]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
sched/headers: Prepare for the reduction of <linux/sched.h>'s signal API dependency
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32
33 #include <linux/smp.h>
34 #include <linux/sem.h>
35 #include <linux/shm.h>
36 #include <linux/signal.h>
37 #include <linux/compiler.h>
38 #include <linux/completion.h>
39 #include <linux/signal_types.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/topology.h>
61 #include <linux/magic.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <asm/processor.h>
65
66 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67
68 /*
69 * Extended scheduling parameters data structure.
70 *
71 * This is needed because the original struct sched_param can not be
72 * altered without introducing ABI issues with legacy applications
73 * (e.g., in sched_getparam()).
74 *
75 * However, the possibility of specifying more than just a priority for
76 * the tasks may be useful for a wide variety of application fields, e.g.,
77 * multimedia, streaming, automation and control, and many others.
78 *
79 * This variant (sched_attr) is meant at describing a so-called
80 * sporadic time-constrained task. In such model a task is specified by:
81 * - the activation period or minimum instance inter-arrival time;
82 * - the maximum (or average, depending on the actual scheduling
83 * discipline) computation time of all instances, a.k.a. runtime;
84 * - the deadline (relative to the actual activation time) of each
85 * instance.
86 * Very briefly, a periodic (sporadic) task asks for the execution of
87 * some specific computation --which is typically called an instance--
88 * (at most) every period. Moreover, each instance typically lasts no more
89 * than the runtime and must be completed by time instant t equal to
90 * the instance activation time + the deadline.
91 *
92 * This is reflected by the actual fields of the sched_attr structure:
93 *
94 * @size size of the structure, for fwd/bwd compat.
95 *
96 * @sched_policy task's scheduling policy
97 * @sched_flags for customizing the scheduler behaviour
98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
99 * @sched_priority task's static priority (SCHED_FIFO/RR)
100 * @sched_deadline representative of the task's deadline
101 * @sched_runtime representative of the task's runtime
102 * @sched_period representative of the task's period
103 *
104 * Given this task model, there are a multiplicity of scheduling algorithms
105 * and policies, that can be used to ensure all the tasks will make their
106 * timing constraints.
107 *
108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109 * only user of this new interface. More information about the algorithm
110 * available in the scheduling class file or in Documentation/.
111 */
112 struct sched_attr {
113 u32 size;
114
115 u32 sched_policy;
116 u64 sched_flags;
117
118 /* SCHED_NORMAL, SCHED_BATCH */
119 s32 sched_nice;
120
121 /* SCHED_FIFO, SCHED_RR */
122 u32 sched_priority;
123
124 /* SCHED_DEADLINE */
125 u64 sched_runtime;
126 u64 sched_deadline;
127 u64 sched_period;
128 };
129
130 struct futex_pi_state;
131 struct robust_list_head;
132 struct bio_list;
133 struct fs_struct;
134 struct perf_event_context;
135 struct blk_plug;
136 struct filename;
137 struct nameidata;
138
139 /*
140 * These are the constant used to fake the fixed-point load-average
141 * counting. Some notes:
142 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
143 * a load-average precision of 10 bits integer + 11 bits fractional
144 * - if you want to count load-averages more often, you need more
145 * precision, or rounding will get you. With 2-second counting freq,
146 * the EXP_n values would be 1981, 2034 and 2043 if still using only
147 * 11 bit fractions.
148 */
149 extern unsigned long avenrun[]; /* Load averages */
150 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
151
152 #define FSHIFT 11 /* nr of bits of precision */
153 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
154 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
155 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
156 #define EXP_5 2014 /* 1/exp(5sec/5min) */
157 #define EXP_15 2037 /* 1/exp(5sec/15min) */
158
159 #define CALC_LOAD(load,exp,n) \
160 load *= exp; \
161 load += n*(FIXED_1-exp); \
162 load >>= FSHIFT;
163
164 extern unsigned long total_forks;
165 extern int nr_threads;
166 DECLARE_PER_CPU(unsigned long, process_counts);
167 extern int nr_processes(void);
168 extern unsigned long nr_running(void);
169 extern bool single_task_running(void);
170 extern unsigned long nr_iowait(void);
171 extern unsigned long nr_iowait_cpu(int cpu);
172 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
173
174 extern void calc_global_load(unsigned long ticks);
175
176 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
177 extern void cpu_load_update_nohz_start(void);
178 extern void cpu_load_update_nohz_stop(void);
179 #else
180 static inline void cpu_load_update_nohz_start(void) { }
181 static inline void cpu_load_update_nohz_stop(void) { }
182 #endif
183
184 extern void dump_cpu_task(int cpu);
185
186 struct seq_file;
187 struct cfs_rq;
188 struct task_group;
189 #ifdef CONFIG_SCHED_DEBUG
190 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
191 extern void proc_sched_set_task(struct task_struct *p);
192 #endif
193
194 /*
195 * Task state bitmask. NOTE! These bits are also
196 * encoded in fs/proc/array.c: get_task_state().
197 *
198 * We have two separate sets of flags: task->state
199 * is about runnability, while task->exit_state are
200 * about the task exiting. Confusing, but this way
201 * modifying one set can't modify the other one by
202 * mistake.
203 */
204 #define TASK_RUNNING 0
205 #define TASK_INTERRUPTIBLE 1
206 #define TASK_UNINTERRUPTIBLE 2
207 #define __TASK_STOPPED 4
208 #define __TASK_TRACED 8
209 /* in tsk->exit_state */
210 #define EXIT_DEAD 16
211 #define EXIT_ZOMBIE 32
212 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
213 /* in tsk->state again */
214 #define TASK_DEAD 64
215 #define TASK_WAKEKILL 128
216 #define TASK_WAKING 256
217 #define TASK_PARKED 512
218 #define TASK_NOLOAD 1024
219 #define TASK_NEW 2048
220 #define TASK_STATE_MAX 4096
221
222 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
223
224 /* Convenience macros for the sake of set_current_state */
225 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
226 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
227 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
228
229 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
230
231 /* Convenience macros for the sake of wake_up */
232 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
233 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
234
235 /* get_task_state() */
236 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
237 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
238 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
239
240 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
241 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
242 #define task_is_stopped_or_traced(task) \
243 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
244 #define task_contributes_to_load(task) \
245 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
246 (task->flags & PF_FROZEN) == 0 && \
247 (task->state & TASK_NOLOAD) == 0)
248
249 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
250
251 #define __set_current_state(state_value) \
252 do { \
253 current->task_state_change = _THIS_IP_; \
254 current->state = (state_value); \
255 } while (0)
256 #define set_current_state(state_value) \
257 do { \
258 current->task_state_change = _THIS_IP_; \
259 smp_store_mb(current->state, (state_value)); \
260 } while (0)
261
262 #else
263 /*
264 * set_current_state() includes a barrier so that the write of current->state
265 * is correctly serialised wrt the caller's subsequent test of whether to
266 * actually sleep:
267 *
268 * for (;;) {
269 * set_current_state(TASK_UNINTERRUPTIBLE);
270 * if (!need_sleep)
271 * break;
272 *
273 * schedule();
274 * }
275 * __set_current_state(TASK_RUNNING);
276 *
277 * If the caller does not need such serialisation (because, for instance, the
278 * condition test and condition change and wakeup are under the same lock) then
279 * use __set_current_state().
280 *
281 * The above is typically ordered against the wakeup, which does:
282 *
283 * need_sleep = false;
284 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
285 *
286 * Where wake_up_state() (and all other wakeup primitives) imply enough
287 * barriers to order the store of the variable against wakeup.
288 *
289 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
290 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
291 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
292 *
293 * This is obviously fine, since they both store the exact same value.
294 *
295 * Also see the comments of try_to_wake_up().
296 */
297 #define __set_current_state(state_value) \
298 do { current->state = (state_value); } while (0)
299 #define set_current_state(state_value) \
300 smp_store_mb(current->state, (state_value))
301
302 #endif
303
304 /* Task command name length */
305 #define TASK_COMM_LEN 16
306
307 #include <linux/spinlock.h>
308
309 /*
310 * This serializes "schedule()" and also protects
311 * the run-queue from deletions/modifications (but
312 * _adding_ to the beginning of the run-queue has
313 * a separate lock).
314 */
315 extern rwlock_t tasklist_lock;
316 extern spinlock_t mmlist_lock;
317
318 struct task_struct;
319
320 #ifdef CONFIG_PROVE_RCU
321 extern int lockdep_tasklist_lock_is_held(void);
322 #endif /* #ifdef CONFIG_PROVE_RCU */
323
324 extern void sched_init(void);
325 extern void sched_init_smp(void);
326 extern asmlinkage void schedule_tail(struct task_struct *prev);
327 extern void init_idle(struct task_struct *idle, int cpu);
328 extern void init_idle_bootup_task(struct task_struct *idle);
329
330 extern cpumask_var_t cpu_isolated_map;
331
332 extern int runqueue_is_locked(int cpu);
333
334 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
335 extern void nohz_balance_enter_idle(int cpu);
336 extern void set_cpu_sd_state_idle(void);
337 extern int get_nohz_timer_target(void);
338 #else
339 static inline void nohz_balance_enter_idle(int cpu) { }
340 static inline void set_cpu_sd_state_idle(void) { }
341 #endif
342
343 /*
344 * Only dump TASK_* tasks. (0 for all tasks)
345 */
346 extern void show_state_filter(unsigned long state_filter);
347
348 static inline void show_state(void)
349 {
350 show_state_filter(0);
351 }
352
353 extern void show_regs(struct pt_regs *);
354
355 /*
356 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
357 * task), SP is the stack pointer of the first frame that should be shown in the back
358 * trace (or NULL if the entire call-chain of the task should be shown).
359 */
360 extern void show_stack(struct task_struct *task, unsigned long *sp);
361
362 extern void cpu_init (void);
363 extern void trap_init(void);
364 extern void update_process_times(int user);
365 extern void scheduler_tick(void);
366 extern int sched_cpu_starting(unsigned int cpu);
367 extern int sched_cpu_activate(unsigned int cpu);
368 extern int sched_cpu_deactivate(unsigned int cpu);
369
370 #ifdef CONFIG_HOTPLUG_CPU
371 extern int sched_cpu_dying(unsigned int cpu);
372 #else
373 # define sched_cpu_dying NULL
374 #endif
375
376 extern void sched_show_task(struct task_struct *p);
377
378 #ifdef CONFIG_LOCKUP_DETECTOR
379 extern void touch_softlockup_watchdog_sched(void);
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 extern unsigned int hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
390 static inline void touch_softlockup_watchdog_sched(void)
391 {
392 }
393 static inline void touch_softlockup_watchdog(void)
394 {
395 }
396 static inline void touch_softlockup_watchdog_sync(void)
397 {
398 }
399 static inline void touch_all_softlockup_watchdogs(void)
400 {
401 }
402 static inline void lockup_detector_init(void)
403 {
404 }
405 #endif
406
407 #ifdef CONFIG_DETECT_HUNG_TASK
408 void reset_hung_task_detector(void);
409 #else
410 static inline void reset_hung_task_detector(void)
411 {
412 }
413 #endif
414
415 /* Attach to any functions which should be ignored in wchan output. */
416 #define __sched __attribute__((__section__(".sched.text")))
417
418 /* Linker adds these: start and end of __sched functions */
419 extern char __sched_text_start[], __sched_text_end[];
420
421 /* Is this address in the __sched functions? */
422 extern int in_sched_functions(unsigned long addr);
423
424 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
425 extern signed long schedule_timeout(signed long timeout);
426 extern signed long schedule_timeout_interruptible(signed long timeout);
427 extern signed long schedule_timeout_killable(signed long timeout);
428 extern signed long schedule_timeout_uninterruptible(signed long timeout);
429 extern signed long schedule_timeout_idle(signed long timeout);
430 asmlinkage void schedule(void);
431 extern void schedule_preempt_disabled(void);
432
433 extern int __must_check io_schedule_prepare(void);
434 extern void io_schedule_finish(int token);
435 extern long io_schedule_timeout(long timeout);
436 extern void io_schedule(void);
437
438 void __noreturn do_task_dead(void);
439
440 struct nsproxy;
441 struct user_namespace;
442
443 #ifdef CONFIG_MMU
444 extern void arch_pick_mmap_layout(struct mm_struct *mm);
445 extern unsigned long
446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448 extern unsigned long
449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
452 #else
453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454 #endif
455
456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457 #define SUID_DUMP_USER 1 /* Dump as user of process */
458 #define SUID_DUMP_ROOT 2 /* Dump as root */
459
460 /* mm flags */
461
462 /* for SUID_DUMP_* above */
463 #define MMF_DUMPABLE_BITS 2
464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
465
466 extern void set_dumpable(struct mm_struct *mm, int value);
467 /*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473 static inline int __get_dumpable(unsigned long mm_flags)
474 {
475 return mm_flags & MMF_DUMPABLE_MASK;
476 }
477
478 static inline int get_dumpable(struct mm_struct *mm)
479 {
480 return __get_dumpable(mm->flags);
481 }
482
483 /* coredump filter bits */
484 #define MMF_DUMP_ANON_PRIVATE 2
485 #define MMF_DUMP_ANON_SHARED 3
486 #define MMF_DUMP_MAPPED_PRIVATE 4
487 #define MMF_DUMP_MAPPED_SHARED 5
488 #define MMF_DUMP_ELF_HEADERS 6
489 #define MMF_DUMP_HUGETLB_PRIVATE 7
490 #define MMF_DUMP_HUGETLB_SHARED 8
491 #define MMF_DUMP_DAX_PRIVATE 9
492 #define MMF_DUMP_DAX_SHARED 10
493
494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
495 #define MMF_DUMP_FILTER_BITS 9
496 #define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498 #define MMF_DUMP_FILTER_DEFAULT \
499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504 #else
505 # define MMF_DUMP_MASK_DEFAULT_ELF 0
506 #endif
507 /* leave room for more dump flags */
508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
510 /*
511 * This one-shot flag is dropped due to necessity of changing exe once again
512 * on NFS restore
513 */
514 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
515
516 #define MMF_HAS_UPROBES 19 /* has uprobes */
517 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
518 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
519 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
520 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
521
522 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
523
524 struct sighand_struct {
525 atomic_t count;
526 struct k_sigaction action[_NSIG];
527 spinlock_t siglock;
528 wait_queue_head_t signalfd_wqh;
529 };
530
531 struct pacct_struct {
532 int ac_flag;
533 long ac_exitcode;
534 unsigned long ac_mem;
535 u64 ac_utime, ac_stime;
536 unsigned long ac_minflt, ac_majflt;
537 };
538
539 struct cpu_itimer {
540 u64 expires;
541 u64 incr;
542 };
543
544 /**
545 * struct prev_cputime - snaphsot of system and user cputime
546 * @utime: time spent in user mode
547 * @stime: time spent in system mode
548 * @lock: protects the above two fields
549 *
550 * Stores previous user/system time values such that we can guarantee
551 * monotonicity.
552 */
553 struct prev_cputime {
554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
555 u64 utime;
556 u64 stime;
557 raw_spinlock_t lock;
558 #endif
559 };
560
561 static inline void prev_cputime_init(struct prev_cputime *prev)
562 {
563 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
564 prev->utime = prev->stime = 0;
565 raw_spin_lock_init(&prev->lock);
566 #endif
567 }
568
569 /**
570 * struct task_cputime - collected CPU time counts
571 * @utime: time spent in user mode, in nanoseconds
572 * @stime: time spent in kernel mode, in nanoseconds
573 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
574 *
575 * This structure groups together three kinds of CPU time that are tracked for
576 * threads and thread groups. Most things considering CPU time want to group
577 * these counts together and treat all three of them in parallel.
578 */
579 struct task_cputime {
580 u64 utime;
581 u64 stime;
582 unsigned long long sum_exec_runtime;
583 };
584
585 /* Alternate field names when used to cache expirations. */
586 #define virt_exp utime
587 #define prof_exp stime
588 #define sched_exp sum_exec_runtime
589
590 /*
591 * This is the atomic variant of task_cputime, which can be used for
592 * storing and updating task_cputime statistics without locking.
593 */
594 struct task_cputime_atomic {
595 atomic64_t utime;
596 atomic64_t stime;
597 atomic64_t sum_exec_runtime;
598 };
599
600 #define INIT_CPUTIME_ATOMIC \
601 (struct task_cputime_atomic) { \
602 .utime = ATOMIC64_INIT(0), \
603 .stime = ATOMIC64_INIT(0), \
604 .sum_exec_runtime = ATOMIC64_INIT(0), \
605 }
606
607 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
608
609 /*
610 * Disable preemption until the scheduler is running -- use an unconditional
611 * value so that it also works on !PREEMPT_COUNT kernels.
612 *
613 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
614 */
615 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
616
617 /*
618 * Initial preempt_count value; reflects the preempt_count schedule invariant
619 * which states that during context switches:
620 *
621 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
622 *
623 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
624 * Note: See finish_task_switch().
625 */
626 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
627
628 /**
629 * struct thread_group_cputimer - thread group interval timer counts
630 * @cputime_atomic: atomic thread group interval timers.
631 * @running: true when there are timers running and
632 * @cputime_atomic receives updates.
633 * @checking_timer: true when a thread in the group is in the
634 * process of checking for thread group timers.
635 *
636 * This structure contains the version of task_cputime, above, that is
637 * used for thread group CPU timer calculations.
638 */
639 struct thread_group_cputimer {
640 struct task_cputime_atomic cputime_atomic;
641 bool running;
642 bool checking_timer;
643 };
644
645 #include <linux/rwsem.h>
646 struct autogroup;
647
648 /*
649 * NOTE! "signal_struct" does not have its own
650 * locking, because a shared signal_struct always
651 * implies a shared sighand_struct, so locking
652 * sighand_struct is always a proper superset of
653 * the locking of signal_struct.
654 */
655 struct signal_struct {
656 atomic_t sigcnt;
657 atomic_t live;
658 int nr_threads;
659 struct list_head thread_head;
660
661 wait_queue_head_t wait_chldexit; /* for wait4() */
662
663 /* current thread group signal load-balancing target: */
664 struct task_struct *curr_target;
665
666 /* shared signal handling: */
667 struct sigpending shared_pending;
668
669 /* thread group exit support */
670 int group_exit_code;
671 /* overloaded:
672 * - notify group_exit_task when ->count is equal to notify_count
673 * - everyone except group_exit_task is stopped during signal delivery
674 * of fatal signals, group_exit_task processes the signal.
675 */
676 int notify_count;
677 struct task_struct *group_exit_task;
678
679 /* thread group stop support, overloads group_exit_code too */
680 int group_stop_count;
681 unsigned int flags; /* see SIGNAL_* flags below */
682
683 /*
684 * PR_SET_CHILD_SUBREAPER marks a process, like a service
685 * manager, to re-parent orphan (double-forking) child processes
686 * to this process instead of 'init'. The service manager is
687 * able to receive SIGCHLD signals and is able to investigate
688 * the process until it calls wait(). All children of this
689 * process will inherit a flag if they should look for a
690 * child_subreaper process at exit.
691 */
692 unsigned int is_child_subreaper:1;
693 unsigned int has_child_subreaper:1;
694
695 #ifdef CONFIG_POSIX_TIMERS
696
697 /* POSIX.1b Interval Timers */
698 int posix_timer_id;
699 struct list_head posix_timers;
700
701 /* ITIMER_REAL timer for the process */
702 struct hrtimer real_timer;
703 ktime_t it_real_incr;
704
705 /*
706 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
707 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
708 * values are defined to 0 and 1 respectively
709 */
710 struct cpu_itimer it[2];
711
712 /*
713 * Thread group totals for process CPU timers.
714 * See thread_group_cputimer(), et al, for details.
715 */
716 struct thread_group_cputimer cputimer;
717
718 /* Earliest-expiration cache. */
719 struct task_cputime cputime_expires;
720
721 struct list_head cpu_timers[3];
722
723 #endif
724
725 struct pid *leader_pid;
726
727 #ifdef CONFIG_NO_HZ_FULL
728 atomic_t tick_dep_mask;
729 #endif
730
731 struct pid *tty_old_pgrp;
732
733 /* boolean value for session group leader */
734 int leader;
735
736 struct tty_struct *tty; /* NULL if no tty */
737
738 #ifdef CONFIG_SCHED_AUTOGROUP
739 struct autogroup *autogroup;
740 #endif
741 /*
742 * Cumulative resource counters for dead threads in the group,
743 * and for reaped dead child processes forked by this group.
744 * Live threads maintain their own counters and add to these
745 * in __exit_signal, except for the group leader.
746 */
747 seqlock_t stats_lock;
748 u64 utime, stime, cutime, cstime;
749 u64 gtime;
750 u64 cgtime;
751 struct prev_cputime prev_cputime;
752 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
753 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
754 unsigned long inblock, oublock, cinblock, coublock;
755 unsigned long maxrss, cmaxrss;
756 struct task_io_accounting ioac;
757
758 /*
759 * Cumulative ns of schedule CPU time fo dead threads in the
760 * group, not including a zombie group leader, (This only differs
761 * from jiffies_to_ns(utime + stime) if sched_clock uses something
762 * other than jiffies.)
763 */
764 unsigned long long sum_sched_runtime;
765
766 /*
767 * We don't bother to synchronize most readers of this at all,
768 * because there is no reader checking a limit that actually needs
769 * to get both rlim_cur and rlim_max atomically, and either one
770 * alone is a single word that can safely be read normally.
771 * getrlimit/setrlimit use task_lock(current->group_leader) to
772 * protect this instead of the siglock, because they really
773 * have no need to disable irqs.
774 */
775 struct rlimit rlim[RLIM_NLIMITS];
776
777 #ifdef CONFIG_BSD_PROCESS_ACCT
778 struct pacct_struct pacct; /* per-process accounting information */
779 #endif
780 #ifdef CONFIG_TASKSTATS
781 struct taskstats *stats;
782 #endif
783 #ifdef CONFIG_AUDIT
784 unsigned audit_tty;
785 struct tty_audit_buf *tty_audit_buf;
786 #endif
787
788 /*
789 * Thread is the potential origin of an oom condition; kill first on
790 * oom
791 */
792 bool oom_flag_origin;
793 short oom_score_adj; /* OOM kill score adjustment */
794 short oom_score_adj_min; /* OOM kill score adjustment min value.
795 * Only settable by CAP_SYS_RESOURCE. */
796 struct mm_struct *oom_mm; /* recorded mm when the thread group got
797 * killed by the oom killer */
798
799 struct mutex cred_guard_mutex; /* guard against foreign influences on
800 * credential calculations
801 * (notably. ptrace) */
802 };
803
804 /*
805 * Bits in flags field of signal_struct.
806 */
807 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
808 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
809 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
810 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
811 /*
812 * Pending notifications to parent.
813 */
814 #define SIGNAL_CLD_STOPPED 0x00000010
815 #define SIGNAL_CLD_CONTINUED 0x00000020
816 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
817
818 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
819
820 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
821 SIGNAL_STOP_CONTINUED)
822
823 static inline void signal_set_stop_flags(struct signal_struct *sig,
824 unsigned int flags)
825 {
826 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
827 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
828 }
829
830 /* If true, all threads except ->group_exit_task have pending SIGKILL */
831 static inline int signal_group_exit(const struct signal_struct *sig)
832 {
833 return (sig->flags & SIGNAL_GROUP_EXIT) ||
834 (sig->group_exit_task != NULL);
835 }
836
837 /*
838 * Some day this will be a full-fledged user tracking system..
839 */
840 struct user_struct {
841 atomic_t __count; /* reference count */
842 atomic_t processes; /* How many processes does this user have? */
843 atomic_t sigpending; /* How many pending signals does this user have? */
844 #ifdef CONFIG_FANOTIFY
845 atomic_t fanotify_listeners;
846 #endif
847 #ifdef CONFIG_EPOLL
848 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
849 #endif
850 #ifdef CONFIG_POSIX_MQUEUE
851 /* protected by mq_lock */
852 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
853 #endif
854 unsigned long locked_shm; /* How many pages of mlocked shm ? */
855 unsigned long unix_inflight; /* How many files in flight in unix sockets */
856 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
857
858 #ifdef CONFIG_KEYS
859 struct key *uid_keyring; /* UID specific keyring */
860 struct key *session_keyring; /* UID's default session keyring */
861 #endif
862
863 /* Hash table maintenance information */
864 struct hlist_node uidhash_node;
865 kuid_t uid;
866
867 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
868 atomic_long_t locked_vm;
869 #endif
870 };
871
872 extern int uids_sysfs_init(void);
873
874 extern struct user_struct *find_user(kuid_t);
875
876 extern struct user_struct root_user;
877 #define INIT_USER (&root_user)
878
879
880 struct backing_dev_info;
881 struct reclaim_state;
882
883 #ifdef CONFIG_SCHED_INFO
884 struct sched_info {
885 /* cumulative counters */
886 unsigned long pcount; /* # of times run on this cpu */
887 unsigned long long run_delay; /* time spent waiting on a runqueue */
888
889 /* timestamps */
890 unsigned long long last_arrival,/* when we last ran on a cpu */
891 last_queued; /* when we were last queued to run */
892 };
893 #endif /* CONFIG_SCHED_INFO */
894
895 #ifdef CONFIG_TASK_DELAY_ACCT
896 struct task_delay_info {
897 spinlock_t lock;
898 unsigned int flags; /* Private per-task flags */
899
900 /* For each stat XXX, add following, aligned appropriately
901 *
902 * struct timespec XXX_start, XXX_end;
903 * u64 XXX_delay;
904 * u32 XXX_count;
905 *
906 * Atomicity of updates to XXX_delay, XXX_count protected by
907 * single lock above (split into XXX_lock if contention is an issue).
908 */
909
910 /*
911 * XXX_count is incremented on every XXX operation, the delay
912 * associated with the operation is added to XXX_delay.
913 * XXX_delay contains the accumulated delay time in nanoseconds.
914 */
915 u64 blkio_start; /* Shared by blkio, swapin */
916 u64 blkio_delay; /* wait for sync block io completion */
917 u64 swapin_delay; /* wait for swapin block io completion */
918 u32 blkio_count; /* total count of the number of sync block */
919 /* io operations performed */
920 u32 swapin_count; /* total count of the number of swapin block */
921 /* io operations performed */
922
923 u64 freepages_start;
924 u64 freepages_delay; /* wait for memory reclaim */
925 u32 freepages_count; /* total count of memory reclaim */
926 };
927 #endif /* CONFIG_TASK_DELAY_ACCT */
928
929 static inline int sched_info_on(void)
930 {
931 #ifdef CONFIG_SCHEDSTATS
932 return 1;
933 #elif defined(CONFIG_TASK_DELAY_ACCT)
934 extern int delayacct_on;
935 return delayacct_on;
936 #else
937 return 0;
938 #endif
939 }
940
941 #ifdef CONFIG_SCHEDSTATS
942 void force_schedstat_enabled(void);
943 #endif
944
945 enum cpu_idle_type {
946 CPU_IDLE,
947 CPU_NOT_IDLE,
948 CPU_NEWLY_IDLE,
949 CPU_MAX_IDLE_TYPES
950 };
951
952 /*
953 * Integer metrics need fixed point arithmetic, e.g., sched/fair
954 * has a few: load, load_avg, util_avg, freq, and capacity.
955 *
956 * We define a basic fixed point arithmetic range, and then formalize
957 * all these metrics based on that basic range.
958 */
959 # define SCHED_FIXEDPOINT_SHIFT 10
960 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
961
962 /*
963 * Increase resolution of cpu_capacity calculations
964 */
965 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
966 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
967
968 /*
969 * Wake-queues are lists of tasks with a pending wakeup, whose
970 * callers have already marked the task as woken internally,
971 * and can thus carry on. A common use case is being able to
972 * do the wakeups once the corresponding user lock as been
973 * released.
974 *
975 * We hold reference to each task in the list across the wakeup,
976 * thus guaranteeing that the memory is still valid by the time
977 * the actual wakeups are performed in wake_up_q().
978 *
979 * One per task suffices, because there's never a need for a task to be
980 * in two wake queues simultaneously; it is forbidden to abandon a task
981 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
982 * already in a wake queue, the wakeup will happen soon and the second
983 * waker can just skip it.
984 *
985 * The DEFINE_WAKE_Q macro declares and initializes the list head.
986 * wake_up_q() does NOT reinitialize the list; it's expected to be
987 * called near the end of a function. Otherwise, the list can be
988 * re-initialized for later re-use by wake_q_init().
989 *
990 * Note that this can cause spurious wakeups. schedule() callers
991 * must ensure the call is done inside a loop, confirming that the
992 * wakeup condition has in fact occurred.
993 */
994 struct wake_q_node {
995 struct wake_q_node *next;
996 };
997
998 struct wake_q_head {
999 struct wake_q_node *first;
1000 struct wake_q_node **lastp;
1001 };
1002
1003 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1004
1005 #define DEFINE_WAKE_Q(name) \
1006 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1007
1008 static inline void wake_q_init(struct wake_q_head *head)
1009 {
1010 head->first = WAKE_Q_TAIL;
1011 head->lastp = &head->first;
1012 }
1013
1014 extern void wake_q_add(struct wake_q_head *head,
1015 struct task_struct *task);
1016 extern void wake_up_q(struct wake_q_head *head);
1017
1018 /*
1019 * sched-domains (multiprocessor balancing) declarations:
1020 */
1021 #ifdef CONFIG_SMP
1022 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1023 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1024 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1025 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1026 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1027 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1028 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1029 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1030 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1031 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1032 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1033 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1034 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1035 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1036 #define SD_NUMA 0x4000 /* cross-node balancing */
1037
1038 #ifdef CONFIG_SCHED_SMT
1039 static inline int cpu_smt_flags(void)
1040 {
1041 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1042 }
1043 #endif
1044
1045 #ifdef CONFIG_SCHED_MC
1046 static inline int cpu_core_flags(void)
1047 {
1048 return SD_SHARE_PKG_RESOURCES;
1049 }
1050 #endif
1051
1052 #ifdef CONFIG_NUMA
1053 static inline int cpu_numa_flags(void)
1054 {
1055 return SD_NUMA;
1056 }
1057 #endif
1058
1059 extern int arch_asym_cpu_priority(int cpu);
1060
1061 struct sched_domain_attr {
1062 int relax_domain_level;
1063 };
1064
1065 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1066 .relax_domain_level = -1, \
1067 }
1068
1069 extern int sched_domain_level_max;
1070
1071 struct sched_group;
1072
1073 struct sched_domain_shared {
1074 atomic_t ref;
1075 atomic_t nr_busy_cpus;
1076 int has_idle_cores;
1077 };
1078
1079 struct sched_domain {
1080 /* These fields must be setup */
1081 struct sched_domain *parent; /* top domain must be null terminated */
1082 struct sched_domain *child; /* bottom domain must be null terminated */
1083 struct sched_group *groups; /* the balancing groups of the domain */
1084 unsigned long min_interval; /* Minimum balance interval ms */
1085 unsigned long max_interval; /* Maximum balance interval ms */
1086 unsigned int busy_factor; /* less balancing by factor if busy */
1087 unsigned int imbalance_pct; /* No balance until over watermark */
1088 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1089 unsigned int busy_idx;
1090 unsigned int idle_idx;
1091 unsigned int newidle_idx;
1092 unsigned int wake_idx;
1093 unsigned int forkexec_idx;
1094 unsigned int smt_gain;
1095
1096 int nohz_idle; /* NOHZ IDLE status */
1097 int flags; /* See SD_* */
1098 int level;
1099
1100 /* Runtime fields. */
1101 unsigned long last_balance; /* init to jiffies. units in jiffies */
1102 unsigned int balance_interval; /* initialise to 1. units in ms. */
1103 unsigned int nr_balance_failed; /* initialise to 0 */
1104
1105 /* idle_balance() stats */
1106 u64 max_newidle_lb_cost;
1107 unsigned long next_decay_max_lb_cost;
1108
1109 u64 avg_scan_cost; /* select_idle_sibling */
1110
1111 #ifdef CONFIG_SCHEDSTATS
1112 /* load_balance() stats */
1113 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1114 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1115 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1116 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1117 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1118 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1119 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1120 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1121
1122 /* Active load balancing */
1123 unsigned int alb_count;
1124 unsigned int alb_failed;
1125 unsigned int alb_pushed;
1126
1127 /* SD_BALANCE_EXEC stats */
1128 unsigned int sbe_count;
1129 unsigned int sbe_balanced;
1130 unsigned int sbe_pushed;
1131
1132 /* SD_BALANCE_FORK stats */
1133 unsigned int sbf_count;
1134 unsigned int sbf_balanced;
1135 unsigned int sbf_pushed;
1136
1137 /* try_to_wake_up() stats */
1138 unsigned int ttwu_wake_remote;
1139 unsigned int ttwu_move_affine;
1140 unsigned int ttwu_move_balance;
1141 #endif
1142 #ifdef CONFIG_SCHED_DEBUG
1143 char *name;
1144 #endif
1145 union {
1146 void *private; /* used during construction */
1147 struct rcu_head rcu; /* used during destruction */
1148 };
1149 struct sched_domain_shared *shared;
1150
1151 unsigned int span_weight;
1152 /*
1153 * Span of all CPUs in this domain.
1154 *
1155 * NOTE: this field is variable length. (Allocated dynamically
1156 * by attaching extra space to the end of the structure,
1157 * depending on how many CPUs the kernel has booted up with)
1158 */
1159 unsigned long span[0];
1160 };
1161
1162 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1163 {
1164 return to_cpumask(sd->span);
1165 }
1166
1167 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1168 struct sched_domain_attr *dattr_new);
1169
1170 /* Allocate an array of sched domains, for partition_sched_domains(). */
1171 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1172 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1173
1174 bool cpus_share_cache(int this_cpu, int that_cpu);
1175
1176 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1177 typedef int (*sched_domain_flags_f)(void);
1178
1179 #define SDTL_OVERLAP 0x01
1180
1181 struct sd_data {
1182 struct sched_domain **__percpu sd;
1183 struct sched_domain_shared **__percpu sds;
1184 struct sched_group **__percpu sg;
1185 struct sched_group_capacity **__percpu sgc;
1186 };
1187
1188 struct sched_domain_topology_level {
1189 sched_domain_mask_f mask;
1190 sched_domain_flags_f sd_flags;
1191 int flags;
1192 int numa_level;
1193 struct sd_data data;
1194 #ifdef CONFIG_SCHED_DEBUG
1195 char *name;
1196 #endif
1197 };
1198
1199 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1200 extern void wake_up_if_idle(int cpu);
1201
1202 #ifdef CONFIG_SCHED_DEBUG
1203 # define SD_INIT_NAME(type) .name = #type
1204 #else
1205 # define SD_INIT_NAME(type)
1206 #endif
1207
1208 #else /* CONFIG_SMP */
1209
1210 struct sched_domain_attr;
1211
1212 static inline void
1213 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1214 struct sched_domain_attr *dattr_new)
1215 {
1216 }
1217
1218 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1219 {
1220 return true;
1221 }
1222
1223 #endif /* !CONFIG_SMP */
1224
1225
1226 struct io_context; /* See blkdev.h */
1227
1228
1229 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1230 extern void prefetch_stack(struct task_struct *t);
1231 #else
1232 static inline void prefetch_stack(struct task_struct *t) { }
1233 #endif
1234
1235 struct audit_context; /* See audit.c */
1236 struct mempolicy;
1237 struct pipe_inode_info;
1238 struct uts_namespace;
1239
1240 struct load_weight {
1241 unsigned long weight;
1242 u32 inv_weight;
1243 };
1244
1245 /*
1246 * The load_avg/util_avg accumulates an infinite geometric series
1247 * (see __update_load_avg() in kernel/sched/fair.c).
1248 *
1249 * [load_avg definition]
1250 *
1251 * load_avg = runnable% * scale_load_down(load)
1252 *
1253 * where runnable% is the time ratio that a sched_entity is runnable.
1254 * For cfs_rq, it is the aggregated load_avg of all runnable and
1255 * blocked sched_entities.
1256 *
1257 * load_avg may also take frequency scaling into account:
1258 *
1259 * load_avg = runnable% * scale_load_down(load) * freq%
1260 *
1261 * where freq% is the CPU frequency normalized to the highest frequency.
1262 *
1263 * [util_avg definition]
1264 *
1265 * util_avg = running% * SCHED_CAPACITY_SCALE
1266 *
1267 * where running% is the time ratio that a sched_entity is running on
1268 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1269 * and blocked sched_entities.
1270 *
1271 * util_avg may also factor frequency scaling and CPU capacity scaling:
1272 *
1273 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1274 *
1275 * where freq% is the same as above, and capacity% is the CPU capacity
1276 * normalized to the greatest capacity (due to uarch differences, etc).
1277 *
1278 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1279 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1280 * we therefore scale them to as large a range as necessary. This is for
1281 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1282 *
1283 * [Overflow issue]
1284 *
1285 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1286 * with the highest load (=88761), always runnable on a single cfs_rq,
1287 * and should not overflow as the number already hits PID_MAX_LIMIT.
1288 *
1289 * For all other cases (including 32-bit kernels), struct load_weight's
1290 * weight will overflow first before we do, because:
1291 *
1292 * Max(load_avg) <= Max(load.weight)
1293 *
1294 * Then it is the load_weight's responsibility to consider overflow
1295 * issues.
1296 */
1297 struct sched_avg {
1298 u64 last_update_time, load_sum;
1299 u32 util_sum, period_contrib;
1300 unsigned long load_avg, util_avg;
1301 };
1302
1303 #ifdef CONFIG_SCHEDSTATS
1304 struct sched_statistics {
1305 u64 wait_start;
1306 u64 wait_max;
1307 u64 wait_count;
1308 u64 wait_sum;
1309 u64 iowait_count;
1310 u64 iowait_sum;
1311
1312 u64 sleep_start;
1313 u64 sleep_max;
1314 s64 sum_sleep_runtime;
1315
1316 u64 block_start;
1317 u64 block_max;
1318 u64 exec_max;
1319 u64 slice_max;
1320
1321 u64 nr_migrations_cold;
1322 u64 nr_failed_migrations_affine;
1323 u64 nr_failed_migrations_running;
1324 u64 nr_failed_migrations_hot;
1325 u64 nr_forced_migrations;
1326
1327 u64 nr_wakeups;
1328 u64 nr_wakeups_sync;
1329 u64 nr_wakeups_migrate;
1330 u64 nr_wakeups_local;
1331 u64 nr_wakeups_remote;
1332 u64 nr_wakeups_affine;
1333 u64 nr_wakeups_affine_attempts;
1334 u64 nr_wakeups_passive;
1335 u64 nr_wakeups_idle;
1336 };
1337 #endif
1338
1339 struct sched_entity {
1340 struct load_weight load; /* for load-balancing */
1341 struct rb_node run_node;
1342 struct list_head group_node;
1343 unsigned int on_rq;
1344
1345 u64 exec_start;
1346 u64 sum_exec_runtime;
1347 u64 vruntime;
1348 u64 prev_sum_exec_runtime;
1349
1350 u64 nr_migrations;
1351
1352 #ifdef CONFIG_SCHEDSTATS
1353 struct sched_statistics statistics;
1354 #endif
1355
1356 #ifdef CONFIG_FAIR_GROUP_SCHED
1357 int depth;
1358 struct sched_entity *parent;
1359 /* rq on which this entity is (to be) queued: */
1360 struct cfs_rq *cfs_rq;
1361 /* rq "owned" by this entity/group: */
1362 struct cfs_rq *my_q;
1363 #endif
1364
1365 #ifdef CONFIG_SMP
1366 /*
1367 * Per entity load average tracking.
1368 *
1369 * Put into separate cache line so it does not
1370 * collide with read-mostly values above.
1371 */
1372 struct sched_avg avg ____cacheline_aligned_in_smp;
1373 #endif
1374 };
1375
1376 struct sched_rt_entity {
1377 struct list_head run_list;
1378 unsigned long timeout;
1379 unsigned long watchdog_stamp;
1380 unsigned int time_slice;
1381 unsigned short on_rq;
1382 unsigned short on_list;
1383
1384 struct sched_rt_entity *back;
1385 #ifdef CONFIG_RT_GROUP_SCHED
1386 struct sched_rt_entity *parent;
1387 /* rq on which this entity is (to be) queued: */
1388 struct rt_rq *rt_rq;
1389 /* rq "owned" by this entity/group: */
1390 struct rt_rq *my_q;
1391 #endif
1392 };
1393
1394 struct sched_dl_entity {
1395 struct rb_node rb_node;
1396
1397 /*
1398 * Original scheduling parameters. Copied here from sched_attr
1399 * during sched_setattr(), they will remain the same until
1400 * the next sched_setattr().
1401 */
1402 u64 dl_runtime; /* maximum runtime for each instance */
1403 u64 dl_deadline; /* relative deadline of each instance */
1404 u64 dl_period; /* separation of two instances (period) */
1405 u64 dl_bw; /* dl_runtime / dl_deadline */
1406
1407 /*
1408 * Actual scheduling parameters. Initialized with the values above,
1409 * they are continously updated during task execution. Note that
1410 * the remaining runtime could be < 0 in case we are in overrun.
1411 */
1412 s64 runtime; /* remaining runtime for this instance */
1413 u64 deadline; /* absolute deadline for this instance */
1414 unsigned int flags; /* specifying the scheduler behaviour */
1415
1416 /*
1417 * Some bool flags:
1418 *
1419 * @dl_throttled tells if we exhausted the runtime. If so, the
1420 * task has to wait for a replenishment to be performed at the
1421 * next firing of dl_timer.
1422 *
1423 * @dl_boosted tells if we are boosted due to DI. If so we are
1424 * outside bandwidth enforcement mechanism (but only until we
1425 * exit the critical section);
1426 *
1427 * @dl_yielded tells if task gave up the cpu before consuming
1428 * all its available runtime during the last job.
1429 */
1430 int dl_throttled, dl_boosted, dl_yielded;
1431
1432 /*
1433 * Bandwidth enforcement timer. Each -deadline task has its
1434 * own bandwidth to be enforced, thus we need one timer per task.
1435 */
1436 struct hrtimer dl_timer;
1437 };
1438
1439 union rcu_special {
1440 struct {
1441 u8 blocked;
1442 u8 need_qs;
1443 u8 exp_need_qs;
1444 u8 pad; /* Otherwise the compiler can store garbage here. */
1445 } b; /* Bits. */
1446 u32 s; /* Set of bits. */
1447 };
1448 struct rcu_node;
1449
1450 enum perf_event_task_context {
1451 perf_invalid_context = -1,
1452 perf_hw_context = 0,
1453 perf_sw_context,
1454 perf_nr_task_contexts,
1455 };
1456
1457 /* Track pages that require TLB flushes */
1458 struct tlbflush_unmap_batch {
1459 /*
1460 * Each bit set is a CPU that potentially has a TLB entry for one of
1461 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1462 */
1463 struct cpumask cpumask;
1464
1465 /* True if any bit in cpumask is set */
1466 bool flush_required;
1467
1468 /*
1469 * If true then the PTE was dirty when unmapped. The entry must be
1470 * flushed before IO is initiated or a stale TLB entry potentially
1471 * allows an update without redirtying the page.
1472 */
1473 bool writable;
1474 };
1475
1476 struct task_struct {
1477 #ifdef CONFIG_THREAD_INFO_IN_TASK
1478 /*
1479 * For reasons of header soup (see current_thread_info()), this
1480 * must be the first element of task_struct.
1481 */
1482 struct thread_info thread_info;
1483 #endif
1484 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1485 void *stack;
1486 atomic_t usage;
1487 unsigned int flags; /* per process flags, defined below */
1488 unsigned int ptrace;
1489
1490 #ifdef CONFIG_SMP
1491 struct llist_node wake_entry;
1492 int on_cpu;
1493 #ifdef CONFIG_THREAD_INFO_IN_TASK
1494 unsigned int cpu; /* current CPU */
1495 #endif
1496 unsigned int wakee_flips;
1497 unsigned long wakee_flip_decay_ts;
1498 struct task_struct *last_wakee;
1499
1500 int wake_cpu;
1501 #endif
1502 int on_rq;
1503
1504 int prio, static_prio, normal_prio;
1505 unsigned int rt_priority;
1506 const struct sched_class *sched_class;
1507 struct sched_entity se;
1508 struct sched_rt_entity rt;
1509 #ifdef CONFIG_CGROUP_SCHED
1510 struct task_group *sched_task_group;
1511 #endif
1512 struct sched_dl_entity dl;
1513
1514 #ifdef CONFIG_PREEMPT_NOTIFIERS
1515 /* list of struct preempt_notifier: */
1516 struct hlist_head preempt_notifiers;
1517 #endif
1518
1519 #ifdef CONFIG_BLK_DEV_IO_TRACE
1520 unsigned int btrace_seq;
1521 #endif
1522
1523 unsigned int policy;
1524 int nr_cpus_allowed;
1525 cpumask_t cpus_allowed;
1526
1527 #ifdef CONFIG_PREEMPT_RCU
1528 int rcu_read_lock_nesting;
1529 union rcu_special rcu_read_unlock_special;
1530 struct list_head rcu_node_entry;
1531 struct rcu_node *rcu_blocked_node;
1532 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1533 #ifdef CONFIG_TASKS_RCU
1534 unsigned long rcu_tasks_nvcsw;
1535 bool rcu_tasks_holdout;
1536 struct list_head rcu_tasks_holdout_list;
1537 int rcu_tasks_idle_cpu;
1538 #endif /* #ifdef CONFIG_TASKS_RCU */
1539
1540 #ifdef CONFIG_SCHED_INFO
1541 struct sched_info sched_info;
1542 #endif
1543
1544 struct list_head tasks;
1545 #ifdef CONFIG_SMP
1546 struct plist_node pushable_tasks;
1547 struct rb_node pushable_dl_tasks;
1548 #endif
1549
1550 struct mm_struct *mm, *active_mm;
1551
1552 /* Per-thread vma caching: */
1553 struct vmacache vmacache;
1554
1555 #if defined(SPLIT_RSS_COUNTING)
1556 struct task_rss_stat rss_stat;
1557 #endif
1558 /* task state */
1559 int exit_state;
1560 int exit_code, exit_signal;
1561 int pdeath_signal; /* The signal sent when the parent dies */
1562 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1563
1564 /* Used for emulating ABI behavior of previous Linux versions */
1565 unsigned int personality;
1566
1567 /* scheduler bits, serialized by scheduler locks */
1568 unsigned sched_reset_on_fork:1;
1569 unsigned sched_contributes_to_load:1;
1570 unsigned sched_migrated:1;
1571 unsigned sched_remote_wakeup:1;
1572 unsigned :0; /* force alignment to the next boundary */
1573
1574 /* unserialized, strictly 'current' */
1575 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1576 unsigned in_iowait:1;
1577 #if !defined(TIF_RESTORE_SIGMASK)
1578 unsigned restore_sigmask:1;
1579 #endif
1580 #ifdef CONFIG_MEMCG
1581 unsigned memcg_may_oom:1;
1582 #ifndef CONFIG_SLOB
1583 unsigned memcg_kmem_skip_account:1;
1584 #endif
1585 #endif
1586 #ifdef CONFIG_COMPAT_BRK
1587 unsigned brk_randomized:1;
1588 #endif
1589
1590 unsigned long atomic_flags; /* Flags needing atomic access. */
1591
1592 struct restart_block restart_block;
1593
1594 pid_t pid;
1595 pid_t tgid;
1596
1597 #ifdef CONFIG_CC_STACKPROTECTOR
1598 /* Canary value for the -fstack-protector gcc feature */
1599 unsigned long stack_canary;
1600 #endif
1601 /*
1602 * pointers to (original) parent process, youngest child, younger sibling,
1603 * older sibling, respectively. (p->father can be replaced with
1604 * p->real_parent->pid)
1605 */
1606 struct task_struct __rcu *real_parent; /* real parent process */
1607 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1608 /*
1609 * children/sibling forms the list of my natural children
1610 */
1611 struct list_head children; /* list of my children */
1612 struct list_head sibling; /* linkage in my parent's children list */
1613 struct task_struct *group_leader; /* threadgroup leader */
1614
1615 /*
1616 * ptraced is the list of tasks this task is using ptrace on.
1617 * This includes both natural children and PTRACE_ATTACH targets.
1618 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1619 */
1620 struct list_head ptraced;
1621 struct list_head ptrace_entry;
1622
1623 /* PID/PID hash table linkage. */
1624 struct pid_link pids[PIDTYPE_MAX];
1625 struct list_head thread_group;
1626 struct list_head thread_node;
1627
1628 struct completion *vfork_done; /* for vfork() */
1629 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1630 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1631
1632 u64 utime, stime;
1633 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1634 u64 utimescaled, stimescaled;
1635 #endif
1636 u64 gtime;
1637 struct prev_cputime prev_cputime;
1638 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1639 seqcount_t vtime_seqcount;
1640 unsigned long long vtime_snap;
1641 enum {
1642 /* Task is sleeping or running in a CPU with VTIME inactive */
1643 VTIME_INACTIVE = 0,
1644 /* Task runs in userspace in a CPU with VTIME active */
1645 VTIME_USER,
1646 /* Task runs in kernelspace in a CPU with VTIME active */
1647 VTIME_SYS,
1648 } vtime_snap_whence;
1649 #endif
1650
1651 #ifdef CONFIG_NO_HZ_FULL
1652 atomic_t tick_dep_mask;
1653 #endif
1654 unsigned long nvcsw, nivcsw; /* context switch counts */
1655 u64 start_time; /* monotonic time in nsec */
1656 u64 real_start_time; /* boot based time in nsec */
1657 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1658 unsigned long min_flt, maj_flt;
1659
1660 #ifdef CONFIG_POSIX_TIMERS
1661 struct task_cputime cputime_expires;
1662 struct list_head cpu_timers[3];
1663 #endif
1664
1665 /* process credentials */
1666 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1667 const struct cred __rcu *real_cred; /* objective and real subjective task
1668 * credentials (COW) */
1669 const struct cred __rcu *cred; /* effective (overridable) subjective task
1670 * credentials (COW) */
1671 char comm[TASK_COMM_LEN]; /* executable name excluding path
1672 - access with [gs]et_task_comm (which lock
1673 it with task_lock())
1674 - initialized normally by setup_new_exec */
1675 /* file system info */
1676 struct nameidata *nameidata;
1677 #ifdef CONFIG_SYSVIPC
1678 /* ipc stuff */
1679 struct sysv_sem sysvsem;
1680 struct sysv_shm sysvshm;
1681 #endif
1682 #ifdef CONFIG_DETECT_HUNG_TASK
1683 /* hung task detection */
1684 unsigned long last_switch_count;
1685 #endif
1686 /* filesystem information */
1687 struct fs_struct *fs;
1688 /* open file information */
1689 struct files_struct *files;
1690 /* namespaces */
1691 struct nsproxy *nsproxy;
1692 /* signal handlers */
1693 struct signal_struct *signal;
1694 struct sighand_struct *sighand;
1695
1696 sigset_t blocked, real_blocked;
1697 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1698 struct sigpending pending;
1699
1700 unsigned long sas_ss_sp;
1701 size_t sas_ss_size;
1702 unsigned sas_ss_flags;
1703
1704 struct callback_head *task_works;
1705
1706 struct audit_context *audit_context;
1707 #ifdef CONFIG_AUDITSYSCALL
1708 kuid_t loginuid;
1709 unsigned int sessionid;
1710 #endif
1711 struct seccomp seccomp;
1712
1713 /* Thread group tracking */
1714 u32 parent_exec_id;
1715 u32 self_exec_id;
1716 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1717 * mempolicy */
1718 spinlock_t alloc_lock;
1719
1720 /* Protection of the PI data structures: */
1721 raw_spinlock_t pi_lock;
1722
1723 struct wake_q_node wake_q;
1724
1725 #ifdef CONFIG_RT_MUTEXES
1726 /* PI waiters blocked on a rt_mutex held by this task */
1727 struct rb_root pi_waiters;
1728 struct rb_node *pi_waiters_leftmost;
1729 /* Deadlock detection and priority inheritance handling */
1730 struct rt_mutex_waiter *pi_blocked_on;
1731 #endif
1732
1733 #ifdef CONFIG_DEBUG_MUTEXES
1734 /* mutex deadlock detection */
1735 struct mutex_waiter *blocked_on;
1736 #endif
1737 #ifdef CONFIG_TRACE_IRQFLAGS
1738 unsigned int irq_events;
1739 unsigned long hardirq_enable_ip;
1740 unsigned long hardirq_disable_ip;
1741 unsigned int hardirq_enable_event;
1742 unsigned int hardirq_disable_event;
1743 int hardirqs_enabled;
1744 int hardirq_context;
1745 unsigned long softirq_disable_ip;
1746 unsigned long softirq_enable_ip;
1747 unsigned int softirq_disable_event;
1748 unsigned int softirq_enable_event;
1749 int softirqs_enabled;
1750 int softirq_context;
1751 #endif
1752 #ifdef CONFIG_LOCKDEP
1753 # define MAX_LOCK_DEPTH 48UL
1754 u64 curr_chain_key;
1755 int lockdep_depth;
1756 unsigned int lockdep_recursion;
1757 struct held_lock held_locks[MAX_LOCK_DEPTH];
1758 gfp_t lockdep_reclaim_gfp;
1759 #endif
1760 #ifdef CONFIG_UBSAN
1761 unsigned int in_ubsan;
1762 #endif
1763
1764 /* journalling filesystem info */
1765 void *journal_info;
1766
1767 /* stacked block device info */
1768 struct bio_list *bio_list;
1769
1770 #ifdef CONFIG_BLOCK
1771 /* stack plugging */
1772 struct blk_plug *plug;
1773 #endif
1774
1775 /* VM state */
1776 struct reclaim_state *reclaim_state;
1777
1778 struct backing_dev_info *backing_dev_info;
1779
1780 struct io_context *io_context;
1781
1782 unsigned long ptrace_message;
1783 siginfo_t *last_siginfo; /* For ptrace use. */
1784 struct task_io_accounting ioac;
1785 #if defined(CONFIG_TASK_XACCT)
1786 u64 acct_rss_mem1; /* accumulated rss usage */
1787 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1788 u64 acct_timexpd; /* stime + utime since last update */
1789 #endif
1790 #ifdef CONFIG_CPUSETS
1791 nodemask_t mems_allowed; /* Protected by alloc_lock */
1792 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1793 int cpuset_mem_spread_rotor;
1794 int cpuset_slab_spread_rotor;
1795 #endif
1796 #ifdef CONFIG_CGROUPS
1797 /* Control Group info protected by css_set_lock */
1798 struct css_set __rcu *cgroups;
1799 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1800 struct list_head cg_list;
1801 #endif
1802 #ifdef CONFIG_INTEL_RDT_A
1803 int closid;
1804 #endif
1805 #ifdef CONFIG_FUTEX
1806 struct robust_list_head __user *robust_list;
1807 #ifdef CONFIG_COMPAT
1808 struct compat_robust_list_head __user *compat_robust_list;
1809 #endif
1810 struct list_head pi_state_list;
1811 struct futex_pi_state *pi_state_cache;
1812 #endif
1813 #ifdef CONFIG_PERF_EVENTS
1814 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1815 struct mutex perf_event_mutex;
1816 struct list_head perf_event_list;
1817 #endif
1818 #ifdef CONFIG_DEBUG_PREEMPT
1819 unsigned long preempt_disable_ip;
1820 #endif
1821 #ifdef CONFIG_NUMA
1822 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1823 short il_next;
1824 short pref_node_fork;
1825 #endif
1826 #ifdef CONFIG_NUMA_BALANCING
1827 int numa_scan_seq;
1828 unsigned int numa_scan_period;
1829 unsigned int numa_scan_period_max;
1830 int numa_preferred_nid;
1831 unsigned long numa_migrate_retry;
1832 u64 node_stamp; /* migration stamp */
1833 u64 last_task_numa_placement;
1834 u64 last_sum_exec_runtime;
1835 struct callback_head numa_work;
1836
1837 struct list_head numa_entry;
1838 struct numa_group *numa_group;
1839
1840 /*
1841 * numa_faults is an array split into four regions:
1842 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1843 * in this precise order.
1844 *
1845 * faults_memory: Exponential decaying average of faults on a per-node
1846 * basis. Scheduling placement decisions are made based on these
1847 * counts. The values remain static for the duration of a PTE scan.
1848 * faults_cpu: Track the nodes the process was running on when a NUMA
1849 * hinting fault was incurred.
1850 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1851 * during the current scan window. When the scan completes, the counts
1852 * in faults_memory and faults_cpu decay and these values are copied.
1853 */
1854 unsigned long *numa_faults;
1855 unsigned long total_numa_faults;
1856
1857 /*
1858 * numa_faults_locality tracks if faults recorded during the last
1859 * scan window were remote/local or failed to migrate. The task scan
1860 * period is adapted based on the locality of the faults with different
1861 * weights depending on whether they were shared or private faults
1862 */
1863 unsigned long numa_faults_locality[3];
1864
1865 unsigned long numa_pages_migrated;
1866 #endif /* CONFIG_NUMA_BALANCING */
1867
1868 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1869 struct tlbflush_unmap_batch tlb_ubc;
1870 #endif
1871
1872 struct rcu_head rcu;
1873
1874 /*
1875 * cache last used pipe for splice
1876 */
1877 struct pipe_inode_info *splice_pipe;
1878
1879 struct page_frag task_frag;
1880
1881 #ifdef CONFIG_TASK_DELAY_ACCT
1882 struct task_delay_info *delays;
1883 #endif
1884 #ifdef CONFIG_FAULT_INJECTION
1885 int make_it_fail;
1886 #endif
1887 /*
1888 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1889 * balance_dirty_pages() for some dirty throttling pause
1890 */
1891 int nr_dirtied;
1892 int nr_dirtied_pause;
1893 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1894
1895 #ifdef CONFIG_LATENCYTOP
1896 int latency_record_count;
1897 struct latency_record latency_record[LT_SAVECOUNT];
1898 #endif
1899 /*
1900 * time slack values; these are used to round up poll() and
1901 * select() etc timeout values. These are in nanoseconds.
1902 */
1903 u64 timer_slack_ns;
1904 u64 default_timer_slack_ns;
1905
1906 #ifdef CONFIG_KASAN
1907 unsigned int kasan_depth;
1908 #endif
1909 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1910 /* Index of current stored address in ret_stack */
1911 int curr_ret_stack;
1912 /* Stack of return addresses for return function tracing */
1913 struct ftrace_ret_stack *ret_stack;
1914 /* time stamp for last schedule */
1915 unsigned long long ftrace_timestamp;
1916 /*
1917 * Number of functions that haven't been traced
1918 * because of depth overrun.
1919 */
1920 atomic_t trace_overrun;
1921 /* Pause for the tracing */
1922 atomic_t tracing_graph_pause;
1923 #endif
1924 #ifdef CONFIG_TRACING
1925 /* state flags for use by tracers */
1926 unsigned long trace;
1927 /* bitmask and counter of trace recursion */
1928 unsigned long trace_recursion;
1929 #endif /* CONFIG_TRACING */
1930 #ifdef CONFIG_KCOV
1931 /* Coverage collection mode enabled for this task (0 if disabled). */
1932 enum kcov_mode kcov_mode;
1933 /* Size of the kcov_area. */
1934 unsigned kcov_size;
1935 /* Buffer for coverage collection. */
1936 void *kcov_area;
1937 /* kcov desciptor wired with this task or NULL. */
1938 struct kcov *kcov;
1939 #endif
1940 #ifdef CONFIG_MEMCG
1941 struct mem_cgroup *memcg_in_oom;
1942 gfp_t memcg_oom_gfp_mask;
1943 int memcg_oom_order;
1944
1945 /* number of pages to reclaim on returning to userland */
1946 unsigned int memcg_nr_pages_over_high;
1947 #endif
1948 #ifdef CONFIG_UPROBES
1949 struct uprobe_task *utask;
1950 #endif
1951 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1952 unsigned int sequential_io;
1953 unsigned int sequential_io_avg;
1954 #endif
1955 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1956 unsigned long task_state_change;
1957 #endif
1958 int pagefault_disabled;
1959 #ifdef CONFIG_MMU
1960 struct task_struct *oom_reaper_list;
1961 #endif
1962 #ifdef CONFIG_VMAP_STACK
1963 struct vm_struct *stack_vm_area;
1964 #endif
1965 #ifdef CONFIG_THREAD_INFO_IN_TASK
1966 /* A live task holds one reference. */
1967 atomic_t stack_refcount;
1968 #endif
1969 /* CPU-specific state of this task */
1970 struct thread_struct thread;
1971 /*
1972 * WARNING: on x86, 'thread_struct' contains a variable-sized
1973 * structure. It *MUST* be at the end of 'task_struct'.
1974 *
1975 * Do not put anything below here!
1976 */
1977 };
1978
1979 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1980 extern int arch_task_struct_size __read_mostly;
1981 #else
1982 # define arch_task_struct_size (sizeof(struct task_struct))
1983 #endif
1984
1985 #ifdef CONFIG_VMAP_STACK
1986 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1987 {
1988 return t->stack_vm_area;
1989 }
1990 #else
1991 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1992 {
1993 return NULL;
1994 }
1995 #endif
1996
1997 #define TNF_MIGRATED 0x01
1998 #define TNF_NO_GROUP 0x02
1999 #define TNF_SHARED 0x04
2000 #define TNF_FAULT_LOCAL 0x08
2001 #define TNF_MIGRATE_FAIL 0x10
2002
2003 static inline bool in_vfork(struct task_struct *tsk)
2004 {
2005 bool ret;
2006
2007 /*
2008 * need RCU to access ->real_parent if CLONE_VM was used along with
2009 * CLONE_PARENT.
2010 *
2011 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2012 * imply CLONE_VM
2013 *
2014 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2015 * ->real_parent is not necessarily the task doing vfork(), so in
2016 * theory we can't rely on task_lock() if we want to dereference it.
2017 *
2018 * And in this case we can't trust the real_parent->mm == tsk->mm
2019 * check, it can be false negative. But we do not care, if init or
2020 * another oom-unkillable task does this it should blame itself.
2021 */
2022 rcu_read_lock();
2023 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2024 rcu_read_unlock();
2025
2026 return ret;
2027 }
2028
2029 #ifdef CONFIG_NUMA_BALANCING
2030 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2031 extern pid_t task_numa_group_id(struct task_struct *p);
2032 extern void set_numabalancing_state(bool enabled);
2033 extern void task_numa_free(struct task_struct *p);
2034 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2035 int src_nid, int dst_cpu);
2036 #else
2037 static inline void task_numa_fault(int last_node, int node, int pages,
2038 int flags)
2039 {
2040 }
2041 static inline pid_t task_numa_group_id(struct task_struct *p)
2042 {
2043 return 0;
2044 }
2045 static inline void set_numabalancing_state(bool enabled)
2046 {
2047 }
2048 static inline void task_numa_free(struct task_struct *p)
2049 {
2050 }
2051 static inline bool should_numa_migrate_memory(struct task_struct *p,
2052 struct page *page, int src_nid, int dst_cpu)
2053 {
2054 return true;
2055 }
2056 #endif
2057
2058 static inline struct pid *task_pid(struct task_struct *task)
2059 {
2060 return task->pids[PIDTYPE_PID].pid;
2061 }
2062
2063 static inline struct pid *task_tgid(struct task_struct *task)
2064 {
2065 return task->group_leader->pids[PIDTYPE_PID].pid;
2066 }
2067
2068 /*
2069 * Without tasklist or rcu lock it is not safe to dereference
2070 * the result of task_pgrp/task_session even if task == current,
2071 * we can race with another thread doing sys_setsid/sys_setpgid.
2072 */
2073 static inline struct pid *task_pgrp(struct task_struct *task)
2074 {
2075 return task->group_leader->pids[PIDTYPE_PGID].pid;
2076 }
2077
2078 static inline struct pid *task_session(struct task_struct *task)
2079 {
2080 return task->group_leader->pids[PIDTYPE_SID].pid;
2081 }
2082
2083 struct pid_namespace;
2084
2085 /*
2086 * the helpers to get the task's different pids as they are seen
2087 * from various namespaces
2088 *
2089 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2090 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2091 * current.
2092 * task_xid_nr_ns() : id seen from the ns specified;
2093 *
2094 * set_task_vxid() : assigns a virtual id to a task;
2095 *
2096 * see also pid_nr() etc in include/linux/pid.h
2097 */
2098 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2099 struct pid_namespace *ns);
2100
2101 static inline pid_t task_pid_nr(struct task_struct *tsk)
2102 {
2103 return tsk->pid;
2104 }
2105
2106 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2107 struct pid_namespace *ns)
2108 {
2109 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2110 }
2111
2112 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2113 {
2114 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2115 }
2116
2117
2118 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2119 {
2120 return tsk->tgid;
2121 }
2122
2123 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2124
2125 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2126 {
2127 return pid_vnr(task_tgid(tsk));
2128 }
2129
2130
2131 static inline int pid_alive(const struct task_struct *p);
2132 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2133 {
2134 pid_t pid = 0;
2135
2136 rcu_read_lock();
2137 if (pid_alive(tsk))
2138 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2139 rcu_read_unlock();
2140
2141 return pid;
2142 }
2143
2144 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2145 {
2146 return task_ppid_nr_ns(tsk, &init_pid_ns);
2147 }
2148
2149 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2150 struct pid_namespace *ns)
2151 {
2152 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2153 }
2154
2155 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2156 {
2157 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2158 }
2159
2160
2161 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2162 struct pid_namespace *ns)
2163 {
2164 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2165 }
2166
2167 static inline pid_t task_session_vnr(struct task_struct *tsk)
2168 {
2169 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2170 }
2171
2172 /* obsolete, do not use */
2173 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2174 {
2175 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2176 }
2177
2178 /**
2179 * pid_alive - check that a task structure is not stale
2180 * @p: Task structure to be checked.
2181 *
2182 * Test if a process is not yet dead (at most zombie state)
2183 * If pid_alive fails, then pointers within the task structure
2184 * can be stale and must not be dereferenced.
2185 *
2186 * Return: 1 if the process is alive. 0 otherwise.
2187 */
2188 static inline int pid_alive(const struct task_struct *p)
2189 {
2190 return p->pids[PIDTYPE_PID].pid != NULL;
2191 }
2192
2193 /**
2194 * is_global_init - check if a task structure is init. Since init
2195 * is free to have sub-threads we need to check tgid.
2196 * @tsk: Task structure to be checked.
2197 *
2198 * Check if a task structure is the first user space task the kernel created.
2199 *
2200 * Return: 1 if the task structure is init. 0 otherwise.
2201 */
2202 static inline int is_global_init(struct task_struct *tsk)
2203 {
2204 return task_tgid_nr(tsk) == 1;
2205 }
2206
2207 extern struct pid *cad_pid;
2208
2209 extern void free_task(struct task_struct *tsk);
2210 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2211
2212 extern void __put_task_struct(struct task_struct *t);
2213
2214 static inline void put_task_struct(struct task_struct *t)
2215 {
2216 if (atomic_dec_and_test(&t->usage))
2217 __put_task_struct(t);
2218 }
2219
2220 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2221 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2222
2223 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2224 extern void task_cputime(struct task_struct *t,
2225 u64 *utime, u64 *stime);
2226 extern u64 task_gtime(struct task_struct *t);
2227 #else
2228 static inline void task_cputime(struct task_struct *t,
2229 u64 *utime, u64 *stime)
2230 {
2231 *utime = t->utime;
2232 *stime = t->stime;
2233 }
2234
2235 static inline u64 task_gtime(struct task_struct *t)
2236 {
2237 return t->gtime;
2238 }
2239 #endif
2240
2241 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2242 static inline void task_cputime_scaled(struct task_struct *t,
2243 u64 *utimescaled,
2244 u64 *stimescaled)
2245 {
2246 *utimescaled = t->utimescaled;
2247 *stimescaled = t->stimescaled;
2248 }
2249 #else
2250 static inline void task_cputime_scaled(struct task_struct *t,
2251 u64 *utimescaled,
2252 u64 *stimescaled)
2253 {
2254 task_cputime(t, utimescaled, stimescaled);
2255 }
2256 #endif
2257
2258 extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2259 extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2260
2261 /*
2262 * Per process flags
2263 */
2264 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
2265 #define PF_EXITING 0x00000004 /* getting shut down */
2266 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2267 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2268 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2269 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2270 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2271 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2272 #define PF_DUMPCORE 0x00000200 /* dumped core */
2273 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2274 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2275 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2276 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2277 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2278 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2279 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2280 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2281 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2282 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2283 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2284 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2285 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2286 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2287 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2288 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2289 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2290 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2291 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2292
2293 /*
2294 * Only the _current_ task can read/write to tsk->flags, but other
2295 * tasks can access tsk->flags in readonly mode for example
2296 * with tsk_used_math (like during threaded core dumping).
2297 * There is however an exception to this rule during ptrace
2298 * or during fork: the ptracer task is allowed to write to the
2299 * child->flags of its traced child (same goes for fork, the parent
2300 * can write to the child->flags), because we're guaranteed the
2301 * child is not running and in turn not changing child->flags
2302 * at the same time the parent does it.
2303 */
2304 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2305 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2306 #define clear_used_math() clear_stopped_child_used_math(current)
2307 #define set_used_math() set_stopped_child_used_math(current)
2308 #define conditional_stopped_child_used_math(condition, child) \
2309 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2310 #define conditional_used_math(condition) \
2311 conditional_stopped_child_used_math(condition, current)
2312 #define copy_to_stopped_child_used_math(child) \
2313 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2314 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2315 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2316 #define used_math() tsk_used_math(current)
2317
2318 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2319 * __GFP_FS is also cleared as it implies __GFP_IO.
2320 */
2321 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2322 {
2323 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2324 flags &= ~(__GFP_IO | __GFP_FS);
2325 return flags;
2326 }
2327
2328 static inline unsigned int memalloc_noio_save(void)
2329 {
2330 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2331 current->flags |= PF_MEMALLOC_NOIO;
2332 return flags;
2333 }
2334
2335 static inline void memalloc_noio_restore(unsigned int flags)
2336 {
2337 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2338 }
2339
2340 /* Per-process atomic flags. */
2341 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2342 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2343 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2344 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2345
2346
2347 #define TASK_PFA_TEST(name, func) \
2348 static inline bool task_##func(struct task_struct *p) \
2349 { return test_bit(PFA_##name, &p->atomic_flags); }
2350 #define TASK_PFA_SET(name, func) \
2351 static inline void task_set_##func(struct task_struct *p) \
2352 { set_bit(PFA_##name, &p->atomic_flags); }
2353 #define TASK_PFA_CLEAR(name, func) \
2354 static inline void task_clear_##func(struct task_struct *p) \
2355 { clear_bit(PFA_##name, &p->atomic_flags); }
2356
2357 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2358 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2359
2360 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2361 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2362 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2363
2364 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2365 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2366 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2367
2368 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2369 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2370
2371 /*
2372 * task->jobctl flags
2373 */
2374 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2375
2376 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2377 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2378 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2379 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2380 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2381 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2382 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2383
2384 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2385 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2386 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2387 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2388 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2389 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2390 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2391
2392 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2393 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2394
2395 extern bool task_set_jobctl_pending(struct task_struct *task,
2396 unsigned long mask);
2397 extern void task_clear_jobctl_trapping(struct task_struct *task);
2398 extern void task_clear_jobctl_pending(struct task_struct *task,
2399 unsigned long mask);
2400
2401 static inline void rcu_copy_process(struct task_struct *p)
2402 {
2403 #ifdef CONFIG_PREEMPT_RCU
2404 p->rcu_read_lock_nesting = 0;
2405 p->rcu_read_unlock_special.s = 0;
2406 p->rcu_blocked_node = NULL;
2407 INIT_LIST_HEAD(&p->rcu_node_entry);
2408 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2409 #ifdef CONFIG_TASKS_RCU
2410 p->rcu_tasks_holdout = false;
2411 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2412 p->rcu_tasks_idle_cpu = -1;
2413 #endif /* #ifdef CONFIG_TASKS_RCU */
2414 }
2415
2416 static inline void tsk_restore_flags(struct task_struct *task,
2417 unsigned long orig_flags, unsigned long flags)
2418 {
2419 task->flags &= ~flags;
2420 task->flags |= orig_flags & flags;
2421 }
2422
2423 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2424 const struct cpumask *trial);
2425 extern int task_can_attach(struct task_struct *p,
2426 const struct cpumask *cs_cpus_allowed);
2427 #ifdef CONFIG_SMP
2428 extern void do_set_cpus_allowed(struct task_struct *p,
2429 const struct cpumask *new_mask);
2430
2431 extern int set_cpus_allowed_ptr(struct task_struct *p,
2432 const struct cpumask *new_mask);
2433 #else
2434 static inline void do_set_cpus_allowed(struct task_struct *p,
2435 const struct cpumask *new_mask)
2436 {
2437 }
2438 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2439 const struct cpumask *new_mask)
2440 {
2441 if (!cpumask_test_cpu(0, new_mask))
2442 return -EINVAL;
2443 return 0;
2444 }
2445 #endif
2446
2447 #ifdef CONFIG_NO_HZ_COMMON
2448 void calc_load_enter_idle(void);
2449 void calc_load_exit_idle(void);
2450 #else
2451 static inline void calc_load_enter_idle(void) { }
2452 static inline void calc_load_exit_idle(void) { }
2453 #endif /* CONFIG_NO_HZ_COMMON */
2454
2455 #ifndef cpu_relax_yield
2456 #define cpu_relax_yield() cpu_relax()
2457 #endif
2458
2459 /*
2460 * Do not use outside of architecture code which knows its limitations.
2461 *
2462 * sched_clock() has no promise of monotonicity or bounded drift between
2463 * CPUs, use (which you should not) requires disabling IRQs.
2464 *
2465 * Please use one of the three interfaces below.
2466 */
2467 extern unsigned long long notrace sched_clock(void);
2468 /*
2469 * See the comment in kernel/sched/clock.c
2470 */
2471 extern u64 running_clock(void);
2472 extern u64 sched_clock_cpu(int cpu);
2473
2474
2475 extern void sched_clock_init(void);
2476
2477 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2478 static inline void sched_clock_init_late(void)
2479 {
2480 }
2481
2482 static inline void sched_clock_tick(void)
2483 {
2484 }
2485
2486 static inline void clear_sched_clock_stable(void)
2487 {
2488 }
2489
2490 static inline void sched_clock_idle_sleep_event(void)
2491 {
2492 }
2493
2494 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2495 {
2496 }
2497
2498 static inline u64 cpu_clock(int cpu)
2499 {
2500 return sched_clock();
2501 }
2502
2503 static inline u64 local_clock(void)
2504 {
2505 return sched_clock();
2506 }
2507 #else
2508 extern void sched_clock_init_late(void);
2509 /*
2510 * Architectures can set this to 1 if they have specified
2511 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2512 * but then during bootup it turns out that sched_clock()
2513 * is reliable after all:
2514 */
2515 extern int sched_clock_stable(void);
2516 extern void clear_sched_clock_stable(void);
2517
2518 extern void sched_clock_tick(void);
2519 extern void sched_clock_idle_sleep_event(void);
2520 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2521
2522 /*
2523 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2524 * time source that is monotonic per cpu argument and has bounded drift
2525 * between cpus.
2526 *
2527 * ######################### BIG FAT WARNING ##########################
2528 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2529 * # go backwards !! #
2530 * ####################################################################
2531 */
2532 static inline u64 cpu_clock(int cpu)
2533 {
2534 return sched_clock_cpu(cpu);
2535 }
2536
2537 static inline u64 local_clock(void)
2538 {
2539 return sched_clock_cpu(raw_smp_processor_id());
2540 }
2541 #endif
2542
2543 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2544 /*
2545 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2546 * The reason for this explicit opt-in is not to have perf penalty with
2547 * slow sched_clocks.
2548 */
2549 extern void enable_sched_clock_irqtime(void);
2550 extern void disable_sched_clock_irqtime(void);
2551 #else
2552 static inline void enable_sched_clock_irqtime(void) {}
2553 static inline void disable_sched_clock_irqtime(void) {}
2554 #endif
2555
2556 extern unsigned long long
2557 task_sched_runtime(struct task_struct *task);
2558
2559 /* sched_exec is called by processes performing an exec */
2560 #ifdef CONFIG_SMP
2561 extern void sched_exec(void);
2562 #else
2563 #define sched_exec() {}
2564 #endif
2565
2566 extern void sched_clock_idle_sleep_event(void);
2567 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2568
2569 #ifdef CONFIG_HOTPLUG_CPU
2570 extern void idle_task_exit(void);
2571 #else
2572 static inline void idle_task_exit(void) {}
2573 #endif
2574
2575 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2576 extern void wake_up_nohz_cpu(int cpu);
2577 #else
2578 static inline void wake_up_nohz_cpu(int cpu) { }
2579 #endif
2580
2581 #ifdef CONFIG_NO_HZ_FULL
2582 extern u64 scheduler_tick_max_deferment(void);
2583 #endif
2584
2585 #ifdef CONFIG_SCHED_AUTOGROUP
2586 extern void sched_autogroup_create_attach(struct task_struct *p);
2587 extern void sched_autogroup_detach(struct task_struct *p);
2588 extern void sched_autogroup_fork(struct signal_struct *sig);
2589 extern void sched_autogroup_exit(struct signal_struct *sig);
2590 extern void sched_autogroup_exit_task(struct task_struct *p);
2591 #ifdef CONFIG_PROC_FS
2592 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2593 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2594 #endif
2595 #else
2596 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2597 static inline void sched_autogroup_detach(struct task_struct *p) { }
2598 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2599 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2600 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2601 #endif
2602
2603 extern int yield_to(struct task_struct *p, bool preempt);
2604 extern void set_user_nice(struct task_struct *p, long nice);
2605 extern int task_prio(const struct task_struct *p);
2606 /**
2607 * task_nice - return the nice value of a given task.
2608 * @p: the task in question.
2609 *
2610 * Return: The nice value [ -20 ... 0 ... 19 ].
2611 */
2612 static inline int task_nice(const struct task_struct *p)
2613 {
2614 return PRIO_TO_NICE((p)->static_prio);
2615 }
2616 extern int can_nice(const struct task_struct *p, const int nice);
2617 extern int task_curr(const struct task_struct *p);
2618 extern int idle_cpu(int cpu);
2619 extern int sched_setscheduler(struct task_struct *, int,
2620 const struct sched_param *);
2621 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2622 const struct sched_param *);
2623 extern int sched_setattr(struct task_struct *,
2624 const struct sched_attr *);
2625 extern struct task_struct *idle_task(int cpu);
2626 /**
2627 * is_idle_task - is the specified task an idle task?
2628 * @p: the task in question.
2629 *
2630 * Return: 1 if @p is an idle task. 0 otherwise.
2631 */
2632 static inline bool is_idle_task(const struct task_struct *p)
2633 {
2634 return !!(p->flags & PF_IDLE);
2635 }
2636 extern struct task_struct *curr_task(int cpu);
2637 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2638
2639 void yield(void);
2640
2641 union thread_union {
2642 #ifndef CONFIG_THREAD_INFO_IN_TASK
2643 struct thread_info thread_info;
2644 #endif
2645 unsigned long stack[THREAD_SIZE/sizeof(long)];
2646 };
2647
2648 #ifndef __HAVE_ARCH_KSTACK_END
2649 static inline int kstack_end(void *addr)
2650 {
2651 /* Reliable end of stack detection:
2652 * Some APM bios versions misalign the stack
2653 */
2654 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2655 }
2656 #endif
2657
2658 extern union thread_union init_thread_union;
2659 extern struct task_struct init_task;
2660
2661 extern struct mm_struct init_mm;
2662
2663 extern struct pid_namespace init_pid_ns;
2664
2665 /*
2666 * find a task by one of its numerical ids
2667 *
2668 * find_task_by_pid_ns():
2669 * finds a task by its pid in the specified namespace
2670 * find_task_by_vpid():
2671 * finds a task by its virtual pid
2672 *
2673 * see also find_vpid() etc in include/linux/pid.h
2674 */
2675
2676 extern struct task_struct *find_task_by_vpid(pid_t nr);
2677 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2678 struct pid_namespace *ns);
2679
2680 /* per-UID process charging. */
2681 extern struct user_struct * alloc_uid(kuid_t);
2682 static inline struct user_struct *get_uid(struct user_struct *u)
2683 {
2684 atomic_inc(&u->__count);
2685 return u;
2686 }
2687 extern void free_uid(struct user_struct *);
2688
2689 #include <asm/current.h>
2690
2691 extern void xtime_update(unsigned long ticks);
2692
2693 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2694 extern int wake_up_process(struct task_struct *tsk);
2695 extern void wake_up_new_task(struct task_struct *tsk);
2696 #ifdef CONFIG_SMP
2697 extern void kick_process(struct task_struct *tsk);
2698 #else
2699 static inline void kick_process(struct task_struct *tsk) { }
2700 #endif
2701 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2702 extern void sched_dead(struct task_struct *p);
2703
2704 extern void proc_caches_init(void);
2705 extern void flush_signals(struct task_struct *);
2706 extern void ignore_signals(struct task_struct *);
2707 extern void flush_signal_handlers(struct task_struct *, int force_default);
2708 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2709
2710 static inline int kernel_dequeue_signal(siginfo_t *info)
2711 {
2712 struct task_struct *tsk = current;
2713 siginfo_t __info;
2714 int ret;
2715
2716 spin_lock_irq(&tsk->sighand->siglock);
2717 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2718 spin_unlock_irq(&tsk->sighand->siglock);
2719
2720 return ret;
2721 }
2722
2723 static inline void kernel_signal_stop(void)
2724 {
2725 spin_lock_irq(&current->sighand->siglock);
2726 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2727 __set_current_state(TASK_STOPPED);
2728 spin_unlock_irq(&current->sighand->siglock);
2729
2730 schedule();
2731 }
2732
2733 extern void release_task(struct task_struct * p);
2734 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2735 extern int force_sigsegv(int, struct task_struct *);
2736 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2737 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2738 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2739 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2740 const struct cred *, u32);
2741 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2742 extern int kill_pid(struct pid *pid, int sig, int priv);
2743 extern int kill_proc_info(int, struct siginfo *, pid_t);
2744 extern __must_check bool do_notify_parent(struct task_struct *, int);
2745 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2746 extern void force_sig(int, struct task_struct *);
2747 extern int send_sig(int, struct task_struct *, int);
2748 extern int zap_other_threads(struct task_struct *p);
2749 extern struct sigqueue *sigqueue_alloc(void);
2750 extern void sigqueue_free(struct sigqueue *);
2751 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2752 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2753
2754 #ifdef TIF_RESTORE_SIGMASK
2755 /*
2756 * Legacy restore_sigmask accessors. These are inefficient on
2757 * SMP architectures because they require atomic operations.
2758 */
2759
2760 /**
2761 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2762 *
2763 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2764 * will run before returning to user mode, to process the flag. For
2765 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2766 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2767 * arch code will notice on return to user mode, in case those bits
2768 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2769 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2770 */
2771 static inline void set_restore_sigmask(void)
2772 {
2773 set_thread_flag(TIF_RESTORE_SIGMASK);
2774 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2775 }
2776 static inline void clear_restore_sigmask(void)
2777 {
2778 clear_thread_flag(TIF_RESTORE_SIGMASK);
2779 }
2780 static inline bool test_restore_sigmask(void)
2781 {
2782 return test_thread_flag(TIF_RESTORE_SIGMASK);
2783 }
2784 static inline bool test_and_clear_restore_sigmask(void)
2785 {
2786 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2787 }
2788
2789 #else /* TIF_RESTORE_SIGMASK */
2790
2791 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2792 static inline void set_restore_sigmask(void)
2793 {
2794 current->restore_sigmask = true;
2795 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2796 }
2797 static inline void clear_restore_sigmask(void)
2798 {
2799 current->restore_sigmask = false;
2800 }
2801 static inline bool test_restore_sigmask(void)
2802 {
2803 return current->restore_sigmask;
2804 }
2805 static inline bool test_and_clear_restore_sigmask(void)
2806 {
2807 if (!current->restore_sigmask)
2808 return false;
2809 current->restore_sigmask = false;
2810 return true;
2811 }
2812 #endif
2813
2814 static inline void restore_saved_sigmask(void)
2815 {
2816 if (test_and_clear_restore_sigmask())
2817 __set_current_blocked(&current->saved_sigmask);
2818 }
2819
2820 static inline sigset_t *sigmask_to_save(void)
2821 {
2822 sigset_t *res = &current->blocked;
2823 if (unlikely(test_restore_sigmask()))
2824 res = &current->saved_sigmask;
2825 return res;
2826 }
2827
2828 static inline int kill_cad_pid(int sig, int priv)
2829 {
2830 return kill_pid(cad_pid, sig, priv);
2831 }
2832
2833 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2834 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2835 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2836 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2837
2838 /*
2839 * True if we are on the alternate signal stack.
2840 */
2841 static inline int on_sig_stack(unsigned long sp)
2842 {
2843 /*
2844 * If the signal stack is SS_AUTODISARM then, by construction, we
2845 * can't be on the signal stack unless user code deliberately set
2846 * SS_AUTODISARM when we were already on it.
2847 *
2848 * This improves reliability: if user state gets corrupted such that
2849 * the stack pointer points very close to the end of the signal stack,
2850 * then this check will enable the signal to be handled anyway.
2851 */
2852 if (current->sas_ss_flags & SS_AUTODISARM)
2853 return 0;
2854
2855 #ifdef CONFIG_STACK_GROWSUP
2856 return sp >= current->sas_ss_sp &&
2857 sp - current->sas_ss_sp < current->sas_ss_size;
2858 #else
2859 return sp > current->sas_ss_sp &&
2860 sp - current->sas_ss_sp <= current->sas_ss_size;
2861 #endif
2862 }
2863
2864 static inline int sas_ss_flags(unsigned long sp)
2865 {
2866 if (!current->sas_ss_size)
2867 return SS_DISABLE;
2868
2869 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2870 }
2871
2872 static inline void sas_ss_reset(struct task_struct *p)
2873 {
2874 p->sas_ss_sp = 0;
2875 p->sas_ss_size = 0;
2876 p->sas_ss_flags = SS_DISABLE;
2877 }
2878
2879 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2880 {
2881 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2882 #ifdef CONFIG_STACK_GROWSUP
2883 return current->sas_ss_sp;
2884 #else
2885 return current->sas_ss_sp + current->sas_ss_size;
2886 #endif
2887 return sp;
2888 }
2889
2890 /*
2891 * Routines for handling mm_structs
2892 */
2893 extern struct mm_struct * mm_alloc(void);
2894
2895 /**
2896 * mmgrab() - Pin a &struct mm_struct.
2897 * @mm: The &struct mm_struct to pin.
2898 *
2899 * Make sure that @mm will not get freed even after the owning task
2900 * exits. This doesn't guarantee that the associated address space
2901 * will still exist later on and mmget_not_zero() has to be used before
2902 * accessing it.
2903 *
2904 * This is a preferred way to to pin @mm for a longer/unbounded amount
2905 * of time.
2906 *
2907 * Use mmdrop() to release the reference acquired by mmgrab().
2908 *
2909 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2910 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2911 */
2912 static inline void mmgrab(struct mm_struct *mm)
2913 {
2914 atomic_inc(&mm->mm_count);
2915 }
2916
2917 /* mmdrop drops the mm and the page tables */
2918 extern void __mmdrop(struct mm_struct *);
2919 static inline void mmdrop(struct mm_struct *mm)
2920 {
2921 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2922 __mmdrop(mm);
2923 }
2924
2925 static inline void mmdrop_async_fn(struct work_struct *work)
2926 {
2927 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2928 __mmdrop(mm);
2929 }
2930
2931 static inline void mmdrop_async(struct mm_struct *mm)
2932 {
2933 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2934 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2935 schedule_work(&mm->async_put_work);
2936 }
2937 }
2938
2939 /**
2940 * mmget() - Pin the address space associated with a &struct mm_struct.
2941 * @mm: The address space to pin.
2942 *
2943 * Make sure that the address space of the given &struct mm_struct doesn't
2944 * go away. This does not protect against parts of the address space being
2945 * modified or freed, however.
2946 *
2947 * Never use this function to pin this address space for an
2948 * unbounded/indefinite amount of time.
2949 *
2950 * Use mmput() to release the reference acquired by mmget().
2951 *
2952 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2953 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2954 */
2955 static inline void mmget(struct mm_struct *mm)
2956 {
2957 atomic_inc(&mm->mm_users);
2958 }
2959
2960 static inline bool mmget_not_zero(struct mm_struct *mm)
2961 {
2962 return atomic_inc_not_zero(&mm->mm_users);
2963 }
2964
2965 /* mmput gets rid of the mappings and all user-space */
2966 extern void mmput(struct mm_struct *);
2967 #ifdef CONFIG_MMU
2968 /* same as above but performs the slow path from the async context. Can
2969 * be called from the atomic context as well
2970 */
2971 extern void mmput_async(struct mm_struct *);
2972 #endif
2973
2974 /* Grab a reference to a task's mm, if it is not already going away */
2975 extern struct mm_struct *get_task_mm(struct task_struct *task);
2976 /*
2977 * Grab a reference to a task's mm, if it is not already going away
2978 * and ptrace_may_access with the mode parameter passed to it
2979 * succeeds.
2980 */
2981 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2982 /* Remove the current tasks stale references to the old mm_struct */
2983 extern void mm_release(struct task_struct *, struct mm_struct *);
2984
2985 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2986 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2987 struct task_struct *, unsigned long);
2988 #else
2989 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2990 struct task_struct *);
2991
2992 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2993 * via pt_regs, so ignore the tls argument passed via C. */
2994 static inline int copy_thread_tls(
2995 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2996 struct task_struct *p, unsigned long tls)
2997 {
2998 return copy_thread(clone_flags, sp, arg, p);
2999 }
3000 #endif
3001 extern void flush_thread(void);
3002
3003 #ifdef CONFIG_HAVE_EXIT_THREAD
3004 extern void exit_thread(struct task_struct *tsk);
3005 #else
3006 static inline void exit_thread(struct task_struct *tsk)
3007 {
3008 }
3009 #endif
3010
3011 extern void exit_files(struct task_struct *);
3012 extern void __cleanup_sighand(struct sighand_struct *);
3013
3014 extern void exit_itimers(struct signal_struct *);
3015 extern void flush_itimer_signals(void);
3016
3017 extern void do_group_exit(int);
3018
3019 extern int do_execve(struct filename *,
3020 const char __user * const __user *,
3021 const char __user * const __user *);
3022 extern int do_execveat(int, struct filename *,
3023 const char __user * const __user *,
3024 const char __user * const __user *,
3025 int);
3026 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3027 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3028 struct task_struct *fork_idle(int);
3029 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3030
3031 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3032 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3033 {
3034 __set_task_comm(tsk, from, false);
3035 }
3036 extern char *get_task_comm(char *to, struct task_struct *tsk);
3037
3038 #ifdef CONFIG_SMP
3039 void scheduler_ipi(void);
3040 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3041 #else
3042 static inline void scheduler_ipi(void) { }
3043 static inline unsigned long wait_task_inactive(struct task_struct *p,
3044 long match_state)
3045 {
3046 return 1;
3047 }
3048 #endif
3049
3050 #define tasklist_empty() \
3051 list_empty(&init_task.tasks)
3052
3053 #define next_task(p) \
3054 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3055
3056 #define for_each_process(p) \
3057 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3058
3059 extern bool current_is_single_threaded(void);
3060
3061 /*
3062 * Careful: do_each_thread/while_each_thread is a double loop so
3063 * 'break' will not work as expected - use goto instead.
3064 */
3065 #define do_each_thread(g, t) \
3066 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3067
3068 #define while_each_thread(g, t) \
3069 while ((t = next_thread(t)) != g)
3070
3071 #define __for_each_thread(signal, t) \
3072 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3073
3074 #define for_each_thread(p, t) \
3075 __for_each_thread((p)->signal, t)
3076
3077 /* Careful: this is a double loop, 'break' won't work as expected. */
3078 #define for_each_process_thread(p, t) \
3079 for_each_process(p) for_each_thread(p, t)
3080
3081 typedef int (*proc_visitor)(struct task_struct *p, void *data);
3082 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
3083
3084 static inline int get_nr_threads(struct task_struct *tsk)
3085 {
3086 return tsk->signal->nr_threads;
3087 }
3088
3089 static inline bool thread_group_leader(struct task_struct *p)
3090 {
3091 return p->exit_signal >= 0;
3092 }
3093
3094 /* Do to the insanities of de_thread it is possible for a process
3095 * to have the pid of the thread group leader without actually being
3096 * the thread group leader. For iteration through the pids in proc
3097 * all we care about is that we have a task with the appropriate
3098 * pid, we don't actually care if we have the right task.
3099 */
3100 static inline bool has_group_leader_pid(struct task_struct *p)
3101 {
3102 return task_pid(p) == p->signal->leader_pid;
3103 }
3104
3105 static inline
3106 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3107 {
3108 return p1->signal == p2->signal;
3109 }
3110
3111 static inline struct task_struct *next_thread(const struct task_struct *p)
3112 {
3113 return list_entry_rcu(p->thread_group.next,
3114 struct task_struct, thread_group);
3115 }
3116
3117 static inline int thread_group_empty(struct task_struct *p)
3118 {
3119 return list_empty(&p->thread_group);
3120 }
3121
3122 #define delay_group_leader(p) \
3123 (thread_group_leader(p) && !thread_group_empty(p))
3124
3125 /*
3126 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3127 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3128 * pins the final release of task.io_context. Also protects ->cpuset and
3129 * ->cgroup.subsys[]. And ->vfork_done.
3130 *
3131 * Nests both inside and outside of read_lock(&tasklist_lock).
3132 * It must not be nested with write_lock_irq(&tasklist_lock),
3133 * neither inside nor outside.
3134 */
3135 static inline void task_lock(struct task_struct *p)
3136 {
3137 spin_lock(&p->alloc_lock);
3138 }
3139
3140 static inline void task_unlock(struct task_struct *p)
3141 {
3142 spin_unlock(&p->alloc_lock);
3143 }
3144
3145 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3146 unsigned long *flags);
3147
3148 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3149 unsigned long *flags)
3150 {
3151 struct sighand_struct *ret;
3152
3153 ret = __lock_task_sighand(tsk, flags);
3154 (void)__cond_lock(&tsk->sighand->siglock, ret);
3155 return ret;
3156 }
3157
3158 static inline void unlock_task_sighand(struct task_struct *tsk,
3159 unsigned long *flags)
3160 {
3161 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3162 }
3163
3164 #ifdef CONFIG_THREAD_INFO_IN_TASK
3165
3166 static inline struct thread_info *task_thread_info(struct task_struct *task)
3167 {
3168 return &task->thread_info;
3169 }
3170
3171 /*
3172 * When accessing the stack of a non-current task that might exit, use
3173 * try_get_task_stack() instead. task_stack_page will return a pointer
3174 * that could get freed out from under you.
3175 */
3176 static inline void *task_stack_page(const struct task_struct *task)
3177 {
3178 return task->stack;
3179 }
3180
3181 #define setup_thread_stack(new,old) do { } while(0)
3182
3183 static inline unsigned long *end_of_stack(const struct task_struct *task)
3184 {
3185 return task->stack;
3186 }
3187
3188 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3189
3190 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3191 #define task_stack_page(task) ((void *)(task)->stack)
3192
3193 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3194 {
3195 *task_thread_info(p) = *task_thread_info(org);
3196 task_thread_info(p)->task = p;
3197 }
3198
3199 /*
3200 * Return the address of the last usable long on the stack.
3201 *
3202 * When the stack grows down, this is just above the thread
3203 * info struct. Going any lower will corrupt the threadinfo.
3204 *
3205 * When the stack grows up, this is the highest address.
3206 * Beyond that position, we corrupt data on the next page.
3207 */
3208 static inline unsigned long *end_of_stack(struct task_struct *p)
3209 {
3210 #ifdef CONFIG_STACK_GROWSUP
3211 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3212 #else
3213 return (unsigned long *)(task_thread_info(p) + 1);
3214 #endif
3215 }
3216
3217 #endif
3218
3219 #ifdef CONFIG_THREAD_INFO_IN_TASK
3220 static inline void *try_get_task_stack(struct task_struct *tsk)
3221 {
3222 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3223 task_stack_page(tsk) : NULL;
3224 }
3225
3226 extern void put_task_stack(struct task_struct *tsk);
3227 #else
3228 static inline void *try_get_task_stack(struct task_struct *tsk)
3229 {
3230 return task_stack_page(tsk);
3231 }
3232
3233 static inline void put_task_stack(struct task_struct *tsk) {}
3234 #endif
3235
3236 #define task_stack_end_corrupted(task) \
3237 (*(end_of_stack(task)) != STACK_END_MAGIC)
3238
3239 static inline int object_is_on_stack(void *obj)
3240 {
3241 void *stack = task_stack_page(current);
3242
3243 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3244 }
3245
3246 extern void thread_stack_cache_init(void);
3247
3248 #ifdef CONFIG_DEBUG_STACK_USAGE
3249 static inline unsigned long stack_not_used(struct task_struct *p)
3250 {
3251 unsigned long *n = end_of_stack(p);
3252
3253 do { /* Skip over canary */
3254 # ifdef CONFIG_STACK_GROWSUP
3255 n--;
3256 # else
3257 n++;
3258 # endif
3259 } while (!*n);
3260
3261 # ifdef CONFIG_STACK_GROWSUP
3262 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3263 # else
3264 return (unsigned long)n - (unsigned long)end_of_stack(p);
3265 # endif
3266 }
3267 #endif
3268 extern void set_task_stack_end_magic(struct task_struct *tsk);
3269
3270 /* set thread flags in other task's structures
3271 * - see asm/thread_info.h for TIF_xxxx flags available
3272 */
3273 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3274 {
3275 set_ti_thread_flag(task_thread_info(tsk), flag);
3276 }
3277
3278 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3279 {
3280 clear_ti_thread_flag(task_thread_info(tsk), flag);
3281 }
3282
3283 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3284 {
3285 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3286 }
3287
3288 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3289 {
3290 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3291 }
3292
3293 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3294 {
3295 return test_ti_thread_flag(task_thread_info(tsk), flag);
3296 }
3297
3298 static inline void set_tsk_need_resched(struct task_struct *tsk)
3299 {
3300 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3301 }
3302
3303 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3304 {
3305 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3306 }
3307
3308 static inline int test_tsk_need_resched(struct task_struct *tsk)
3309 {
3310 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3311 }
3312
3313 static inline int restart_syscall(void)
3314 {
3315 set_tsk_thread_flag(current, TIF_SIGPENDING);
3316 return -ERESTARTNOINTR;
3317 }
3318
3319 static inline int signal_pending(struct task_struct *p)
3320 {
3321 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3322 }
3323
3324 static inline int __fatal_signal_pending(struct task_struct *p)
3325 {
3326 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3327 }
3328
3329 static inline int fatal_signal_pending(struct task_struct *p)
3330 {
3331 return signal_pending(p) && __fatal_signal_pending(p);
3332 }
3333
3334 static inline int signal_pending_state(long state, struct task_struct *p)
3335 {
3336 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3337 return 0;
3338 if (!signal_pending(p))
3339 return 0;
3340
3341 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3342 }
3343
3344 /*
3345 * cond_resched() and cond_resched_lock(): latency reduction via
3346 * explicit rescheduling in places that are safe. The return
3347 * value indicates whether a reschedule was done in fact.
3348 * cond_resched_lock() will drop the spinlock before scheduling,
3349 * cond_resched_softirq() will enable bhs before scheduling.
3350 */
3351 #ifndef CONFIG_PREEMPT
3352 extern int _cond_resched(void);
3353 #else
3354 static inline int _cond_resched(void) { return 0; }
3355 #endif
3356
3357 #define cond_resched() ({ \
3358 ___might_sleep(__FILE__, __LINE__, 0); \
3359 _cond_resched(); \
3360 })
3361
3362 extern int __cond_resched_lock(spinlock_t *lock);
3363
3364 #define cond_resched_lock(lock) ({ \
3365 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3366 __cond_resched_lock(lock); \
3367 })
3368
3369 extern int __cond_resched_softirq(void);
3370
3371 #define cond_resched_softirq() ({ \
3372 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3373 __cond_resched_softirq(); \
3374 })
3375
3376 static inline void cond_resched_rcu(void)
3377 {
3378 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3379 rcu_read_unlock();
3380 cond_resched();
3381 rcu_read_lock();
3382 #endif
3383 }
3384
3385 /*
3386 * Does a critical section need to be broken due to another
3387 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3388 * but a general need for low latency)
3389 */
3390 static inline int spin_needbreak(spinlock_t *lock)
3391 {
3392 #ifdef CONFIG_PREEMPT
3393 return spin_is_contended(lock);
3394 #else
3395 return 0;
3396 #endif
3397 }
3398
3399 /*
3400 * Idle thread specific functions to determine the need_resched
3401 * polling state.
3402 */
3403 #ifdef TIF_POLLING_NRFLAG
3404 static inline int tsk_is_polling(struct task_struct *p)
3405 {
3406 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3407 }
3408
3409 static inline void __current_set_polling(void)
3410 {
3411 set_thread_flag(TIF_POLLING_NRFLAG);
3412 }
3413
3414 static inline bool __must_check current_set_polling_and_test(void)
3415 {
3416 __current_set_polling();
3417
3418 /*
3419 * Polling state must be visible before we test NEED_RESCHED,
3420 * paired by resched_curr()
3421 */
3422 smp_mb__after_atomic();
3423
3424 return unlikely(tif_need_resched());
3425 }
3426
3427 static inline void __current_clr_polling(void)
3428 {
3429 clear_thread_flag(TIF_POLLING_NRFLAG);
3430 }
3431
3432 static inline bool __must_check current_clr_polling_and_test(void)
3433 {
3434 __current_clr_polling();
3435
3436 /*
3437 * Polling state must be visible before we test NEED_RESCHED,
3438 * paired by resched_curr()
3439 */
3440 smp_mb__after_atomic();
3441
3442 return unlikely(tif_need_resched());
3443 }
3444
3445 #else
3446 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3447 static inline void __current_set_polling(void) { }
3448 static inline void __current_clr_polling(void) { }
3449
3450 static inline bool __must_check current_set_polling_and_test(void)
3451 {
3452 return unlikely(tif_need_resched());
3453 }
3454 static inline bool __must_check current_clr_polling_and_test(void)
3455 {
3456 return unlikely(tif_need_resched());
3457 }
3458 #endif
3459
3460 static inline void current_clr_polling(void)
3461 {
3462 __current_clr_polling();
3463
3464 /*
3465 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3466 * Once the bit is cleared, we'll get IPIs with every new
3467 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3468 * fold.
3469 */
3470 smp_mb(); /* paired with resched_curr() */
3471
3472 preempt_fold_need_resched();
3473 }
3474
3475 static __always_inline bool need_resched(void)
3476 {
3477 return unlikely(tif_need_resched());
3478 }
3479
3480 /*
3481 * Thread group CPU time accounting.
3482 */
3483 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3484 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3485
3486 /*
3487 * Reevaluate whether the task has signals pending delivery.
3488 * Wake the task if so.
3489 * This is required every time the blocked sigset_t changes.
3490 * callers must hold sighand->siglock.
3491 */
3492 extern void recalc_sigpending_and_wake(struct task_struct *t);
3493 extern void recalc_sigpending(void);
3494
3495 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3496
3497 static inline void signal_wake_up(struct task_struct *t, bool resume)
3498 {
3499 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3500 }
3501 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3502 {
3503 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3504 }
3505
3506 /*
3507 * Wrappers for p->thread_info->cpu access. No-op on UP.
3508 */
3509 #ifdef CONFIG_SMP
3510
3511 static inline unsigned int task_cpu(const struct task_struct *p)
3512 {
3513 #ifdef CONFIG_THREAD_INFO_IN_TASK
3514 return p->cpu;
3515 #else
3516 return task_thread_info(p)->cpu;
3517 #endif
3518 }
3519
3520 static inline int task_node(const struct task_struct *p)
3521 {
3522 return cpu_to_node(task_cpu(p));
3523 }
3524
3525 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3526
3527 #else
3528
3529 static inline unsigned int task_cpu(const struct task_struct *p)
3530 {
3531 return 0;
3532 }
3533
3534 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3535 {
3536 }
3537
3538 #endif /* CONFIG_SMP */
3539
3540 /*
3541 * In order to reduce various lock holder preemption latencies provide an
3542 * interface to see if a vCPU is currently running or not.
3543 *
3544 * This allows us to terminate optimistic spin loops and block, analogous to
3545 * the native optimistic spin heuristic of testing if the lock owner task is
3546 * running or not.
3547 */
3548 #ifndef vcpu_is_preempted
3549 # define vcpu_is_preempted(cpu) false
3550 #endif
3551
3552 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3553 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3554
3555 #ifdef CONFIG_CGROUP_SCHED
3556 extern struct task_group root_task_group;
3557 #endif /* CONFIG_CGROUP_SCHED */
3558
3559 extern int task_can_switch_user(struct user_struct *up,
3560 struct task_struct *tsk);
3561
3562 #ifdef CONFIG_TASK_XACCT
3563 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3564 {
3565 tsk->ioac.rchar += amt;
3566 }
3567
3568 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3569 {
3570 tsk->ioac.wchar += amt;
3571 }
3572
3573 static inline void inc_syscr(struct task_struct *tsk)
3574 {
3575 tsk->ioac.syscr++;
3576 }
3577
3578 static inline void inc_syscw(struct task_struct *tsk)
3579 {
3580 tsk->ioac.syscw++;
3581 }
3582 #else
3583 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3584 {
3585 }
3586
3587 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3588 {
3589 }
3590
3591 static inline void inc_syscr(struct task_struct *tsk)
3592 {
3593 }
3594
3595 static inline void inc_syscw(struct task_struct *tsk)
3596 {
3597 }
3598 #endif
3599
3600 #ifndef TASK_SIZE_OF
3601 #define TASK_SIZE_OF(tsk) TASK_SIZE
3602 #endif
3603
3604 #ifdef CONFIG_MEMCG
3605 extern void mm_update_next_owner(struct mm_struct *mm);
3606 #else
3607 static inline void mm_update_next_owner(struct mm_struct *mm)
3608 {
3609 }
3610 #endif /* CONFIG_MEMCG */
3611
3612 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3613 unsigned int limit)
3614 {
3615 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3616 }
3617
3618 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3619 unsigned int limit)
3620 {
3621 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3622 }
3623
3624 static inline unsigned long rlimit(unsigned int limit)
3625 {
3626 return task_rlimit(current, limit);
3627 }
3628
3629 static inline unsigned long rlimit_max(unsigned int limit)
3630 {
3631 return task_rlimit_max(current, limit);
3632 }
3633
3634 #define SCHED_CPUFREQ_RT (1U << 0)
3635 #define SCHED_CPUFREQ_DL (1U << 1)
3636 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3637
3638 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3639
3640 #ifdef CONFIG_CPU_FREQ
3641 struct update_util_data {
3642 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3643 };
3644
3645 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3646 void (*func)(struct update_util_data *data, u64 time,
3647 unsigned int flags));
3648 void cpufreq_remove_update_util_hook(int cpu);
3649 #endif /* CONFIG_CPU_FREQ */
3650
3651 #endif