]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
Merge tag 'mfd-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
181 #else
182 static inline void update_cpu_load_nohz(void) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 extern unsigned int hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
390 static inline void touch_softlockup_watchdog(void)
391 {
392 }
393 static inline void touch_softlockup_watchdog_sync(void)
394 {
395 }
396 static inline void touch_all_softlockup_watchdogs(void)
397 {
398 }
399 static inline void lockup_detector_init(void)
400 {
401 }
402 #endif
403
404 #ifdef CONFIG_DETECT_HUNG_TASK
405 void reset_hung_task_detector(void);
406 #else
407 static inline void reset_hung_task_detector(void)
408 {
409 }
410 #endif
411
412 /* Attach to any functions which should be ignored in wchan output. */
413 #define __sched __attribute__((__section__(".sched.text")))
414
415 /* Linker adds these: start and end of __sched functions */
416 extern char __sched_text_start[], __sched_text_end[];
417
418 /* Is this address in the __sched functions? */
419 extern int in_sched_functions(unsigned long addr);
420
421 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
422 extern signed long schedule_timeout(signed long timeout);
423 extern signed long schedule_timeout_interruptible(signed long timeout);
424 extern signed long schedule_timeout_killable(signed long timeout);
425 extern signed long schedule_timeout_uninterruptible(signed long timeout);
426 asmlinkage void schedule(void);
427 extern void schedule_preempt_disabled(void);
428
429 extern long io_schedule_timeout(long timeout);
430
431 static inline void io_schedule(void)
432 {
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
434 }
435
436 struct nsproxy;
437 struct user_namespace;
438
439 #ifdef CONFIG_MMU
440 extern void arch_pick_mmap_layout(struct mm_struct *mm);
441 extern unsigned long
442 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
443 unsigned long, unsigned long);
444 extern unsigned long
445 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
446 unsigned long len, unsigned long pgoff,
447 unsigned long flags);
448 #else
449 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
450 #endif
451
452 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453 #define SUID_DUMP_USER 1 /* Dump as user of process */
454 #define SUID_DUMP_ROOT 2 /* Dump as root */
455
456 /* mm flags */
457
458 /* for SUID_DUMP_* above */
459 #define MMF_DUMPABLE_BITS 2
460 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
461
462 extern void set_dumpable(struct mm_struct *mm, int value);
463 /*
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
467 * value.
468 */
469 static inline int __get_dumpable(unsigned long mm_flags)
470 {
471 return mm_flags & MMF_DUMPABLE_MASK;
472 }
473
474 static inline int get_dumpable(struct mm_struct *mm)
475 {
476 return __get_dumpable(mm->flags);
477 }
478
479 /* coredump filter bits */
480 #define MMF_DUMP_ANON_PRIVATE 2
481 #define MMF_DUMP_ANON_SHARED 3
482 #define MMF_DUMP_MAPPED_PRIVATE 4
483 #define MMF_DUMP_MAPPED_SHARED 5
484 #define MMF_DUMP_ELF_HEADERS 6
485 #define MMF_DUMP_HUGETLB_PRIVATE 7
486 #define MMF_DUMP_HUGETLB_SHARED 8
487
488 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
489 #define MMF_DUMP_FILTER_BITS 7
490 #define MMF_DUMP_FILTER_MASK \
491 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
492 #define MMF_DUMP_FILTER_DEFAULT \
493 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
494 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
495
496 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
497 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
498 #else
499 # define MMF_DUMP_MASK_DEFAULT_ELF 0
500 #endif
501 /* leave room for more dump flags */
502 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
503 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
504 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
505
506 #define MMF_HAS_UPROBES 19 /* has uprobes */
507 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
508
509 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
510
511 struct sighand_struct {
512 atomic_t count;
513 struct k_sigaction action[_NSIG];
514 spinlock_t siglock;
515 wait_queue_head_t signalfd_wqh;
516 };
517
518 struct pacct_struct {
519 int ac_flag;
520 long ac_exitcode;
521 unsigned long ac_mem;
522 cputime_t ac_utime, ac_stime;
523 unsigned long ac_minflt, ac_majflt;
524 };
525
526 struct cpu_itimer {
527 cputime_t expires;
528 cputime_t incr;
529 u32 error;
530 u32 incr_error;
531 };
532
533 /**
534 * struct prev_cputime - snaphsot of system and user cputime
535 * @utime: time spent in user mode
536 * @stime: time spent in system mode
537 * @lock: protects the above two fields
538 *
539 * Stores previous user/system time values such that we can guarantee
540 * monotonicity.
541 */
542 struct prev_cputime {
543 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
544 cputime_t utime;
545 cputime_t stime;
546 raw_spinlock_t lock;
547 #endif
548 };
549
550 static inline void prev_cputime_init(struct prev_cputime *prev)
551 {
552 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
553 prev->utime = prev->stime = 0;
554 raw_spin_lock_init(&prev->lock);
555 #endif
556 }
557
558 /**
559 * struct task_cputime - collected CPU time counts
560 * @utime: time spent in user mode, in &cputime_t units
561 * @stime: time spent in kernel mode, in &cputime_t units
562 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
563 *
564 * This structure groups together three kinds of CPU time that are tracked for
565 * threads and thread groups. Most things considering CPU time want to group
566 * these counts together and treat all three of them in parallel.
567 */
568 struct task_cputime {
569 cputime_t utime;
570 cputime_t stime;
571 unsigned long long sum_exec_runtime;
572 };
573
574 /* Alternate field names when used to cache expirations. */
575 #define virt_exp utime
576 #define prof_exp stime
577 #define sched_exp sum_exec_runtime
578
579 #define INIT_CPUTIME \
580 (struct task_cputime) { \
581 .utime = 0, \
582 .stime = 0, \
583 .sum_exec_runtime = 0, \
584 }
585
586 /*
587 * This is the atomic variant of task_cputime, which can be used for
588 * storing and updating task_cputime statistics without locking.
589 */
590 struct task_cputime_atomic {
591 atomic64_t utime;
592 atomic64_t stime;
593 atomic64_t sum_exec_runtime;
594 };
595
596 #define INIT_CPUTIME_ATOMIC \
597 (struct task_cputime_atomic) { \
598 .utime = ATOMIC64_INIT(0), \
599 .stime = ATOMIC64_INIT(0), \
600 .sum_exec_runtime = ATOMIC64_INIT(0), \
601 }
602
603 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
604
605 /*
606 * Disable preemption until the scheduler is running -- use an unconditional
607 * value so that it also works on !PREEMPT_COUNT kernels.
608 *
609 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
610 */
611 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
612
613 /*
614 * Initial preempt_count value; reflects the preempt_count schedule invariant
615 * which states that during context switches:
616 *
617 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
618 *
619 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
620 * Note: See finish_task_switch().
621 */
622 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
623
624 /**
625 * struct thread_group_cputimer - thread group interval timer counts
626 * @cputime_atomic: atomic thread group interval timers.
627 * @running: true when there are timers running and
628 * @cputime_atomic receives updates.
629 * @checking_timer: true when a thread in the group is in the
630 * process of checking for thread group timers.
631 *
632 * This structure contains the version of task_cputime, above, that is
633 * used for thread group CPU timer calculations.
634 */
635 struct thread_group_cputimer {
636 struct task_cputime_atomic cputime_atomic;
637 bool running;
638 bool checking_timer;
639 };
640
641 #include <linux/rwsem.h>
642 struct autogroup;
643
644 /*
645 * NOTE! "signal_struct" does not have its own
646 * locking, because a shared signal_struct always
647 * implies a shared sighand_struct, so locking
648 * sighand_struct is always a proper superset of
649 * the locking of signal_struct.
650 */
651 struct signal_struct {
652 atomic_t sigcnt;
653 atomic_t live;
654 int nr_threads;
655 struct list_head thread_head;
656
657 wait_queue_head_t wait_chldexit; /* for wait4() */
658
659 /* current thread group signal load-balancing target: */
660 struct task_struct *curr_target;
661
662 /* shared signal handling: */
663 struct sigpending shared_pending;
664
665 /* thread group exit support */
666 int group_exit_code;
667 /* overloaded:
668 * - notify group_exit_task when ->count is equal to notify_count
669 * - everyone except group_exit_task is stopped during signal delivery
670 * of fatal signals, group_exit_task processes the signal.
671 */
672 int notify_count;
673 struct task_struct *group_exit_task;
674
675 /* thread group stop support, overloads group_exit_code too */
676 int group_stop_count;
677 unsigned int flags; /* see SIGNAL_* flags below */
678
679 /*
680 * PR_SET_CHILD_SUBREAPER marks a process, like a service
681 * manager, to re-parent orphan (double-forking) child processes
682 * to this process instead of 'init'. The service manager is
683 * able to receive SIGCHLD signals and is able to investigate
684 * the process until it calls wait(). All children of this
685 * process will inherit a flag if they should look for a
686 * child_subreaper process at exit.
687 */
688 unsigned int is_child_subreaper:1;
689 unsigned int has_child_subreaper:1;
690
691 /* POSIX.1b Interval Timers */
692 int posix_timer_id;
693 struct list_head posix_timers;
694
695 /* ITIMER_REAL timer for the process */
696 struct hrtimer real_timer;
697 struct pid *leader_pid;
698 ktime_t it_real_incr;
699
700 /*
701 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
702 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
703 * values are defined to 0 and 1 respectively
704 */
705 struct cpu_itimer it[2];
706
707 /*
708 * Thread group totals for process CPU timers.
709 * See thread_group_cputimer(), et al, for details.
710 */
711 struct thread_group_cputimer cputimer;
712
713 /* Earliest-expiration cache. */
714 struct task_cputime cputime_expires;
715
716 struct list_head cpu_timers[3];
717
718 struct pid *tty_old_pgrp;
719
720 /* boolean value for session group leader */
721 int leader;
722
723 struct tty_struct *tty; /* NULL if no tty */
724
725 #ifdef CONFIG_SCHED_AUTOGROUP
726 struct autogroup *autogroup;
727 #endif
728 /*
729 * Cumulative resource counters for dead threads in the group,
730 * and for reaped dead child processes forked by this group.
731 * Live threads maintain their own counters and add to these
732 * in __exit_signal, except for the group leader.
733 */
734 seqlock_t stats_lock;
735 cputime_t utime, stime, cutime, cstime;
736 cputime_t gtime;
737 cputime_t cgtime;
738 struct prev_cputime prev_cputime;
739 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
740 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
741 unsigned long inblock, oublock, cinblock, coublock;
742 unsigned long maxrss, cmaxrss;
743 struct task_io_accounting ioac;
744
745 /*
746 * Cumulative ns of schedule CPU time fo dead threads in the
747 * group, not including a zombie group leader, (This only differs
748 * from jiffies_to_ns(utime + stime) if sched_clock uses something
749 * other than jiffies.)
750 */
751 unsigned long long sum_sched_runtime;
752
753 /*
754 * We don't bother to synchronize most readers of this at all,
755 * because there is no reader checking a limit that actually needs
756 * to get both rlim_cur and rlim_max atomically, and either one
757 * alone is a single word that can safely be read normally.
758 * getrlimit/setrlimit use task_lock(current->group_leader) to
759 * protect this instead of the siglock, because they really
760 * have no need to disable irqs.
761 */
762 struct rlimit rlim[RLIM_NLIMITS];
763
764 #ifdef CONFIG_BSD_PROCESS_ACCT
765 struct pacct_struct pacct; /* per-process accounting information */
766 #endif
767 #ifdef CONFIG_TASKSTATS
768 struct taskstats *stats;
769 #endif
770 #ifdef CONFIG_AUDIT
771 unsigned audit_tty;
772 unsigned audit_tty_log_passwd;
773 struct tty_audit_buf *tty_audit_buf;
774 #endif
775
776 oom_flags_t oom_flags;
777 short oom_score_adj; /* OOM kill score adjustment */
778 short oom_score_adj_min; /* OOM kill score adjustment min value.
779 * Only settable by CAP_SYS_RESOURCE. */
780
781 struct mutex cred_guard_mutex; /* guard against foreign influences on
782 * credential calculations
783 * (notably. ptrace) */
784 };
785
786 /*
787 * Bits in flags field of signal_struct.
788 */
789 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
790 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
791 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
792 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
793 /*
794 * Pending notifications to parent.
795 */
796 #define SIGNAL_CLD_STOPPED 0x00000010
797 #define SIGNAL_CLD_CONTINUED 0x00000020
798 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
799
800 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
801
802 /* If true, all threads except ->group_exit_task have pending SIGKILL */
803 static inline int signal_group_exit(const struct signal_struct *sig)
804 {
805 return (sig->flags & SIGNAL_GROUP_EXIT) ||
806 (sig->group_exit_task != NULL);
807 }
808
809 /*
810 * Some day this will be a full-fledged user tracking system..
811 */
812 struct user_struct {
813 atomic_t __count; /* reference count */
814 atomic_t processes; /* How many processes does this user have? */
815 atomic_t sigpending; /* How many pending signals does this user have? */
816 #ifdef CONFIG_INOTIFY_USER
817 atomic_t inotify_watches; /* How many inotify watches does this user have? */
818 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
819 #endif
820 #ifdef CONFIG_FANOTIFY
821 atomic_t fanotify_listeners;
822 #endif
823 #ifdef CONFIG_EPOLL
824 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
825 #endif
826 #ifdef CONFIG_POSIX_MQUEUE
827 /* protected by mq_lock */
828 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
829 #endif
830 unsigned long locked_shm; /* How many pages of mlocked shm ? */
831
832 #ifdef CONFIG_KEYS
833 struct key *uid_keyring; /* UID specific keyring */
834 struct key *session_keyring; /* UID's default session keyring */
835 #endif
836
837 /* Hash table maintenance information */
838 struct hlist_node uidhash_node;
839 kuid_t uid;
840
841 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
842 atomic_long_t locked_vm;
843 #endif
844 };
845
846 extern int uids_sysfs_init(void);
847
848 extern struct user_struct *find_user(kuid_t);
849
850 extern struct user_struct root_user;
851 #define INIT_USER (&root_user)
852
853
854 struct backing_dev_info;
855 struct reclaim_state;
856
857 #ifdef CONFIG_SCHED_INFO
858 struct sched_info {
859 /* cumulative counters */
860 unsigned long pcount; /* # of times run on this cpu */
861 unsigned long long run_delay; /* time spent waiting on a runqueue */
862
863 /* timestamps */
864 unsigned long long last_arrival,/* when we last ran on a cpu */
865 last_queued; /* when we were last queued to run */
866 };
867 #endif /* CONFIG_SCHED_INFO */
868
869 #ifdef CONFIG_TASK_DELAY_ACCT
870 struct task_delay_info {
871 spinlock_t lock;
872 unsigned int flags; /* Private per-task flags */
873
874 /* For each stat XXX, add following, aligned appropriately
875 *
876 * struct timespec XXX_start, XXX_end;
877 * u64 XXX_delay;
878 * u32 XXX_count;
879 *
880 * Atomicity of updates to XXX_delay, XXX_count protected by
881 * single lock above (split into XXX_lock if contention is an issue).
882 */
883
884 /*
885 * XXX_count is incremented on every XXX operation, the delay
886 * associated with the operation is added to XXX_delay.
887 * XXX_delay contains the accumulated delay time in nanoseconds.
888 */
889 u64 blkio_start; /* Shared by blkio, swapin */
890 u64 blkio_delay; /* wait for sync block io completion */
891 u64 swapin_delay; /* wait for swapin block io completion */
892 u32 blkio_count; /* total count of the number of sync block */
893 /* io operations performed */
894 u32 swapin_count; /* total count of the number of swapin block */
895 /* io operations performed */
896
897 u64 freepages_start;
898 u64 freepages_delay; /* wait for memory reclaim */
899 u32 freepages_count; /* total count of memory reclaim */
900 };
901 #endif /* CONFIG_TASK_DELAY_ACCT */
902
903 static inline int sched_info_on(void)
904 {
905 #ifdef CONFIG_SCHEDSTATS
906 return 1;
907 #elif defined(CONFIG_TASK_DELAY_ACCT)
908 extern int delayacct_on;
909 return delayacct_on;
910 #else
911 return 0;
912 #endif
913 }
914
915 enum cpu_idle_type {
916 CPU_IDLE,
917 CPU_NOT_IDLE,
918 CPU_NEWLY_IDLE,
919 CPU_MAX_IDLE_TYPES
920 };
921
922 /*
923 * Increase resolution of cpu_capacity calculations
924 */
925 #define SCHED_CAPACITY_SHIFT 10
926 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
927
928 /*
929 * Wake-queues are lists of tasks with a pending wakeup, whose
930 * callers have already marked the task as woken internally,
931 * and can thus carry on. A common use case is being able to
932 * do the wakeups once the corresponding user lock as been
933 * released.
934 *
935 * We hold reference to each task in the list across the wakeup,
936 * thus guaranteeing that the memory is still valid by the time
937 * the actual wakeups are performed in wake_up_q().
938 *
939 * One per task suffices, because there's never a need for a task to be
940 * in two wake queues simultaneously; it is forbidden to abandon a task
941 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
942 * already in a wake queue, the wakeup will happen soon and the second
943 * waker can just skip it.
944 *
945 * The WAKE_Q macro declares and initializes the list head.
946 * wake_up_q() does NOT reinitialize the list; it's expected to be
947 * called near the end of a function, where the fact that the queue is
948 * not used again will be easy to see by inspection.
949 *
950 * Note that this can cause spurious wakeups. schedule() callers
951 * must ensure the call is done inside a loop, confirming that the
952 * wakeup condition has in fact occurred.
953 */
954 struct wake_q_node {
955 struct wake_q_node *next;
956 };
957
958 struct wake_q_head {
959 struct wake_q_node *first;
960 struct wake_q_node **lastp;
961 };
962
963 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
964
965 #define WAKE_Q(name) \
966 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
967
968 extern void wake_q_add(struct wake_q_head *head,
969 struct task_struct *task);
970 extern void wake_up_q(struct wake_q_head *head);
971
972 /*
973 * sched-domains (multiprocessor balancing) declarations:
974 */
975 #ifdef CONFIG_SMP
976 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
977 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
978 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
979 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
980 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
981 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
982 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
983 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
984 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
985 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
986 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
987 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
988 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
989 #define SD_NUMA 0x4000 /* cross-node balancing */
990
991 #ifdef CONFIG_SCHED_SMT
992 static inline int cpu_smt_flags(void)
993 {
994 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
995 }
996 #endif
997
998 #ifdef CONFIG_SCHED_MC
999 static inline int cpu_core_flags(void)
1000 {
1001 return SD_SHARE_PKG_RESOURCES;
1002 }
1003 #endif
1004
1005 #ifdef CONFIG_NUMA
1006 static inline int cpu_numa_flags(void)
1007 {
1008 return SD_NUMA;
1009 }
1010 #endif
1011
1012 struct sched_domain_attr {
1013 int relax_domain_level;
1014 };
1015
1016 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1017 .relax_domain_level = -1, \
1018 }
1019
1020 extern int sched_domain_level_max;
1021
1022 struct sched_group;
1023
1024 struct sched_domain {
1025 /* These fields must be setup */
1026 struct sched_domain *parent; /* top domain must be null terminated */
1027 struct sched_domain *child; /* bottom domain must be null terminated */
1028 struct sched_group *groups; /* the balancing groups of the domain */
1029 unsigned long min_interval; /* Minimum balance interval ms */
1030 unsigned long max_interval; /* Maximum balance interval ms */
1031 unsigned int busy_factor; /* less balancing by factor if busy */
1032 unsigned int imbalance_pct; /* No balance until over watermark */
1033 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1034 unsigned int busy_idx;
1035 unsigned int idle_idx;
1036 unsigned int newidle_idx;
1037 unsigned int wake_idx;
1038 unsigned int forkexec_idx;
1039 unsigned int smt_gain;
1040
1041 int nohz_idle; /* NOHZ IDLE status */
1042 int flags; /* See SD_* */
1043 int level;
1044
1045 /* Runtime fields. */
1046 unsigned long last_balance; /* init to jiffies. units in jiffies */
1047 unsigned int balance_interval; /* initialise to 1. units in ms. */
1048 unsigned int nr_balance_failed; /* initialise to 0 */
1049
1050 /* idle_balance() stats */
1051 u64 max_newidle_lb_cost;
1052 unsigned long next_decay_max_lb_cost;
1053
1054 #ifdef CONFIG_SCHEDSTATS
1055 /* load_balance() stats */
1056 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1057 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1058 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1059 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1060 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1061 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1062 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1063 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1064
1065 /* Active load balancing */
1066 unsigned int alb_count;
1067 unsigned int alb_failed;
1068 unsigned int alb_pushed;
1069
1070 /* SD_BALANCE_EXEC stats */
1071 unsigned int sbe_count;
1072 unsigned int sbe_balanced;
1073 unsigned int sbe_pushed;
1074
1075 /* SD_BALANCE_FORK stats */
1076 unsigned int sbf_count;
1077 unsigned int sbf_balanced;
1078 unsigned int sbf_pushed;
1079
1080 /* try_to_wake_up() stats */
1081 unsigned int ttwu_wake_remote;
1082 unsigned int ttwu_move_affine;
1083 unsigned int ttwu_move_balance;
1084 #endif
1085 #ifdef CONFIG_SCHED_DEBUG
1086 char *name;
1087 #endif
1088 union {
1089 void *private; /* used during construction */
1090 struct rcu_head rcu; /* used during destruction */
1091 };
1092
1093 unsigned int span_weight;
1094 /*
1095 * Span of all CPUs in this domain.
1096 *
1097 * NOTE: this field is variable length. (Allocated dynamically
1098 * by attaching extra space to the end of the structure,
1099 * depending on how many CPUs the kernel has booted up with)
1100 */
1101 unsigned long span[0];
1102 };
1103
1104 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1105 {
1106 return to_cpumask(sd->span);
1107 }
1108
1109 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1110 struct sched_domain_attr *dattr_new);
1111
1112 /* Allocate an array of sched domains, for partition_sched_domains(). */
1113 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1114 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1115
1116 bool cpus_share_cache(int this_cpu, int that_cpu);
1117
1118 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1119 typedef int (*sched_domain_flags_f)(void);
1120
1121 #define SDTL_OVERLAP 0x01
1122
1123 struct sd_data {
1124 struct sched_domain **__percpu sd;
1125 struct sched_group **__percpu sg;
1126 struct sched_group_capacity **__percpu sgc;
1127 };
1128
1129 struct sched_domain_topology_level {
1130 sched_domain_mask_f mask;
1131 sched_domain_flags_f sd_flags;
1132 int flags;
1133 int numa_level;
1134 struct sd_data data;
1135 #ifdef CONFIG_SCHED_DEBUG
1136 char *name;
1137 #endif
1138 };
1139
1140 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1141 extern void wake_up_if_idle(int cpu);
1142
1143 #ifdef CONFIG_SCHED_DEBUG
1144 # define SD_INIT_NAME(type) .name = #type
1145 #else
1146 # define SD_INIT_NAME(type)
1147 #endif
1148
1149 #else /* CONFIG_SMP */
1150
1151 struct sched_domain_attr;
1152
1153 static inline void
1154 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1155 struct sched_domain_attr *dattr_new)
1156 {
1157 }
1158
1159 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1160 {
1161 return true;
1162 }
1163
1164 #endif /* !CONFIG_SMP */
1165
1166
1167 struct io_context; /* See blkdev.h */
1168
1169
1170 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1171 extern void prefetch_stack(struct task_struct *t);
1172 #else
1173 static inline void prefetch_stack(struct task_struct *t) { }
1174 #endif
1175
1176 struct audit_context; /* See audit.c */
1177 struct mempolicy;
1178 struct pipe_inode_info;
1179 struct uts_namespace;
1180
1181 struct load_weight {
1182 unsigned long weight;
1183 u32 inv_weight;
1184 };
1185
1186 /*
1187 * The load_avg/util_avg accumulates an infinite geometric series.
1188 * 1) load_avg factors frequency scaling into the amount of time that a
1189 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1190 * aggregated such weights of all runnable and blocked sched_entities.
1191 * 2) util_avg factors frequency and cpu scaling into the amount of time
1192 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1193 * For cfs_rq, it is the aggregated such times of all runnable and
1194 * blocked sched_entities.
1195 * The 64 bit load_sum can:
1196 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1197 * the highest weight (=88761) always runnable, we should not overflow
1198 * 2) for entity, support any load.weight always runnable
1199 */
1200 struct sched_avg {
1201 u64 last_update_time, load_sum;
1202 u32 util_sum, period_contrib;
1203 unsigned long load_avg, util_avg;
1204 };
1205
1206 #ifdef CONFIG_SCHEDSTATS
1207 struct sched_statistics {
1208 u64 wait_start;
1209 u64 wait_max;
1210 u64 wait_count;
1211 u64 wait_sum;
1212 u64 iowait_count;
1213 u64 iowait_sum;
1214
1215 u64 sleep_start;
1216 u64 sleep_max;
1217 s64 sum_sleep_runtime;
1218
1219 u64 block_start;
1220 u64 block_max;
1221 u64 exec_max;
1222 u64 slice_max;
1223
1224 u64 nr_migrations_cold;
1225 u64 nr_failed_migrations_affine;
1226 u64 nr_failed_migrations_running;
1227 u64 nr_failed_migrations_hot;
1228 u64 nr_forced_migrations;
1229
1230 u64 nr_wakeups;
1231 u64 nr_wakeups_sync;
1232 u64 nr_wakeups_migrate;
1233 u64 nr_wakeups_local;
1234 u64 nr_wakeups_remote;
1235 u64 nr_wakeups_affine;
1236 u64 nr_wakeups_affine_attempts;
1237 u64 nr_wakeups_passive;
1238 u64 nr_wakeups_idle;
1239 };
1240 #endif
1241
1242 struct sched_entity {
1243 struct load_weight load; /* for load-balancing */
1244 struct rb_node run_node;
1245 struct list_head group_node;
1246 unsigned int on_rq;
1247
1248 u64 exec_start;
1249 u64 sum_exec_runtime;
1250 u64 vruntime;
1251 u64 prev_sum_exec_runtime;
1252
1253 u64 nr_migrations;
1254
1255 #ifdef CONFIG_SCHEDSTATS
1256 struct sched_statistics statistics;
1257 #endif
1258
1259 #ifdef CONFIG_FAIR_GROUP_SCHED
1260 int depth;
1261 struct sched_entity *parent;
1262 /* rq on which this entity is (to be) queued: */
1263 struct cfs_rq *cfs_rq;
1264 /* rq "owned" by this entity/group: */
1265 struct cfs_rq *my_q;
1266 #endif
1267
1268 #ifdef CONFIG_SMP
1269 /* Per entity load average tracking */
1270 struct sched_avg avg;
1271 #endif
1272 };
1273
1274 struct sched_rt_entity {
1275 struct list_head run_list;
1276 unsigned long timeout;
1277 unsigned long watchdog_stamp;
1278 unsigned int time_slice;
1279
1280 struct sched_rt_entity *back;
1281 #ifdef CONFIG_RT_GROUP_SCHED
1282 struct sched_rt_entity *parent;
1283 /* rq on which this entity is (to be) queued: */
1284 struct rt_rq *rt_rq;
1285 /* rq "owned" by this entity/group: */
1286 struct rt_rq *my_q;
1287 #endif
1288 };
1289
1290 struct sched_dl_entity {
1291 struct rb_node rb_node;
1292
1293 /*
1294 * Original scheduling parameters. Copied here from sched_attr
1295 * during sched_setattr(), they will remain the same until
1296 * the next sched_setattr().
1297 */
1298 u64 dl_runtime; /* maximum runtime for each instance */
1299 u64 dl_deadline; /* relative deadline of each instance */
1300 u64 dl_period; /* separation of two instances (period) */
1301 u64 dl_bw; /* dl_runtime / dl_deadline */
1302
1303 /*
1304 * Actual scheduling parameters. Initialized with the values above,
1305 * they are continously updated during task execution. Note that
1306 * the remaining runtime could be < 0 in case we are in overrun.
1307 */
1308 s64 runtime; /* remaining runtime for this instance */
1309 u64 deadline; /* absolute deadline for this instance */
1310 unsigned int flags; /* specifying the scheduler behaviour */
1311
1312 /*
1313 * Some bool flags:
1314 *
1315 * @dl_throttled tells if we exhausted the runtime. If so, the
1316 * task has to wait for a replenishment to be performed at the
1317 * next firing of dl_timer.
1318 *
1319 * @dl_new tells if a new instance arrived. If so we must
1320 * start executing it with full runtime and reset its absolute
1321 * deadline;
1322 *
1323 * @dl_boosted tells if we are boosted due to DI. If so we are
1324 * outside bandwidth enforcement mechanism (but only until we
1325 * exit the critical section);
1326 *
1327 * @dl_yielded tells if task gave up the cpu before consuming
1328 * all its available runtime during the last job.
1329 */
1330 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1331
1332 /*
1333 * Bandwidth enforcement timer. Each -deadline task has its
1334 * own bandwidth to be enforced, thus we need one timer per task.
1335 */
1336 struct hrtimer dl_timer;
1337 };
1338
1339 union rcu_special {
1340 struct {
1341 u8 blocked;
1342 u8 need_qs;
1343 u8 exp_need_qs;
1344 u8 pad; /* Otherwise the compiler can store garbage here. */
1345 } b; /* Bits. */
1346 u32 s; /* Set of bits. */
1347 };
1348 struct rcu_node;
1349
1350 enum perf_event_task_context {
1351 perf_invalid_context = -1,
1352 perf_hw_context = 0,
1353 perf_sw_context,
1354 perf_nr_task_contexts,
1355 };
1356
1357 /* Track pages that require TLB flushes */
1358 struct tlbflush_unmap_batch {
1359 /*
1360 * Each bit set is a CPU that potentially has a TLB entry for one of
1361 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1362 */
1363 struct cpumask cpumask;
1364
1365 /* True if any bit in cpumask is set */
1366 bool flush_required;
1367
1368 /*
1369 * If true then the PTE was dirty when unmapped. The entry must be
1370 * flushed before IO is initiated or a stale TLB entry potentially
1371 * allows an update without redirtying the page.
1372 */
1373 bool writable;
1374 };
1375
1376 struct task_struct {
1377 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1378 void *stack;
1379 atomic_t usage;
1380 unsigned int flags; /* per process flags, defined below */
1381 unsigned int ptrace;
1382
1383 #ifdef CONFIG_SMP
1384 struct llist_node wake_entry;
1385 int on_cpu;
1386 unsigned int wakee_flips;
1387 unsigned long wakee_flip_decay_ts;
1388 struct task_struct *last_wakee;
1389
1390 int wake_cpu;
1391 #endif
1392 int on_rq;
1393
1394 int prio, static_prio, normal_prio;
1395 unsigned int rt_priority;
1396 const struct sched_class *sched_class;
1397 struct sched_entity se;
1398 struct sched_rt_entity rt;
1399 #ifdef CONFIG_CGROUP_SCHED
1400 struct task_group *sched_task_group;
1401 #endif
1402 struct sched_dl_entity dl;
1403
1404 #ifdef CONFIG_PREEMPT_NOTIFIERS
1405 /* list of struct preempt_notifier: */
1406 struct hlist_head preempt_notifiers;
1407 #endif
1408
1409 #ifdef CONFIG_BLK_DEV_IO_TRACE
1410 unsigned int btrace_seq;
1411 #endif
1412
1413 unsigned int policy;
1414 int nr_cpus_allowed;
1415 cpumask_t cpus_allowed;
1416
1417 #ifdef CONFIG_PREEMPT_RCU
1418 int rcu_read_lock_nesting;
1419 union rcu_special rcu_read_unlock_special;
1420 struct list_head rcu_node_entry;
1421 struct rcu_node *rcu_blocked_node;
1422 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1423 #ifdef CONFIG_TASKS_RCU
1424 unsigned long rcu_tasks_nvcsw;
1425 bool rcu_tasks_holdout;
1426 struct list_head rcu_tasks_holdout_list;
1427 int rcu_tasks_idle_cpu;
1428 #endif /* #ifdef CONFIG_TASKS_RCU */
1429
1430 #ifdef CONFIG_SCHED_INFO
1431 struct sched_info sched_info;
1432 #endif
1433
1434 struct list_head tasks;
1435 #ifdef CONFIG_SMP
1436 struct plist_node pushable_tasks;
1437 struct rb_node pushable_dl_tasks;
1438 #endif
1439
1440 struct mm_struct *mm, *active_mm;
1441 /* per-thread vma caching */
1442 u32 vmacache_seqnum;
1443 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1444 #if defined(SPLIT_RSS_COUNTING)
1445 struct task_rss_stat rss_stat;
1446 #endif
1447 /* task state */
1448 int exit_state;
1449 int exit_code, exit_signal;
1450 int pdeath_signal; /* The signal sent when the parent dies */
1451 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1452
1453 /* Used for emulating ABI behavior of previous Linux versions */
1454 unsigned int personality;
1455
1456 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1457 * execve */
1458 unsigned in_iowait:1;
1459
1460 /* Revert to default priority/policy when forking */
1461 unsigned sched_reset_on_fork:1;
1462 unsigned sched_contributes_to_load:1;
1463 unsigned sched_migrated:1;
1464 #ifdef CONFIG_MEMCG
1465 unsigned memcg_may_oom:1;
1466 #endif
1467 #ifdef CONFIG_MEMCG_KMEM
1468 unsigned memcg_kmem_skip_account:1;
1469 #endif
1470 #ifdef CONFIG_COMPAT_BRK
1471 unsigned brk_randomized:1;
1472 #endif
1473
1474 unsigned long atomic_flags; /* Flags needing atomic access. */
1475
1476 struct restart_block restart_block;
1477
1478 pid_t pid;
1479 pid_t tgid;
1480
1481 #ifdef CONFIG_CC_STACKPROTECTOR
1482 /* Canary value for the -fstack-protector gcc feature */
1483 unsigned long stack_canary;
1484 #endif
1485 /*
1486 * pointers to (original) parent process, youngest child, younger sibling,
1487 * older sibling, respectively. (p->father can be replaced with
1488 * p->real_parent->pid)
1489 */
1490 struct task_struct __rcu *real_parent; /* real parent process */
1491 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1492 /*
1493 * children/sibling forms the list of my natural children
1494 */
1495 struct list_head children; /* list of my children */
1496 struct list_head sibling; /* linkage in my parent's children list */
1497 struct task_struct *group_leader; /* threadgroup leader */
1498
1499 /*
1500 * ptraced is the list of tasks this task is using ptrace on.
1501 * This includes both natural children and PTRACE_ATTACH targets.
1502 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1503 */
1504 struct list_head ptraced;
1505 struct list_head ptrace_entry;
1506
1507 /* PID/PID hash table linkage. */
1508 struct pid_link pids[PIDTYPE_MAX];
1509 struct list_head thread_group;
1510 struct list_head thread_node;
1511
1512 struct completion *vfork_done; /* for vfork() */
1513 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1514 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1515
1516 cputime_t utime, stime, utimescaled, stimescaled;
1517 cputime_t gtime;
1518 struct prev_cputime prev_cputime;
1519 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1520 seqlock_t vtime_seqlock;
1521 unsigned long long vtime_snap;
1522 enum {
1523 VTIME_SLEEPING = 0,
1524 VTIME_USER,
1525 VTIME_SYS,
1526 } vtime_snap_whence;
1527 #endif
1528 unsigned long nvcsw, nivcsw; /* context switch counts */
1529 u64 start_time; /* monotonic time in nsec */
1530 u64 real_start_time; /* boot based time in nsec */
1531 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1532 unsigned long min_flt, maj_flt;
1533
1534 struct task_cputime cputime_expires;
1535 struct list_head cpu_timers[3];
1536
1537 /* process credentials */
1538 const struct cred __rcu *real_cred; /* objective and real subjective task
1539 * credentials (COW) */
1540 const struct cred __rcu *cred; /* effective (overridable) subjective task
1541 * credentials (COW) */
1542 char comm[TASK_COMM_LEN]; /* executable name excluding path
1543 - access with [gs]et_task_comm (which lock
1544 it with task_lock())
1545 - initialized normally by setup_new_exec */
1546 /* file system info */
1547 struct nameidata *nameidata;
1548 #ifdef CONFIG_SYSVIPC
1549 /* ipc stuff */
1550 struct sysv_sem sysvsem;
1551 struct sysv_shm sysvshm;
1552 #endif
1553 #ifdef CONFIG_DETECT_HUNG_TASK
1554 /* hung task detection */
1555 unsigned long last_switch_count;
1556 #endif
1557 /* filesystem information */
1558 struct fs_struct *fs;
1559 /* open file information */
1560 struct files_struct *files;
1561 /* namespaces */
1562 struct nsproxy *nsproxy;
1563 /* signal handlers */
1564 struct signal_struct *signal;
1565 struct sighand_struct *sighand;
1566
1567 sigset_t blocked, real_blocked;
1568 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1569 struct sigpending pending;
1570
1571 unsigned long sas_ss_sp;
1572 size_t sas_ss_size;
1573 int (*notifier)(void *priv);
1574 void *notifier_data;
1575 sigset_t *notifier_mask;
1576 struct callback_head *task_works;
1577
1578 struct audit_context *audit_context;
1579 #ifdef CONFIG_AUDITSYSCALL
1580 kuid_t loginuid;
1581 unsigned int sessionid;
1582 #endif
1583 struct seccomp seccomp;
1584
1585 /* Thread group tracking */
1586 u32 parent_exec_id;
1587 u32 self_exec_id;
1588 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1589 * mempolicy */
1590 spinlock_t alloc_lock;
1591
1592 /* Protection of the PI data structures: */
1593 raw_spinlock_t pi_lock;
1594
1595 struct wake_q_node wake_q;
1596
1597 #ifdef CONFIG_RT_MUTEXES
1598 /* PI waiters blocked on a rt_mutex held by this task */
1599 struct rb_root pi_waiters;
1600 struct rb_node *pi_waiters_leftmost;
1601 /* Deadlock detection and priority inheritance handling */
1602 struct rt_mutex_waiter *pi_blocked_on;
1603 #endif
1604
1605 #ifdef CONFIG_DEBUG_MUTEXES
1606 /* mutex deadlock detection */
1607 struct mutex_waiter *blocked_on;
1608 #endif
1609 #ifdef CONFIG_TRACE_IRQFLAGS
1610 unsigned int irq_events;
1611 unsigned long hardirq_enable_ip;
1612 unsigned long hardirq_disable_ip;
1613 unsigned int hardirq_enable_event;
1614 unsigned int hardirq_disable_event;
1615 int hardirqs_enabled;
1616 int hardirq_context;
1617 unsigned long softirq_disable_ip;
1618 unsigned long softirq_enable_ip;
1619 unsigned int softirq_disable_event;
1620 unsigned int softirq_enable_event;
1621 int softirqs_enabled;
1622 int softirq_context;
1623 #endif
1624 #ifdef CONFIG_LOCKDEP
1625 # define MAX_LOCK_DEPTH 48UL
1626 u64 curr_chain_key;
1627 int lockdep_depth;
1628 unsigned int lockdep_recursion;
1629 struct held_lock held_locks[MAX_LOCK_DEPTH];
1630 gfp_t lockdep_reclaim_gfp;
1631 #endif
1632
1633 /* journalling filesystem info */
1634 void *journal_info;
1635
1636 /* stacked block device info */
1637 struct bio_list *bio_list;
1638
1639 #ifdef CONFIG_BLOCK
1640 /* stack plugging */
1641 struct blk_plug *plug;
1642 #endif
1643
1644 /* VM state */
1645 struct reclaim_state *reclaim_state;
1646
1647 struct backing_dev_info *backing_dev_info;
1648
1649 struct io_context *io_context;
1650
1651 unsigned long ptrace_message;
1652 siginfo_t *last_siginfo; /* For ptrace use. */
1653 struct task_io_accounting ioac;
1654 #if defined(CONFIG_TASK_XACCT)
1655 u64 acct_rss_mem1; /* accumulated rss usage */
1656 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1657 cputime_t acct_timexpd; /* stime + utime since last update */
1658 #endif
1659 #ifdef CONFIG_CPUSETS
1660 nodemask_t mems_allowed; /* Protected by alloc_lock */
1661 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1662 int cpuset_mem_spread_rotor;
1663 int cpuset_slab_spread_rotor;
1664 #endif
1665 #ifdef CONFIG_CGROUPS
1666 /* Control Group info protected by css_set_lock */
1667 struct css_set __rcu *cgroups;
1668 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1669 struct list_head cg_list;
1670 #endif
1671 #ifdef CONFIG_FUTEX
1672 struct robust_list_head __user *robust_list;
1673 #ifdef CONFIG_COMPAT
1674 struct compat_robust_list_head __user *compat_robust_list;
1675 #endif
1676 struct list_head pi_state_list;
1677 struct futex_pi_state *pi_state_cache;
1678 #endif
1679 #ifdef CONFIG_PERF_EVENTS
1680 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1681 struct mutex perf_event_mutex;
1682 struct list_head perf_event_list;
1683 #endif
1684 #ifdef CONFIG_DEBUG_PREEMPT
1685 unsigned long preempt_disable_ip;
1686 #endif
1687 #ifdef CONFIG_NUMA
1688 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1689 short il_next;
1690 short pref_node_fork;
1691 #endif
1692 #ifdef CONFIG_NUMA_BALANCING
1693 int numa_scan_seq;
1694 unsigned int numa_scan_period;
1695 unsigned int numa_scan_period_max;
1696 int numa_preferred_nid;
1697 unsigned long numa_migrate_retry;
1698 u64 node_stamp; /* migration stamp */
1699 u64 last_task_numa_placement;
1700 u64 last_sum_exec_runtime;
1701 struct callback_head numa_work;
1702
1703 struct list_head numa_entry;
1704 struct numa_group *numa_group;
1705
1706 /*
1707 * numa_faults is an array split into four regions:
1708 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1709 * in this precise order.
1710 *
1711 * faults_memory: Exponential decaying average of faults on a per-node
1712 * basis. Scheduling placement decisions are made based on these
1713 * counts. The values remain static for the duration of a PTE scan.
1714 * faults_cpu: Track the nodes the process was running on when a NUMA
1715 * hinting fault was incurred.
1716 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1717 * during the current scan window. When the scan completes, the counts
1718 * in faults_memory and faults_cpu decay and these values are copied.
1719 */
1720 unsigned long *numa_faults;
1721 unsigned long total_numa_faults;
1722
1723 /*
1724 * numa_faults_locality tracks if faults recorded during the last
1725 * scan window were remote/local or failed to migrate. The task scan
1726 * period is adapted based on the locality of the faults with different
1727 * weights depending on whether they were shared or private faults
1728 */
1729 unsigned long numa_faults_locality[3];
1730
1731 unsigned long numa_pages_migrated;
1732 #endif /* CONFIG_NUMA_BALANCING */
1733
1734 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1735 struct tlbflush_unmap_batch tlb_ubc;
1736 #endif
1737
1738 struct rcu_head rcu;
1739
1740 /*
1741 * cache last used pipe for splice
1742 */
1743 struct pipe_inode_info *splice_pipe;
1744
1745 struct page_frag task_frag;
1746
1747 #ifdef CONFIG_TASK_DELAY_ACCT
1748 struct task_delay_info *delays;
1749 #endif
1750 #ifdef CONFIG_FAULT_INJECTION
1751 int make_it_fail;
1752 #endif
1753 /*
1754 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1755 * balance_dirty_pages() for some dirty throttling pause
1756 */
1757 int nr_dirtied;
1758 int nr_dirtied_pause;
1759 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1760
1761 #ifdef CONFIG_LATENCYTOP
1762 int latency_record_count;
1763 struct latency_record latency_record[LT_SAVECOUNT];
1764 #endif
1765 /*
1766 * time slack values; these are used to round up poll() and
1767 * select() etc timeout values. These are in nanoseconds.
1768 */
1769 unsigned long timer_slack_ns;
1770 unsigned long default_timer_slack_ns;
1771
1772 #ifdef CONFIG_KASAN
1773 unsigned int kasan_depth;
1774 #endif
1775 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1776 /* Index of current stored address in ret_stack */
1777 int curr_ret_stack;
1778 /* Stack of return addresses for return function tracing */
1779 struct ftrace_ret_stack *ret_stack;
1780 /* time stamp for last schedule */
1781 unsigned long long ftrace_timestamp;
1782 /*
1783 * Number of functions that haven't been traced
1784 * because of depth overrun.
1785 */
1786 atomic_t trace_overrun;
1787 /* Pause for the tracing */
1788 atomic_t tracing_graph_pause;
1789 #endif
1790 #ifdef CONFIG_TRACING
1791 /* state flags for use by tracers */
1792 unsigned long trace;
1793 /* bitmask and counter of trace recursion */
1794 unsigned long trace_recursion;
1795 #endif /* CONFIG_TRACING */
1796 #ifdef CONFIG_MEMCG
1797 struct mem_cgroup *memcg_in_oom;
1798 gfp_t memcg_oom_gfp_mask;
1799 int memcg_oom_order;
1800
1801 /* number of pages to reclaim on returning to userland */
1802 unsigned int memcg_nr_pages_over_high;
1803 #endif
1804 #ifdef CONFIG_UPROBES
1805 struct uprobe_task *utask;
1806 #endif
1807 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1808 unsigned int sequential_io;
1809 unsigned int sequential_io_avg;
1810 #endif
1811 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1812 unsigned long task_state_change;
1813 #endif
1814 int pagefault_disabled;
1815 /* CPU-specific state of this task */
1816 struct thread_struct thread;
1817 /*
1818 * WARNING: on x86, 'thread_struct' contains a variable-sized
1819 * structure. It *MUST* be at the end of 'task_struct'.
1820 *
1821 * Do not put anything below here!
1822 */
1823 };
1824
1825 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1826 extern int arch_task_struct_size __read_mostly;
1827 #else
1828 # define arch_task_struct_size (sizeof(struct task_struct))
1829 #endif
1830
1831 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1832 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1833
1834 #define TNF_MIGRATED 0x01
1835 #define TNF_NO_GROUP 0x02
1836 #define TNF_SHARED 0x04
1837 #define TNF_FAULT_LOCAL 0x08
1838 #define TNF_MIGRATE_FAIL 0x10
1839
1840 #ifdef CONFIG_NUMA_BALANCING
1841 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1842 extern pid_t task_numa_group_id(struct task_struct *p);
1843 extern void set_numabalancing_state(bool enabled);
1844 extern void task_numa_free(struct task_struct *p);
1845 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1846 int src_nid, int dst_cpu);
1847 #else
1848 static inline void task_numa_fault(int last_node, int node, int pages,
1849 int flags)
1850 {
1851 }
1852 static inline pid_t task_numa_group_id(struct task_struct *p)
1853 {
1854 return 0;
1855 }
1856 static inline void set_numabalancing_state(bool enabled)
1857 {
1858 }
1859 static inline void task_numa_free(struct task_struct *p)
1860 {
1861 }
1862 static inline bool should_numa_migrate_memory(struct task_struct *p,
1863 struct page *page, int src_nid, int dst_cpu)
1864 {
1865 return true;
1866 }
1867 #endif
1868
1869 static inline struct pid *task_pid(struct task_struct *task)
1870 {
1871 return task->pids[PIDTYPE_PID].pid;
1872 }
1873
1874 static inline struct pid *task_tgid(struct task_struct *task)
1875 {
1876 return task->group_leader->pids[PIDTYPE_PID].pid;
1877 }
1878
1879 /*
1880 * Without tasklist or rcu lock it is not safe to dereference
1881 * the result of task_pgrp/task_session even if task == current,
1882 * we can race with another thread doing sys_setsid/sys_setpgid.
1883 */
1884 static inline struct pid *task_pgrp(struct task_struct *task)
1885 {
1886 return task->group_leader->pids[PIDTYPE_PGID].pid;
1887 }
1888
1889 static inline struct pid *task_session(struct task_struct *task)
1890 {
1891 return task->group_leader->pids[PIDTYPE_SID].pid;
1892 }
1893
1894 struct pid_namespace;
1895
1896 /*
1897 * the helpers to get the task's different pids as they are seen
1898 * from various namespaces
1899 *
1900 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1901 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1902 * current.
1903 * task_xid_nr_ns() : id seen from the ns specified;
1904 *
1905 * set_task_vxid() : assigns a virtual id to a task;
1906 *
1907 * see also pid_nr() etc in include/linux/pid.h
1908 */
1909 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1910 struct pid_namespace *ns);
1911
1912 static inline pid_t task_pid_nr(struct task_struct *tsk)
1913 {
1914 return tsk->pid;
1915 }
1916
1917 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1918 struct pid_namespace *ns)
1919 {
1920 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1921 }
1922
1923 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1924 {
1925 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1926 }
1927
1928
1929 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1930 {
1931 return tsk->tgid;
1932 }
1933
1934 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1935
1936 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1937 {
1938 return pid_vnr(task_tgid(tsk));
1939 }
1940
1941
1942 static inline int pid_alive(const struct task_struct *p);
1943 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1944 {
1945 pid_t pid = 0;
1946
1947 rcu_read_lock();
1948 if (pid_alive(tsk))
1949 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1950 rcu_read_unlock();
1951
1952 return pid;
1953 }
1954
1955 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1956 {
1957 return task_ppid_nr_ns(tsk, &init_pid_ns);
1958 }
1959
1960 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1961 struct pid_namespace *ns)
1962 {
1963 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1964 }
1965
1966 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1967 {
1968 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1969 }
1970
1971
1972 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1973 struct pid_namespace *ns)
1974 {
1975 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1976 }
1977
1978 static inline pid_t task_session_vnr(struct task_struct *tsk)
1979 {
1980 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1981 }
1982
1983 /* obsolete, do not use */
1984 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1985 {
1986 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1987 }
1988
1989 /**
1990 * pid_alive - check that a task structure is not stale
1991 * @p: Task structure to be checked.
1992 *
1993 * Test if a process is not yet dead (at most zombie state)
1994 * If pid_alive fails, then pointers within the task structure
1995 * can be stale and must not be dereferenced.
1996 *
1997 * Return: 1 if the process is alive. 0 otherwise.
1998 */
1999 static inline int pid_alive(const struct task_struct *p)
2000 {
2001 return p->pids[PIDTYPE_PID].pid != NULL;
2002 }
2003
2004 /**
2005 * is_global_init - check if a task structure is init
2006 * @tsk: Task structure to be checked.
2007 *
2008 * Check if a task structure is the first user space task the kernel created.
2009 *
2010 * Return: 1 if the task structure is init. 0 otherwise.
2011 */
2012 static inline int is_global_init(struct task_struct *tsk)
2013 {
2014 return tsk->pid == 1;
2015 }
2016
2017 extern struct pid *cad_pid;
2018
2019 extern void free_task(struct task_struct *tsk);
2020 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2021
2022 extern void __put_task_struct(struct task_struct *t);
2023
2024 static inline void put_task_struct(struct task_struct *t)
2025 {
2026 if (atomic_dec_and_test(&t->usage))
2027 __put_task_struct(t);
2028 }
2029
2030 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2031 extern void task_cputime(struct task_struct *t,
2032 cputime_t *utime, cputime_t *stime);
2033 extern void task_cputime_scaled(struct task_struct *t,
2034 cputime_t *utimescaled, cputime_t *stimescaled);
2035 extern cputime_t task_gtime(struct task_struct *t);
2036 #else
2037 static inline void task_cputime(struct task_struct *t,
2038 cputime_t *utime, cputime_t *stime)
2039 {
2040 if (utime)
2041 *utime = t->utime;
2042 if (stime)
2043 *stime = t->stime;
2044 }
2045
2046 static inline void task_cputime_scaled(struct task_struct *t,
2047 cputime_t *utimescaled,
2048 cputime_t *stimescaled)
2049 {
2050 if (utimescaled)
2051 *utimescaled = t->utimescaled;
2052 if (stimescaled)
2053 *stimescaled = t->stimescaled;
2054 }
2055
2056 static inline cputime_t task_gtime(struct task_struct *t)
2057 {
2058 return t->gtime;
2059 }
2060 #endif
2061 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2062 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2063
2064 /*
2065 * Per process flags
2066 */
2067 #define PF_EXITING 0x00000004 /* getting shut down */
2068 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2069 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2070 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2071 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2072 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2073 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2074 #define PF_DUMPCORE 0x00000200 /* dumped core */
2075 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2076 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2077 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2078 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2079 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2080 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2081 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2082 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2083 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2084 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2085 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2086 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2087 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2088 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2089 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2090 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2091 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2092 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2093 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2094
2095 /*
2096 * Only the _current_ task can read/write to tsk->flags, but other
2097 * tasks can access tsk->flags in readonly mode for example
2098 * with tsk_used_math (like during threaded core dumping).
2099 * There is however an exception to this rule during ptrace
2100 * or during fork: the ptracer task is allowed to write to the
2101 * child->flags of its traced child (same goes for fork, the parent
2102 * can write to the child->flags), because we're guaranteed the
2103 * child is not running and in turn not changing child->flags
2104 * at the same time the parent does it.
2105 */
2106 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2107 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2108 #define clear_used_math() clear_stopped_child_used_math(current)
2109 #define set_used_math() set_stopped_child_used_math(current)
2110 #define conditional_stopped_child_used_math(condition, child) \
2111 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2112 #define conditional_used_math(condition) \
2113 conditional_stopped_child_used_math(condition, current)
2114 #define copy_to_stopped_child_used_math(child) \
2115 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2116 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2117 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2118 #define used_math() tsk_used_math(current)
2119
2120 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2121 * __GFP_FS is also cleared as it implies __GFP_IO.
2122 */
2123 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2124 {
2125 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2126 flags &= ~(__GFP_IO | __GFP_FS);
2127 return flags;
2128 }
2129
2130 static inline unsigned int memalloc_noio_save(void)
2131 {
2132 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2133 current->flags |= PF_MEMALLOC_NOIO;
2134 return flags;
2135 }
2136
2137 static inline void memalloc_noio_restore(unsigned int flags)
2138 {
2139 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2140 }
2141
2142 /* Per-process atomic flags. */
2143 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2144 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2145 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2146
2147
2148 #define TASK_PFA_TEST(name, func) \
2149 static inline bool task_##func(struct task_struct *p) \
2150 { return test_bit(PFA_##name, &p->atomic_flags); }
2151 #define TASK_PFA_SET(name, func) \
2152 static inline void task_set_##func(struct task_struct *p) \
2153 { set_bit(PFA_##name, &p->atomic_flags); }
2154 #define TASK_PFA_CLEAR(name, func) \
2155 static inline void task_clear_##func(struct task_struct *p) \
2156 { clear_bit(PFA_##name, &p->atomic_flags); }
2157
2158 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2159 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2160
2161 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2162 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2163 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2164
2165 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2166 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2167 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2168
2169 /*
2170 * task->jobctl flags
2171 */
2172 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2173
2174 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2175 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2176 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2177 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2178 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2179 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2180 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2181
2182 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2183 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2184 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2185 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2186 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2187 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2188 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2189
2190 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2191 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2192
2193 extern bool task_set_jobctl_pending(struct task_struct *task,
2194 unsigned long mask);
2195 extern void task_clear_jobctl_trapping(struct task_struct *task);
2196 extern void task_clear_jobctl_pending(struct task_struct *task,
2197 unsigned long mask);
2198
2199 static inline void rcu_copy_process(struct task_struct *p)
2200 {
2201 #ifdef CONFIG_PREEMPT_RCU
2202 p->rcu_read_lock_nesting = 0;
2203 p->rcu_read_unlock_special.s = 0;
2204 p->rcu_blocked_node = NULL;
2205 INIT_LIST_HEAD(&p->rcu_node_entry);
2206 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2207 #ifdef CONFIG_TASKS_RCU
2208 p->rcu_tasks_holdout = false;
2209 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2210 p->rcu_tasks_idle_cpu = -1;
2211 #endif /* #ifdef CONFIG_TASKS_RCU */
2212 }
2213
2214 static inline void tsk_restore_flags(struct task_struct *task,
2215 unsigned long orig_flags, unsigned long flags)
2216 {
2217 task->flags &= ~flags;
2218 task->flags |= orig_flags & flags;
2219 }
2220
2221 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2222 const struct cpumask *trial);
2223 extern int task_can_attach(struct task_struct *p,
2224 const struct cpumask *cs_cpus_allowed);
2225 #ifdef CONFIG_SMP
2226 extern void do_set_cpus_allowed(struct task_struct *p,
2227 const struct cpumask *new_mask);
2228
2229 extern int set_cpus_allowed_ptr(struct task_struct *p,
2230 const struct cpumask *new_mask);
2231 #else
2232 static inline void do_set_cpus_allowed(struct task_struct *p,
2233 const struct cpumask *new_mask)
2234 {
2235 }
2236 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2237 const struct cpumask *new_mask)
2238 {
2239 if (!cpumask_test_cpu(0, new_mask))
2240 return -EINVAL;
2241 return 0;
2242 }
2243 #endif
2244
2245 #ifdef CONFIG_NO_HZ_COMMON
2246 void calc_load_enter_idle(void);
2247 void calc_load_exit_idle(void);
2248 #else
2249 static inline void calc_load_enter_idle(void) { }
2250 static inline void calc_load_exit_idle(void) { }
2251 #endif /* CONFIG_NO_HZ_COMMON */
2252
2253 /*
2254 * Do not use outside of architecture code which knows its limitations.
2255 *
2256 * sched_clock() has no promise of monotonicity or bounded drift between
2257 * CPUs, use (which you should not) requires disabling IRQs.
2258 *
2259 * Please use one of the three interfaces below.
2260 */
2261 extern unsigned long long notrace sched_clock(void);
2262 /*
2263 * See the comment in kernel/sched/clock.c
2264 */
2265 extern u64 cpu_clock(int cpu);
2266 extern u64 local_clock(void);
2267 extern u64 running_clock(void);
2268 extern u64 sched_clock_cpu(int cpu);
2269
2270
2271 extern void sched_clock_init(void);
2272
2273 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2274 static inline void sched_clock_tick(void)
2275 {
2276 }
2277
2278 static inline void sched_clock_idle_sleep_event(void)
2279 {
2280 }
2281
2282 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2283 {
2284 }
2285 #else
2286 /*
2287 * Architectures can set this to 1 if they have specified
2288 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2289 * but then during bootup it turns out that sched_clock()
2290 * is reliable after all:
2291 */
2292 extern int sched_clock_stable(void);
2293 extern void set_sched_clock_stable(void);
2294 extern void clear_sched_clock_stable(void);
2295
2296 extern void sched_clock_tick(void);
2297 extern void sched_clock_idle_sleep_event(void);
2298 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2299 #endif
2300
2301 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2302 /*
2303 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2304 * The reason for this explicit opt-in is not to have perf penalty with
2305 * slow sched_clocks.
2306 */
2307 extern void enable_sched_clock_irqtime(void);
2308 extern void disable_sched_clock_irqtime(void);
2309 #else
2310 static inline void enable_sched_clock_irqtime(void) {}
2311 static inline void disable_sched_clock_irqtime(void) {}
2312 #endif
2313
2314 extern unsigned long long
2315 task_sched_runtime(struct task_struct *task);
2316
2317 /* sched_exec is called by processes performing an exec */
2318 #ifdef CONFIG_SMP
2319 extern void sched_exec(void);
2320 #else
2321 #define sched_exec() {}
2322 #endif
2323
2324 extern void sched_clock_idle_sleep_event(void);
2325 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2326
2327 #ifdef CONFIG_HOTPLUG_CPU
2328 extern void idle_task_exit(void);
2329 #else
2330 static inline void idle_task_exit(void) {}
2331 #endif
2332
2333 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2334 extern void wake_up_nohz_cpu(int cpu);
2335 #else
2336 static inline void wake_up_nohz_cpu(int cpu) { }
2337 #endif
2338
2339 #ifdef CONFIG_NO_HZ_FULL
2340 extern bool sched_can_stop_tick(void);
2341 extern u64 scheduler_tick_max_deferment(void);
2342 #else
2343 static inline bool sched_can_stop_tick(void) { return false; }
2344 #endif
2345
2346 #ifdef CONFIG_SCHED_AUTOGROUP
2347 extern void sched_autogroup_create_attach(struct task_struct *p);
2348 extern void sched_autogroup_detach(struct task_struct *p);
2349 extern void sched_autogroup_fork(struct signal_struct *sig);
2350 extern void sched_autogroup_exit(struct signal_struct *sig);
2351 #ifdef CONFIG_PROC_FS
2352 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2353 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2354 #endif
2355 #else
2356 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2357 static inline void sched_autogroup_detach(struct task_struct *p) { }
2358 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2359 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2360 #endif
2361
2362 extern int yield_to(struct task_struct *p, bool preempt);
2363 extern void set_user_nice(struct task_struct *p, long nice);
2364 extern int task_prio(const struct task_struct *p);
2365 /**
2366 * task_nice - return the nice value of a given task.
2367 * @p: the task in question.
2368 *
2369 * Return: The nice value [ -20 ... 0 ... 19 ].
2370 */
2371 static inline int task_nice(const struct task_struct *p)
2372 {
2373 return PRIO_TO_NICE((p)->static_prio);
2374 }
2375 extern int can_nice(const struct task_struct *p, const int nice);
2376 extern int task_curr(const struct task_struct *p);
2377 extern int idle_cpu(int cpu);
2378 extern int sched_setscheduler(struct task_struct *, int,
2379 const struct sched_param *);
2380 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2381 const struct sched_param *);
2382 extern int sched_setattr(struct task_struct *,
2383 const struct sched_attr *);
2384 extern struct task_struct *idle_task(int cpu);
2385 /**
2386 * is_idle_task - is the specified task an idle task?
2387 * @p: the task in question.
2388 *
2389 * Return: 1 if @p is an idle task. 0 otherwise.
2390 */
2391 static inline bool is_idle_task(const struct task_struct *p)
2392 {
2393 return p->pid == 0;
2394 }
2395 extern struct task_struct *curr_task(int cpu);
2396 extern void set_curr_task(int cpu, struct task_struct *p);
2397
2398 void yield(void);
2399
2400 union thread_union {
2401 struct thread_info thread_info;
2402 unsigned long stack[THREAD_SIZE/sizeof(long)];
2403 };
2404
2405 #ifndef __HAVE_ARCH_KSTACK_END
2406 static inline int kstack_end(void *addr)
2407 {
2408 /* Reliable end of stack detection:
2409 * Some APM bios versions misalign the stack
2410 */
2411 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2412 }
2413 #endif
2414
2415 extern union thread_union init_thread_union;
2416 extern struct task_struct init_task;
2417
2418 extern struct mm_struct init_mm;
2419
2420 extern struct pid_namespace init_pid_ns;
2421
2422 /*
2423 * find a task by one of its numerical ids
2424 *
2425 * find_task_by_pid_ns():
2426 * finds a task by its pid in the specified namespace
2427 * find_task_by_vpid():
2428 * finds a task by its virtual pid
2429 *
2430 * see also find_vpid() etc in include/linux/pid.h
2431 */
2432
2433 extern struct task_struct *find_task_by_vpid(pid_t nr);
2434 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2435 struct pid_namespace *ns);
2436
2437 /* per-UID process charging. */
2438 extern struct user_struct * alloc_uid(kuid_t);
2439 static inline struct user_struct *get_uid(struct user_struct *u)
2440 {
2441 atomic_inc(&u->__count);
2442 return u;
2443 }
2444 extern void free_uid(struct user_struct *);
2445
2446 #include <asm/current.h>
2447
2448 extern void xtime_update(unsigned long ticks);
2449
2450 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2451 extern int wake_up_process(struct task_struct *tsk);
2452 extern void wake_up_new_task(struct task_struct *tsk);
2453 #ifdef CONFIG_SMP
2454 extern void kick_process(struct task_struct *tsk);
2455 #else
2456 static inline void kick_process(struct task_struct *tsk) { }
2457 #endif
2458 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2459 extern void sched_dead(struct task_struct *p);
2460
2461 extern void proc_caches_init(void);
2462 extern void flush_signals(struct task_struct *);
2463 extern void ignore_signals(struct task_struct *);
2464 extern void flush_signal_handlers(struct task_struct *, int force_default);
2465 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2466
2467 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2468 {
2469 unsigned long flags;
2470 int ret;
2471
2472 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2473 ret = dequeue_signal(tsk, mask, info);
2474 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2475
2476 return ret;
2477 }
2478
2479 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2480 sigset_t *mask);
2481 extern void unblock_all_signals(void);
2482 extern void release_task(struct task_struct * p);
2483 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2484 extern int force_sigsegv(int, struct task_struct *);
2485 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2486 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2487 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2488 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2489 const struct cred *, u32);
2490 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2491 extern int kill_pid(struct pid *pid, int sig, int priv);
2492 extern int kill_proc_info(int, struct siginfo *, pid_t);
2493 extern __must_check bool do_notify_parent(struct task_struct *, int);
2494 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2495 extern void force_sig(int, struct task_struct *);
2496 extern int send_sig(int, struct task_struct *, int);
2497 extern int zap_other_threads(struct task_struct *p);
2498 extern struct sigqueue *sigqueue_alloc(void);
2499 extern void sigqueue_free(struct sigqueue *);
2500 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2501 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2502
2503 static inline void restore_saved_sigmask(void)
2504 {
2505 if (test_and_clear_restore_sigmask())
2506 __set_current_blocked(&current->saved_sigmask);
2507 }
2508
2509 static inline sigset_t *sigmask_to_save(void)
2510 {
2511 sigset_t *res = &current->blocked;
2512 if (unlikely(test_restore_sigmask()))
2513 res = &current->saved_sigmask;
2514 return res;
2515 }
2516
2517 static inline int kill_cad_pid(int sig, int priv)
2518 {
2519 return kill_pid(cad_pid, sig, priv);
2520 }
2521
2522 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2523 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2524 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2525 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2526
2527 /*
2528 * True if we are on the alternate signal stack.
2529 */
2530 static inline int on_sig_stack(unsigned long sp)
2531 {
2532 #ifdef CONFIG_STACK_GROWSUP
2533 return sp >= current->sas_ss_sp &&
2534 sp - current->sas_ss_sp < current->sas_ss_size;
2535 #else
2536 return sp > current->sas_ss_sp &&
2537 sp - current->sas_ss_sp <= current->sas_ss_size;
2538 #endif
2539 }
2540
2541 static inline int sas_ss_flags(unsigned long sp)
2542 {
2543 if (!current->sas_ss_size)
2544 return SS_DISABLE;
2545
2546 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2547 }
2548
2549 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2550 {
2551 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2552 #ifdef CONFIG_STACK_GROWSUP
2553 return current->sas_ss_sp;
2554 #else
2555 return current->sas_ss_sp + current->sas_ss_size;
2556 #endif
2557 return sp;
2558 }
2559
2560 /*
2561 * Routines for handling mm_structs
2562 */
2563 extern struct mm_struct * mm_alloc(void);
2564
2565 /* mmdrop drops the mm and the page tables */
2566 extern void __mmdrop(struct mm_struct *);
2567 static inline void mmdrop(struct mm_struct * mm)
2568 {
2569 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2570 __mmdrop(mm);
2571 }
2572
2573 /* mmput gets rid of the mappings and all user-space */
2574 extern void mmput(struct mm_struct *);
2575 /* Grab a reference to a task's mm, if it is not already going away */
2576 extern struct mm_struct *get_task_mm(struct task_struct *task);
2577 /*
2578 * Grab a reference to a task's mm, if it is not already going away
2579 * and ptrace_may_access with the mode parameter passed to it
2580 * succeeds.
2581 */
2582 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2583 /* Remove the current tasks stale references to the old mm_struct */
2584 extern void mm_release(struct task_struct *, struct mm_struct *);
2585
2586 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2587 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2588 struct task_struct *, unsigned long);
2589 #else
2590 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2591 struct task_struct *);
2592
2593 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2594 * via pt_regs, so ignore the tls argument passed via C. */
2595 static inline int copy_thread_tls(
2596 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2597 struct task_struct *p, unsigned long tls)
2598 {
2599 return copy_thread(clone_flags, sp, arg, p);
2600 }
2601 #endif
2602 extern void flush_thread(void);
2603 extern void exit_thread(void);
2604
2605 extern void exit_files(struct task_struct *);
2606 extern void __cleanup_sighand(struct sighand_struct *);
2607
2608 extern void exit_itimers(struct signal_struct *);
2609 extern void flush_itimer_signals(void);
2610
2611 extern void do_group_exit(int);
2612
2613 extern int do_execve(struct filename *,
2614 const char __user * const __user *,
2615 const char __user * const __user *);
2616 extern int do_execveat(int, struct filename *,
2617 const char __user * const __user *,
2618 const char __user * const __user *,
2619 int);
2620 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2621 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2622 struct task_struct *fork_idle(int);
2623 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2624
2625 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2626 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2627 {
2628 __set_task_comm(tsk, from, false);
2629 }
2630 extern char *get_task_comm(char *to, struct task_struct *tsk);
2631
2632 #ifdef CONFIG_SMP
2633 void scheduler_ipi(void);
2634 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2635 #else
2636 static inline void scheduler_ipi(void) { }
2637 static inline unsigned long wait_task_inactive(struct task_struct *p,
2638 long match_state)
2639 {
2640 return 1;
2641 }
2642 #endif
2643
2644 #define tasklist_empty() \
2645 list_empty(&init_task.tasks)
2646
2647 #define next_task(p) \
2648 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2649
2650 #define for_each_process(p) \
2651 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2652
2653 extern bool current_is_single_threaded(void);
2654
2655 /*
2656 * Careful: do_each_thread/while_each_thread is a double loop so
2657 * 'break' will not work as expected - use goto instead.
2658 */
2659 #define do_each_thread(g, t) \
2660 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2661
2662 #define while_each_thread(g, t) \
2663 while ((t = next_thread(t)) != g)
2664
2665 #define __for_each_thread(signal, t) \
2666 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2667
2668 #define for_each_thread(p, t) \
2669 __for_each_thread((p)->signal, t)
2670
2671 /* Careful: this is a double loop, 'break' won't work as expected. */
2672 #define for_each_process_thread(p, t) \
2673 for_each_process(p) for_each_thread(p, t)
2674
2675 static inline int get_nr_threads(struct task_struct *tsk)
2676 {
2677 return tsk->signal->nr_threads;
2678 }
2679
2680 static inline bool thread_group_leader(struct task_struct *p)
2681 {
2682 return p->exit_signal >= 0;
2683 }
2684
2685 /* Do to the insanities of de_thread it is possible for a process
2686 * to have the pid of the thread group leader without actually being
2687 * the thread group leader. For iteration through the pids in proc
2688 * all we care about is that we have a task with the appropriate
2689 * pid, we don't actually care if we have the right task.
2690 */
2691 static inline bool has_group_leader_pid(struct task_struct *p)
2692 {
2693 return task_pid(p) == p->signal->leader_pid;
2694 }
2695
2696 static inline
2697 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2698 {
2699 return p1->signal == p2->signal;
2700 }
2701
2702 static inline struct task_struct *next_thread(const struct task_struct *p)
2703 {
2704 return list_entry_rcu(p->thread_group.next,
2705 struct task_struct, thread_group);
2706 }
2707
2708 static inline int thread_group_empty(struct task_struct *p)
2709 {
2710 return list_empty(&p->thread_group);
2711 }
2712
2713 #define delay_group_leader(p) \
2714 (thread_group_leader(p) && !thread_group_empty(p))
2715
2716 /*
2717 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2718 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2719 * pins the final release of task.io_context. Also protects ->cpuset and
2720 * ->cgroup.subsys[]. And ->vfork_done.
2721 *
2722 * Nests both inside and outside of read_lock(&tasklist_lock).
2723 * It must not be nested with write_lock_irq(&tasklist_lock),
2724 * neither inside nor outside.
2725 */
2726 static inline void task_lock(struct task_struct *p)
2727 {
2728 spin_lock(&p->alloc_lock);
2729 }
2730
2731 static inline void task_unlock(struct task_struct *p)
2732 {
2733 spin_unlock(&p->alloc_lock);
2734 }
2735
2736 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2737 unsigned long *flags);
2738
2739 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2740 unsigned long *flags)
2741 {
2742 struct sighand_struct *ret;
2743
2744 ret = __lock_task_sighand(tsk, flags);
2745 (void)__cond_lock(&tsk->sighand->siglock, ret);
2746 return ret;
2747 }
2748
2749 static inline void unlock_task_sighand(struct task_struct *tsk,
2750 unsigned long *flags)
2751 {
2752 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2753 }
2754
2755 /**
2756 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2757 * @tsk: task causing the changes
2758 *
2759 * All operations which modify a threadgroup - a new thread joining the
2760 * group, death of a member thread (the assertion of PF_EXITING) and
2761 * exec(2) dethreading the process and replacing the leader - are wrapped
2762 * by threadgroup_change_{begin|end}(). This is to provide a place which
2763 * subsystems needing threadgroup stability can hook into for
2764 * synchronization.
2765 */
2766 static inline void threadgroup_change_begin(struct task_struct *tsk)
2767 {
2768 might_sleep();
2769 cgroup_threadgroup_change_begin(tsk);
2770 }
2771
2772 /**
2773 * threadgroup_change_end - mark the end of changes to a threadgroup
2774 * @tsk: task causing the changes
2775 *
2776 * See threadgroup_change_begin().
2777 */
2778 static inline void threadgroup_change_end(struct task_struct *tsk)
2779 {
2780 cgroup_threadgroup_change_end(tsk);
2781 }
2782
2783 #ifndef __HAVE_THREAD_FUNCTIONS
2784
2785 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2786 #define task_stack_page(task) ((task)->stack)
2787
2788 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2789 {
2790 *task_thread_info(p) = *task_thread_info(org);
2791 task_thread_info(p)->task = p;
2792 }
2793
2794 /*
2795 * Return the address of the last usable long on the stack.
2796 *
2797 * When the stack grows down, this is just above the thread
2798 * info struct. Going any lower will corrupt the threadinfo.
2799 *
2800 * When the stack grows up, this is the highest address.
2801 * Beyond that position, we corrupt data on the next page.
2802 */
2803 static inline unsigned long *end_of_stack(struct task_struct *p)
2804 {
2805 #ifdef CONFIG_STACK_GROWSUP
2806 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2807 #else
2808 return (unsigned long *)(task_thread_info(p) + 1);
2809 #endif
2810 }
2811
2812 #endif
2813 #define task_stack_end_corrupted(task) \
2814 (*(end_of_stack(task)) != STACK_END_MAGIC)
2815
2816 static inline int object_is_on_stack(void *obj)
2817 {
2818 void *stack = task_stack_page(current);
2819
2820 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2821 }
2822
2823 extern void thread_info_cache_init(void);
2824
2825 #ifdef CONFIG_DEBUG_STACK_USAGE
2826 static inline unsigned long stack_not_used(struct task_struct *p)
2827 {
2828 unsigned long *n = end_of_stack(p);
2829
2830 do { /* Skip over canary */
2831 n++;
2832 } while (!*n);
2833
2834 return (unsigned long)n - (unsigned long)end_of_stack(p);
2835 }
2836 #endif
2837 extern void set_task_stack_end_magic(struct task_struct *tsk);
2838
2839 /* set thread flags in other task's structures
2840 * - see asm/thread_info.h for TIF_xxxx flags available
2841 */
2842 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2843 {
2844 set_ti_thread_flag(task_thread_info(tsk), flag);
2845 }
2846
2847 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2848 {
2849 clear_ti_thread_flag(task_thread_info(tsk), flag);
2850 }
2851
2852 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2853 {
2854 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2855 }
2856
2857 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2858 {
2859 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2860 }
2861
2862 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2863 {
2864 return test_ti_thread_flag(task_thread_info(tsk), flag);
2865 }
2866
2867 static inline void set_tsk_need_resched(struct task_struct *tsk)
2868 {
2869 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2870 }
2871
2872 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2873 {
2874 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2875 }
2876
2877 static inline int test_tsk_need_resched(struct task_struct *tsk)
2878 {
2879 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2880 }
2881
2882 static inline int restart_syscall(void)
2883 {
2884 set_tsk_thread_flag(current, TIF_SIGPENDING);
2885 return -ERESTARTNOINTR;
2886 }
2887
2888 static inline int signal_pending(struct task_struct *p)
2889 {
2890 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2891 }
2892
2893 static inline int __fatal_signal_pending(struct task_struct *p)
2894 {
2895 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2896 }
2897
2898 static inline int fatal_signal_pending(struct task_struct *p)
2899 {
2900 return signal_pending(p) && __fatal_signal_pending(p);
2901 }
2902
2903 static inline int signal_pending_state(long state, struct task_struct *p)
2904 {
2905 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2906 return 0;
2907 if (!signal_pending(p))
2908 return 0;
2909
2910 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2911 }
2912
2913 /*
2914 * cond_resched() and cond_resched_lock(): latency reduction via
2915 * explicit rescheduling in places that are safe. The return
2916 * value indicates whether a reschedule was done in fact.
2917 * cond_resched_lock() will drop the spinlock before scheduling,
2918 * cond_resched_softirq() will enable bhs before scheduling.
2919 */
2920 extern int _cond_resched(void);
2921
2922 #define cond_resched() ({ \
2923 ___might_sleep(__FILE__, __LINE__, 0); \
2924 _cond_resched(); \
2925 })
2926
2927 extern int __cond_resched_lock(spinlock_t *lock);
2928
2929 #define cond_resched_lock(lock) ({ \
2930 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2931 __cond_resched_lock(lock); \
2932 })
2933
2934 extern int __cond_resched_softirq(void);
2935
2936 #define cond_resched_softirq() ({ \
2937 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2938 __cond_resched_softirq(); \
2939 })
2940
2941 static inline void cond_resched_rcu(void)
2942 {
2943 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2944 rcu_read_unlock();
2945 cond_resched();
2946 rcu_read_lock();
2947 #endif
2948 }
2949
2950 /*
2951 * Does a critical section need to be broken due to another
2952 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2953 * but a general need for low latency)
2954 */
2955 static inline int spin_needbreak(spinlock_t *lock)
2956 {
2957 #ifdef CONFIG_PREEMPT
2958 return spin_is_contended(lock);
2959 #else
2960 return 0;
2961 #endif
2962 }
2963
2964 /*
2965 * Idle thread specific functions to determine the need_resched
2966 * polling state.
2967 */
2968 #ifdef TIF_POLLING_NRFLAG
2969 static inline int tsk_is_polling(struct task_struct *p)
2970 {
2971 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2972 }
2973
2974 static inline void __current_set_polling(void)
2975 {
2976 set_thread_flag(TIF_POLLING_NRFLAG);
2977 }
2978
2979 static inline bool __must_check current_set_polling_and_test(void)
2980 {
2981 __current_set_polling();
2982
2983 /*
2984 * Polling state must be visible before we test NEED_RESCHED,
2985 * paired by resched_curr()
2986 */
2987 smp_mb__after_atomic();
2988
2989 return unlikely(tif_need_resched());
2990 }
2991
2992 static inline void __current_clr_polling(void)
2993 {
2994 clear_thread_flag(TIF_POLLING_NRFLAG);
2995 }
2996
2997 static inline bool __must_check current_clr_polling_and_test(void)
2998 {
2999 __current_clr_polling();
3000
3001 /*
3002 * Polling state must be visible before we test NEED_RESCHED,
3003 * paired by resched_curr()
3004 */
3005 smp_mb__after_atomic();
3006
3007 return unlikely(tif_need_resched());
3008 }
3009
3010 #else
3011 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3012 static inline void __current_set_polling(void) { }
3013 static inline void __current_clr_polling(void) { }
3014
3015 static inline bool __must_check current_set_polling_and_test(void)
3016 {
3017 return unlikely(tif_need_resched());
3018 }
3019 static inline bool __must_check current_clr_polling_and_test(void)
3020 {
3021 return unlikely(tif_need_resched());
3022 }
3023 #endif
3024
3025 static inline void current_clr_polling(void)
3026 {
3027 __current_clr_polling();
3028
3029 /*
3030 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3031 * Once the bit is cleared, we'll get IPIs with every new
3032 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3033 * fold.
3034 */
3035 smp_mb(); /* paired with resched_curr() */
3036
3037 preempt_fold_need_resched();
3038 }
3039
3040 static __always_inline bool need_resched(void)
3041 {
3042 return unlikely(tif_need_resched());
3043 }
3044
3045 /*
3046 * Thread group CPU time accounting.
3047 */
3048 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3049 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3050
3051 /*
3052 * Reevaluate whether the task has signals pending delivery.
3053 * Wake the task if so.
3054 * This is required every time the blocked sigset_t changes.
3055 * callers must hold sighand->siglock.
3056 */
3057 extern void recalc_sigpending_and_wake(struct task_struct *t);
3058 extern void recalc_sigpending(void);
3059
3060 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3061
3062 static inline void signal_wake_up(struct task_struct *t, bool resume)
3063 {
3064 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3065 }
3066 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3067 {
3068 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3069 }
3070
3071 /*
3072 * Wrappers for p->thread_info->cpu access. No-op on UP.
3073 */
3074 #ifdef CONFIG_SMP
3075
3076 static inline unsigned int task_cpu(const struct task_struct *p)
3077 {
3078 return task_thread_info(p)->cpu;
3079 }
3080
3081 static inline int task_node(const struct task_struct *p)
3082 {
3083 return cpu_to_node(task_cpu(p));
3084 }
3085
3086 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3087
3088 #else
3089
3090 static inline unsigned int task_cpu(const struct task_struct *p)
3091 {
3092 return 0;
3093 }
3094
3095 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3096 {
3097 }
3098
3099 #endif /* CONFIG_SMP */
3100
3101 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3102 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3103
3104 #ifdef CONFIG_CGROUP_SCHED
3105 extern struct task_group root_task_group;
3106 #endif /* CONFIG_CGROUP_SCHED */
3107
3108 extern int task_can_switch_user(struct user_struct *up,
3109 struct task_struct *tsk);
3110
3111 #ifdef CONFIG_TASK_XACCT
3112 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3113 {
3114 tsk->ioac.rchar += amt;
3115 }
3116
3117 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3118 {
3119 tsk->ioac.wchar += amt;
3120 }
3121
3122 static inline void inc_syscr(struct task_struct *tsk)
3123 {
3124 tsk->ioac.syscr++;
3125 }
3126
3127 static inline void inc_syscw(struct task_struct *tsk)
3128 {
3129 tsk->ioac.syscw++;
3130 }
3131 #else
3132 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3133 {
3134 }
3135
3136 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3137 {
3138 }
3139
3140 static inline void inc_syscr(struct task_struct *tsk)
3141 {
3142 }
3143
3144 static inline void inc_syscw(struct task_struct *tsk)
3145 {
3146 }
3147 #endif
3148
3149 #ifndef TASK_SIZE_OF
3150 #define TASK_SIZE_OF(tsk) TASK_SIZE
3151 #endif
3152
3153 #ifdef CONFIG_MEMCG
3154 extern void mm_update_next_owner(struct mm_struct *mm);
3155 #else
3156 static inline void mm_update_next_owner(struct mm_struct *mm)
3157 {
3158 }
3159 #endif /* CONFIG_MEMCG */
3160
3161 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3162 unsigned int limit)
3163 {
3164 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3165 }
3166
3167 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3168 unsigned int limit)
3169 {
3170 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3171 }
3172
3173 static inline unsigned long rlimit(unsigned int limit)
3174 {
3175 return task_rlimit(current, limit);
3176 }
3177
3178 static inline unsigned long rlimit_max(unsigned int limit)
3179 {
3180 return task_rlimit_max(current, limit);
3181 }
3182
3183 #endif