]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
Merge branch 'linus' into sched/core, to resolve conflicts
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/plist.h>
20 #include <linux/rbtree.h>
21 #include <linux/thread_info.h>
22 #include <linux/cpumask.h>
23 #include <linux/errno.h>
24 #include <linux/nodemask.h>
25 #include <linux/mm_types.h>
26 #include <linux/preempt_mask.h>
27
28 #include <asm/page.h>
29 #include <asm/ptrace.h>
30 #include <asm/cputime.h>
31
32 #include <linux/smp.h>
33 #include <linux/sem.h>
34 #include <linux/signal.h>
35 #include <linux/compiler.h>
36 #include <linux/completion.h>
37 #include <linux/pid.h>
38 #include <linux/percpu.h>
39 #include <linux/topology.h>
40 #include <linux/proportions.h>
41 #include <linux/seccomp.h>
42 #include <linux/rcupdate.h>
43 #include <linux/rculist.h>
44 #include <linux/rtmutex.h>
45
46 #include <linux/time.h>
47 #include <linux/param.h>
48 #include <linux/resource.h>
49 #include <linux/timer.h>
50 #include <linux/hrtimer.h>
51 #include <linux/task_io_accounting.h>
52 #include <linux/latencytop.h>
53 #include <linux/cred.h>
54 #include <linux/llist.h>
55 #include <linux/uidgid.h>
56 #include <linux/gfp.h>
57
58 #include <asm/processor.h>
59
60 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
61
62 /*
63 * Extended scheduling parameters data structure.
64 *
65 * This is needed because the original struct sched_param can not be
66 * altered without introducing ABI issues with legacy applications
67 * (e.g., in sched_getparam()).
68 *
69 * However, the possibility of specifying more than just a priority for
70 * the tasks may be useful for a wide variety of application fields, e.g.,
71 * multimedia, streaming, automation and control, and many others.
72 *
73 * This variant (sched_attr) is meant at describing a so-called
74 * sporadic time-constrained task. In such model a task is specified by:
75 * - the activation period or minimum instance inter-arrival time;
76 * - the maximum (or average, depending on the actual scheduling
77 * discipline) computation time of all instances, a.k.a. runtime;
78 * - the deadline (relative to the actual activation time) of each
79 * instance.
80 * Very briefly, a periodic (sporadic) task asks for the execution of
81 * some specific computation --which is typically called an instance--
82 * (at most) every period. Moreover, each instance typically lasts no more
83 * than the runtime and must be completed by time instant t equal to
84 * the instance activation time + the deadline.
85 *
86 * This is reflected by the actual fields of the sched_attr structure:
87 *
88 * @size size of the structure, for fwd/bwd compat.
89 *
90 * @sched_policy task's scheduling policy
91 * @sched_flags for customizing the scheduler behaviour
92 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
93 * @sched_priority task's static priority (SCHED_FIFO/RR)
94 * @sched_deadline representative of the task's deadline
95 * @sched_runtime representative of the task's runtime
96 * @sched_period representative of the task's period
97 *
98 * Given this task model, there are a multiplicity of scheduling algorithms
99 * and policies, that can be used to ensure all the tasks will make their
100 * timing constraints.
101 *
102 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
103 * only user of this new interface. More information about the algorithm
104 * available in the scheduling class file or in Documentation/.
105 */
106 struct sched_attr {
107 u32 size;
108
109 u32 sched_policy;
110 u64 sched_flags;
111
112 /* SCHED_NORMAL, SCHED_BATCH */
113 s32 sched_nice;
114
115 /* SCHED_FIFO, SCHED_RR */
116 u32 sched_priority;
117
118 /* SCHED_DEADLINE */
119 u64 sched_runtime;
120 u64 sched_deadline;
121 u64 sched_period;
122 };
123
124 struct exec_domain;
125 struct futex_pi_state;
126 struct robust_list_head;
127 struct bio_list;
128 struct fs_struct;
129 struct perf_event_context;
130 struct blk_plug;
131
132 /*
133 * List of flags we want to share for kernel threads,
134 * if only because they are not used by them anyway.
135 */
136 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
137
138 /*
139 * These are the constant used to fake the fixed-point load-average
140 * counting. Some notes:
141 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
142 * a load-average precision of 10 bits integer + 11 bits fractional
143 * - if you want to count load-averages more often, you need more
144 * precision, or rounding will get you. With 2-second counting freq,
145 * the EXP_n values would be 1981, 2034 and 2043 if still using only
146 * 11 bit fractions.
147 */
148 extern unsigned long avenrun[]; /* Load averages */
149 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
150
151 #define FSHIFT 11 /* nr of bits of precision */
152 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
153 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
154 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
155 #define EXP_5 2014 /* 1/exp(5sec/5min) */
156 #define EXP_15 2037 /* 1/exp(5sec/15min) */
157
158 #define CALC_LOAD(load,exp,n) \
159 load *= exp; \
160 load += n*(FIXED_1-exp); \
161 load >>= FSHIFT;
162
163 extern unsigned long total_forks;
164 extern int nr_threads;
165 DECLARE_PER_CPU(unsigned long, process_counts);
166 extern int nr_processes(void);
167 extern unsigned long nr_running(void);
168 extern unsigned long nr_iowait(void);
169 extern unsigned long nr_iowait_cpu(int cpu);
170 extern unsigned long this_cpu_load(void);
171
172
173 extern void calc_global_load(unsigned long ticks);
174 extern void update_cpu_load_nohz(void);
175
176 extern unsigned long get_parent_ip(unsigned long addr);
177
178 extern void dump_cpu_task(int cpu);
179
180 struct seq_file;
181 struct cfs_rq;
182 struct task_group;
183 #ifdef CONFIG_SCHED_DEBUG
184 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
185 extern void proc_sched_set_task(struct task_struct *p);
186 extern void
187 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
188 #endif
189
190 /*
191 * Task state bitmask. NOTE! These bits are also
192 * encoded in fs/proc/array.c: get_task_state().
193 *
194 * We have two separate sets of flags: task->state
195 * is about runnability, while task->exit_state are
196 * about the task exiting. Confusing, but this way
197 * modifying one set can't modify the other one by
198 * mistake.
199 */
200 #define TASK_RUNNING 0
201 #define TASK_INTERRUPTIBLE 1
202 #define TASK_UNINTERRUPTIBLE 2
203 #define __TASK_STOPPED 4
204 #define __TASK_TRACED 8
205 /* in tsk->exit_state */
206 #define EXIT_ZOMBIE 16
207 #define EXIT_DEAD 32
208 /* in tsk->state again */
209 #define TASK_DEAD 64
210 #define TASK_WAKEKILL 128
211 #define TASK_WAKING 256
212 #define TASK_PARKED 512
213 #define TASK_STATE_MAX 1024
214
215 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
216
217 extern char ___assert_task_state[1 - 2*!!(
218 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
219
220 /* Convenience macros for the sake of set_task_state */
221 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
222 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
223 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
224
225 /* Convenience macros for the sake of wake_up */
226 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
227 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
228
229 /* get_task_state() */
230 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
231 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
232 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
233
234 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
235 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
236 #define task_is_stopped_or_traced(task) \
237 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
238 #define task_contributes_to_load(task) \
239 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
240 (task->flags & PF_FROZEN) == 0)
241
242 #define __set_task_state(tsk, state_value) \
243 do { (tsk)->state = (state_value); } while (0)
244 #define set_task_state(tsk, state_value) \
245 set_mb((tsk)->state, (state_value))
246
247 /*
248 * set_current_state() includes a barrier so that the write of current->state
249 * is correctly serialised wrt the caller's subsequent test of whether to
250 * actually sleep:
251 *
252 * set_current_state(TASK_UNINTERRUPTIBLE);
253 * if (do_i_need_to_sleep())
254 * schedule();
255 *
256 * If the caller does not need such serialisation then use __set_current_state()
257 */
258 #define __set_current_state(state_value) \
259 do { current->state = (state_value); } while (0)
260 #define set_current_state(state_value) \
261 set_mb(current->state, (state_value))
262
263 /* Task command name length */
264 #define TASK_COMM_LEN 16
265
266 #include <linux/spinlock.h>
267
268 /*
269 * This serializes "schedule()" and also protects
270 * the run-queue from deletions/modifications (but
271 * _adding_ to the beginning of the run-queue has
272 * a separate lock).
273 */
274 extern rwlock_t tasklist_lock;
275 extern spinlock_t mmlist_lock;
276
277 struct task_struct;
278
279 #ifdef CONFIG_PROVE_RCU
280 extern int lockdep_tasklist_lock_is_held(void);
281 #endif /* #ifdef CONFIG_PROVE_RCU */
282
283 extern void sched_init(void);
284 extern void sched_init_smp(void);
285 extern asmlinkage void schedule_tail(struct task_struct *prev);
286 extern void init_idle(struct task_struct *idle, int cpu);
287 extern void init_idle_bootup_task(struct task_struct *idle);
288
289 extern int runqueue_is_locked(int cpu);
290
291 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
292 extern void nohz_balance_enter_idle(int cpu);
293 extern void set_cpu_sd_state_idle(void);
294 extern int get_nohz_timer_target(void);
295 #else
296 static inline void nohz_balance_enter_idle(int cpu) { }
297 static inline void set_cpu_sd_state_idle(void) { }
298 #endif
299
300 /*
301 * Only dump TASK_* tasks. (0 for all tasks)
302 */
303 extern void show_state_filter(unsigned long state_filter);
304
305 static inline void show_state(void)
306 {
307 show_state_filter(0);
308 }
309
310 extern void show_regs(struct pt_regs *);
311
312 /*
313 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
314 * task), SP is the stack pointer of the first frame that should be shown in the back
315 * trace (or NULL if the entire call-chain of the task should be shown).
316 */
317 extern void show_stack(struct task_struct *task, unsigned long *sp);
318
319 void io_schedule(void);
320 long io_schedule_timeout(long timeout);
321
322 extern void cpu_init (void);
323 extern void trap_init(void);
324 extern void update_process_times(int user);
325 extern void scheduler_tick(void);
326
327 extern void sched_show_task(struct task_struct *p);
328
329 #ifdef CONFIG_LOCKUP_DETECTOR
330 extern void touch_softlockup_watchdog(void);
331 extern void touch_softlockup_watchdog_sync(void);
332 extern void touch_all_softlockup_watchdogs(void);
333 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
334 void __user *buffer,
335 size_t *lenp, loff_t *ppos);
336 extern unsigned int softlockup_panic;
337 void lockup_detector_init(void);
338 #else
339 static inline void touch_softlockup_watchdog(void)
340 {
341 }
342 static inline void touch_softlockup_watchdog_sync(void)
343 {
344 }
345 static inline void touch_all_softlockup_watchdogs(void)
346 {
347 }
348 static inline void lockup_detector_init(void)
349 {
350 }
351 #endif
352
353 #ifdef CONFIG_DETECT_HUNG_TASK
354 void reset_hung_task_detector(void);
355 #else
356 static inline void reset_hung_task_detector(void)
357 {
358 }
359 #endif
360
361 /* Attach to any functions which should be ignored in wchan output. */
362 #define __sched __attribute__((__section__(".sched.text")))
363
364 /* Linker adds these: start and end of __sched functions */
365 extern char __sched_text_start[], __sched_text_end[];
366
367 /* Is this address in the __sched functions? */
368 extern int in_sched_functions(unsigned long addr);
369
370 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
371 extern signed long schedule_timeout(signed long timeout);
372 extern signed long schedule_timeout_interruptible(signed long timeout);
373 extern signed long schedule_timeout_killable(signed long timeout);
374 extern signed long schedule_timeout_uninterruptible(signed long timeout);
375 asmlinkage void schedule(void);
376 extern void schedule_preempt_disabled(void);
377
378 struct nsproxy;
379 struct user_namespace;
380
381 #ifdef CONFIG_MMU
382 extern void arch_pick_mmap_layout(struct mm_struct *mm);
383 extern unsigned long
384 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
385 unsigned long, unsigned long);
386 extern unsigned long
387 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
388 unsigned long len, unsigned long pgoff,
389 unsigned long flags);
390 #else
391 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
392 #endif
393
394 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
395 #define SUID_DUMP_USER 1 /* Dump as user of process */
396 #define SUID_DUMP_ROOT 2 /* Dump as root */
397
398 /* mm flags */
399
400 /* for SUID_DUMP_* above */
401 #define MMF_DUMPABLE_BITS 2
402 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
403
404 extern void set_dumpable(struct mm_struct *mm, int value);
405 /*
406 * This returns the actual value of the suid_dumpable flag. For things
407 * that are using this for checking for privilege transitions, it must
408 * test against SUID_DUMP_USER rather than treating it as a boolean
409 * value.
410 */
411 static inline int __get_dumpable(unsigned long mm_flags)
412 {
413 return mm_flags & MMF_DUMPABLE_MASK;
414 }
415
416 static inline int get_dumpable(struct mm_struct *mm)
417 {
418 return __get_dumpable(mm->flags);
419 }
420
421 /* coredump filter bits */
422 #define MMF_DUMP_ANON_PRIVATE 2
423 #define MMF_DUMP_ANON_SHARED 3
424 #define MMF_DUMP_MAPPED_PRIVATE 4
425 #define MMF_DUMP_MAPPED_SHARED 5
426 #define MMF_DUMP_ELF_HEADERS 6
427 #define MMF_DUMP_HUGETLB_PRIVATE 7
428 #define MMF_DUMP_HUGETLB_SHARED 8
429
430 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
431 #define MMF_DUMP_FILTER_BITS 7
432 #define MMF_DUMP_FILTER_MASK \
433 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
434 #define MMF_DUMP_FILTER_DEFAULT \
435 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
436 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
437
438 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
439 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
440 #else
441 # define MMF_DUMP_MASK_DEFAULT_ELF 0
442 #endif
443 /* leave room for more dump flags */
444 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
445 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
446 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
447
448 #define MMF_HAS_UPROBES 19 /* has uprobes */
449 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
450
451 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
452
453 struct sighand_struct {
454 atomic_t count;
455 struct k_sigaction action[_NSIG];
456 spinlock_t siglock;
457 wait_queue_head_t signalfd_wqh;
458 };
459
460 struct pacct_struct {
461 int ac_flag;
462 long ac_exitcode;
463 unsigned long ac_mem;
464 cputime_t ac_utime, ac_stime;
465 unsigned long ac_minflt, ac_majflt;
466 };
467
468 struct cpu_itimer {
469 cputime_t expires;
470 cputime_t incr;
471 u32 error;
472 u32 incr_error;
473 };
474
475 /**
476 * struct cputime - snaphsot of system and user cputime
477 * @utime: time spent in user mode
478 * @stime: time spent in system mode
479 *
480 * Gathers a generic snapshot of user and system time.
481 */
482 struct cputime {
483 cputime_t utime;
484 cputime_t stime;
485 };
486
487 /**
488 * struct task_cputime - collected CPU time counts
489 * @utime: time spent in user mode, in &cputime_t units
490 * @stime: time spent in kernel mode, in &cputime_t units
491 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
492 *
493 * This is an extension of struct cputime that includes the total runtime
494 * spent by the task from the scheduler point of view.
495 *
496 * As a result, this structure groups together three kinds of CPU time
497 * that are tracked for threads and thread groups. Most things considering
498 * CPU time want to group these counts together and treat all three
499 * of them in parallel.
500 */
501 struct task_cputime {
502 cputime_t utime;
503 cputime_t stime;
504 unsigned long long sum_exec_runtime;
505 };
506 /* Alternate field names when used to cache expirations. */
507 #define prof_exp stime
508 #define virt_exp utime
509 #define sched_exp sum_exec_runtime
510
511 #define INIT_CPUTIME \
512 (struct task_cputime) { \
513 .utime = 0, \
514 .stime = 0, \
515 .sum_exec_runtime = 0, \
516 }
517
518 #ifdef CONFIG_PREEMPT_COUNT
519 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
520 #else
521 #define PREEMPT_DISABLED PREEMPT_ENABLED
522 #endif
523
524 /*
525 * Disable preemption until the scheduler is running.
526 * Reset by start_kernel()->sched_init()->init_idle().
527 *
528 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
529 * before the scheduler is active -- see should_resched().
530 */
531 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
532
533 /**
534 * struct thread_group_cputimer - thread group interval timer counts
535 * @cputime: thread group interval timers.
536 * @running: non-zero when there are timers running and
537 * @cputime receives updates.
538 * @lock: lock for fields in this struct.
539 *
540 * This structure contains the version of task_cputime, above, that is
541 * used for thread group CPU timer calculations.
542 */
543 struct thread_group_cputimer {
544 struct task_cputime cputime;
545 int running;
546 raw_spinlock_t lock;
547 };
548
549 #include <linux/rwsem.h>
550 struct autogroup;
551
552 /*
553 * NOTE! "signal_struct" does not have its own
554 * locking, because a shared signal_struct always
555 * implies a shared sighand_struct, so locking
556 * sighand_struct is always a proper superset of
557 * the locking of signal_struct.
558 */
559 struct signal_struct {
560 atomic_t sigcnt;
561 atomic_t live;
562 int nr_threads;
563 struct list_head thread_head;
564
565 wait_queue_head_t wait_chldexit; /* for wait4() */
566
567 /* current thread group signal load-balancing target: */
568 struct task_struct *curr_target;
569
570 /* shared signal handling: */
571 struct sigpending shared_pending;
572
573 /* thread group exit support */
574 int group_exit_code;
575 /* overloaded:
576 * - notify group_exit_task when ->count is equal to notify_count
577 * - everyone except group_exit_task is stopped during signal delivery
578 * of fatal signals, group_exit_task processes the signal.
579 */
580 int notify_count;
581 struct task_struct *group_exit_task;
582
583 /* thread group stop support, overloads group_exit_code too */
584 int group_stop_count;
585 unsigned int flags; /* see SIGNAL_* flags below */
586
587 /*
588 * PR_SET_CHILD_SUBREAPER marks a process, like a service
589 * manager, to re-parent orphan (double-forking) child processes
590 * to this process instead of 'init'. The service manager is
591 * able to receive SIGCHLD signals and is able to investigate
592 * the process until it calls wait(). All children of this
593 * process will inherit a flag if they should look for a
594 * child_subreaper process at exit.
595 */
596 unsigned int is_child_subreaper:1;
597 unsigned int has_child_subreaper:1;
598
599 /* POSIX.1b Interval Timers */
600 int posix_timer_id;
601 struct list_head posix_timers;
602
603 /* ITIMER_REAL timer for the process */
604 struct hrtimer real_timer;
605 struct pid *leader_pid;
606 ktime_t it_real_incr;
607
608 /*
609 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
610 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
611 * values are defined to 0 and 1 respectively
612 */
613 struct cpu_itimer it[2];
614
615 /*
616 * Thread group totals for process CPU timers.
617 * See thread_group_cputimer(), et al, for details.
618 */
619 struct thread_group_cputimer cputimer;
620
621 /* Earliest-expiration cache. */
622 struct task_cputime cputime_expires;
623
624 struct list_head cpu_timers[3];
625
626 struct pid *tty_old_pgrp;
627
628 /* boolean value for session group leader */
629 int leader;
630
631 struct tty_struct *tty; /* NULL if no tty */
632
633 #ifdef CONFIG_SCHED_AUTOGROUP
634 struct autogroup *autogroup;
635 #endif
636 /*
637 * Cumulative resource counters for dead threads in the group,
638 * and for reaped dead child processes forked by this group.
639 * Live threads maintain their own counters and add to these
640 * in __exit_signal, except for the group leader.
641 */
642 cputime_t utime, stime, cutime, cstime;
643 cputime_t gtime;
644 cputime_t cgtime;
645 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
646 struct cputime prev_cputime;
647 #endif
648 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
649 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
650 unsigned long inblock, oublock, cinblock, coublock;
651 unsigned long maxrss, cmaxrss;
652 struct task_io_accounting ioac;
653
654 /*
655 * Cumulative ns of schedule CPU time fo dead threads in the
656 * group, not including a zombie group leader, (This only differs
657 * from jiffies_to_ns(utime + stime) if sched_clock uses something
658 * other than jiffies.)
659 */
660 unsigned long long sum_sched_runtime;
661
662 /*
663 * We don't bother to synchronize most readers of this at all,
664 * because there is no reader checking a limit that actually needs
665 * to get both rlim_cur and rlim_max atomically, and either one
666 * alone is a single word that can safely be read normally.
667 * getrlimit/setrlimit use task_lock(current->group_leader) to
668 * protect this instead of the siglock, because they really
669 * have no need to disable irqs.
670 */
671 struct rlimit rlim[RLIM_NLIMITS];
672
673 #ifdef CONFIG_BSD_PROCESS_ACCT
674 struct pacct_struct pacct; /* per-process accounting information */
675 #endif
676 #ifdef CONFIG_TASKSTATS
677 struct taskstats *stats;
678 #endif
679 #ifdef CONFIG_AUDIT
680 unsigned audit_tty;
681 unsigned audit_tty_log_passwd;
682 struct tty_audit_buf *tty_audit_buf;
683 #endif
684 #ifdef CONFIG_CGROUPS
685 /*
686 * group_rwsem prevents new tasks from entering the threadgroup and
687 * member tasks from exiting,a more specifically, setting of
688 * PF_EXITING. fork and exit paths are protected with this rwsem
689 * using threadgroup_change_begin/end(). Users which require
690 * threadgroup to remain stable should use threadgroup_[un]lock()
691 * which also takes care of exec path. Currently, cgroup is the
692 * only user.
693 */
694 struct rw_semaphore group_rwsem;
695 #endif
696
697 oom_flags_t oom_flags;
698 short oom_score_adj; /* OOM kill score adjustment */
699 short oom_score_adj_min; /* OOM kill score adjustment min value.
700 * Only settable by CAP_SYS_RESOURCE. */
701
702 struct mutex cred_guard_mutex; /* guard against foreign influences on
703 * credential calculations
704 * (notably. ptrace) */
705 };
706
707 /*
708 * Bits in flags field of signal_struct.
709 */
710 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
711 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
712 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
713 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
714 /*
715 * Pending notifications to parent.
716 */
717 #define SIGNAL_CLD_STOPPED 0x00000010
718 #define SIGNAL_CLD_CONTINUED 0x00000020
719 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
720
721 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
722
723 /* If true, all threads except ->group_exit_task have pending SIGKILL */
724 static inline int signal_group_exit(const struct signal_struct *sig)
725 {
726 return (sig->flags & SIGNAL_GROUP_EXIT) ||
727 (sig->group_exit_task != NULL);
728 }
729
730 /*
731 * Some day this will be a full-fledged user tracking system..
732 */
733 struct user_struct {
734 atomic_t __count; /* reference count */
735 atomic_t processes; /* How many processes does this user have? */
736 atomic_t files; /* How many open files does this user have? */
737 atomic_t sigpending; /* How many pending signals does this user have? */
738 #ifdef CONFIG_INOTIFY_USER
739 atomic_t inotify_watches; /* How many inotify watches does this user have? */
740 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
741 #endif
742 #ifdef CONFIG_FANOTIFY
743 atomic_t fanotify_listeners;
744 #endif
745 #ifdef CONFIG_EPOLL
746 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
747 #endif
748 #ifdef CONFIG_POSIX_MQUEUE
749 /* protected by mq_lock */
750 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
751 #endif
752 unsigned long locked_shm; /* How many pages of mlocked shm ? */
753
754 #ifdef CONFIG_KEYS
755 struct key *uid_keyring; /* UID specific keyring */
756 struct key *session_keyring; /* UID's default session keyring */
757 #endif
758
759 /* Hash table maintenance information */
760 struct hlist_node uidhash_node;
761 kuid_t uid;
762
763 #ifdef CONFIG_PERF_EVENTS
764 atomic_long_t locked_vm;
765 #endif
766 };
767
768 extern int uids_sysfs_init(void);
769
770 extern struct user_struct *find_user(kuid_t);
771
772 extern struct user_struct root_user;
773 #define INIT_USER (&root_user)
774
775
776 struct backing_dev_info;
777 struct reclaim_state;
778
779 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
780 struct sched_info {
781 /* cumulative counters */
782 unsigned long pcount; /* # of times run on this cpu */
783 unsigned long long run_delay; /* time spent waiting on a runqueue */
784
785 /* timestamps */
786 unsigned long long last_arrival,/* when we last ran on a cpu */
787 last_queued; /* when we were last queued to run */
788 };
789 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
790
791 #ifdef CONFIG_TASK_DELAY_ACCT
792 struct task_delay_info {
793 spinlock_t lock;
794 unsigned int flags; /* Private per-task flags */
795
796 /* For each stat XXX, add following, aligned appropriately
797 *
798 * struct timespec XXX_start, XXX_end;
799 * u64 XXX_delay;
800 * u32 XXX_count;
801 *
802 * Atomicity of updates to XXX_delay, XXX_count protected by
803 * single lock above (split into XXX_lock if contention is an issue).
804 */
805
806 /*
807 * XXX_count is incremented on every XXX operation, the delay
808 * associated with the operation is added to XXX_delay.
809 * XXX_delay contains the accumulated delay time in nanoseconds.
810 */
811 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
812 u64 blkio_delay; /* wait for sync block io completion */
813 u64 swapin_delay; /* wait for swapin block io completion */
814 u32 blkio_count; /* total count of the number of sync block */
815 /* io operations performed */
816 u32 swapin_count; /* total count of the number of swapin block */
817 /* io operations performed */
818
819 struct timespec freepages_start, freepages_end;
820 u64 freepages_delay; /* wait for memory reclaim */
821 u32 freepages_count; /* total count of memory reclaim */
822 };
823 #endif /* CONFIG_TASK_DELAY_ACCT */
824
825 static inline int sched_info_on(void)
826 {
827 #ifdef CONFIG_SCHEDSTATS
828 return 1;
829 #elif defined(CONFIG_TASK_DELAY_ACCT)
830 extern int delayacct_on;
831 return delayacct_on;
832 #else
833 return 0;
834 #endif
835 }
836
837 enum cpu_idle_type {
838 CPU_IDLE,
839 CPU_NOT_IDLE,
840 CPU_NEWLY_IDLE,
841 CPU_MAX_IDLE_TYPES
842 };
843
844 /*
845 * Increase resolution of cpu_power calculations
846 */
847 #define SCHED_POWER_SHIFT 10
848 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
849
850 /*
851 * sched-domains (multiprocessor balancing) declarations:
852 */
853 #ifdef CONFIG_SMP
854 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
855 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
856 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
857 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
858 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
859 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
860 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
861 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
862 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
863 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
864 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
865 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
866 #define SD_NUMA 0x4000 /* cross-node balancing */
867
868 extern int __weak arch_sd_sibiling_asym_packing(void);
869
870 struct sched_domain_attr {
871 int relax_domain_level;
872 };
873
874 #define SD_ATTR_INIT (struct sched_domain_attr) { \
875 .relax_domain_level = -1, \
876 }
877
878 extern int sched_domain_level_max;
879
880 struct sched_group;
881
882 struct sched_domain {
883 /* These fields must be setup */
884 struct sched_domain *parent; /* top domain must be null terminated */
885 struct sched_domain *child; /* bottom domain must be null terminated */
886 struct sched_group *groups; /* the balancing groups of the domain */
887 unsigned long min_interval; /* Minimum balance interval ms */
888 unsigned long max_interval; /* Maximum balance interval ms */
889 unsigned int busy_factor; /* less balancing by factor if busy */
890 unsigned int imbalance_pct; /* No balance until over watermark */
891 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
892 unsigned int busy_idx;
893 unsigned int idle_idx;
894 unsigned int newidle_idx;
895 unsigned int wake_idx;
896 unsigned int forkexec_idx;
897 unsigned int smt_gain;
898
899 int nohz_idle; /* NOHZ IDLE status */
900 int flags; /* See SD_* */
901 int level;
902
903 /* Runtime fields. */
904 unsigned long last_balance; /* init to jiffies. units in jiffies */
905 unsigned int balance_interval; /* initialise to 1. units in ms. */
906 unsigned int nr_balance_failed; /* initialise to 0 */
907
908 /* idle_balance() stats */
909 u64 max_newidle_lb_cost;
910 unsigned long next_decay_max_lb_cost;
911
912 #ifdef CONFIG_SCHEDSTATS
913 /* load_balance() stats */
914 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
915 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
916 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
917 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
918 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
919 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
920 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
922
923 /* Active load balancing */
924 unsigned int alb_count;
925 unsigned int alb_failed;
926 unsigned int alb_pushed;
927
928 /* SD_BALANCE_EXEC stats */
929 unsigned int sbe_count;
930 unsigned int sbe_balanced;
931 unsigned int sbe_pushed;
932
933 /* SD_BALANCE_FORK stats */
934 unsigned int sbf_count;
935 unsigned int sbf_balanced;
936 unsigned int sbf_pushed;
937
938 /* try_to_wake_up() stats */
939 unsigned int ttwu_wake_remote;
940 unsigned int ttwu_move_affine;
941 unsigned int ttwu_move_balance;
942 #endif
943 #ifdef CONFIG_SCHED_DEBUG
944 char *name;
945 #endif
946 union {
947 void *private; /* used during construction */
948 struct rcu_head rcu; /* used during destruction */
949 };
950
951 unsigned int span_weight;
952 /*
953 * Span of all CPUs in this domain.
954 *
955 * NOTE: this field is variable length. (Allocated dynamically
956 * by attaching extra space to the end of the structure,
957 * depending on how many CPUs the kernel has booted up with)
958 */
959 unsigned long span[0];
960 };
961
962 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
963 {
964 return to_cpumask(sd->span);
965 }
966
967 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
968 struct sched_domain_attr *dattr_new);
969
970 /* Allocate an array of sched domains, for partition_sched_domains(). */
971 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
972 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
973
974 bool cpus_share_cache(int this_cpu, int that_cpu);
975
976 #else /* CONFIG_SMP */
977
978 struct sched_domain_attr;
979
980 static inline void
981 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
982 struct sched_domain_attr *dattr_new)
983 {
984 }
985
986 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
987 {
988 return true;
989 }
990
991 #endif /* !CONFIG_SMP */
992
993
994 struct io_context; /* See blkdev.h */
995
996
997 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
998 extern void prefetch_stack(struct task_struct *t);
999 #else
1000 static inline void prefetch_stack(struct task_struct *t) { }
1001 #endif
1002
1003 struct audit_context; /* See audit.c */
1004 struct mempolicy;
1005 struct pipe_inode_info;
1006 struct uts_namespace;
1007
1008 struct load_weight {
1009 unsigned long weight;
1010 u32 inv_weight;
1011 };
1012
1013 struct sched_avg {
1014 /*
1015 * These sums represent an infinite geometric series and so are bound
1016 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1017 * choices of y < 1-2^(-32)*1024.
1018 */
1019 u32 runnable_avg_sum, runnable_avg_period;
1020 u64 last_runnable_update;
1021 s64 decay_count;
1022 unsigned long load_avg_contrib;
1023 };
1024
1025 #ifdef CONFIG_SCHEDSTATS
1026 struct sched_statistics {
1027 u64 wait_start;
1028 u64 wait_max;
1029 u64 wait_count;
1030 u64 wait_sum;
1031 u64 iowait_count;
1032 u64 iowait_sum;
1033
1034 u64 sleep_start;
1035 u64 sleep_max;
1036 s64 sum_sleep_runtime;
1037
1038 u64 block_start;
1039 u64 block_max;
1040 u64 exec_max;
1041 u64 slice_max;
1042
1043 u64 nr_migrations_cold;
1044 u64 nr_failed_migrations_affine;
1045 u64 nr_failed_migrations_running;
1046 u64 nr_failed_migrations_hot;
1047 u64 nr_forced_migrations;
1048
1049 u64 nr_wakeups;
1050 u64 nr_wakeups_sync;
1051 u64 nr_wakeups_migrate;
1052 u64 nr_wakeups_local;
1053 u64 nr_wakeups_remote;
1054 u64 nr_wakeups_affine;
1055 u64 nr_wakeups_affine_attempts;
1056 u64 nr_wakeups_passive;
1057 u64 nr_wakeups_idle;
1058 };
1059 #endif
1060
1061 struct sched_entity {
1062 struct load_weight load; /* for load-balancing */
1063 struct rb_node run_node;
1064 struct list_head group_node;
1065 unsigned int on_rq;
1066
1067 u64 exec_start;
1068 u64 sum_exec_runtime;
1069 u64 vruntime;
1070 u64 prev_sum_exec_runtime;
1071
1072 u64 nr_migrations;
1073
1074 #ifdef CONFIG_SCHEDSTATS
1075 struct sched_statistics statistics;
1076 #endif
1077
1078 #ifdef CONFIG_FAIR_GROUP_SCHED
1079 struct sched_entity *parent;
1080 /* rq on which this entity is (to be) queued: */
1081 struct cfs_rq *cfs_rq;
1082 /* rq "owned" by this entity/group: */
1083 struct cfs_rq *my_q;
1084 #endif
1085
1086 #ifdef CONFIG_SMP
1087 /* Per-entity load-tracking */
1088 struct sched_avg avg;
1089 #endif
1090 };
1091
1092 struct sched_rt_entity {
1093 struct list_head run_list;
1094 unsigned long timeout;
1095 unsigned long watchdog_stamp;
1096 unsigned int time_slice;
1097
1098 struct sched_rt_entity *back;
1099 #ifdef CONFIG_RT_GROUP_SCHED
1100 struct sched_rt_entity *parent;
1101 /* rq on which this entity is (to be) queued: */
1102 struct rt_rq *rt_rq;
1103 /* rq "owned" by this entity/group: */
1104 struct rt_rq *my_q;
1105 #endif
1106 };
1107
1108 struct sched_dl_entity {
1109 struct rb_node rb_node;
1110
1111 /*
1112 * Original scheduling parameters. Copied here from sched_attr
1113 * during sched_setscheduler2(), they will remain the same until
1114 * the next sched_setscheduler2().
1115 */
1116 u64 dl_runtime; /* maximum runtime for each instance */
1117 u64 dl_deadline; /* relative deadline of each instance */
1118 u64 dl_period; /* separation of two instances (period) */
1119 u64 dl_bw; /* dl_runtime / dl_deadline */
1120
1121 /*
1122 * Actual scheduling parameters. Initialized with the values above,
1123 * they are continously updated during task execution. Note that
1124 * the remaining runtime could be < 0 in case we are in overrun.
1125 */
1126 s64 runtime; /* remaining runtime for this instance */
1127 u64 deadline; /* absolute deadline for this instance */
1128 unsigned int flags; /* specifying the scheduler behaviour */
1129
1130 /*
1131 * Some bool flags:
1132 *
1133 * @dl_throttled tells if we exhausted the runtime. If so, the
1134 * task has to wait for a replenishment to be performed at the
1135 * next firing of dl_timer.
1136 *
1137 * @dl_new tells if a new instance arrived. If so we must
1138 * start executing it with full runtime and reset its absolute
1139 * deadline;
1140 *
1141 * @dl_boosted tells if we are boosted due to DI. If so we are
1142 * outside bandwidth enforcement mechanism (but only until we
1143 * exit the critical section).
1144 */
1145 int dl_throttled, dl_new, dl_boosted;
1146
1147 /*
1148 * Bandwidth enforcement timer. Each -deadline task has its
1149 * own bandwidth to be enforced, thus we need one timer per task.
1150 */
1151 struct hrtimer dl_timer;
1152 };
1153
1154 struct rcu_node;
1155
1156 enum perf_event_task_context {
1157 perf_invalid_context = -1,
1158 perf_hw_context = 0,
1159 perf_sw_context,
1160 perf_nr_task_contexts,
1161 };
1162
1163 struct task_struct {
1164 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1165 void *stack;
1166 atomic_t usage;
1167 unsigned int flags; /* per process flags, defined below */
1168 unsigned int ptrace;
1169
1170 #ifdef CONFIG_SMP
1171 struct llist_node wake_entry;
1172 int on_cpu;
1173 struct task_struct *last_wakee;
1174 unsigned long wakee_flips;
1175 unsigned long wakee_flip_decay_ts;
1176
1177 int wake_cpu;
1178 #endif
1179 int on_rq;
1180
1181 int prio, static_prio, normal_prio;
1182 unsigned int rt_priority;
1183 const struct sched_class *sched_class;
1184 struct sched_entity se;
1185 struct sched_rt_entity rt;
1186 #ifdef CONFIG_CGROUP_SCHED
1187 struct task_group *sched_task_group;
1188 #endif
1189 struct sched_dl_entity dl;
1190
1191 #ifdef CONFIG_PREEMPT_NOTIFIERS
1192 /* list of struct preempt_notifier: */
1193 struct hlist_head preempt_notifiers;
1194 #endif
1195
1196 #ifdef CONFIG_BLK_DEV_IO_TRACE
1197 unsigned int btrace_seq;
1198 #endif
1199
1200 unsigned int policy;
1201 int nr_cpus_allowed;
1202 cpumask_t cpus_allowed;
1203
1204 #ifdef CONFIG_PREEMPT_RCU
1205 int rcu_read_lock_nesting;
1206 char rcu_read_unlock_special;
1207 struct list_head rcu_node_entry;
1208 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1209 #ifdef CONFIG_TREE_PREEMPT_RCU
1210 struct rcu_node *rcu_blocked_node;
1211 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1212 #ifdef CONFIG_RCU_BOOST
1213 struct rt_mutex *rcu_boost_mutex;
1214 #endif /* #ifdef CONFIG_RCU_BOOST */
1215
1216 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1217 struct sched_info sched_info;
1218 #endif
1219
1220 struct list_head tasks;
1221 #ifdef CONFIG_SMP
1222 struct plist_node pushable_tasks;
1223 struct rb_node pushable_dl_tasks;
1224 #endif
1225
1226 struct mm_struct *mm, *active_mm;
1227 #ifdef CONFIG_COMPAT_BRK
1228 unsigned brk_randomized:1;
1229 #endif
1230 #if defined(SPLIT_RSS_COUNTING)
1231 struct task_rss_stat rss_stat;
1232 #endif
1233 /* task state */
1234 int exit_state;
1235 int exit_code, exit_signal;
1236 int pdeath_signal; /* The signal sent when the parent dies */
1237 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1238
1239 /* Used for emulating ABI behavior of previous Linux versions */
1240 unsigned int personality;
1241
1242 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1243 * execve */
1244 unsigned in_iowait:1;
1245
1246 /* task may not gain privileges */
1247 unsigned no_new_privs:1;
1248
1249 /* Revert to default priority/policy when forking */
1250 unsigned sched_reset_on_fork:1;
1251 unsigned sched_contributes_to_load:1;
1252
1253 pid_t pid;
1254 pid_t tgid;
1255
1256 #ifdef CONFIG_CC_STACKPROTECTOR
1257 /* Canary value for the -fstack-protector gcc feature */
1258 unsigned long stack_canary;
1259 #endif
1260 /*
1261 * pointers to (original) parent process, youngest child, younger sibling,
1262 * older sibling, respectively. (p->father can be replaced with
1263 * p->real_parent->pid)
1264 */
1265 struct task_struct __rcu *real_parent; /* real parent process */
1266 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1267 /*
1268 * children/sibling forms the list of my natural children
1269 */
1270 struct list_head children; /* list of my children */
1271 struct list_head sibling; /* linkage in my parent's children list */
1272 struct task_struct *group_leader; /* threadgroup leader */
1273
1274 /*
1275 * ptraced is the list of tasks this task is using ptrace on.
1276 * This includes both natural children and PTRACE_ATTACH targets.
1277 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1278 */
1279 struct list_head ptraced;
1280 struct list_head ptrace_entry;
1281
1282 /* PID/PID hash table linkage. */
1283 struct pid_link pids[PIDTYPE_MAX];
1284 struct list_head thread_group;
1285 struct list_head thread_node;
1286
1287 struct completion *vfork_done; /* for vfork() */
1288 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1289 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1290
1291 cputime_t utime, stime, utimescaled, stimescaled;
1292 cputime_t gtime;
1293 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1294 struct cputime prev_cputime;
1295 #endif
1296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1297 seqlock_t vtime_seqlock;
1298 unsigned long long vtime_snap;
1299 enum {
1300 VTIME_SLEEPING = 0,
1301 VTIME_USER,
1302 VTIME_SYS,
1303 } vtime_snap_whence;
1304 #endif
1305 unsigned long nvcsw, nivcsw; /* context switch counts */
1306 struct timespec start_time; /* monotonic time */
1307 struct timespec real_start_time; /* boot based time */
1308 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1309 unsigned long min_flt, maj_flt;
1310
1311 struct task_cputime cputime_expires;
1312 struct list_head cpu_timers[3];
1313
1314 /* process credentials */
1315 const struct cred __rcu *real_cred; /* objective and real subjective task
1316 * credentials (COW) */
1317 const struct cred __rcu *cred; /* effective (overridable) subjective task
1318 * credentials (COW) */
1319 char comm[TASK_COMM_LEN]; /* executable name excluding path
1320 - access with [gs]et_task_comm (which lock
1321 it with task_lock())
1322 - initialized normally by setup_new_exec */
1323 /* file system info */
1324 int link_count, total_link_count;
1325 #ifdef CONFIG_SYSVIPC
1326 /* ipc stuff */
1327 struct sysv_sem sysvsem;
1328 #endif
1329 #ifdef CONFIG_DETECT_HUNG_TASK
1330 /* hung task detection */
1331 unsigned long last_switch_count;
1332 #endif
1333 /* CPU-specific state of this task */
1334 struct thread_struct thread;
1335 /* filesystem information */
1336 struct fs_struct *fs;
1337 /* open file information */
1338 struct files_struct *files;
1339 /* namespaces */
1340 struct nsproxy *nsproxy;
1341 /* signal handlers */
1342 struct signal_struct *signal;
1343 struct sighand_struct *sighand;
1344
1345 sigset_t blocked, real_blocked;
1346 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1347 struct sigpending pending;
1348
1349 unsigned long sas_ss_sp;
1350 size_t sas_ss_size;
1351 int (*notifier)(void *priv);
1352 void *notifier_data;
1353 sigset_t *notifier_mask;
1354 struct callback_head *task_works;
1355
1356 struct audit_context *audit_context;
1357 #ifdef CONFIG_AUDITSYSCALL
1358 kuid_t loginuid;
1359 unsigned int sessionid;
1360 #endif
1361 struct seccomp seccomp;
1362
1363 /* Thread group tracking */
1364 u32 parent_exec_id;
1365 u32 self_exec_id;
1366 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1367 * mempolicy */
1368 spinlock_t alloc_lock;
1369
1370 /* Protection of the PI data structures: */
1371 raw_spinlock_t pi_lock;
1372
1373 #ifdef CONFIG_RT_MUTEXES
1374 /* PI waiters blocked on a rt_mutex held by this task */
1375 struct rb_root pi_waiters;
1376 struct rb_node *pi_waiters_leftmost;
1377 /* Deadlock detection and priority inheritance handling */
1378 struct rt_mutex_waiter *pi_blocked_on;
1379 /* Top pi_waiters task */
1380 struct task_struct *pi_top_task;
1381 #endif
1382
1383 #ifdef CONFIG_DEBUG_MUTEXES
1384 /* mutex deadlock detection */
1385 struct mutex_waiter *blocked_on;
1386 #endif
1387 #ifdef CONFIG_TRACE_IRQFLAGS
1388 unsigned int irq_events;
1389 unsigned long hardirq_enable_ip;
1390 unsigned long hardirq_disable_ip;
1391 unsigned int hardirq_enable_event;
1392 unsigned int hardirq_disable_event;
1393 int hardirqs_enabled;
1394 int hardirq_context;
1395 unsigned long softirq_disable_ip;
1396 unsigned long softirq_enable_ip;
1397 unsigned int softirq_disable_event;
1398 unsigned int softirq_enable_event;
1399 int softirqs_enabled;
1400 int softirq_context;
1401 #endif
1402 #ifdef CONFIG_LOCKDEP
1403 # define MAX_LOCK_DEPTH 48UL
1404 u64 curr_chain_key;
1405 int lockdep_depth;
1406 unsigned int lockdep_recursion;
1407 struct held_lock held_locks[MAX_LOCK_DEPTH];
1408 gfp_t lockdep_reclaim_gfp;
1409 #endif
1410
1411 /* journalling filesystem info */
1412 void *journal_info;
1413
1414 /* stacked block device info */
1415 struct bio_list *bio_list;
1416
1417 #ifdef CONFIG_BLOCK
1418 /* stack plugging */
1419 struct blk_plug *plug;
1420 #endif
1421
1422 /* VM state */
1423 struct reclaim_state *reclaim_state;
1424
1425 struct backing_dev_info *backing_dev_info;
1426
1427 struct io_context *io_context;
1428
1429 unsigned long ptrace_message;
1430 siginfo_t *last_siginfo; /* For ptrace use. */
1431 struct task_io_accounting ioac;
1432 #if defined(CONFIG_TASK_XACCT)
1433 u64 acct_rss_mem1; /* accumulated rss usage */
1434 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1435 cputime_t acct_timexpd; /* stime + utime since last update */
1436 #endif
1437 #ifdef CONFIG_CPUSETS
1438 nodemask_t mems_allowed; /* Protected by alloc_lock */
1439 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1440 int cpuset_mem_spread_rotor;
1441 int cpuset_slab_spread_rotor;
1442 #endif
1443 #ifdef CONFIG_CGROUPS
1444 /* Control Group info protected by css_set_lock */
1445 struct css_set __rcu *cgroups;
1446 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1447 struct list_head cg_list;
1448 #endif
1449 #ifdef CONFIG_FUTEX
1450 struct robust_list_head __user *robust_list;
1451 #ifdef CONFIG_COMPAT
1452 struct compat_robust_list_head __user *compat_robust_list;
1453 #endif
1454 struct list_head pi_state_list;
1455 struct futex_pi_state *pi_state_cache;
1456 #endif
1457 #ifdef CONFIG_PERF_EVENTS
1458 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1459 struct mutex perf_event_mutex;
1460 struct list_head perf_event_list;
1461 #endif
1462 #ifdef CONFIG_NUMA
1463 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1464 short il_next;
1465 short pref_node_fork;
1466 #endif
1467 #ifdef CONFIG_NUMA_BALANCING
1468 int numa_scan_seq;
1469 unsigned int numa_scan_period;
1470 unsigned int numa_scan_period_max;
1471 int numa_preferred_nid;
1472 unsigned long numa_migrate_retry;
1473 u64 node_stamp; /* migration stamp */
1474 u64 last_task_numa_placement;
1475 u64 last_sum_exec_runtime;
1476 struct callback_head numa_work;
1477
1478 struct list_head numa_entry;
1479 struct numa_group *numa_group;
1480
1481 /*
1482 * Exponential decaying average of faults on a per-node basis.
1483 * Scheduling placement decisions are made based on the these counts.
1484 * The values remain static for the duration of a PTE scan
1485 */
1486 unsigned long *numa_faults_memory;
1487 unsigned long total_numa_faults;
1488
1489 /*
1490 * numa_faults_buffer records faults per node during the current
1491 * scan window. When the scan completes, the counts in
1492 * numa_faults_memory decay and these values are copied.
1493 */
1494 unsigned long *numa_faults_buffer_memory;
1495
1496 /*
1497 * Track the nodes the process was running on when a NUMA hinting
1498 * fault was incurred.
1499 */
1500 unsigned long *numa_faults_cpu;
1501 unsigned long *numa_faults_buffer_cpu;
1502
1503 /*
1504 * numa_faults_locality tracks if faults recorded during the last
1505 * scan window were remote/local. The task scan period is adapted
1506 * based on the locality of the faults with different weights
1507 * depending on whether they were shared or private faults
1508 */
1509 unsigned long numa_faults_locality[2];
1510
1511 unsigned long numa_pages_migrated;
1512 #endif /* CONFIG_NUMA_BALANCING */
1513
1514 struct rcu_head rcu;
1515
1516 /*
1517 * cache last used pipe for splice
1518 */
1519 struct pipe_inode_info *splice_pipe;
1520
1521 struct page_frag task_frag;
1522
1523 #ifdef CONFIG_TASK_DELAY_ACCT
1524 struct task_delay_info *delays;
1525 #endif
1526 #ifdef CONFIG_FAULT_INJECTION
1527 int make_it_fail;
1528 #endif
1529 /*
1530 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1531 * balance_dirty_pages() for some dirty throttling pause
1532 */
1533 int nr_dirtied;
1534 int nr_dirtied_pause;
1535 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1536
1537 #ifdef CONFIG_LATENCYTOP
1538 int latency_record_count;
1539 struct latency_record latency_record[LT_SAVECOUNT];
1540 #endif
1541 /*
1542 * time slack values; these are used to round up poll() and
1543 * select() etc timeout values. These are in nanoseconds.
1544 */
1545 unsigned long timer_slack_ns;
1546 unsigned long default_timer_slack_ns;
1547
1548 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1549 /* Index of current stored address in ret_stack */
1550 int curr_ret_stack;
1551 /* Stack of return addresses for return function tracing */
1552 struct ftrace_ret_stack *ret_stack;
1553 /* time stamp for last schedule */
1554 unsigned long long ftrace_timestamp;
1555 /*
1556 * Number of functions that haven't been traced
1557 * because of depth overrun.
1558 */
1559 atomic_t trace_overrun;
1560 /* Pause for the tracing */
1561 atomic_t tracing_graph_pause;
1562 #endif
1563 #ifdef CONFIG_TRACING
1564 /* state flags for use by tracers */
1565 unsigned long trace;
1566 /* bitmask and counter of trace recursion */
1567 unsigned long trace_recursion;
1568 #endif /* CONFIG_TRACING */
1569 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1570 struct memcg_batch_info {
1571 int do_batch; /* incremented when batch uncharge started */
1572 struct mem_cgroup *memcg; /* target memcg of uncharge */
1573 unsigned long nr_pages; /* uncharged usage */
1574 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1575 } memcg_batch;
1576 unsigned int memcg_kmem_skip_account;
1577 struct memcg_oom_info {
1578 struct mem_cgroup *memcg;
1579 gfp_t gfp_mask;
1580 int order;
1581 unsigned int may_oom:1;
1582 } memcg_oom;
1583 #endif
1584 #ifdef CONFIG_UPROBES
1585 struct uprobe_task *utask;
1586 #endif
1587 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1588 unsigned int sequential_io;
1589 unsigned int sequential_io_avg;
1590 #endif
1591 };
1592
1593 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1594 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1595
1596 #define TNF_MIGRATED 0x01
1597 #define TNF_NO_GROUP 0x02
1598 #define TNF_SHARED 0x04
1599 #define TNF_FAULT_LOCAL 0x08
1600
1601 #ifdef CONFIG_NUMA_BALANCING
1602 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1603 extern pid_t task_numa_group_id(struct task_struct *p);
1604 extern void set_numabalancing_state(bool enabled);
1605 extern void task_numa_free(struct task_struct *p);
1606 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1607 int src_nid, int dst_cpu);
1608 #else
1609 static inline void task_numa_fault(int last_node, int node, int pages,
1610 int flags)
1611 {
1612 }
1613 static inline pid_t task_numa_group_id(struct task_struct *p)
1614 {
1615 return 0;
1616 }
1617 static inline void set_numabalancing_state(bool enabled)
1618 {
1619 }
1620 static inline void task_numa_free(struct task_struct *p)
1621 {
1622 }
1623 static inline bool should_numa_migrate_memory(struct task_struct *p,
1624 struct page *page, int src_nid, int dst_cpu)
1625 {
1626 return true;
1627 }
1628 #endif
1629
1630 static inline struct pid *task_pid(struct task_struct *task)
1631 {
1632 return task->pids[PIDTYPE_PID].pid;
1633 }
1634
1635 static inline struct pid *task_tgid(struct task_struct *task)
1636 {
1637 return task->group_leader->pids[PIDTYPE_PID].pid;
1638 }
1639
1640 /*
1641 * Without tasklist or rcu lock it is not safe to dereference
1642 * the result of task_pgrp/task_session even if task == current,
1643 * we can race with another thread doing sys_setsid/sys_setpgid.
1644 */
1645 static inline struct pid *task_pgrp(struct task_struct *task)
1646 {
1647 return task->group_leader->pids[PIDTYPE_PGID].pid;
1648 }
1649
1650 static inline struct pid *task_session(struct task_struct *task)
1651 {
1652 return task->group_leader->pids[PIDTYPE_SID].pid;
1653 }
1654
1655 struct pid_namespace;
1656
1657 /*
1658 * the helpers to get the task's different pids as they are seen
1659 * from various namespaces
1660 *
1661 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1662 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1663 * current.
1664 * task_xid_nr_ns() : id seen from the ns specified;
1665 *
1666 * set_task_vxid() : assigns a virtual id to a task;
1667 *
1668 * see also pid_nr() etc in include/linux/pid.h
1669 */
1670 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1671 struct pid_namespace *ns);
1672
1673 static inline pid_t task_pid_nr(struct task_struct *tsk)
1674 {
1675 return tsk->pid;
1676 }
1677
1678 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1679 struct pid_namespace *ns)
1680 {
1681 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1682 }
1683
1684 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1685 {
1686 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1687 }
1688
1689
1690 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1691 {
1692 return tsk->tgid;
1693 }
1694
1695 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1696
1697 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1698 {
1699 return pid_vnr(task_tgid(tsk));
1700 }
1701
1702
1703 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1704 struct pid_namespace *ns)
1705 {
1706 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1707 }
1708
1709 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1710 {
1711 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1712 }
1713
1714
1715 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1716 struct pid_namespace *ns)
1717 {
1718 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1719 }
1720
1721 static inline pid_t task_session_vnr(struct task_struct *tsk)
1722 {
1723 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1724 }
1725
1726 /* obsolete, do not use */
1727 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1728 {
1729 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1730 }
1731
1732 /**
1733 * pid_alive - check that a task structure is not stale
1734 * @p: Task structure to be checked.
1735 *
1736 * Test if a process is not yet dead (at most zombie state)
1737 * If pid_alive fails, then pointers within the task structure
1738 * can be stale and must not be dereferenced.
1739 *
1740 * Return: 1 if the process is alive. 0 otherwise.
1741 */
1742 static inline int pid_alive(struct task_struct *p)
1743 {
1744 return p->pids[PIDTYPE_PID].pid != NULL;
1745 }
1746
1747 /**
1748 * is_global_init - check if a task structure is init
1749 * @tsk: Task structure to be checked.
1750 *
1751 * Check if a task structure is the first user space task the kernel created.
1752 *
1753 * Return: 1 if the task structure is init. 0 otherwise.
1754 */
1755 static inline int is_global_init(struct task_struct *tsk)
1756 {
1757 return tsk->pid == 1;
1758 }
1759
1760 extern struct pid *cad_pid;
1761
1762 extern void free_task(struct task_struct *tsk);
1763 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1764
1765 extern void __put_task_struct(struct task_struct *t);
1766
1767 static inline void put_task_struct(struct task_struct *t)
1768 {
1769 if (atomic_dec_and_test(&t->usage))
1770 __put_task_struct(t);
1771 }
1772
1773 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1774 extern void task_cputime(struct task_struct *t,
1775 cputime_t *utime, cputime_t *stime);
1776 extern void task_cputime_scaled(struct task_struct *t,
1777 cputime_t *utimescaled, cputime_t *stimescaled);
1778 extern cputime_t task_gtime(struct task_struct *t);
1779 #else
1780 static inline void task_cputime(struct task_struct *t,
1781 cputime_t *utime, cputime_t *stime)
1782 {
1783 if (utime)
1784 *utime = t->utime;
1785 if (stime)
1786 *stime = t->stime;
1787 }
1788
1789 static inline void task_cputime_scaled(struct task_struct *t,
1790 cputime_t *utimescaled,
1791 cputime_t *stimescaled)
1792 {
1793 if (utimescaled)
1794 *utimescaled = t->utimescaled;
1795 if (stimescaled)
1796 *stimescaled = t->stimescaled;
1797 }
1798
1799 static inline cputime_t task_gtime(struct task_struct *t)
1800 {
1801 return t->gtime;
1802 }
1803 #endif
1804 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1805 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1806
1807 /*
1808 * Per process flags
1809 */
1810 #define PF_EXITING 0x00000004 /* getting shut down */
1811 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1812 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1813 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1814 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1815 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1816 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1817 #define PF_DUMPCORE 0x00000200 /* dumped core */
1818 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1819 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1820 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1821 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1822 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1823 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1824 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1825 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1826 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1827 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1828 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1829 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1830 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1831 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1832 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1833 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1834 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1835 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1836 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1837 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1838 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1839 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1840
1841 /*
1842 * Only the _current_ task can read/write to tsk->flags, but other
1843 * tasks can access tsk->flags in readonly mode for example
1844 * with tsk_used_math (like during threaded core dumping).
1845 * There is however an exception to this rule during ptrace
1846 * or during fork: the ptracer task is allowed to write to the
1847 * child->flags of its traced child (same goes for fork, the parent
1848 * can write to the child->flags), because we're guaranteed the
1849 * child is not running and in turn not changing child->flags
1850 * at the same time the parent does it.
1851 */
1852 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1853 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1854 #define clear_used_math() clear_stopped_child_used_math(current)
1855 #define set_used_math() set_stopped_child_used_math(current)
1856 #define conditional_stopped_child_used_math(condition, child) \
1857 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1858 #define conditional_used_math(condition) \
1859 conditional_stopped_child_used_math(condition, current)
1860 #define copy_to_stopped_child_used_math(child) \
1861 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1862 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1863 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1864 #define used_math() tsk_used_math(current)
1865
1866 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1867 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1868 {
1869 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1870 flags &= ~__GFP_IO;
1871 return flags;
1872 }
1873
1874 static inline unsigned int memalloc_noio_save(void)
1875 {
1876 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1877 current->flags |= PF_MEMALLOC_NOIO;
1878 return flags;
1879 }
1880
1881 static inline void memalloc_noio_restore(unsigned int flags)
1882 {
1883 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1884 }
1885
1886 /*
1887 * task->jobctl flags
1888 */
1889 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1890
1891 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1892 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1893 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1894 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1895 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1896 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1897 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1898
1899 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1900 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1901 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1902 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1903 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1904 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1905 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1906
1907 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1908 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1909
1910 extern bool task_set_jobctl_pending(struct task_struct *task,
1911 unsigned int mask);
1912 extern void task_clear_jobctl_trapping(struct task_struct *task);
1913 extern void task_clear_jobctl_pending(struct task_struct *task,
1914 unsigned int mask);
1915
1916 #ifdef CONFIG_PREEMPT_RCU
1917
1918 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1919 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1920
1921 static inline void rcu_copy_process(struct task_struct *p)
1922 {
1923 p->rcu_read_lock_nesting = 0;
1924 p->rcu_read_unlock_special = 0;
1925 #ifdef CONFIG_TREE_PREEMPT_RCU
1926 p->rcu_blocked_node = NULL;
1927 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1928 #ifdef CONFIG_RCU_BOOST
1929 p->rcu_boost_mutex = NULL;
1930 #endif /* #ifdef CONFIG_RCU_BOOST */
1931 INIT_LIST_HEAD(&p->rcu_node_entry);
1932 }
1933
1934 #else
1935
1936 static inline void rcu_copy_process(struct task_struct *p)
1937 {
1938 }
1939
1940 #endif
1941
1942 static inline void tsk_restore_flags(struct task_struct *task,
1943 unsigned long orig_flags, unsigned long flags)
1944 {
1945 task->flags &= ~flags;
1946 task->flags |= orig_flags & flags;
1947 }
1948
1949 #ifdef CONFIG_SMP
1950 extern void do_set_cpus_allowed(struct task_struct *p,
1951 const struct cpumask *new_mask);
1952
1953 extern int set_cpus_allowed_ptr(struct task_struct *p,
1954 const struct cpumask *new_mask);
1955 #else
1956 static inline void do_set_cpus_allowed(struct task_struct *p,
1957 const struct cpumask *new_mask)
1958 {
1959 }
1960 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1961 const struct cpumask *new_mask)
1962 {
1963 if (!cpumask_test_cpu(0, new_mask))
1964 return -EINVAL;
1965 return 0;
1966 }
1967 #endif
1968
1969 #ifdef CONFIG_NO_HZ_COMMON
1970 void calc_load_enter_idle(void);
1971 void calc_load_exit_idle(void);
1972 #else
1973 static inline void calc_load_enter_idle(void) { }
1974 static inline void calc_load_exit_idle(void) { }
1975 #endif /* CONFIG_NO_HZ_COMMON */
1976
1977 #ifndef CONFIG_CPUMASK_OFFSTACK
1978 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1979 {
1980 return set_cpus_allowed_ptr(p, &new_mask);
1981 }
1982 #endif
1983
1984 /*
1985 * Do not use outside of architecture code which knows its limitations.
1986 *
1987 * sched_clock() has no promise of monotonicity or bounded drift between
1988 * CPUs, use (which you should not) requires disabling IRQs.
1989 *
1990 * Please use one of the three interfaces below.
1991 */
1992 extern unsigned long long notrace sched_clock(void);
1993 /*
1994 * See the comment in kernel/sched/clock.c
1995 */
1996 extern u64 cpu_clock(int cpu);
1997 extern u64 local_clock(void);
1998 extern u64 sched_clock_cpu(int cpu);
1999
2000
2001 extern void sched_clock_init(void);
2002
2003 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2004 static inline void sched_clock_tick(void)
2005 {
2006 }
2007
2008 static inline void sched_clock_idle_sleep_event(void)
2009 {
2010 }
2011
2012 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2013 {
2014 }
2015 #else
2016 /*
2017 * Architectures can set this to 1 if they have specified
2018 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2019 * but then during bootup it turns out that sched_clock()
2020 * is reliable after all:
2021 */
2022 extern int sched_clock_stable(void);
2023 extern void set_sched_clock_stable(void);
2024 extern void clear_sched_clock_stable(void);
2025
2026 extern void sched_clock_tick(void);
2027 extern void sched_clock_idle_sleep_event(void);
2028 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2029 #endif
2030
2031 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2032 /*
2033 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2034 * The reason for this explicit opt-in is not to have perf penalty with
2035 * slow sched_clocks.
2036 */
2037 extern void enable_sched_clock_irqtime(void);
2038 extern void disable_sched_clock_irqtime(void);
2039 #else
2040 static inline void enable_sched_clock_irqtime(void) {}
2041 static inline void disable_sched_clock_irqtime(void) {}
2042 #endif
2043
2044 extern unsigned long long
2045 task_sched_runtime(struct task_struct *task);
2046
2047 /* sched_exec is called by processes performing an exec */
2048 #ifdef CONFIG_SMP
2049 extern void sched_exec(void);
2050 #else
2051 #define sched_exec() {}
2052 #endif
2053
2054 extern void sched_clock_idle_sleep_event(void);
2055 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2056
2057 #ifdef CONFIG_HOTPLUG_CPU
2058 extern void idle_task_exit(void);
2059 #else
2060 static inline void idle_task_exit(void) {}
2061 #endif
2062
2063 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2064 extern void wake_up_nohz_cpu(int cpu);
2065 #else
2066 static inline void wake_up_nohz_cpu(int cpu) { }
2067 #endif
2068
2069 #ifdef CONFIG_NO_HZ_FULL
2070 extern bool sched_can_stop_tick(void);
2071 extern u64 scheduler_tick_max_deferment(void);
2072 #else
2073 static inline bool sched_can_stop_tick(void) { return false; }
2074 #endif
2075
2076 #ifdef CONFIG_SCHED_AUTOGROUP
2077 extern void sched_autogroup_create_attach(struct task_struct *p);
2078 extern void sched_autogroup_detach(struct task_struct *p);
2079 extern void sched_autogroup_fork(struct signal_struct *sig);
2080 extern void sched_autogroup_exit(struct signal_struct *sig);
2081 #ifdef CONFIG_PROC_FS
2082 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2083 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2084 #endif
2085 #else
2086 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2087 static inline void sched_autogroup_detach(struct task_struct *p) { }
2088 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2089 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2090 #endif
2091
2092 extern bool yield_to(struct task_struct *p, bool preempt);
2093 extern void set_user_nice(struct task_struct *p, long nice);
2094 extern int task_prio(const struct task_struct *p);
2095 extern int task_nice(const struct task_struct *p);
2096 extern int can_nice(const struct task_struct *p, const int nice);
2097 extern int task_curr(const struct task_struct *p);
2098 extern int idle_cpu(int cpu);
2099 extern int sched_setscheduler(struct task_struct *, int,
2100 const struct sched_param *);
2101 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2102 const struct sched_param *);
2103 extern int sched_setattr(struct task_struct *,
2104 const struct sched_attr *);
2105 extern struct task_struct *idle_task(int cpu);
2106 /**
2107 * is_idle_task - is the specified task an idle task?
2108 * @p: the task in question.
2109 *
2110 * Return: 1 if @p is an idle task. 0 otherwise.
2111 */
2112 static inline bool is_idle_task(const struct task_struct *p)
2113 {
2114 return p->pid == 0;
2115 }
2116 extern struct task_struct *curr_task(int cpu);
2117 extern void set_curr_task(int cpu, struct task_struct *p);
2118
2119 void yield(void);
2120
2121 /*
2122 * The default (Linux) execution domain.
2123 */
2124 extern struct exec_domain default_exec_domain;
2125
2126 union thread_union {
2127 struct thread_info thread_info;
2128 unsigned long stack[THREAD_SIZE/sizeof(long)];
2129 };
2130
2131 #ifndef __HAVE_ARCH_KSTACK_END
2132 static inline int kstack_end(void *addr)
2133 {
2134 /* Reliable end of stack detection:
2135 * Some APM bios versions misalign the stack
2136 */
2137 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2138 }
2139 #endif
2140
2141 extern union thread_union init_thread_union;
2142 extern struct task_struct init_task;
2143
2144 extern struct mm_struct init_mm;
2145
2146 extern struct pid_namespace init_pid_ns;
2147
2148 /*
2149 * find a task by one of its numerical ids
2150 *
2151 * find_task_by_pid_ns():
2152 * finds a task by its pid in the specified namespace
2153 * find_task_by_vpid():
2154 * finds a task by its virtual pid
2155 *
2156 * see also find_vpid() etc in include/linux/pid.h
2157 */
2158
2159 extern struct task_struct *find_task_by_vpid(pid_t nr);
2160 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2161 struct pid_namespace *ns);
2162
2163 /* per-UID process charging. */
2164 extern struct user_struct * alloc_uid(kuid_t);
2165 static inline struct user_struct *get_uid(struct user_struct *u)
2166 {
2167 atomic_inc(&u->__count);
2168 return u;
2169 }
2170 extern void free_uid(struct user_struct *);
2171
2172 #include <asm/current.h>
2173
2174 extern void xtime_update(unsigned long ticks);
2175
2176 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2177 extern int wake_up_process(struct task_struct *tsk);
2178 extern void wake_up_new_task(struct task_struct *tsk);
2179 #ifdef CONFIG_SMP
2180 extern void kick_process(struct task_struct *tsk);
2181 #else
2182 static inline void kick_process(struct task_struct *tsk) { }
2183 #endif
2184 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2185 extern void sched_dead(struct task_struct *p);
2186
2187 extern void proc_caches_init(void);
2188 extern void flush_signals(struct task_struct *);
2189 extern void __flush_signals(struct task_struct *);
2190 extern void ignore_signals(struct task_struct *);
2191 extern void flush_signal_handlers(struct task_struct *, int force_default);
2192 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2193
2194 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2195 {
2196 unsigned long flags;
2197 int ret;
2198
2199 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2200 ret = dequeue_signal(tsk, mask, info);
2201 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2202
2203 return ret;
2204 }
2205
2206 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2207 sigset_t *mask);
2208 extern void unblock_all_signals(void);
2209 extern void release_task(struct task_struct * p);
2210 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2211 extern int force_sigsegv(int, struct task_struct *);
2212 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2213 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2214 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2215 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2216 const struct cred *, u32);
2217 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2218 extern int kill_pid(struct pid *pid, int sig, int priv);
2219 extern int kill_proc_info(int, struct siginfo *, pid_t);
2220 extern __must_check bool do_notify_parent(struct task_struct *, int);
2221 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2222 extern void force_sig(int, struct task_struct *);
2223 extern int send_sig(int, struct task_struct *, int);
2224 extern int zap_other_threads(struct task_struct *p);
2225 extern struct sigqueue *sigqueue_alloc(void);
2226 extern void sigqueue_free(struct sigqueue *);
2227 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2228 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2229
2230 static inline void restore_saved_sigmask(void)
2231 {
2232 if (test_and_clear_restore_sigmask())
2233 __set_current_blocked(&current->saved_sigmask);
2234 }
2235
2236 static inline sigset_t *sigmask_to_save(void)
2237 {
2238 sigset_t *res = &current->blocked;
2239 if (unlikely(test_restore_sigmask()))
2240 res = &current->saved_sigmask;
2241 return res;
2242 }
2243
2244 static inline int kill_cad_pid(int sig, int priv)
2245 {
2246 return kill_pid(cad_pid, sig, priv);
2247 }
2248
2249 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2250 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2251 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2252 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2253
2254 /*
2255 * True if we are on the alternate signal stack.
2256 */
2257 static inline int on_sig_stack(unsigned long sp)
2258 {
2259 #ifdef CONFIG_STACK_GROWSUP
2260 return sp >= current->sas_ss_sp &&
2261 sp - current->sas_ss_sp < current->sas_ss_size;
2262 #else
2263 return sp > current->sas_ss_sp &&
2264 sp - current->sas_ss_sp <= current->sas_ss_size;
2265 #endif
2266 }
2267
2268 static inline int sas_ss_flags(unsigned long sp)
2269 {
2270 return (current->sas_ss_size == 0 ? SS_DISABLE
2271 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2272 }
2273
2274 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2275 {
2276 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2277 #ifdef CONFIG_STACK_GROWSUP
2278 return current->sas_ss_sp;
2279 #else
2280 return current->sas_ss_sp + current->sas_ss_size;
2281 #endif
2282 return sp;
2283 }
2284
2285 /*
2286 * Routines for handling mm_structs
2287 */
2288 extern struct mm_struct * mm_alloc(void);
2289
2290 /* mmdrop drops the mm and the page tables */
2291 extern void __mmdrop(struct mm_struct *);
2292 static inline void mmdrop(struct mm_struct * mm)
2293 {
2294 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2295 __mmdrop(mm);
2296 }
2297
2298 /* mmput gets rid of the mappings and all user-space */
2299 extern void mmput(struct mm_struct *);
2300 /* Grab a reference to a task's mm, if it is not already going away */
2301 extern struct mm_struct *get_task_mm(struct task_struct *task);
2302 /*
2303 * Grab a reference to a task's mm, if it is not already going away
2304 * and ptrace_may_access with the mode parameter passed to it
2305 * succeeds.
2306 */
2307 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2308 /* Remove the current tasks stale references to the old mm_struct */
2309 extern void mm_release(struct task_struct *, struct mm_struct *);
2310
2311 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2312 struct task_struct *);
2313 extern void flush_thread(void);
2314 extern void exit_thread(void);
2315
2316 extern void exit_files(struct task_struct *);
2317 extern void __cleanup_sighand(struct sighand_struct *);
2318
2319 extern void exit_itimers(struct signal_struct *);
2320 extern void flush_itimer_signals(void);
2321
2322 extern void do_group_exit(int);
2323
2324 extern int allow_signal(int);
2325 extern int disallow_signal(int);
2326
2327 extern int do_execve(const char *,
2328 const char __user * const __user *,
2329 const char __user * const __user *);
2330 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2331 struct task_struct *fork_idle(int);
2332 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2333
2334 extern void set_task_comm(struct task_struct *tsk, char *from);
2335 extern char *get_task_comm(char *to, struct task_struct *tsk);
2336
2337 #ifdef CONFIG_SMP
2338 void scheduler_ipi(void);
2339 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2340 #else
2341 static inline void scheduler_ipi(void) { }
2342 static inline unsigned long wait_task_inactive(struct task_struct *p,
2343 long match_state)
2344 {
2345 return 1;
2346 }
2347 #endif
2348
2349 #define next_task(p) \
2350 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2351
2352 #define for_each_process(p) \
2353 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2354
2355 extern bool current_is_single_threaded(void);
2356
2357 /*
2358 * Careful: do_each_thread/while_each_thread is a double loop so
2359 * 'break' will not work as expected - use goto instead.
2360 */
2361 #define do_each_thread(g, t) \
2362 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2363
2364 #define while_each_thread(g, t) \
2365 while ((t = next_thread(t)) != g)
2366
2367 #define __for_each_thread(signal, t) \
2368 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2369
2370 #define for_each_thread(p, t) \
2371 __for_each_thread((p)->signal, t)
2372
2373 /* Careful: this is a double loop, 'break' won't work as expected. */
2374 #define for_each_process_thread(p, t) \
2375 for_each_process(p) for_each_thread(p, t)
2376
2377 static inline int get_nr_threads(struct task_struct *tsk)
2378 {
2379 return tsk->signal->nr_threads;
2380 }
2381
2382 static inline bool thread_group_leader(struct task_struct *p)
2383 {
2384 return p->exit_signal >= 0;
2385 }
2386
2387 /* Do to the insanities of de_thread it is possible for a process
2388 * to have the pid of the thread group leader without actually being
2389 * the thread group leader. For iteration through the pids in proc
2390 * all we care about is that we have a task with the appropriate
2391 * pid, we don't actually care if we have the right task.
2392 */
2393 static inline bool has_group_leader_pid(struct task_struct *p)
2394 {
2395 return task_pid(p) == p->signal->leader_pid;
2396 }
2397
2398 static inline
2399 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2400 {
2401 return p1->signal == p2->signal;
2402 }
2403
2404 static inline struct task_struct *next_thread(const struct task_struct *p)
2405 {
2406 return list_entry_rcu(p->thread_group.next,
2407 struct task_struct, thread_group);
2408 }
2409
2410 static inline int thread_group_empty(struct task_struct *p)
2411 {
2412 return list_empty(&p->thread_group);
2413 }
2414
2415 #define delay_group_leader(p) \
2416 (thread_group_leader(p) && !thread_group_empty(p))
2417
2418 /*
2419 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2420 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2421 * pins the final release of task.io_context. Also protects ->cpuset and
2422 * ->cgroup.subsys[]. And ->vfork_done.
2423 *
2424 * Nests both inside and outside of read_lock(&tasklist_lock).
2425 * It must not be nested with write_lock_irq(&tasklist_lock),
2426 * neither inside nor outside.
2427 */
2428 static inline void task_lock(struct task_struct *p)
2429 {
2430 spin_lock(&p->alloc_lock);
2431 }
2432
2433 static inline void task_unlock(struct task_struct *p)
2434 {
2435 spin_unlock(&p->alloc_lock);
2436 }
2437
2438 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2439 unsigned long *flags);
2440
2441 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2442 unsigned long *flags)
2443 {
2444 struct sighand_struct *ret;
2445
2446 ret = __lock_task_sighand(tsk, flags);
2447 (void)__cond_lock(&tsk->sighand->siglock, ret);
2448 return ret;
2449 }
2450
2451 static inline void unlock_task_sighand(struct task_struct *tsk,
2452 unsigned long *flags)
2453 {
2454 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2455 }
2456
2457 #ifdef CONFIG_CGROUPS
2458 static inline void threadgroup_change_begin(struct task_struct *tsk)
2459 {
2460 down_read(&tsk->signal->group_rwsem);
2461 }
2462 static inline void threadgroup_change_end(struct task_struct *tsk)
2463 {
2464 up_read(&tsk->signal->group_rwsem);
2465 }
2466
2467 /**
2468 * threadgroup_lock - lock threadgroup
2469 * @tsk: member task of the threadgroup to lock
2470 *
2471 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2472 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2473 * change ->group_leader/pid. This is useful for cases where the threadgroup
2474 * needs to stay stable across blockable operations.
2475 *
2476 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2477 * synchronization. While held, no new task will be added to threadgroup
2478 * and no existing live task will have its PF_EXITING set.
2479 *
2480 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2481 * sub-thread becomes a new leader.
2482 */
2483 static inline void threadgroup_lock(struct task_struct *tsk)
2484 {
2485 down_write(&tsk->signal->group_rwsem);
2486 }
2487
2488 /**
2489 * threadgroup_unlock - unlock threadgroup
2490 * @tsk: member task of the threadgroup to unlock
2491 *
2492 * Reverse threadgroup_lock().
2493 */
2494 static inline void threadgroup_unlock(struct task_struct *tsk)
2495 {
2496 up_write(&tsk->signal->group_rwsem);
2497 }
2498 #else
2499 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2500 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2501 static inline void threadgroup_lock(struct task_struct *tsk) {}
2502 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2503 #endif
2504
2505 #ifndef __HAVE_THREAD_FUNCTIONS
2506
2507 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2508 #define task_stack_page(task) ((task)->stack)
2509
2510 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2511 {
2512 *task_thread_info(p) = *task_thread_info(org);
2513 task_thread_info(p)->task = p;
2514 }
2515
2516 static inline unsigned long *end_of_stack(struct task_struct *p)
2517 {
2518 return (unsigned long *)(task_thread_info(p) + 1);
2519 }
2520
2521 #endif
2522
2523 static inline int object_is_on_stack(void *obj)
2524 {
2525 void *stack = task_stack_page(current);
2526
2527 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2528 }
2529
2530 extern void thread_info_cache_init(void);
2531
2532 #ifdef CONFIG_DEBUG_STACK_USAGE
2533 static inline unsigned long stack_not_used(struct task_struct *p)
2534 {
2535 unsigned long *n = end_of_stack(p);
2536
2537 do { /* Skip over canary */
2538 n++;
2539 } while (!*n);
2540
2541 return (unsigned long)n - (unsigned long)end_of_stack(p);
2542 }
2543 #endif
2544
2545 /* set thread flags in other task's structures
2546 * - see asm/thread_info.h for TIF_xxxx flags available
2547 */
2548 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2549 {
2550 set_ti_thread_flag(task_thread_info(tsk), flag);
2551 }
2552
2553 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2554 {
2555 clear_ti_thread_flag(task_thread_info(tsk), flag);
2556 }
2557
2558 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2559 {
2560 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2561 }
2562
2563 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2564 {
2565 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2566 }
2567
2568 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2569 {
2570 return test_ti_thread_flag(task_thread_info(tsk), flag);
2571 }
2572
2573 static inline void set_tsk_need_resched(struct task_struct *tsk)
2574 {
2575 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2576 }
2577
2578 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2579 {
2580 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2581 }
2582
2583 static inline int test_tsk_need_resched(struct task_struct *tsk)
2584 {
2585 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2586 }
2587
2588 static inline int restart_syscall(void)
2589 {
2590 set_tsk_thread_flag(current, TIF_SIGPENDING);
2591 return -ERESTARTNOINTR;
2592 }
2593
2594 static inline int signal_pending(struct task_struct *p)
2595 {
2596 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2597 }
2598
2599 static inline int __fatal_signal_pending(struct task_struct *p)
2600 {
2601 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2602 }
2603
2604 static inline int fatal_signal_pending(struct task_struct *p)
2605 {
2606 return signal_pending(p) && __fatal_signal_pending(p);
2607 }
2608
2609 static inline int signal_pending_state(long state, struct task_struct *p)
2610 {
2611 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2612 return 0;
2613 if (!signal_pending(p))
2614 return 0;
2615
2616 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2617 }
2618
2619 /*
2620 * cond_resched() and cond_resched_lock(): latency reduction via
2621 * explicit rescheduling in places that are safe. The return
2622 * value indicates whether a reschedule was done in fact.
2623 * cond_resched_lock() will drop the spinlock before scheduling,
2624 * cond_resched_softirq() will enable bhs before scheduling.
2625 */
2626 extern int _cond_resched(void);
2627
2628 #define cond_resched() ({ \
2629 __might_sleep(__FILE__, __LINE__, 0); \
2630 _cond_resched(); \
2631 })
2632
2633 extern int __cond_resched_lock(spinlock_t *lock);
2634
2635 #ifdef CONFIG_PREEMPT_COUNT
2636 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2637 #else
2638 #define PREEMPT_LOCK_OFFSET 0
2639 #endif
2640
2641 #define cond_resched_lock(lock) ({ \
2642 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2643 __cond_resched_lock(lock); \
2644 })
2645
2646 extern int __cond_resched_softirq(void);
2647
2648 #define cond_resched_softirq() ({ \
2649 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2650 __cond_resched_softirq(); \
2651 })
2652
2653 static inline void cond_resched_rcu(void)
2654 {
2655 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2656 rcu_read_unlock();
2657 cond_resched();
2658 rcu_read_lock();
2659 #endif
2660 }
2661
2662 /*
2663 * Does a critical section need to be broken due to another
2664 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2665 * but a general need for low latency)
2666 */
2667 static inline int spin_needbreak(spinlock_t *lock)
2668 {
2669 #ifdef CONFIG_PREEMPT
2670 return spin_is_contended(lock);
2671 #else
2672 return 0;
2673 #endif
2674 }
2675
2676 /*
2677 * Idle thread specific functions to determine the need_resched
2678 * polling state. We have two versions, one based on TS_POLLING in
2679 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2680 * thread_info.flags
2681 */
2682 #ifdef TS_POLLING
2683 static inline int tsk_is_polling(struct task_struct *p)
2684 {
2685 return task_thread_info(p)->status & TS_POLLING;
2686 }
2687 static inline void __current_set_polling(void)
2688 {
2689 current_thread_info()->status |= TS_POLLING;
2690 }
2691
2692 static inline bool __must_check current_set_polling_and_test(void)
2693 {
2694 __current_set_polling();
2695
2696 /*
2697 * Polling state must be visible before we test NEED_RESCHED,
2698 * paired by resched_task()
2699 */
2700 smp_mb();
2701
2702 return unlikely(tif_need_resched());
2703 }
2704
2705 static inline void __current_clr_polling(void)
2706 {
2707 current_thread_info()->status &= ~TS_POLLING;
2708 }
2709
2710 static inline bool __must_check current_clr_polling_and_test(void)
2711 {
2712 __current_clr_polling();
2713
2714 /*
2715 * Polling state must be visible before we test NEED_RESCHED,
2716 * paired by resched_task()
2717 */
2718 smp_mb();
2719
2720 return unlikely(tif_need_resched());
2721 }
2722 #elif defined(TIF_POLLING_NRFLAG)
2723 static inline int tsk_is_polling(struct task_struct *p)
2724 {
2725 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2726 }
2727
2728 static inline void __current_set_polling(void)
2729 {
2730 set_thread_flag(TIF_POLLING_NRFLAG);
2731 }
2732
2733 static inline bool __must_check current_set_polling_and_test(void)
2734 {
2735 __current_set_polling();
2736
2737 /*
2738 * Polling state must be visible before we test NEED_RESCHED,
2739 * paired by resched_task()
2740 *
2741 * XXX: assumes set/clear bit are identical barrier wise.
2742 */
2743 smp_mb__after_clear_bit();
2744
2745 return unlikely(tif_need_resched());
2746 }
2747
2748 static inline void __current_clr_polling(void)
2749 {
2750 clear_thread_flag(TIF_POLLING_NRFLAG);
2751 }
2752
2753 static inline bool __must_check current_clr_polling_and_test(void)
2754 {
2755 __current_clr_polling();
2756
2757 /*
2758 * Polling state must be visible before we test NEED_RESCHED,
2759 * paired by resched_task()
2760 */
2761 smp_mb__after_clear_bit();
2762
2763 return unlikely(tif_need_resched());
2764 }
2765
2766 #else
2767 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2768 static inline void __current_set_polling(void) { }
2769 static inline void __current_clr_polling(void) { }
2770
2771 static inline bool __must_check current_set_polling_and_test(void)
2772 {
2773 return unlikely(tif_need_resched());
2774 }
2775 static inline bool __must_check current_clr_polling_and_test(void)
2776 {
2777 return unlikely(tif_need_resched());
2778 }
2779 #endif
2780
2781 static inline void current_clr_polling(void)
2782 {
2783 __current_clr_polling();
2784
2785 /*
2786 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2787 * Once the bit is cleared, we'll get IPIs with every new
2788 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2789 * fold.
2790 */
2791 smp_mb(); /* paired with resched_task() */
2792
2793 preempt_fold_need_resched();
2794 }
2795
2796 static __always_inline bool need_resched(void)
2797 {
2798 return unlikely(tif_need_resched());
2799 }
2800
2801 /*
2802 * Thread group CPU time accounting.
2803 */
2804 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2805 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2806
2807 static inline void thread_group_cputime_init(struct signal_struct *sig)
2808 {
2809 raw_spin_lock_init(&sig->cputimer.lock);
2810 }
2811
2812 /*
2813 * Reevaluate whether the task has signals pending delivery.
2814 * Wake the task if so.
2815 * This is required every time the blocked sigset_t changes.
2816 * callers must hold sighand->siglock.
2817 */
2818 extern void recalc_sigpending_and_wake(struct task_struct *t);
2819 extern void recalc_sigpending(void);
2820
2821 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2822
2823 static inline void signal_wake_up(struct task_struct *t, bool resume)
2824 {
2825 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2826 }
2827 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2828 {
2829 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2830 }
2831
2832 /*
2833 * Wrappers for p->thread_info->cpu access. No-op on UP.
2834 */
2835 #ifdef CONFIG_SMP
2836
2837 static inline unsigned int task_cpu(const struct task_struct *p)
2838 {
2839 return task_thread_info(p)->cpu;
2840 }
2841
2842 static inline int task_node(const struct task_struct *p)
2843 {
2844 return cpu_to_node(task_cpu(p));
2845 }
2846
2847 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2848
2849 #else
2850
2851 static inline unsigned int task_cpu(const struct task_struct *p)
2852 {
2853 return 0;
2854 }
2855
2856 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2857 {
2858 }
2859
2860 #endif /* CONFIG_SMP */
2861
2862 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2863 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2864
2865 #ifdef CONFIG_CGROUP_SCHED
2866 extern struct task_group root_task_group;
2867 #endif /* CONFIG_CGROUP_SCHED */
2868
2869 extern int task_can_switch_user(struct user_struct *up,
2870 struct task_struct *tsk);
2871
2872 #ifdef CONFIG_TASK_XACCT
2873 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2874 {
2875 tsk->ioac.rchar += amt;
2876 }
2877
2878 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2879 {
2880 tsk->ioac.wchar += amt;
2881 }
2882
2883 static inline void inc_syscr(struct task_struct *tsk)
2884 {
2885 tsk->ioac.syscr++;
2886 }
2887
2888 static inline void inc_syscw(struct task_struct *tsk)
2889 {
2890 tsk->ioac.syscw++;
2891 }
2892 #else
2893 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2894 {
2895 }
2896
2897 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2898 {
2899 }
2900
2901 static inline void inc_syscr(struct task_struct *tsk)
2902 {
2903 }
2904
2905 static inline void inc_syscw(struct task_struct *tsk)
2906 {
2907 }
2908 #endif
2909
2910 #ifndef TASK_SIZE_OF
2911 #define TASK_SIZE_OF(tsk) TASK_SIZE
2912 #endif
2913
2914 #ifdef CONFIG_MM_OWNER
2915 extern void mm_update_next_owner(struct mm_struct *mm);
2916 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2917 #else
2918 static inline void mm_update_next_owner(struct mm_struct *mm)
2919 {
2920 }
2921
2922 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2923 {
2924 }
2925 #endif /* CONFIG_MM_OWNER */
2926
2927 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2928 unsigned int limit)
2929 {
2930 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2931 }
2932
2933 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2934 unsigned int limit)
2935 {
2936 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2937 }
2938
2939 static inline unsigned long rlimit(unsigned int limit)
2940 {
2941 return task_rlimit(current, limit);
2942 }
2943
2944 static inline unsigned long rlimit_max(unsigned int limit)
2945 {
2946 return task_rlimit_max(current, limit);
2947 }
2948
2949 #endif