655 atomic_t live;
656 int nr_threads;
657 struct list_head thread_head;
658
659 wait_queue_head_t wait_chldexit; /* for wait4() */
660
661 /* current thread group signal load-balancing target: */
662 struct task_struct *curr_target;
663
664 /* shared signal handling: */
665 struct sigpending shared_pending;
666
667 /* thread group exit support */
668 int group_exit_code;
669 /* overloaded:
670 * - notify group_exit_task when ->count is equal to notify_count
671 * - everyone except group_exit_task is stopped during signal delivery
672 * of fatal signals, group_exit_task processes the signal.
673 */
674 int notify_count;
675 struct task_struct *group_exit_task;
676
677 /* thread group stop support, overloads group_exit_code too */
678 int group_stop_count;
679 unsigned int flags; /* see SIGNAL_* flags below */
680
681 /*
682 * PR_SET_CHILD_SUBREAPER marks a process, like a service
683 * manager, to re-parent orphan (double-forking) child processes
684 * to this process instead of 'init'. The service manager is
685 * able to receive SIGCHLD signals and is able to investigate
686 * the process until it calls wait(). All children of this
687 * process will inherit a flag if they should look for a
688 * child_subreaper process at exit.
689 */
690 unsigned int is_child_subreaper:1;
691 unsigned int has_child_subreaper:1;
692
693 #ifdef CONFIG_POSIX_TIMERS
694
695 /* POSIX.1b Interval Timers */
696 int posix_timer_id;
697 struct list_head posix_timers;
698
699 /* ITIMER_REAL timer for the process */
700 struct hrtimer real_timer;
701 ktime_t it_real_incr;
702
703 /*
704 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
705 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
706 * values are defined to 0 and 1 respectively
707 */
708 struct cpu_itimer it[2];
709
710 /*
711 * Thread group totals for process CPU timers.
712 * See thread_group_cputimer(), et al, for details.
713 */
714 struct thread_group_cputimer cputimer;
715
716 /* Earliest-expiration cache. */
717 struct task_cputime cputime_expires;
718
719 struct list_head cpu_timers[3];
720
721 #endif
722
723 struct pid *leader_pid;
724
725 #ifdef CONFIG_NO_HZ_FULL
726 atomic_t tick_dep_mask;
727 #endif
728
729 struct pid *tty_old_pgrp;
730
731 /* boolean value for session group leader */
732 int leader;
733
734 struct tty_struct *tty; /* NULL if no tty */
735
736 #ifdef CONFIG_SCHED_AUTOGROUP
737 struct autogroup *autogroup;
738 #endif
739 /*
740 * Cumulative resource counters for dead threads in the group,
741 * and for reaped dead child processes forked by this group.
742 * Live threads maintain their own counters and add to these
743 * in __exit_signal, except for the group leader.
744 */
745 seqlock_t stats_lock;
746 u64 utime, stime, cutime, cstime;
747 u64 gtime;
748 u64 cgtime;
749 struct prev_cputime prev_cputime;
750 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
751 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
752 unsigned long inblock, oublock, cinblock, coublock;
753 unsigned long maxrss, cmaxrss;
754 struct task_io_accounting ioac;
755
756 /*
757 * Cumulative ns of schedule CPU time fo dead threads in the
758 * group, not including a zombie group leader, (This only differs
759 * from jiffies_to_ns(utime + stime) if sched_clock uses something
760 * other than jiffies.)
761 */
762 unsigned long long sum_sched_runtime;
763
764 /*
765 * We don't bother to synchronize most readers of this at all,
766 * because there is no reader checking a limit that actually needs
767 * to get both rlim_cur and rlim_max atomically, and either one
768 * alone is a single word that can safely be read normally.
769 * getrlimit/setrlimit use task_lock(current->group_leader) to
770 * protect this instead of the siglock, because they really
771 * have no need to disable irqs.
772 */
773 struct rlimit rlim[RLIM_NLIMITS];
774
775 #ifdef CONFIG_BSD_PROCESS_ACCT
776 struct pacct_struct pacct; /* per-process accounting information */
777 #endif
778 #ifdef CONFIG_TASKSTATS
779 struct taskstats *stats;
780 #endif
781 #ifdef CONFIG_AUDIT
782 unsigned audit_tty;
783 struct tty_audit_buf *tty_audit_buf;
784 #endif
785
786 /*
787 * Thread is the potential origin of an oom condition; kill first on
788 * oom
789 */
790 bool oom_flag_origin;
791 short oom_score_adj; /* OOM kill score adjustment */
792 short oom_score_adj_min; /* OOM kill score adjustment min value.
793 * Only settable by CAP_SYS_RESOURCE. */
794 struct mm_struct *oom_mm; /* recorded mm when the thread group got
795 * killed by the oom killer */
796
797 struct mutex cred_guard_mutex; /* guard against foreign influences on
798 * credential calculations
799 * (notably. ptrace) */
800 };
801
802 /*
803 * Bits in flags field of signal_struct.
804 */
805 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
806 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
807 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
808 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
809 /*
810 * Pending notifications to parent.
811 */
812 #define SIGNAL_CLD_STOPPED 0x00000010
813 #define SIGNAL_CLD_CONTINUED 0x00000020
814 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
815
816 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
817
818 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
819 SIGNAL_STOP_CONTINUED)
820
821 static inline void signal_set_stop_flags(struct signal_struct *sig,
822 unsigned int flags)
823 {
824 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
825 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
826 }
827
828 /* If true, all threads except ->group_exit_task have pending SIGKILL */
829 static inline int signal_group_exit(const struct signal_struct *sig)
830 {
831 return (sig->flags & SIGNAL_GROUP_EXIT) ||
832 (sig->group_exit_task != NULL);
833 }
834
835 /*
836 * Some day this will be a full-fledged user tracking system..
837 */
838 struct user_struct {
839 atomic_t __count; /* reference count */
840 atomic_t processes; /* How many processes does this user have? */
841 atomic_t sigpending; /* How many pending signals does this user have? */
842 #ifdef CONFIG_FANOTIFY
843 atomic_t fanotify_listeners;
844 #endif
845 #ifdef CONFIG_EPOLL
846 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
847 #endif
848 #ifdef CONFIG_POSIX_MQUEUE
849 /* protected by mq_lock */
850 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
851 #endif
852 unsigned long locked_shm; /* How many pages of mlocked shm ? */
853 unsigned long unix_inflight; /* How many files in flight in unix sockets */
854 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
855
856 #ifdef CONFIG_KEYS
857 struct key *uid_keyring; /* UID specific keyring */
858 struct key *session_keyring; /* UID's default session keyring */
859 #endif
860
861 /* Hash table maintenance information */
862 struct hlist_node uidhash_node;
863 kuid_t uid;
864
865 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
866 atomic_long_t locked_vm;
867 #endif
868 };
869
870 extern int uids_sysfs_init(void);
871
872 extern struct user_struct *find_user(kuid_t);
873
874 extern struct user_struct root_user;
875 #define INIT_USER (&root_user)
876
877
878 struct backing_dev_info;
879 struct reclaim_state;
880
881 #ifdef CONFIG_SCHED_INFO
882 struct sched_info {
883 /* cumulative counters */
884 unsigned long pcount; /* # of times run on this cpu */
885 unsigned long long run_delay; /* time spent waiting on a runqueue */
886
887 /* timestamps */
888 unsigned long long last_arrival,/* when we last ran on a cpu */
889 last_queued; /* when we were last queued to run */
890 };
891 #endif /* CONFIG_SCHED_INFO */
892
893 #ifdef CONFIG_TASK_DELAY_ACCT
894 struct task_delay_info {
895 spinlock_t lock;
896 unsigned int flags; /* Private per-task flags */
897
898 /* For each stat XXX, add following, aligned appropriately
899 *
900 * struct timespec XXX_start, XXX_end;
901 * u64 XXX_delay;
902 * u32 XXX_count;
903 *
904 * Atomicity of updates to XXX_delay, XXX_count protected by
905 * single lock above (split into XXX_lock if contention is an issue).
906 */
907
908 /*
909 * XXX_count is incremented on every XXX operation, the delay
910 * associated with the operation is added to XXX_delay.
911 * XXX_delay contains the accumulated delay time in nanoseconds.
912 */
913 u64 blkio_start; /* Shared by blkio, swapin */
914 u64 blkio_delay; /* wait for sync block io completion */
915 u64 swapin_delay; /* wait for swapin block io completion */
916 u32 blkio_count; /* total count of the number of sync block */
917 /* io operations performed */
918 u32 swapin_count; /* total count of the number of swapin block */
919 /* io operations performed */
920
921 u64 freepages_start;
922 u64 freepages_delay; /* wait for memory reclaim */
923 u32 freepages_count; /* total count of memory reclaim */
924 };
925 #endif /* CONFIG_TASK_DELAY_ACCT */
926
927 static inline int sched_info_on(void)
928 {
929 #ifdef CONFIG_SCHEDSTATS
930 return 1;
931 #elif defined(CONFIG_TASK_DELAY_ACCT)
932 extern int delayacct_on;
933 return delayacct_on;
934 #else
935 return 0;
936 #endif
937 }
938
939 #ifdef CONFIG_SCHEDSTATS
940 void force_schedstat_enabled(void);
941 #endif
942
943 enum cpu_idle_type {
944 CPU_IDLE,
945 CPU_NOT_IDLE,
946 CPU_NEWLY_IDLE,
947 CPU_MAX_IDLE_TYPES
948 };
949
950 /*
951 * Integer metrics need fixed point arithmetic, e.g., sched/fair
952 * has a few: load, load_avg, util_avg, freq, and capacity.
953 *
954 * We define a basic fixed point arithmetic range, and then formalize
955 * all these metrics based on that basic range.
956 */
957 # define SCHED_FIXEDPOINT_SHIFT 10
958 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
959
960 /*
961 * Increase resolution of cpu_capacity calculations
962 */
963 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
964 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
965
966 /*
967 * Wake-queues are lists of tasks with a pending wakeup, whose
968 * callers have already marked the task as woken internally,
969 * and can thus carry on. A common use case is being able to
970 * do the wakeups once the corresponding user lock as been
971 * released.
972 *
973 * We hold reference to each task in the list across the wakeup,
974 * thus guaranteeing that the memory is still valid by the time
975 * the actual wakeups are performed in wake_up_q().
976 *
977 * One per task suffices, because there's never a need for a task to be
978 * in two wake queues simultaneously; it is forbidden to abandon a task
979 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
980 * already in a wake queue, the wakeup will happen soon and the second
981 * waker can just skip it.
982 *
983 * The DEFINE_WAKE_Q macro declares and initializes the list head.
984 * wake_up_q() does NOT reinitialize the list; it's expected to be
985 * called near the end of a function. Otherwise, the list can be
986 * re-initialized for later re-use by wake_q_init().
987 *
988 * Note that this can cause spurious wakeups. schedule() callers
989 * must ensure the call is done inside a loop, confirming that the
990 * wakeup condition has in fact occurred.
991 */
992 struct wake_q_node {
993 struct wake_q_node *next;
994 };
995
996 struct wake_q_head {
997 struct wake_q_node *first;
998 struct wake_q_node **lastp;
999 };
1000
1001 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1002
1003 #define DEFINE_WAKE_Q(name) \
1004 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1005
1006 static inline void wake_q_init(struct wake_q_head *head)
1007 {
1008 head->first = WAKE_Q_TAIL;
1009 head->lastp = &head->first;
1010 }
1011
1012 extern void wake_q_add(struct wake_q_head *head,
1013 struct task_struct *task);
1014 extern void wake_up_q(struct wake_q_head *head);
1015
1016 /*
1017 * sched-domains (multiprocessor balancing) declarations:
1018 */
1019 #ifdef CONFIG_SMP
1020 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1021 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1022 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1023 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1024 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1025 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1026 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1027 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1028 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1029 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1030 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1031 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1032 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1033 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1034 #define SD_NUMA 0x4000 /* cross-node balancing */
1035
1036 #ifdef CONFIG_SCHED_SMT
1037 static inline int cpu_smt_flags(void)
1038 {
1039 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1040 }
1041 #endif
1042
1043 #ifdef CONFIG_SCHED_MC
1044 static inline int cpu_core_flags(void)
1045 {
1046 return SD_SHARE_PKG_RESOURCES;
1047 }
1048 #endif
1049
1050 #ifdef CONFIG_NUMA
1051 static inline int cpu_numa_flags(void)
1052 {
1053 return SD_NUMA;
1054 }
1055 #endif
1056
1057 extern int arch_asym_cpu_priority(int cpu);
1058
1059 struct sched_domain_attr {
1060 int relax_domain_level;
1061 };
1062
1063 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1064 .relax_domain_level = -1, \
1065 }
1066
1067 extern int sched_domain_level_max;
1068
1069 struct sched_group;
1070
1071 struct sched_domain_shared {
1072 atomic_t ref;
1073 atomic_t nr_busy_cpus;
1074 int has_idle_cores;
1075 };
1076
1077 struct sched_domain {
1078 /* These fields must be setup */
1079 struct sched_domain *parent; /* top domain must be null terminated */
1080 struct sched_domain *child; /* bottom domain must be null terminated */
1081 struct sched_group *groups; /* the balancing groups of the domain */
1082 unsigned long min_interval; /* Minimum balance interval ms */
1083 unsigned long max_interval; /* Maximum balance interval ms */
1084 unsigned int busy_factor; /* less balancing by factor if busy */
1085 unsigned int imbalance_pct; /* No balance until over watermark */
1086 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1087 unsigned int busy_idx;
1088 unsigned int idle_idx;
1089 unsigned int newidle_idx;
1090 unsigned int wake_idx;
1091 unsigned int forkexec_idx;
1092 unsigned int smt_gain;
1093
1094 int nohz_idle; /* NOHZ IDLE status */
1095 int flags; /* See SD_* */
1096 int level;
1097
1098 /* Runtime fields. */
1099 unsigned long last_balance; /* init to jiffies. units in jiffies */
1100 unsigned int balance_interval; /* initialise to 1. units in ms. */
1101 unsigned int nr_balance_failed; /* initialise to 0 */
1102
1103 /* idle_balance() stats */
1104 u64 max_newidle_lb_cost;
1105 unsigned long next_decay_max_lb_cost;
1106
1107 u64 avg_scan_cost; /* select_idle_sibling */
1108
1109 #ifdef CONFIG_SCHEDSTATS
1110 /* load_balance() stats */
1111 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1112 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1113 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1114 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1115 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1116 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1117 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1118 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1119
1120 /* Active load balancing */
1121 unsigned int alb_count;
1122 unsigned int alb_failed;
1123 unsigned int alb_pushed;
1124
1125 /* SD_BALANCE_EXEC stats */
1126 unsigned int sbe_count;
1127 unsigned int sbe_balanced;
1128 unsigned int sbe_pushed;
1129
1130 /* SD_BALANCE_FORK stats */
1131 unsigned int sbf_count;
1132 unsigned int sbf_balanced;
1133 unsigned int sbf_pushed;
1134
1135 /* try_to_wake_up() stats */
1136 unsigned int ttwu_wake_remote;
1137 unsigned int ttwu_move_affine;
1138 unsigned int ttwu_move_balance;
1139 #endif
1140 #ifdef CONFIG_SCHED_DEBUG
1141 char *name;
1142 #endif
1143 union {
1144 void *private; /* used during construction */
1145 struct rcu_head rcu; /* used during destruction */
1146 };
1147 struct sched_domain_shared *shared;
1148
1149 unsigned int span_weight;
1150 /*
1151 * Span of all CPUs in this domain.
1152 *
1153 * NOTE: this field is variable length. (Allocated dynamically
1154 * by attaching extra space to the end of the structure,
1155 * depending on how many CPUs the kernel has booted up with)
1156 */
1157 unsigned long span[0];
1158 };
1159
1160 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1161 {
1162 return to_cpumask(sd->span);
1163 }
1164
1165 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1166 struct sched_domain_attr *dattr_new);
1167
1168 /* Allocate an array of sched domains, for partition_sched_domains(). */
1169 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1170 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1171
1172 bool cpus_share_cache(int this_cpu, int that_cpu);
1173
1174 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1175 typedef int (*sched_domain_flags_f)(void);
1176
1177 #define SDTL_OVERLAP 0x01
1178
1179 struct sd_data {
1180 struct sched_domain **__percpu sd;
1181 struct sched_domain_shared **__percpu sds;
1182 struct sched_group **__percpu sg;
1183 struct sched_group_capacity **__percpu sgc;
1184 };
1185
1186 struct sched_domain_topology_level {
1187 sched_domain_mask_f mask;
1188 sched_domain_flags_f sd_flags;
1189 int flags;
1190 int numa_level;
1191 struct sd_data data;
1192 #ifdef CONFIG_SCHED_DEBUG
1193 char *name;
1194 #endif
1195 };
1196
1197 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1198 extern void wake_up_if_idle(int cpu);
1199
1200 #ifdef CONFIG_SCHED_DEBUG
1201 # define SD_INIT_NAME(type) .name = #type
1202 #else
1203 # define SD_INIT_NAME(type)
1204 #endif
1205
1206 #else /* CONFIG_SMP */
1207
1208 struct sched_domain_attr;
1209
1210 static inline void
1211 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1212 struct sched_domain_attr *dattr_new)
1213 {
1214 }
1215
1216 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1217 {
1218 return true;
1219 }
1220
1221 #endif /* !CONFIG_SMP */
1222
1223
1224 struct io_context; /* See blkdev.h */
1225
1226
1227 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1228 extern void prefetch_stack(struct task_struct *t);
1229 #else
1230 static inline void prefetch_stack(struct task_struct *t) { }
1231 #endif
1232
1233 struct audit_context; /* See audit.c */
1234 struct mempolicy;
1235 struct pipe_inode_info;
1236 struct uts_namespace;
1237
1238 struct load_weight {
1239 unsigned long weight;
1240 u32 inv_weight;
1241 };
1242
1243 /*
1244 * The load_avg/util_avg accumulates an infinite geometric series
1245 * (see __update_load_avg() in kernel/sched/fair.c).
1246 *
1247 * [load_avg definition]
1248 *
1249 * load_avg = runnable% * scale_load_down(load)
1250 *
1251 * where runnable% is the time ratio that a sched_entity is runnable.
1252 * For cfs_rq, it is the aggregated load_avg of all runnable and
1253 * blocked sched_entities.
1254 *
1255 * load_avg may also take frequency scaling into account:
1256 *
1257 * load_avg = runnable% * scale_load_down(load) * freq%
1258 *
1259 * where freq% is the CPU frequency normalized to the highest frequency.
1260 *
1261 * [util_avg definition]
1262 *
1263 * util_avg = running% * SCHED_CAPACITY_SCALE
1264 *
1265 * where running% is the time ratio that a sched_entity is running on
1266 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1267 * and blocked sched_entities.
1268 *
1269 * util_avg may also factor frequency scaling and CPU capacity scaling:
1270 *
1271 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1272 *
1273 * where freq% is the same as above, and capacity% is the CPU capacity
1274 * normalized to the greatest capacity (due to uarch differences, etc).
1275 *
1276 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1277 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1278 * we therefore scale them to as large a range as necessary. This is for
1279 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1280 *
1281 * [Overflow issue]
1282 *
1283 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1284 * with the highest load (=88761), always runnable on a single cfs_rq,
1285 * and should not overflow as the number already hits PID_MAX_LIMIT.
1286 *
1287 * For all other cases (including 32-bit kernels), struct load_weight's
1288 * weight will overflow first before we do, because:
1289 *
1290 * Max(load_avg) <= Max(load.weight)
1291 *
1292 * Then it is the load_weight's responsibility to consider overflow
1293 * issues.
1294 */
1295 struct sched_avg {
1296 u64 last_update_time, load_sum;
1297 u32 util_sum, period_contrib;
1298 unsigned long load_avg, util_avg;
1299 };
1300
1301 #ifdef CONFIG_SCHEDSTATS
1302 struct sched_statistics {
1303 u64 wait_start;
1304 u64 wait_max;
1305 u64 wait_count;
1306 u64 wait_sum;
1307 u64 iowait_count;
1308 u64 iowait_sum;
1309
1310 u64 sleep_start;
1311 u64 sleep_max;
1312 s64 sum_sleep_runtime;
1313
1314 u64 block_start;
1315 u64 block_max;
1316 u64 exec_max;
1317 u64 slice_max;
1318
1319 u64 nr_migrations_cold;
1320 u64 nr_failed_migrations_affine;
1321 u64 nr_failed_migrations_running;
1322 u64 nr_failed_migrations_hot;
1323 u64 nr_forced_migrations;
1324
1325 u64 nr_wakeups;
1326 u64 nr_wakeups_sync;
1327 u64 nr_wakeups_migrate;
1328 u64 nr_wakeups_local;
1329 u64 nr_wakeups_remote;
1330 u64 nr_wakeups_affine;
1331 u64 nr_wakeups_affine_attempts;
1332 u64 nr_wakeups_passive;
1333 u64 nr_wakeups_idle;
1334 };
1335 #endif
1336
1337 struct sched_entity {
1338 struct load_weight load; /* for load-balancing */
1339 struct rb_node run_node;
1340 struct list_head group_node;
1341 unsigned int on_rq;
1342
1343 u64 exec_start;
1344 u64 sum_exec_runtime;
1345 u64 vruntime;
1346 u64 prev_sum_exec_runtime;
1347
1348 u64 nr_migrations;
1349
1350 #ifdef CONFIG_SCHEDSTATS
1351 struct sched_statistics statistics;
1352 #endif
1353
1354 #ifdef CONFIG_FAIR_GROUP_SCHED
1355 int depth;
1356 struct sched_entity *parent;
1357 /* rq on which this entity is (to be) queued: */
1358 struct cfs_rq *cfs_rq;
1359 /* rq "owned" by this entity/group: */
1360 struct cfs_rq *my_q;
1361 #endif
1362
1363 #ifdef CONFIG_SMP
1364 /*
1365 * Per entity load average tracking.
1366 *
1367 * Put into separate cache line so it does not
1368 * collide with read-mostly values above.
1369 */
1370 struct sched_avg avg ____cacheline_aligned_in_smp;
1371 #endif
1372 };
1373
1374 struct sched_rt_entity {
1375 struct list_head run_list;
1376 unsigned long timeout;
1377 unsigned long watchdog_stamp;
1378 unsigned int time_slice;
1379 unsigned short on_rq;
1380 unsigned short on_list;
1381
1382 struct sched_rt_entity *back;
1383 #ifdef CONFIG_RT_GROUP_SCHED
1384 struct sched_rt_entity *parent;
1385 /* rq on which this entity is (to be) queued: */
1386 struct rt_rq *rt_rq;
1387 /* rq "owned" by this entity/group: */
1388 struct rt_rq *my_q;
1389 #endif
1390 };
1391
1392 struct sched_dl_entity {
1393 struct rb_node rb_node;
1394
1395 /*
1396 * Original scheduling parameters. Copied here from sched_attr
1397 * during sched_setattr(), they will remain the same until
1398 * the next sched_setattr().
1399 */
1400 u64 dl_runtime; /* maximum runtime for each instance */
1401 u64 dl_deadline; /* relative deadline of each instance */
1402 u64 dl_period; /* separation of two instances (period) */
1403 u64 dl_bw; /* dl_runtime / dl_deadline */
1404
1405 /*
1406 * Actual scheduling parameters. Initialized with the values above,
1407 * they are continously updated during task execution. Note that
1408 * the remaining runtime could be < 0 in case we are in overrun.
1409 */
1410 s64 runtime; /* remaining runtime for this instance */
1411 u64 deadline; /* absolute deadline for this instance */
1412 unsigned int flags; /* specifying the scheduler behaviour */
1413
1414 /*
1415 * Some bool flags:
1416 *
1417 * @dl_throttled tells if we exhausted the runtime. If so, the
1418 * task has to wait for a replenishment to be performed at the
1419 * next firing of dl_timer.
1420 *
1421 * @dl_boosted tells if we are boosted due to DI. If so we are
1422 * outside bandwidth enforcement mechanism (but only until we
1423 * exit the critical section);
1424 *
1425 * @dl_yielded tells if task gave up the cpu before consuming
1426 * all its available runtime during the last job.
1427 */
1428 int dl_throttled, dl_boosted, dl_yielded;
1429
1430 /*
1431 * Bandwidth enforcement timer. Each -deadline task has its
1432 * own bandwidth to be enforced, thus we need one timer per task.
1433 */
1434 struct hrtimer dl_timer;
1435 };
1436
1437 union rcu_special {
1438 struct {
1439 u8 blocked;
1440 u8 need_qs;
1441 u8 exp_need_qs;
1442 u8 pad; /* Otherwise the compiler can store garbage here. */
1443 } b; /* Bits. */
1444 u32 s; /* Set of bits. */
1445 };
1446 struct rcu_node;
1447
1448 enum perf_event_task_context {
1449 perf_invalid_context = -1,
1450 perf_hw_context = 0,
1451 perf_sw_context,
1452 perf_nr_task_contexts,
1453 };
1454
1455 /* Track pages that require TLB flushes */
1456 struct tlbflush_unmap_batch {
1457 /*
1458 * Each bit set is a CPU that potentially has a TLB entry for one of
1459 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1460 */
1461 struct cpumask cpumask;
1462
1463 /* True if any bit in cpumask is set */
1464 bool flush_required;
1465
1466 /*
1467 * If true then the PTE was dirty when unmapped. The entry must be
1468 * flushed before IO is initiated or a stale TLB entry potentially
1469 * allows an update without redirtying the page.
1470 */
1471 bool writable;
1472 };
1473
1474 struct task_struct {
1475 #ifdef CONFIG_THREAD_INFO_IN_TASK
1476 /*
1477 * For reasons of header soup (see current_thread_info()), this
1478 * must be the first element of task_struct.
1479 */
1480 struct thread_info thread_info;
1481 #endif
1482 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1483 void *stack;
1484 atomic_t usage;
1485 unsigned int flags; /* per process flags, defined below */
1486 unsigned int ptrace;
1487
1488 #ifdef CONFIG_SMP
1489 struct llist_node wake_entry;
1490 int on_cpu;
1491 #ifdef CONFIG_THREAD_INFO_IN_TASK
1492 unsigned int cpu; /* current CPU */
1493 #endif
1494 unsigned int wakee_flips;
1495 unsigned long wakee_flip_decay_ts;
1496 struct task_struct *last_wakee;
1497
1498 int wake_cpu;
1499 #endif
1500 int on_rq;
1501
1502 int prio, static_prio, normal_prio;
1503 unsigned int rt_priority;
1504 const struct sched_class *sched_class;
1505 struct sched_entity se;
1506 struct sched_rt_entity rt;
1507 #ifdef CONFIG_CGROUP_SCHED
1508 struct task_group *sched_task_group;
1509 #endif
1510 struct sched_dl_entity dl;
1511
1512 #ifdef CONFIG_PREEMPT_NOTIFIERS
1513 /* list of struct preempt_notifier: */
1514 struct hlist_head preempt_notifiers;
1515 #endif
1516
1517 #ifdef CONFIG_BLK_DEV_IO_TRACE
1518 unsigned int btrace_seq;
1519 #endif
1520
1521 unsigned int policy;
1522 int nr_cpus_allowed;
1523 cpumask_t cpus_allowed;
1524
1525 #ifdef CONFIG_PREEMPT_RCU
1526 int rcu_read_lock_nesting;
1527 union rcu_special rcu_read_unlock_special;
1528 struct list_head rcu_node_entry;
1529 struct rcu_node *rcu_blocked_node;
1530 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1531 #ifdef CONFIG_TASKS_RCU
1532 unsigned long rcu_tasks_nvcsw;
1533 bool rcu_tasks_holdout;
1534 struct list_head rcu_tasks_holdout_list;
1535 int rcu_tasks_idle_cpu;
1536 #endif /* #ifdef CONFIG_TASKS_RCU */
1537
1538 #ifdef CONFIG_SCHED_INFO
1539 struct sched_info sched_info;
1540 #endif
1541
1542 struct list_head tasks;
1543 #ifdef CONFIG_SMP
1544 struct plist_node pushable_tasks;
1545 struct rb_node pushable_dl_tasks;
1546 #endif
1547
1548 struct mm_struct *mm, *active_mm;
1549
1550 /* Per-thread vma caching: */
1551 struct vmacache vmacache;
1552
1553 #if defined(SPLIT_RSS_COUNTING)
1554 struct task_rss_stat rss_stat;
1555 #endif
1556 /* task state */
1557 int exit_state;
1558 int exit_code, exit_signal;
1559 int pdeath_signal; /* The signal sent when the parent dies */
1560 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1561
1562 /* Used for emulating ABI behavior of previous Linux versions */
1563 unsigned int personality;
1564
1565 /* scheduler bits, serialized by scheduler locks */
1566 unsigned sched_reset_on_fork:1;
1567 unsigned sched_contributes_to_load:1;
1568 unsigned sched_migrated:1;
1569 unsigned sched_remote_wakeup:1;
1570 unsigned :0; /* force alignment to the next boundary */
1571
1572 /* unserialized, strictly 'current' */
1573 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1574 unsigned in_iowait:1;
1575 #if !defined(TIF_RESTORE_SIGMASK)
1576 unsigned restore_sigmask:1;
1577 #endif
1578 #ifdef CONFIG_MEMCG
1579 unsigned memcg_may_oom:1;
1580 #ifndef CONFIG_SLOB
1581 unsigned memcg_kmem_skip_account:1;
1582 #endif
1583 #endif
1584 #ifdef CONFIG_COMPAT_BRK
1585 unsigned brk_randomized:1;
1586 #endif
1587
1588 unsigned long atomic_flags; /* Flags needing atomic access. */
1589
1590 struct restart_block restart_block;
1591
1592 pid_t pid;
1593 pid_t tgid;
1594
1595 #ifdef CONFIG_CC_STACKPROTECTOR
1596 /* Canary value for the -fstack-protector gcc feature */
1597 unsigned long stack_canary;
1598 #endif
1599 /*
1600 * pointers to (original) parent process, youngest child, younger sibling,
1601 * older sibling, respectively. (p->father can be replaced with
1602 * p->real_parent->pid)
1603 */
1604 struct task_struct __rcu *real_parent; /* real parent process */
1605 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1606 /*
1607 * children/sibling forms the list of my natural children
1608 */
1609 struct list_head children; /* list of my children */
1610 struct list_head sibling; /* linkage in my parent's children list */
1611 struct task_struct *group_leader; /* threadgroup leader */
1612
1613 /*
1614 * ptraced is the list of tasks this task is using ptrace on.
1615 * This includes both natural children and PTRACE_ATTACH targets.
1616 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1617 */
1618 struct list_head ptraced;
1619 struct list_head ptrace_entry;
1620
1621 /* PID/PID hash table linkage. */
1622 struct pid_link pids[PIDTYPE_MAX];
1623 struct list_head thread_group;
1624 struct list_head thread_node;
1625
1626 struct completion *vfork_done; /* for vfork() */
1627 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1628 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1629
1630 u64 utime, stime;
1631 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1632 u64 utimescaled, stimescaled;
1633 #endif
1634 u64 gtime;
1635 struct prev_cputime prev_cputime;
1636 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1637 seqcount_t vtime_seqcount;
1638 unsigned long long vtime_snap;
1639 enum {
1640 /* Task is sleeping or running in a CPU with VTIME inactive */
1641 VTIME_INACTIVE = 0,
1642 /* Task runs in userspace in a CPU with VTIME active */
1643 VTIME_USER,
1644 /* Task runs in kernelspace in a CPU with VTIME active */
1645 VTIME_SYS,
1646 } vtime_snap_whence;
1647 #endif
1648
1649 #ifdef CONFIG_NO_HZ_FULL
1650 atomic_t tick_dep_mask;
1651 #endif
1652 unsigned long nvcsw, nivcsw; /* context switch counts */
1653 u64 start_time; /* monotonic time in nsec */
1654 u64 real_start_time; /* boot based time in nsec */
1655 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1656 unsigned long min_flt, maj_flt;
1657
1658 #ifdef CONFIG_POSIX_TIMERS
1659 struct task_cputime cputime_expires;
1660 struct list_head cpu_timers[3];
1661 #endif
1662
1663 /* process credentials */
1664 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1665 const struct cred __rcu *real_cred; /* objective and real subjective task
1666 * credentials (COW) */
1667 const struct cred __rcu *cred; /* effective (overridable) subjective task
1668 * credentials (COW) */
1669 char comm[TASK_COMM_LEN]; /* executable name excluding path
1670 - access with [gs]et_task_comm (which lock
1671 it with task_lock())
1672 - initialized normally by setup_new_exec */
1673 /* file system info */
1674 struct nameidata *nameidata;
1675 #ifdef CONFIG_SYSVIPC
1676 /* ipc stuff */
1677 struct sysv_sem sysvsem;
1678 struct sysv_shm sysvshm;
1679 #endif
1680 #ifdef CONFIG_DETECT_HUNG_TASK
1681 /* hung task detection */
1682 unsigned long last_switch_count;
1683 #endif
1684 /* filesystem information */
1685 struct fs_struct *fs;
1686 /* open file information */
1687 struct files_struct *files;
1688 /* namespaces */
1689 struct nsproxy *nsproxy;
1690 /* signal handlers */
1691 struct signal_struct *signal;
1692 struct sighand_struct *sighand;
1693
1694 sigset_t blocked, real_blocked;
1695 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1696 struct sigpending pending;
1697
1698 unsigned long sas_ss_sp;
1699 size_t sas_ss_size;
1700 unsigned sas_ss_flags;
1701
1702 struct callback_head *task_works;
1703
1704 struct audit_context *audit_context;
1705 #ifdef CONFIG_AUDITSYSCALL
1706 kuid_t loginuid;
1707 unsigned int sessionid;
1708 #endif
1709 struct seccomp seccomp;
1710
1711 /* Thread group tracking */
1712 u32 parent_exec_id;
1713 u32 self_exec_id;
1714 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1715 * mempolicy */
1716 spinlock_t alloc_lock;
1717
1718 /* Protection of the PI data structures: */
1719 raw_spinlock_t pi_lock;
1720
1721 struct wake_q_node wake_q;
1722
1723 #ifdef CONFIG_RT_MUTEXES
1724 /* PI waiters blocked on a rt_mutex held by this task */
1725 struct rb_root pi_waiters;
1726 struct rb_node *pi_waiters_leftmost;
1727 /* Deadlock detection and priority inheritance handling */
1728 struct rt_mutex_waiter *pi_blocked_on;
1729 #endif
1730
1731 #ifdef CONFIG_DEBUG_MUTEXES
1732 /* mutex deadlock detection */
1733 struct mutex_waiter *blocked_on;
1734 #endif
1735 #ifdef CONFIG_TRACE_IRQFLAGS
1736 unsigned int irq_events;
1737 unsigned long hardirq_enable_ip;
1738 unsigned long hardirq_disable_ip;
1739 unsigned int hardirq_enable_event;
1740 unsigned int hardirq_disable_event;
1741 int hardirqs_enabled;
1742 int hardirq_context;
1743 unsigned long softirq_disable_ip;
1744 unsigned long softirq_enable_ip;
1745 unsigned int softirq_disable_event;
1746 unsigned int softirq_enable_event;
1747 int softirqs_enabled;
1748 int softirq_context;
1749 #endif
1750 #ifdef CONFIG_LOCKDEP
1751 # define MAX_LOCK_DEPTH 48UL
1752 u64 curr_chain_key;
1753 int lockdep_depth;
1754 unsigned int lockdep_recursion;
1755 struct held_lock held_locks[MAX_LOCK_DEPTH];
1756 gfp_t lockdep_reclaim_gfp;
1757 #endif
1758 #ifdef CONFIG_UBSAN
1759 unsigned int in_ubsan;
1760 #endif
1761
1762 /* journalling filesystem info */
1763 void *journal_info;
1764
1765 /* stacked block device info */
1766 struct bio_list *bio_list;
1767
1768 #ifdef CONFIG_BLOCK
1769 /* stack plugging */
1770 struct blk_plug *plug;
1771 #endif
1772
1773 /* VM state */
1774 struct reclaim_state *reclaim_state;
1775
1776 struct backing_dev_info *backing_dev_info;
1777
1778 struct io_context *io_context;
1779
1780 unsigned long ptrace_message;
1781 siginfo_t *last_siginfo; /* For ptrace use. */
1782 struct task_io_accounting ioac;
1783 #if defined(CONFIG_TASK_XACCT)
1784 u64 acct_rss_mem1; /* accumulated rss usage */
1785 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1786 u64 acct_timexpd; /* stime + utime since last update */
1787 #endif
1788 #ifdef CONFIG_CPUSETS
1789 nodemask_t mems_allowed; /* Protected by alloc_lock */
1790 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1791 int cpuset_mem_spread_rotor;
1792 int cpuset_slab_spread_rotor;
1793 #endif
1794 #ifdef CONFIG_CGROUPS
1795 /* Control Group info protected by css_set_lock */
1796 struct css_set __rcu *cgroups;
1797 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1798 struct list_head cg_list;
1799 #endif
1800 #ifdef CONFIG_INTEL_RDT_A
1801 int closid;
1802 #endif
1803 #ifdef CONFIG_FUTEX
1804 struct robust_list_head __user *robust_list;
1805 #ifdef CONFIG_COMPAT
1806 struct compat_robust_list_head __user *compat_robust_list;
1807 #endif
1808 struct list_head pi_state_list;
1809 struct futex_pi_state *pi_state_cache;
1810 #endif
1811 #ifdef CONFIG_PERF_EVENTS
1812 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1813 struct mutex perf_event_mutex;
1814 struct list_head perf_event_list;
1815 #endif
1816 #ifdef CONFIG_DEBUG_PREEMPT
1817 unsigned long preempt_disable_ip;
1818 #endif
1819 #ifdef CONFIG_NUMA
1820 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1821 short il_next;
1822 short pref_node_fork;
1823 #endif
1824 #ifdef CONFIG_NUMA_BALANCING
1825 int numa_scan_seq;
1826 unsigned int numa_scan_period;
1827 unsigned int numa_scan_period_max;
1828 int numa_preferred_nid;
1829 unsigned long numa_migrate_retry;
1830 u64 node_stamp; /* migration stamp */
1831 u64 last_task_numa_placement;
1832 u64 last_sum_exec_runtime;
1833 struct callback_head numa_work;
1834
1835 struct list_head numa_entry;
1836 struct numa_group *numa_group;
1837
1838 /*
1839 * numa_faults is an array split into four regions:
1840 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1841 * in this precise order.
1842 *
1843 * faults_memory: Exponential decaying average of faults on a per-node
1844 * basis. Scheduling placement decisions are made based on these
1845 * counts. The values remain static for the duration of a PTE scan.
1846 * faults_cpu: Track the nodes the process was running on when a NUMA
1847 * hinting fault was incurred.
1848 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1849 * during the current scan window. When the scan completes, the counts
1850 * in faults_memory and faults_cpu decay and these values are copied.
1851 */
1852 unsigned long *numa_faults;
1853 unsigned long total_numa_faults;
1854
1855 /*
1856 * numa_faults_locality tracks if faults recorded during the last
1857 * scan window were remote/local or failed to migrate. The task scan
1858 * period is adapted based on the locality of the faults with different
1859 * weights depending on whether they were shared or private faults
1860 */
1861 unsigned long numa_faults_locality[3];
1862
1863 unsigned long numa_pages_migrated;
1864 #endif /* CONFIG_NUMA_BALANCING */
1865
1866 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1867 struct tlbflush_unmap_batch tlb_ubc;
1868 #endif
1869
1870 struct rcu_head rcu;
1871
1872 /*
1873 * cache last used pipe for splice
1874 */
1875 struct pipe_inode_info *splice_pipe;
1876
1877 struct page_frag task_frag;
1878
1879 #ifdef CONFIG_TASK_DELAY_ACCT
1880 struct task_delay_info *delays;
1881 #endif
1882 #ifdef CONFIG_FAULT_INJECTION
1883 int make_it_fail;
1884 #endif
1885 /*
1886 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1887 * balance_dirty_pages() for some dirty throttling pause
1888 */
1889 int nr_dirtied;
1890 int nr_dirtied_pause;
1891 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1892
1893 #ifdef CONFIG_LATENCYTOP
1894 int latency_record_count;
1895 struct latency_record latency_record[LT_SAVECOUNT];
1896 #endif
1897 /*
1898 * time slack values; these are used to round up poll() and
1899 * select() etc timeout values. These are in nanoseconds.
1900 */
1901 u64 timer_slack_ns;
1902 u64 default_timer_slack_ns;
1903
1904 #ifdef CONFIG_KASAN
1905 unsigned int kasan_depth;
1906 #endif
1907 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1908 /* Index of current stored address in ret_stack */
1909 int curr_ret_stack;
1910 /* Stack of return addresses for return function tracing */
1911 struct ftrace_ret_stack *ret_stack;
1912 /* time stamp for last schedule */
1913 unsigned long long ftrace_timestamp;
1914 /*
1915 * Number of functions that haven't been traced
1916 * because of depth overrun.
1917 */
1918 atomic_t trace_overrun;
1919 /* Pause for the tracing */
1920 atomic_t tracing_graph_pause;
1921 #endif
1922 #ifdef CONFIG_TRACING
1923 /* state flags for use by tracers */
1924 unsigned long trace;
1925 /* bitmask and counter of trace recursion */
1926 unsigned long trace_recursion;
1927 #endif /* CONFIG_TRACING */
1928 #ifdef CONFIG_KCOV
1929 /* Coverage collection mode enabled for this task (0 if disabled). */
1930 enum kcov_mode kcov_mode;
1931 /* Size of the kcov_area. */
1932 unsigned kcov_size;
1933 /* Buffer for coverage collection. */
1934 void *kcov_area;
1935 /* kcov desciptor wired with this task or NULL. */
1936 struct kcov *kcov;
1937 #endif
1938 #ifdef CONFIG_MEMCG
1939 struct mem_cgroup *memcg_in_oom;
1940 gfp_t memcg_oom_gfp_mask;
1941 int memcg_oom_order;
1942
1943 /* number of pages to reclaim on returning to userland */
1944 unsigned int memcg_nr_pages_over_high;
1945 #endif
1946 #ifdef CONFIG_UPROBES
1947 struct uprobe_task *utask;
1948 #endif
1949 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1950 unsigned int sequential_io;
1951 unsigned int sequential_io_avg;
1952 #endif
1953 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1954 unsigned long task_state_change;
1955 #endif
1956 int pagefault_disabled;
1957 #ifdef CONFIG_MMU
1958 struct task_struct *oom_reaper_list;
1959 #endif
1960 #ifdef CONFIG_VMAP_STACK
1961 struct vm_struct *stack_vm_area;
1962 #endif
1963 #ifdef CONFIG_THREAD_INFO_IN_TASK
1964 /* A live task holds one reference. */
1965 atomic_t stack_refcount;
1966 #endif
1967 /* CPU-specific state of this task */
1968 struct thread_struct thread;
1969 /*
1970 * WARNING: on x86, 'thread_struct' contains a variable-sized
1971 * structure. It *MUST* be at the end of 'task_struct'.
1972 *
1973 * Do not put anything below here!
1974 */
1975 };
1976
1977 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1978 extern int arch_task_struct_size __read_mostly;
1979 #else
1980 # define arch_task_struct_size (sizeof(struct task_struct))
1981 #endif
1982
1983 #ifdef CONFIG_VMAP_STACK
1984 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1985 {
1986 return t->stack_vm_area;
1987 }
1988 #else
1989 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1990 {
1991 return NULL;
1992 }
1993 #endif
1994
1995 #define TNF_MIGRATED 0x01
1996 #define TNF_NO_GROUP 0x02
1997 #define TNF_SHARED 0x04
1998 #define TNF_FAULT_LOCAL 0x08
1999 #define TNF_MIGRATE_FAIL 0x10
2000
2001 static inline bool in_vfork(struct task_struct *tsk)
2002 {
2003 bool ret;
2004
2005 /*
2006 * need RCU to access ->real_parent if CLONE_VM was used along with
2007 * CLONE_PARENT.
2008 *
2009 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2010 * imply CLONE_VM
2011 *
2012 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2013 * ->real_parent is not necessarily the task doing vfork(), so in
2014 * theory we can't rely on task_lock() if we want to dereference it.
2015 *
2016 * And in this case we can't trust the real_parent->mm == tsk->mm
2017 * check, it can be false negative. But we do not care, if init or
2018 * another oom-unkillable task does this it should blame itself.
2019 */
2020 rcu_read_lock();
2021 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2022 rcu_read_unlock();
2023
2024 return ret;
2025 }
2026
2027 #ifdef CONFIG_NUMA_BALANCING
2028 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2029 extern pid_t task_numa_group_id(struct task_struct *p);
2030 extern void set_numabalancing_state(bool enabled);
2031 extern void task_numa_free(struct task_struct *p);
2032 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2033 int src_nid, int dst_cpu);
2034 #else
2035 static inline void task_numa_fault(int last_node, int node, int pages,
2036 int flags)
2037 {
2038 }
2039 static inline pid_t task_numa_group_id(struct task_struct *p)
2040 {
2041 return 0;
2042 }
2043 static inline void set_numabalancing_state(bool enabled)
2044 {
2045 }
2046 static inline void task_numa_free(struct task_struct *p)
2047 {
2048 }
2049 static inline bool should_numa_migrate_memory(struct task_struct *p,
2050 struct page *page, int src_nid, int dst_cpu)
2051 {
2052 return true;
2053 }
2054 #endif
2055
2056 static inline struct pid *task_pid(struct task_struct *task)
2057 {
2058 return task->pids[PIDTYPE_PID].pid;
2059 }
2060
2061 static inline struct pid *task_tgid(struct task_struct *task)
2062 {
2063 return task->group_leader->pids[PIDTYPE_PID].pid;
2064 }
2065
2066 /*
2067 * Without tasklist or rcu lock it is not safe to dereference
2068 * the result of task_pgrp/task_session even if task == current,
2069 * we can race with another thread doing sys_setsid/sys_setpgid.
2070 */
2071 static inline struct pid *task_pgrp(struct task_struct *task)
2072 {
2073 return task->group_leader->pids[PIDTYPE_PGID].pid;
2074 }
2075
2076 static inline struct pid *task_session(struct task_struct *task)
2077 {
2078 return task->group_leader->pids[PIDTYPE_SID].pid;
2079 }
2080
2081 struct pid_namespace;
2082
2083 /*
2084 * the helpers to get the task's different pids as they are seen
2085 * from various namespaces
2086 *
2087 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2088 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2089 * current.
2090 * task_xid_nr_ns() : id seen from the ns specified;
2091 *
2092 * set_task_vxid() : assigns a virtual id to a task;
2093 *
2094 * see also pid_nr() etc in include/linux/pid.h
2095 */
2096 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2097 struct pid_namespace *ns);
2098
2099 static inline pid_t task_pid_nr(struct task_struct *tsk)
2100 {
2101 return tsk->pid;
2102 }
2103
2104 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2105 struct pid_namespace *ns)
2106 {
2107 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2108 }
2109
2110 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2111 {
2112 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2113 }
2114
2115
2116 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2117 {
2118 return tsk->tgid;
2119 }
2120
2121 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2122
2123 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2124 {
2125 return pid_vnr(task_tgid(tsk));
2126 }
2127
2128
2129 static inline int pid_alive(const struct task_struct *p);
2130 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2131 {
2132 pid_t pid = 0;
2133
2134 rcu_read_lock();
2135 if (pid_alive(tsk))
2136 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2137 rcu_read_unlock();
2138
2139 return pid;
2140 }
2141
2142 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2143 {
2144 return task_ppid_nr_ns(tsk, &init_pid_ns);
2145 }
2146
2147 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2148 struct pid_namespace *ns)
2149 {
2150 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2151 }
2152
2153 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2154 {
2155 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2156 }
2157
2158
2159 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2160 struct pid_namespace *ns)
2161 {
2162 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2163 }
2164
2165 static inline pid_t task_session_vnr(struct task_struct *tsk)
2166 {
2167 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2168 }
2169
2170 /* obsolete, do not use */
2171 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2172 {
2173 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2174 }
2175
2176 /**
2177 * pid_alive - check that a task structure is not stale
2178 * @p: Task structure to be checked.
2179 *
2180 * Test if a process is not yet dead (at most zombie state)
2181 * If pid_alive fails, then pointers within the task structure
2182 * can be stale and must not be dereferenced.
2183 *
2184 * Return: 1 if the process is alive. 0 otherwise.
2185 */
2186 static inline int pid_alive(const struct task_struct *p)
2187 {
2188 return p->pids[PIDTYPE_PID].pid != NULL;
2189 }
2190
2191 /**
2192 * is_global_init - check if a task structure is init. Since init
2193 * is free to have sub-threads we need to check tgid.
2194 * @tsk: Task structure to be checked.
2195 *
2196 * Check if a task structure is the first user space task the kernel created.
2197 *
2198 * Return: 1 if the task structure is init. 0 otherwise.
2199 */
2200 static inline int is_global_init(struct task_struct *tsk)
2201 {
2202 return task_tgid_nr(tsk) == 1;
2203 }
2204
2205 extern struct pid *cad_pid;
2206
2207 extern void free_task(struct task_struct *tsk);
2208 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2209
2210 extern void __put_task_struct(struct task_struct *t);
2211
2212 static inline void put_task_struct(struct task_struct *t)
2213 {
2214 if (atomic_dec_and_test(&t->usage))
2215 __put_task_struct(t);
2216 }
2217
2218 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2219 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2220
2221 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2222 extern void task_cputime(struct task_struct *t,
2223 u64 *utime, u64 *stime);
2224 extern u64 task_gtime(struct task_struct *t);
2225 #else
2226 static inline void task_cputime(struct task_struct *t,
2227 u64 *utime, u64 *stime)
2228 {
2229 *utime = t->utime;
2230 *stime = t->stime;
2231 }
2232
2233 static inline u64 task_gtime(struct task_struct *t)
2234 {
2235 return t->gtime;
2236 }
2237 #endif
2238
2239 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2240 static inline void task_cputime_scaled(struct task_struct *t,
2241 u64 *utimescaled,
2242 u64 *stimescaled)
2243 {
2244 *utimescaled = t->utimescaled;
2245 *stimescaled = t->stimescaled;
2246 }
2247 #else
2248 static inline void task_cputime_scaled(struct task_struct *t,
2249 u64 *utimescaled,
2250 u64 *stimescaled)
2251 {
2252 task_cputime(t, utimescaled, stimescaled);
2253 }
2254 #endif
2255
2256 extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2257 extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2258
2259 /*
2260 * Per process flags
2261 */
2262 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
2263 #define PF_EXITING 0x00000004 /* getting shut down */
2264 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2265 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2266 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2267 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2268 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2269 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2270 #define PF_DUMPCORE 0x00000200 /* dumped core */
2271 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2272 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2273 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2274 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2275 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2276 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2277 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2278 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2279 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2280 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2281 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2282 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2283 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2284 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2285 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2286 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2287 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2288 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2289 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2290
2291 /*
2292 * Only the _current_ task can read/write to tsk->flags, but other
2293 * tasks can access tsk->flags in readonly mode for example
2294 * with tsk_used_math (like during threaded core dumping).
2295 * There is however an exception to this rule during ptrace
2296 * or during fork: the ptracer task is allowed to write to the
2297 * child->flags of its traced child (same goes for fork, the parent
2298 * can write to the child->flags), because we're guaranteed the
2299 * child is not running and in turn not changing child->flags
2300 * at the same time the parent does it.
2301 */
2302 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2303 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2304 #define clear_used_math() clear_stopped_child_used_math(current)
2305 #define set_used_math() set_stopped_child_used_math(current)
2306 #define conditional_stopped_child_used_math(condition, child) \
2307 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2308 #define conditional_used_math(condition) \
2309 conditional_stopped_child_used_math(condition, current)
2310 #define copy_to_stopped_child_used_math(child) \
2311 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2312 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2313 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2314 #define used_math() tsk_used_math(current)
2315
2316 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2317 * __GFP_FS is also cleared as it implies __GFP_IO.
2318 */
2319 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2320 {
2321 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2322 flags &= ~(__GFP_IO | __GFP_FS);
2323 return flags;
2324 }
2325
2326 static inline unsigned int memalloc_noio_save(void)
2327 {
2328 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2329 current->flags |= PF_MEMALLOC_NOIO;
2330 return flags;
2331 }
2332
2333 static inline void memalloc_noio_restore(unsigned int flags)
2334 {
2335 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2336 }
2337
2338 /* Per-process atomic flags. */
2339 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2340 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2341 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2342 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2343
2344
2345 #define TASK_PFA_TEST(name, func) \
2346 static inline bool task_##func(struct task_struct *p) \
2347 { return test_bit(PFA_##name, &p->atomic_flags); }
2348 #define TASK_PFA_SET(name, func) \
2349 static inline void task_set_##func(struct task_struct *p) \
2350 { set_bit(PFA_##name, &p->atomic_flags); }
2351 #define TASK_PFA_CLEAR(name, func) \
2352 static inline void task_clear_##func(struct task_struct *p) \
2353 { clear_bit(PFA_##name, &p->atomic_flags); }
2354
2355 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2356 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2357
2358 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2359 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2360 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2361
2362 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2363 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2364 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2365
2366 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2367 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2368
2369 /*
2370 * task->jobctl flags
2371 */
2372 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2373
2374 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2375 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2376 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2377 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2378 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2379 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2380 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2381
2382 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2383 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2384 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2385 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2386 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2387 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2388 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2389
2390 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2391 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2392
2393 extern bool task_set_jobctl_pending(struct task_struct *task,
2394 unsigned long mask);
2395 extern void task_clear_jobctl_trapping(struct task_struct *task);
2396 extern void task_clear_jobctl_pending(struct task_struct *task,
2397 unsigned long mask);
2398
2399 static inline void rcu_copy_process(struct task_struct *p)
2400 {
2401 #ifdef CONFIG_PREEMPT_RCU
2402 p->rcu_read_lock_nesting = 0;
2403 p->rcu_read_unlock_special.s = 0;
2404 p->rcu_blocked_node = NULL;
2405 INIT_LIST_HEAD(&p->rcu_node_entry);
2406 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2407 #ifdef CONFIG_TASKS_RCU
2408 p->rcu_tasks_holdout = false;
2409 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2410 p->rcu_tasks_idle_cpu = -1;
2411 #endif /* #ifdef CONFIG_TASKS_RCU */
2412 }
2413
2414 static inline void tsk_restore_flags(struct task_struct *task,
2415 unsigned long orig_flags, unsigned long flags)
2416 {
2417 task->flags &= ~flags;
2418 task->flags |= orig_flags & flags;
2419 }
2420
2421 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2422 const struct cpumask *trial);
2423 extern int task_can_attach(struct task_struct *p,
2424 const struct cpumask *cs_cpus_allowed);
2425 #ifdef CONFIG_SMP
2426 extern void do_set_cpus_allowed(struct task_struct *p,
2427 const struct cpumask *new_mask);
2428
2429 extern int set_cpus_allowed_ptr(struct task_struct *p,
2430 const struct cpumask *new_mask);
2431 #else
2432 static inline void do_set_cpus_allowed(struct task_struct *p,
2433 const struct cpumask *new_mask)
2434 {
2435 }
2436 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2437 const struct cpumask *new_mask)
2438 {
2439 if (!cpumask_test_cpu(0, new_mask))
2440 return -EINVAL;
2441 return 0;
2442 }
2443 #endif
2444
2445 #ifdef CONFIG_NO_HZ_COMMON
2446 void calc_load_enter_idle(void);
2447 void calc_load_exit_idle(void);
2448 #else
2449 static inline void calc_load_enter_idle(void) { }
2450 static inline void calc_load_exit_idle(void) { }
2451 #endif /* CONFIG_NO_HZ_COMMON */
2452
2453 #ifndef cpu_relax_yield
2454 #define cpu_relax_yield() cpu_relax()
2455 #endif
2456
2457 /*
2458 * Do not use outside of architecture code which knows its limitations.
2459 *
2460 * sched_clock() has no promise of monotonicity or bounded drift between
2461 * CPUs, use (which you should not) requires disabling IRQs.
2462 *
2463 * Please use one of the three interfaces below.
2464 */
2465 extern unsigned long long notrace sched_clock(void);
2466 /*
2467 * See the comment in kernel/sched/clock.c
2468 */
2469 extern u64 running_clock(void);
2470 extern u64 sched_clock_cpu(int cpu);
2471
2472
2473 extern void sched_clock_init(void);
2474
2475 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2476 static inline void sched_clock_init_late(void)
2477 {
2478 }
2479
2480 static inline void sched_clock_tick(void)
2481 {
2482 }
2483
2484 static inline void clear_sched_clock_stable(void)
2485 {
2486 }
2487
2488 static inline void sched_clock_idle_sleep_event(void)
2489 {
2490 }
2491
2492 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2493 {
2494 }
2495
2496 static inline u64 cpu_clock(int cpu)
2497 {
2498 return sched_clock();
2499 }
2500
2501 static inline u64 local_clock(void)
2502 {
2503 return sched_clock();
2504 }
2505 #else
2506 extern void sched_clock_init_late(void);
2507 /*
2508 * Architectures can set this to 1 if they have specified
2509 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2510 * but then during bootup it turns out that sched_clock()
2511 * is reliable after all:
2512 */
2513 extern int sched_clock_stable(void);
2514 extern void clear_sched_clock_stable(void);
2515
2516 extern void sched_clock_tick(void);
2517 extern void sched_clock_idle_sleep_event(void);
2518 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2519
2520 /*
2521 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2522 * time source that is monotonic per cpu argument and has bounded drift
2523 * between cpus.
2524 *
2525 * ######################### BIG FAT WARNING ##########################
2526 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2527 * # go backwards !! #
2528 * ####################################################################
2529 */
2530 static inline u64 cpu_clock(int cpu)
2531 {
2532 return sched_clock_cpu(cpu);
2533 }
2534
2535 static inline u64 local_clock(void)
2536 {
2537 return sched_clock_cpu(raw_smp_processor_id());
2538 }
2539 #endif
2540
2541 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2542 /*
2543 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2544 * The reason for this explicit opt-in is not to have perf penalty with
2545 * slow sched_clocks.
2546 */
2547 extern void enable_sched_clock_irqtime(void);
2548 extern void disable_sched_clock_irqtime(void);
2549 #else
2550 static inline void enable_sched_clock_irqtime(void) {}
2551 static inline void disable_sched_clock_irqtime(void) {}
2552 #endif
2553
2554 extern unsigned long long
2555 task_sched_runtime(struct task_struct *task);
2556
2557 /* sched_exec is called by processes performing an exec */
2558 #ifdef CONFIG_SMP
2559 extern void sched_exec(void);
2560 #else
2561 #define sched_exec() {}
2562 #endif
2563
2564 extern void sched_clock_idle_sleep_event(void);
2565 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2566
2567 #ifdef CONFIG_HOTPLUG_CPU
2568 extern void idle_task_exit(void);
2569 #else
2570 static inline void idle_task_exit(void) {}
2571 #endif
2572
2573 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2574 extern void wake_up_nohz_cpu(int cpu);
2575 #else
2576 static inline void wake_up_nohz_cpu(int cpu) { }
2577 #endif
2578
2579 #ifdef CONFIG_NO_HZ_FULL
2580 extern u64 scheduler_tick_max_deferment(void);
2581 #endif
2582
2583 #ifdef CONFIG_SCHED_AUTOGROUP
2584 extern void sched_autogroup_create_attach(struct task_struct *p);
2585 extern void sched_autogroup_detach(struct task_struct *p);
2586 extern void sched_autogroup_fork(struct signal_struct *sig);
2587 extern void sched_autogroup_exit(struct signal_struct *sig);
2588 extern void sched_autogroup_exit_task(struct task_struct *p);
2589 #ifdef CONFIG_PROC_FS
2590 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2591 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2592 #endif
2593 #else
2594 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2595 static inline void sched_autogroup_detach(struct task_struct *p) { }
2596 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2597 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2598 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2599 #endif
2600
2601 extern int yield_to(struct task_struct *p, bool preempt);
2602 extern void set_user_nice(struct task_struct *p, long nice);
2603 extern int task_prio(const struct task_struct *p);
2604 /**
2605 * task_nice - return the nice value of a given task.
2606 * @p: the task in question.
2607 *
2608 * Return: The nice value [ -20 ... 0 ... 19 ].
2609 */
2610 static inline int task_nice(const struct task_struct *p)
2611 {
2612 return PRIO_TO_NICE((p)->static_prio);
2613 }
2614 extern int can_nice(const struct task_struct *p, const int nice);
2615 extern int task_curr(const struct task_struct *p);
2616 extern int idle_cpu(int cpu);
2617 extern int sched_setscheduler(struct task_struct *, int,
2618 const struct sched_param *);
2619 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2620 const struct sched_param *);
2621 extern int sched_setattr(struct task_struct *,
2622 const struct sched_attr *);
2623 extern struct task_struct *idle_task(int cpu);
2624 /**
2625 * is_idle_task - is the specified task an idle task?
2626 * @p: the task in question.
2627 *
2628 * Return: 1 if @p is an idle task. 0 otherwise.
2629 */
2630 static inline bool is_idle_task(const struct task_struct *p)
2631 {
2632 return !!(p->flags & PF_IDLE);
2633 }
2634 extern struct task_struct *curr_task(int cpu);
2635 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2636
2637 void yield(void);
2638
2639 union thread_union {
2640 #ifndef CONFIG_THREAD_INFO_IN_TASK
2641 struct thread_info thread_info;
2642 #endif
2643 unsigned long stack[THREAD_SIZE/sizeof(long)];
2644 };
2645
2646 #ifndef __HAVE_ARCH_KSTACK_END
2647 static inline int kstack_end(void *addr)
2648 {
2649 /* Reliable end of stack detection:
2650 * Some APM bios versions misalign the stack
2651 */
2652 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2653 }
2654 #endif
2655
2656 extern union thread_union init_thread_union;
2657 extern struct task_struct init_task;
2658
2659 extern struct mm_struct init_mm;
2660
2661 extern struct pid_namespace init_pid_ns;
2662
2663 /*
2664 * find a task by one of its numerical ids
2665 *
2666 * find_task_by_pid_ns():
2667 * finds a task by its pid in the specified namespace
2668 * find_task_by_vpid():
2669 * finds a task by its virtual pid
2670 *
2671 * see also find_vpid() etc in include/linux/pid.h
2672 */
2673
2674 extern struct task_struct *find_task_by_vpid(pid_t nr);
2675 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2676 struct pid_namespace *ns);
2677
2678 /* per-UID process charging. */
2679 extern struct user_struct * alloc_uid(kuid_t);
2680 static inline struct user_struct *get_uid(struct user_struct *u)
2681 {
2682 atomic_inc(&u->__count);
2683 return u;
2684 }
2685 extern void free_uid(struct user_struct *);
2686
2687 #include <asm/current.h>
2688
2689 extern void xtime_update(unsigned long ticks);
2690
2691 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2692 extern int wake_up_process(struct task_struct *tsk);
2693 extern void wake_up_new_task(struct task_struct *tsk);
2694 #ifdef CONFIG_SMP
2695 extern void kick_process(struct task_struct *tsk);
2696 #else
2697 static inline void kick_process(struct task_struct *tsk) { }
2698 #endif
2699 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2700 extern void sched_dead(struct task_struct *p);
2701
2702 extern void proc_caches_init(void);
2703 extern void flush_signals(struct task_struct *);
2704 extern void ignore_signals(struct task_struct *);
2705 extern void flush_signal_handlers(struct task_struct *, int force_default);
2706 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2707
2708 static inline int kernel_dequeue_signal(siginfo_t *info)
2709 {
2710 struct task_struct *tsk = current;
2711 siginfo_t __info;
2712 int ret;
2713
2714 spin_lock_irq(&tsk->sighand->siglock);
2715 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2716 spin_unlock_irq(&tsk->sighand->siglock);
2717
2718 return ret;
2719 }
2720
2721 static inline void kernel_signal_stop(void)
2722 {
2723 spin_lock_irq(&current->sighand->siglock);
2724 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2725 __set_current_state(TASK_STOPPED);
2726 spin_unlock_irq(&current->sighand->siglock);
2727
2728 schedule();
2729 }
2730
2731 extern void release_task(struct task_struct * p);
2732 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2733 extern int force_sigsegv(int, struct task_struct *);
2734 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2735 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2736 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2737 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2738 const struct cred *, u32);
2739 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2740 extern int kill_pid(struct pid *pid, int sig, int priv);
2741 extern int kill_proc_info(int, struct siginfo *, pid_t);
2742 extern __must_check bool do_notify_parent(struct task_struct *, int);
2743 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2744 extern void force_sig(int, struct task_struct *);
2745 extern int send_sig(int, struct task_struct *, int);
2746 extern int zap_other_threads(struct task_struct *p);
2747 extern struct sigqueue *sigqueue_alloc(void);
2748 extern void sigqueue_free(struct sigqueue *);
2749 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2750 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2751
2752 #ifdef TIF_RESTORE_SIGMASK
2753 /*
2754 * Legacy restore_sigmask accessors. These are inefficient on
2755 * SMP architectures because they require atomic operations.
2756 */
2757
2758 /**
2759 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2760 *
2761 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2762 * will run before returning to user mode, to process the flag. For
2763 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2764 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2765 * arch code will notice on return to user mode, in case those bits
2766 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2767 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2768 */
2769 static inline void set_restore_sigmask(void)
2770 {
2771 set_thread_flag(TIF_RESTORE_SIGMASK);
2772 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2773 }
2774 static inline void clear_restore_sigmask(void)
2775 {
2776 clear_thread_flag(TIF_RESTORE_SIGMASK);
2777 }
2778 static inline bool test_restore_sigmask(void)
2779 {
2780 return test_thread_flag(TIF_RESTORE_SIGMASK);
2781 }
2782 static inline bool test_and_clear_restore_sigmask(void)
2783 {
2784 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2785 }
2786
2787 #else /* TIF_RESTORE_SIGMASK */
2788
2789 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2790 static inline void set_restore_sigmask(void)
2791 {
2792 current->restore_sigmask = true;
2793 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2794 }
2795 static inline void clear_restore_sigmask(void)
2796 {
2797 current->restore_sigmask = false;
2798 }
2799 static inline bool test_restore_sigmask(void)
2800 {
2801 return current->restore_sigmask;
2802 }
2803 static inline bool test_and_clear_restore_sigmask(void)
2804 {
2805 if (!current->restore_sigmask)
2806 return false;
2807 current->restore_sigmask = false;
2808 return true;
2809 }
2810 #endif
2811
2812 static inline void restore_saved_sigmask(void)
2813 {
2814 if (test_and_clear_restore_sigmask())
2815 __set_current_blocked(&current->saved_sigmask);
2816 }
2817
2818 static inline sigset_t *sigmask_to_save(void)
2819 {
2820 sigset_t *res = &current->blocked;
2821 if (unlikely(test_restore_sigmask()))
2822 res = &current->saved_sigmask;
2823 return res;
2824 }
2825
2826 static inline int kill_cad_pid(int sig, int priv)
2827 {
2828 return kill_pid(cad_pid, sig, priv);
2829 }
2830
2831 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2832 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2833 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2834 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2835
2836 /*
2837 * True if we are on the alternate signal stack.
2838 */
2839 static inline int on_sig_stack(unsigned long sp)
2840 {
2841 /*
2842 * If the signal stack is SS_AUTODISARM then, by construction, we
2843 * can't be on the signal stack unless user code deliberately set
2844 * SS_AUTODISARM when we were already on it.
2845 *
2846 * This improves reliability: if user state gets corrupted such that
2847 * the stack pointer points very close to the end of the signal stack,
2848 * then this check will enable the signal to be handled anyway.
2849 */
2850 if (current->sas_ss_flags & SS_AUTODISARM)
2851 return 0;
2852
2853 #ifdef CONFIG_STACK_GROWSUP
2854 return sp >= current->sas_ss_sp &&
2855 sp - current->sas_ss_sp < current->sas_ss_size;
2856 #else
2857 return sp > current->sas_ss_sp &&
2858 sp - current->sas_ss_sp <= current->sas_ss_size;
2859 #endif
2860 }
2861
2862 static inline int sas_ss_flags(unsigned long sp)
2863 {
2864 if (!current->sas_ss_size)
2865 return SS_DISABLE;
2866
2867 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2868 }
2869
2870 static inline void sas_ss_reset(struct task_struct *p)
2871 {
2872 p->sas_ss_sp = 0;
2873 p->sas_ss_size = 0;
2874 p->sas_ss_flags = SS_DISABLE;
2875 }
2876
2877 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2878 {
2879 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2880 #ifdef CONFIG_STACK_GROWSUP
2881 return current->sas_ss_sp;
2882 #else
2883 return current->sas_ss_sp + current->sas_ss_size;
2884 #endif
2885 return sp;
2886 }
2887
2888 /*
2889 * Routines for handling mm_structs
2890 */
2891 extern struct mm_struct * mm_alloc(void);
2892
2893 /**
2894 * mmgrab() - Pin a &struct mm_struct.
2895 * @mm: The &struct mm_struct to pin.
2896 *
2897 * Make sure that @mm will not get freed even after the owning task
2898 * exits. This doesn't guarantee that the associated address space
2899 * will still exist later on and mmget_not_zero() has to be used before
2900 * accessing it.
2901 *
2902 * This is a preferred way to to pin @mm for a longer/unbounded amount
2903 * of time.
2904 *
2905 * Use mmdrop() to release the reference acquired by mmgrab().
2906 *
2907 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2908 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2909 */
2910 static inline void mmgrab(struct mm_struct *mm)
2911 {
2912 atomic_inc(&mm->mm_count);
2913 }
2914
2915 /* mmdrop drops the mm and the page tables */
2916 extern void __mmdrop(struct mm_struct *);
2917 static inline void mmdrop(struct mm_struct *mm)
2918 {
2919 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2920 __mmdrop(mm);
2921 }
2922
2923 static inline void mmdrop_async_fn(struct work_struct *work)
2924 {
2925 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2926 __mmdrop(mm);
2927 }
2928
2929 static inline void mmdrop_async(struct mm_struct *mm)
2930 {
2931 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2932 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2933 schedule_work(&mm->async_put_work);
2934 }
2935 }
2936
2937 /**
2938 * mmget() - Pin the address space associated with a &struct mm_struct.
2939 * @mm: The address space to pin.
2940 *
2941 * Make sure that the address space of the given &struct mm_struct doesn't
2942 * go away. This does not protect against parts of the address space being
2943 * modified or freed, however.
2944 *
2945 * Never use this function to pin this address space for an
2946 * unbounded/indefinite amount of time.
2947 *
2948 * Use mmput() to release the reference acquired by mmget().
2949 *
2950 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2951 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2952 */
2953 static inline void mmget(struct mm_struct *mm)
2954 {
2955 atomic_inc(&mm->mm_users);
2956 }
2957
2958 static inline bool mmget_not_zero(struct mm_struct *mm)
2959 {
2960 return atomic_inc_not_zero(&mm->mm_users);
2961 }
2962
2963 /* mmput gets rid of the mappings and all user-space */
2964 extern void mmput(struct mm_struct *);
2965 #ifdef CONFIG_MMU
2966 /* same as above but performs the slow path from the async context. Can
2967 * be called from the atomic context as well
2968 */
2969 extern void mmput_async(struct mm_struct *);
2970 #endif
2971
2972 /* Grab a reference to a task's mm, if it is not already going away */
2973 extern struct mm_struct *get_task_mm(struct task_struct *task);
2974 /*
2975 * Grab a reference to a task's mm, if it is not already going away
2976 * and ptrace_may_access with the mode parameter passed to it
2977 * succeeds.
2978 */
2979 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2980 /* Remove the current tasks stale references to the old mm_struct */
2981 extern void mm_release(struct task_struct *, struct mm_struct *);
2982
2983 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2984 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2985 struct task_struct *, unsigned long);
2986 #else
2987 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2988 struct task_struct *);
2989
2990 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2991 * via pt_regs, so ignore the tls argument passed via C. */
2992 static inline int copy_thread_tls(
2993 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2994 struct task_struct *p, unsigned long tls)
2995 {
2996 return copy_thread(clone_flags, sp, arg, p);
2997 }
2998 #endif
2999 extern void flush_thread(void);
3000
3001 #ifdef CONFIG_HAVE_EXIT_THREAD
3002 extern void exit_thread(struct task_struct *tsk);
3003 #else
3004 static inline void exit_thread(struct task_struct *tsk)
3005 {
3006 }
3007 #endif
3008
3009 extern void exit_files(struct task_struct *);
3010 extern void __cleanup_sighand(struct sighand_struct *);
3011
3012 extern void exit_itimers(struct signal_struct *);
3013 extern void flush_itimer_signals(void);
3014
3015 extern void do_group_exit(int);
3016
3017 extern int do_execve(struct filename *,
3018 const char __user * const __user *,
3019 const char __user * const __user *);
3020 extern int do_execveat(int, struct filename *,
3021 const char __user * const __user *,
3022 const char __user * const __user *,
3023 int);
3024 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3025 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3026 struct task_struct *fork_idle(int);
3027 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3028
3029 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3030 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3031 {
3032 __set_task_comm(tsk, from, false);
3033 }
3034 extern char *get_task_comm(char *to, struct task_struct *tsk);
3035
3036 #ifdef CONFIG_SMP
3037 void scheduler_ipi(void);
3038 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3039 #else
3040 static inline void scheduler_ipi(void) { }
3041 static inline unsigned long wait_task_inactive(struct task_struct *p,
3042 long match_state)
3043 {
3044 return 1;
3045 }
3046 #endif
3047
3048 #define tasklist_empty() \
3049 list_empty(&init_task.tasks)
3050
3051 #define next_task(p) \
3052 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3053
3054 #define for_each_process(p) \
3055 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3056
3057 extern bool current_is_single_threaded(void);
3058
3059 /*
3060 * Careful: do_each_thread/while_each_thread is a double loop so
3061 * 'break' will not work as expected - use goto instead.
3062 */
3063 #define do_each_thread(g, t) \
3064 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3065
3066 #define while_each_thread(g, t) \
3067 while ((t = next_thread(t)) != g)
3068
3069 #define __for_each_thread(signal, t) \
3070 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3071
3072 #define for_each_thread(p, t) \
3073 __for_each_thread((p)->signal, t)
3074
3075 /* Careful: this is a double loop, 'break' won't work as expected. */
3076 #define for_each_process_thread(p, t) \
3077 for_each_process(p) for_each_thread(p, t)
3078
3079 typedef int (*proc_visitor)(struct task_struct *p, void *data);
3080 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
3081
3082 static inline int get_nr_threads(struct task_struct *tsk)
3083 {
3084 return tsk->signal->nr_threads;
3085 }
3086
3087 static inline bool thread_group_leader(struct task_struct *p)
3088 {
3089 return p->exit_signal >= 0;
3090 }
3091
3092 /* Do to the insanities of de_thread it is possible for a process
3093 * to have the pid of the thread group leader without actually being
3094 * the thread group leader. For iteration through the pids in proc
3095 * all we care about is that we have a task with the appropriate
3096 * pid, we don't actually care if we have the right task.
3097 */
3098 static inline bool has_group_leader_pid(struct task_struct *p)
3099 {
3100 return task_pid(p) == p->signal->leader_pid;
3101 }
3102
3103 static inline
3104 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3105 {
3106 return p1->signal == p2->signal;
3107 }
3108
3109 static inline struct task_struct *next_thread(const struct task_struct *p)
3110 {
3111 return list_entry_rcu(p->thread_group.next,
3112 struct task_struct, thread_group);
3113 }
3114
3115 static inline int thread_group_empty(struct task_struct *p)
3116 {
3117 return list_empty(&p->thread_group);
3118 }
3119
3120 #define delay_group_leader(p) \
3121 (thread_group_leader(p) && !thread_group_empty(p))
3122
3123 /*
3124 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3125 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3126 * pins the final release of task.io_context. Also protects ->cpuset and
3127 * ->cgroup.subsys[]. And ->vfork_done.
3128 *
3129 * Nests both inside and outside of read_lock(&tasklist_lock).
3130 * It must not be nested with write_lock_irq(&tasklist_lock),
3131 * neither inside nor outside.
3132 */
3133 static inline void task_lock(struct task_struct *p)
3134 {
3135 spin_lock(&p->alloc_lock);
3136 }
3137
3138 static inline void task_unlock(struct task_struct *p)
3139 {
3140 spin_unlock(&p->alloc_lock);
3141 }
3142
3143 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3144 unsigned long *flags);
3145
3146 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3147 unsigned long *flags)
3148 {
3149 struct sighand_struct *ret;
3150
3151 ret = __lock_task_sighand(tsk, flags);
3152 (void)__cond_lock(&tsk->sighand->siglock, ret);
3153 return ret;
3154 }
3155
3156 static inline void unlock_task_sighand(struct task_struct *tsk,
3157 unsigned long *flags)
3158 {
3159 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3160 }
3161
3162 #ifdef CONFIG_THREAD_INFO_IN_TASK
3163
3164 static inline struct thread_info *task_thread_info(struct task_struct *task)
3165 {
3166 return &task->thread_info;
3167 }
3168
3169 /*
3170 * When accessing the stack of a non-current task that might exit, use
3171 * try_get_task_stack() instead. task_stack_page will return a pointer
3172 * that could get freed out from under you.
3173 */
3174 static inline void *task_stack_page(const struct task_struct *task)
3175 {
3176 return task->stack;
3177 }
3178
3179 #define setup_thread_stack(new,old) do { } while(0)
3180
3181 static inline unsigned long *end_of_stack(const struct task_struct *task)
3182 {
3183 return task->stack;
3184 }
3185
3186 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3187
3188 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3189 #define task_stack_page(task) ((void *)(task)->stack)
3190
3191 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3192 {
3193 *task_thread_info(p) = *task_thread_info(org);
3194 task_thread_info(p)->task = p;
3195 }
3196
3197 /*
3198 * Return the address of the last usable long on the stack.
3199 *
3200 * When the stack grows down, this is just above the thread
3201 * info struct. Going any lower will corrupt the threadinfo.
3202 *
3203 * When the stack grows up, this is the highest address.
3204 * Beyond that position, we corrupt data on the next page.
3205 */
3206 static inline unsigned long *end_of_stack(struct task_struct *p)
3207 {
3208 #ifdef CONFIG_STACK_GROWSUP
3209 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3210 #else
3211 return (unsigned long *)(task_thread_info(p) + 1);
3212 #endif
3213 }
3214
3215 #endif
3216
3217 #ifdef CONFIG_THREAD_INFO_IN_TASK
3218 static inline void *try_get_task_stack(struct task_struct *tsk)
3219 {
3220 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3221 task_stack_page(tsk) : NULL;
3222 }
3223
3224 extern void put_task_stack(struct task_struct *tsk);
3225 #else
3226 static inline void *try_get_task_stack(struct task_struct *tsk)
3227 {
3228 return task_stack_page(tsk);
3229 }
3230
3231 static inline void put_task_stack(struct task_struct *tsk) {}
3232 #endif
3233
3234 #define task_stack_end_corrupted(task) \
3235 (*(end_of_stack(task)) != STACK_END_MAGIC)
3236
3237 static inline int object_is_on_stack(void *obj)
3238 {
3239 void *stack = task_stack_page(current);
3240
3241 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3242 }
3243
3244 extern void thread_stack_cache_init(void);
3245
3246 #ifdef CONFIG_DEBUG_STACK_USAGE
3247 static inline unsigned long stack_not_used(struct task_struct *p)
3248 {
3249 unsigned long *n = end_of_stack(p);
3250
3251 do { /* Skip over canary */
3252 # ifdef CONFIG_STACK_GROWSUP
3253 n--;
3254 # else
3255 n++;
3256 # endif
3257 } while (!*n);
3258
3259 # ifdef CONFIG_STACK_GROWSUP
3260 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3261 # else
3262 return (unsigned long)n - (unsigned long)end_of_stack(p);
3263 # endif
3264 }
3265 #endif
3266 extern void set_task_stack_end_magic(struct task_struct *tsk);
3267
3268 /* set thread flags in other task's structures
3269 * - see asm/thread_info.h for TIF_xxxx flags available
3270 */
3271 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3272 {
3273 set_ti_thread_flag(task_thread_info(tsk), flag);
3274 }
3275
3276 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3277 {
3278 clear_ti_thread_flag(task_thread_info(tsk), flag);
3279 }
3280
3281 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3282 {
3283 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3284 }
3285
3286 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3287 {
3288 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3289 }
3290
3291 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3292 {
3293 return test_ti_thread_flag(task_thread_info(tsk), flag);
3294 }
3295
3296 static inline void set_tsk_need_resched(struct task_struct *tsk)
3297 {
3298 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3299 }
3300
3301 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3302 {
3303 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3304 }
3305
3306 static inline int test_tsk_need_resched(struct task_struct *tsk)
3307 {
3308 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3309 }
3310
3311 static inline int restart_syscall(void)
3312 {
3313 set_tsk_thread_flag(current, TIF_SIGPENDING);
3314 return -ERESTARTNOINTR;
3315 }
3316
3317 static inline int signal_pending(struct task_struct *p)
3318 {
3319 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3320 }
3321
3322 static inline int __fatal_signal_pending(struct task_struct *p)
3323 {
3324 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3325 }
3326
3327 static inline int fatal_signal_pending(struct task_struct *p)
3328 {
3329 return signal_pending(p) && __fatal_signal_pending(p);
3330 }
3331
3332 static inline int signal_pending_state(long state, struct task_struct *p)
3333 {
3334 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3335 return 0;
3336 if (!signal_pending(p))
3337 return 0;
3338
3339 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3340 }
3341
3342 /*
3343 * cond_resched() and cond_resched_lock(): latency reduction via
3344 * explicit rescheduling in places that are safe. The return
3345 * value indicates whether a reschedule was done in fact.
3346 * cond_resched_lock() will drop the spinlock before scheduling,
3347 * cond_resched_softirq() will enable bhs before scheduling.
3348 */
3349 #ifndef CONFIG_PREEMPT
3350 extern int _cond_resched(void);
3351 #else
3352 static inline int _cond_resched(void) { return 0; }
3353 #endif
3354
3355 #define cond_resched() ({ \
3356 ___might_sleep(__FILE__, __LINE__, 0); \
3357 _cond_resched(); \
3358 })
3359
3360 extern int __cond_resched_lock(spinlock_t *lock);
3361
3362 #define cond_resched_lock(lock) ({ \
3363 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3364 __cond_resched_lock(lock); \
3365 })
3366
3367 extern int __cond_resched_softirq(void);
3368
3369 #define cond_resched_softirq() ({ \
3370 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3371 __cond_resched_softirq(); \
3372 })
3373
3374 static inline void cond_resched_rcu(void)
3375 {
3376 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3377 rcu_read_unlock();
3378 cond_resched();
3379 rcu_read_lock();
3380 #endif
3381 }
3382
3383 /*
3384 * Does a critical section need to be broken due to another
3385 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3386 * but a general need for low latency)
3387 */
3388 static inline int spin_needbreak(spinlock_t *lock)
3389 {
3390 #ifdef CONFIG_PREEMPT
3391 return spin_is_contended(lock);
3392 #else
3393 return 0;
3394 #endif
3395 }
3396
3397 /*
3398 * Idle thread specific functions to determine the need_resched
3399 * polling state.
3400 */
3401 #ifdef TIF_POLLING_NRFLAG
3402 static inline int tsk_is_polling(struct task_struct *p)
3403 {
3404 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3405 }
3406
3407 static inline void __current_set_polling(void)
3408 {
3409 set_thread_flag(TIF_POLLING_NRFLAG);
3410 }
3411
3412 static inline bool __must_check current_set_polling_and_test(void)
3413 {
3414 __current_set_polling();
3415
3416 /*
3417 * Polling state must be visible before we test NEED_RESCHED,
3418 * paired by resched_curr()
3419 */
3420 smp_mb__after_atomic();
3421
3422 return unlikely(tif_need_resched());
3423 }
3424
3425 static inline void __current_clr_polling(void)
3426 {
3427 clear_thread_flag(TIF_POLLING_NRFLAG);
3428 }
3429
3430 static inline bool __must_check current_clr_polling_and_test(void)
3431 {
3432 __current_clr_polling();
3433
3434 /*
3435 * Polling state must be visible before we test NEED_RESCHED,
3436 * paired by resched_curr()
3437 */
3438 smp_mb__after_atomic();
3439
3440 return unlikely(tif_need_resched());
3441 }
3442
3443 #else
3444 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3445 static inline void __current_set_polling(void) { }
3446 static inline void __current_clr_polling(void) { }
3447
3448 static inline bool __must_check current_set_polling_and_test(void)
3449 {
3450 return unlikely(tif_need_resched());
3451 }
3452 static inline bool __must_check current_clr_polling_and_test(void)
3453 {
3454 return unlikely(tif_need_resched());
3455 }
3456 #endif
3457
3458 static inline void current_clr_polling(void)
3459 {
3460 __current_clr_polling();
3461
3462 /*
3463 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3464 * Once the bit is cleared, we'll get IPIs with every new
3465 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3466 * fold.
3467 */
3468 smp_mb(); /* paired with resched_curr() */
3469
3470 preempt_fold_need_resched();
3471 }
3472
3473 static __always_inline bool need_resched(void)
3474 {
3475 return unlikely(tif_need_resched());
3476 }
3477
3478 /*
3479 * Thread group CPU time accounting.
3480 */
3481 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3482 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3483
3484 /*
3485 * Reevaluate whether the task has signals pending delivery.
3486 * Wake the task if so.
3487 * This is required every time the blocked sigset_t changes.
3488 * callers must hold sighand->siglock.
3489 */
3490 extern void recalc_sigpending_and_wake(struct task_struct *t);
3491 extern void recalc_sigpending(void);
3492
3493 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3494
3495 static inline void signal_wake_up(struct task_struct *t, bool resume)
3496 {
3497 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3498 }
3499 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3500 {
3501 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3502 }
3503
3504 /*
3505 * Wrappers for p->thread_info->cpu access. No-op on UP.
3506 */
3507 #ifdef CONFIG_SMP
3508
3509 static inline unsigned int task_cpu(const struct task_struct *p)
3510 {
3511 #ifdef CONFIG_THREAD_INFO_IN_TASK
3512 return p->cpu;
3513 #else
3514 return task_thread_info(p)->cpu;
3515 #endif
3516 }
3517
3518 static inline int task_node(const struct task_struct *p)
3519 {
3520 return cpu_to_node(task_cpu(p));
3521 }
3522
3523 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3524
3525 #else
3526
3527 static inline unsigned int task_cpu(const struct task_struct *p)
3528 {
3529 return 0;
3530 }
3531
3532 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3533 {
3534 }
3535
3536 #endif /* CONFIG_SMP */
3537
3538 /*
3539 * In order to reduce various lock holder preemption latencies provide an
3540 * interface to see if a vCPU is currently running or not.
3541 *
3542 * This allows us to terminate optimistic spin loops and block, analogous to
3543 * the native optimistic spin heuristic of testing if the lock owner task is
3544 * running or not.
3545 */
3546 #ifndef vcpu_is_preempted
3547 # define vcpu_is_preempted(cpu) false
3548 #endif
3549
3550 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3551 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3552
3553 #ifdef CONFIG_CGROUP_SCHED
3554 extern struct task_group root_task_group;
3555 #endif /* CONFIG_CGROUP_SCHED */
3556
3557 extern int task_can_switch_user(struct user_struct *up,
3558 struct task_struct *tsk);
3559
3560 #ifdef CONFIG_TASK_XACCT
3561 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3562 {
3563 tsk->ioac.rchar += amt;
3564 }
3565
3566 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3567 {
3568 tsk->ioac.wchar += amt;
3569 }
3570
3571 static inline void inc_syscr(struct task_struct *tsk)
3572 {
3573 tsk->ioac.syscr++;
3574 }
3575
3576 static inline void inc_syscw(struct task_struct *tsk)
3577 {
3578 tsk->ioac.syscw++;
3579 }
3580 #else
3581 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3582 {
3583 }
3584
3585 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3586 {
3587 }
3588
3589 static inline void inc_syscr(struct task_struct *tsk)
3590 {
3591 }
3592
3593 static inline void inc_syscw(struct task_struct *tsk)
3594 {
3595 }
3596 #endif
3597
3598 #ifndef TASK_SIZE_OF
3599 #define TASK_SIZE_OF(tsk) TASK_SIZE
3600 #endif
3601
3602 #ifdef CONFIG_MEMCG
3603 extern void mm_update_next_owner(struct mm_struct *mm);
3604 #else
3605 static inline void mm_update_next_owner(struct mm_struct *mm)
3606 {
3607 }
3608 #endif /* CONFIG_MEMCG */
3609
3610 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3611 unsigned int limit)
3612 {
3613 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3614 }
3615
3616 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3617 unsigned int limit)
3618 {
3619 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3620 }
3621
3622 static inline unsigned long rlimit(unsigned int limit)
3623 {
3624 return task_rlimit(current, limit);
3625 }
3626
3627 static inline unsigned long rlimit_max(unsigned int limit)
3628 {
3629 return task_rlimit_max(current, limit);
3630 }
3631
3632 #define SCHED_CPUFREQ_RT (1U << 0)
3633 #define SCHED_CPUFREQ_DL (1U << 1)
3634 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3635
3636 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3637
3638 #ifdef CONFIG_CPU_FREQ
3639 struct update_util_data {
3640 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3641 };
3642
3643 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3644 void (*func)(struct update_util_data *data, u64 time,
3645 unsigned int flags));
3646 void cpufreq_remove_update_util_hook(int cpu);
3647 #endif /* CONFIG_CPU_FREQ */
3648
3649 #endif