]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/sched.h
fa14781747cb7b5d1c39aaaab259366365cfcf89
[mirror_ubuntu-kernels.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/semaphore.h>
65 #include <asm/page.h>
66 #include <asm/ptrace.h>
67 #include <asm/cputime.h>
68
69 #include <linux/smp.h>
70 #include <linux/sem.h>
71 #include <linux/signal.h>
72 #include <linux/securebits.h>
73 #include <linux/fs_struct.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91 #include <linux/latencytop.h>
92
93 #include <asm/processor.h>
94
95 struct mem_cgroup;
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139 extern unsigned long weighted_cpuload(const int cpu);
140
141 struct seq_file;
142 struct cfs_rq;
143 struct task_group;
144 #ifdef CONFIG_SCHED_DEBUG
145 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
146 extern void proc_sched_set_task(struct task_struct *p);
147 extern void
148 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
149 #else
150 static inline void
151 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152 {
153 }
154 static inline void proc_sched_set_task(struct task_struct *p)
155 {
156 }
157 static inline void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159 {
160 }
161 #endif
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern cpumask_t nohz_cpu_mask;
250 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
251 extern int select_nohz_load_balancer(int cpu);
252 #else
253 static inline int select_nohz_load_balancer(int cpu)
254 {
255 return 0;
256 }
257 #endif
258
259 extern unsigned long rt_needs_cpu(int cpu);
260
261 /*
262 * Only dump TASK_* tasks. (0 for all tasks)
263 */
264 extern void show_state_filter(unsigned long state_filter);
265
266 static inline void show_state(void)
267 {
268 show_state_filter(0);
269 }
270
271 extern void show_regs(struct pt_regs *);
272
273 /*
274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
275 * task), SP is the stack pointer of the first frame that should be shown in the back
276 * trace (or NULL if the entire call-chain of the task should be shown).
277 */
278 extern void show_stack(struct task_struct *task, unsigned long *sp);
279
280 void io_schedule(void);
281 long io_schedule_timeout(long timeout);
282
283 extern void cpu_init (void);
284 extern void trap_init(void);
285 extern void account_process_tick(struct task_struct *task, int user);
286 extern void update_process_times(int user);
287 extern void scheduler_tick(void);
288 extern void hrtick_resched(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void spawn_softlockup_task(void);
295 extern void touch_softlockup_watchdog(void);
296 extern void touch_all_softlockup_watchdogs(void);
297 extern unsigned long softlockup_thresh;
298 extern unsigned long sysctl_hung_task_check_count;
299 extern unsigned long sysctl_hung_task_timeout_secs;
300 extern unsigned long sysctl_hung_task_warnings;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT 65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
354 /*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
365 /*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
376
377 #define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383 } while (0)
384 #define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387 } while (0)
388
389 extern void set_dumpable(struct mm_struct *mm, int value);
390 extern int get_dumpable(struct mm_struct *mm);
391
392 /* mm flags */
393 /* dumpable bits */
394 #define MMF_DUMPABLE 0 /* core dump is permitted */
395 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396 #define MMF_DUMPABLE_BITS 2
397
398 /* coredump filter bits */
399 #define MMF_DUMP_ANON_PRIVATE 2
400 #define MMF_DUMP_ANON_SHARED 3
401 #define MMF_DUMP_MAPPED_PRIVATE 4
402 #define MMF_DUMP_MAPPED_SHARED 5
403 #define MMF_DUMP_ELF_HEADERS 6
404 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
405 #define MMF_DUMP_FILTER_BITS 5
406 #define MMF_DUMP_FILTER_MASK \
407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
408 #define MMF_DUMP_FILTER_DEFAULT \
409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
410
411 struct sighand_struct {
412 atomic_t count;
413 struct k_sigaction action[_NSIG];
414 spinlock_t siglock;
415 wait_queue_head_t signalfd_wqh;
416 };
417
418 struct pacct_struct {
419 int ac_flag;
420 long ac_exitcode;
421 unsigned long ac_mem;
422 cputime_t ac_utime, ac_stime;
423 unsigned long ac_minflt, ac_majflt;
424 };
425
426 /*
427 * NOTE! "signal_struct" does not have it's own
428 * locking, because a shared signal_struct always
429 * implies a shared sighand_struct, so locking
430 * sighand_struct is always a proper superset of
431 * the locking of signal_struct.
432 */
433 struct signal_struct {
434 atomic_t count;
435 atomic_t live;
436
437 wait_queue_head_t wait_chldexit; /* for wait4() */
438
439 /* current thread group signal load-balancing target: */
440 struct task_struct *curr_target;
441
442 /* shared signal handling: */
443 struct sigpending shared_pending;
444
445 /* thread group exit support */
446 int group_exit_code;
447 /* overloaded:
448 * - notify group_exit_task when ->count is equal to notify_count
449 * - everyone except group_exit_task is stopped during signal delivery
450 * of fatal signals, group_exit_task processes the signal.
451 */
452 struct task_struct *group_exit_task;
453 int notify_count;
454
455 /* thread group stop support, overloads group_exit_code too */
456 int group_stop_count;
457 unsigned int flags; /* see SIGNAL_* flags below */
458
459 /* POSIX.1b Interval Timers */
460 struct list_head posix_timers;
461
462 /* ITIMER_REAL timer for the process */
463 struct hrtimer real_timer;
464 struct pid *leader_pid;
465 ktime_t it_real_incr;
466
467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
468 cputime_t it_prof_expires, it_virt_expires;
469 cputime_t it_prof_incr, it_virt_incr;
470
471 /* job control IDs */
472
473 /*
474 * pgrp and session fields are deprecated.
475 * use the task_session_Xnr and task_pgrp_Xnr routines below
476 */
477
478 union {
479 pid_t pgrp __deprecated;
480 pid_t __pgrp;
481 };
482
483 struct pid *tty_old_pgrp;
484
485 union {
486 pid_t session __deprecated;
487 pid_t __session;
488 };
489
490 /* boolean value for session group leader */
491 int leader;
492
493 struct tty_struct *tty; /* NULL if no tty */
494
495 /*
496 * Cumulative resource counters for dead threads in the group,
497 * and for reaped dead child processes forked by this group.
498 * Live threads maintain their own counters and add to these
499 * in __exit_signal, except for the group leader.
500 */
501 cputime_t utime, stime, cutime, cstime;
502 cputime_t gtime;
503 cputime_t cgtime;
504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
506 unsigned long inblock, oublock, cinblock, coublock;
507
508 /*
509 * Cumulative ns of scheduled CPU time for dead threads in the
510 * group, not including a zombie group leader. (This only differs
511 * from jiffies_to_ns(utime + stime) if sched_clock uses something
512 * other than jiffies.)
513 */
514 unsigned long long sum_sched_runtime;
515
516 /*
517 * We don't bother to synchronize most readers of this at all,
518 * because there is no reader checking a limit that actually needs
519 * to get both rlim_cur and rlim_max atomically, and either one
520 * alone is a single word that can safely be read normally.
521 * getrlimit/setrlimit use task_lock(current->group_leader) to
522 * protect this instead of the siglock, because they really
523 * have no need to disable irqs.
524 */
525 struct rlimit rlim[RLIM_NLIMITS];
526
527 struct list_head cpu_timers[3];
528
529 /* keep the process-shared keyrings here so that they do the right
530 * thing in threads created with CLONE_THREAD */
531 #ifdef CONFIG_KEYS
532 struct key *session_keyring; /* keyring inherited over fork */
533 struct key *process_keyring; /* keyring private to this process */
534 #endif
535 #ifdef CONFIG_BSD_PROCESS_ACCT
536 struct pacct_struct pacct; /* per-process accounting information */
537 #endif
538 #ifdef CONFIG_TASKSTATS
539 struct taskstats *stats;
540 #endif
541 #ifdef CONFIG_AUDIT
542 unsigned audit_tty;
543 struct tty_audit_buf *tty_audit_buf;
544 #endif
545 };
546
547 /* Context switch must be unlocked if interrupts are to be enabled */
548 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549 # define __ARCH_WANT_UNLOCKED_CTXSW
550 #endif
551
552 /*
553 * Bits in flags field of signal_struct.
554 */
555 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
556 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
557 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
558 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
559
560 /* If true, all threads except ->group_exit_task have pending SIGKILL */
561 static inline int signal_group_exit(const struct signal_struct *sig)
562 {
563 return (sig->flags & SIGNAL_GROUP_EXIT) ||
564 (sig->group_exit_task != NULL);
565 }
566
567 /*
568 * Some day this will be a full-fledged user tracking system..
569 */
570 struct user_struct {
571 atomic_t __count; /* reference count */
572 atomic_t processes; /* How many processes does this user have? */
573 atomic_t files; /* How many open files does this user have? */
574 atomic_t sigpending; /* How many pending signals does this user have? */
575 #ifdef CONFIG_INOTIFY_USER
576 atomic_t inotify_watches; /* How many inotify watches does this user have? */
577 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
578 #endif
579 #ifdef CONFIG_POSIX_MQUEUE
580 /* protected by mq_lock */
581 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
582 #endif
583 unsigned long locked_shm; /* How many pages of mlocked shm ? */
584
585 #ifdef CONFIG_KEYS
586 struct key *uid_keyring; /* UID specific keyring */
587 struct key *session_keyring; /* UID's default session keyring */
588 #endif
589
590 /* Hash table maintenance information */
591 struct hlist_node uidhash_node;
592 uid_t uid;
593
594 #ifdef CONFIG_USER_SCHED
595 struct task_group *tg;
596 #ifdef CONFIG_SYSFS
597 struct kobject kobj;
598 struct work_struct work;
599 #endif
600 #endif
601 };
602
603 extern int uids_sysfs_init(void);
604
605 extern struct user_struct *find_user(uid_t);
606
607 extern struct user_struct root_user;
608 #define INIT_USER (&root_user)
609
610 struct backing_dev_info;
611 struct reclaim_state;
612
613 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
614 struct sched_info {
615 /* cumulative counters */
616 unsigned long pcount; /* # of times run on this cpu */
617 unsigned long long cpu_time, /* time spent on the cpu */
618 run_delay; /* time spent waiting on a runqueue */
619
620 /* timestamps */
621 unsigned long long last_arrival,/* when we last ran on a cpu */
622 last_queued; /* when we were last queued to run */
623 #ifdef CONFIG_SCHEDSTATS
624 /* BKL stats */
625 unsigned int bkl_count;
626 #endif
627 };
628 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
629
630 #ifdef CONFIG_SCHEDSTATS
631 extern const struct file_operations proc_schedstat_operations;
632 #endif /* CONFIG_SCHEDSTATS */
633
634 #ifdef CONFIG_TASK_DELAY_ACCT
635 struct task_delay_info {
636 spinlock_t lock;
637 unsigned int flags; /* Private per-task flags */
638
639 /* For each stat XXX, add following, aligned appropriately
640 *
641 * struct timespec XXX_start, XXX_end;
642 * u64 XXX_delay;
643 * u32 XXX_count;
644 *
645 * Atomicity of updates to XXX_delay, XXX_count protected by
646 * single lock above (split into XXX_lock if contention is an issue).
647 */
648
649 /*
650 * XXX_count is incremented on every XXX operation, the delay
651 * associated with the operation is added to XXX_delay.
652 * XXX_delay contains the accumulated delay time in nanoseconds.
653 */
654 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
655 u64 blkio_delay; /* wait for sync block io completion */
656 u64 swapin_delay; /* wait for swapin block io completion */
657 u32 blkio_count; /* total count of the number of sync block */
658 /* io operations performed */
659 u32 swapin_count; /* total count of the number of swapin block */
660 /* io operations performed */
661 };
662 #endif /* CONFIG_TASK_DELAY_ACCT */
663
664 static inline int sched_info_on(void)
665 {
666 #ifdef CONFIG_SCHEDSTATS
667 return 1;
668 #elif defined(CONFIG_TASK_DELAY_ACCT)
669 extern int delayacct_on;
670 return delayacct_on;
671 #else
672 return 0;
673 #endif
674 }
675
676 enum cpu_idle_type {
677 CPU_IDLE,
678 CPU_NOT_IDLE,
679 CPU_NEWLY_IDLE,
680 CPU_MAX_IDLE_TYPES
681 };
682
683 /*
684 * sched-domains (multiprocessor balancing) declarations:
685 */
686
687 /*
688 * Increase resolution of nice-level calculations:
689 */
690 #define SCHED_LOAD_SHIFT 10
691 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
692
693 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
694
695 #ifdef CONFIG_SMP
696 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
697 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
698 #define SD_BALANCE_EXEC 4 /* Balance on exec */
699 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
700 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
701 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
702 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
703 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
704 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
705 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
706 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
707
708 #define BALANCE_FOR_MC_POWER \
709 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
710
711 #define BALANCE_FOR_PKG_POWER \
712 ((sched_mc_power_savings || sched_smt_power_savings) ? \
713 SD_POWERSAVINGS_BALANCE : 0)
714
715 #define test_sd_parent(sd, flag) ((sd->parent && \
716 (sd->parent->flags & flag)) ? 1 : 0)
717
718
719 struct sched_group {
720 struct sched_group *next; /* Must be a circular list */
721 cpumask_t cpumask;
722
723 /*
724 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
725 * single CPU. This is read only (except for setup, hotplug CPU).
726 * Note : Never change cpu_power without recompute its reciprocal
727 */
728 unsigned int __cpu_power;
729 /*
730 * reciprocal value of cpu_power to avoid expensive divides
731 * (see include/linux/reciprocal_div.h)
732 */
733 u32 reciprocal_cpu_power;
734 };
735
736 struct sched_domain {
737 /* These fields must be setup */
738 struct sched_domain *parent; /* top domain must be null terminated */
739 struct sched_domain *child; /* bottom domain must be null terminated */
740 struct sched_group *groups; /* the balancing groups of the domain */
741 cpumask_t span; /* span of all CPUs in this domain */
742 unsigned long min_interval; /* Minimum balance interval ms */
743 unsigned long max_interval; /* Maximum balance interval ms */
744 unsigned int busy_factor; /* less balancing by factor if busy */
745 unsigned int imbalance_pct; /* No balance until over watermark */
746 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
747 unsigned int busy_idx;
748 unsigned int idle_idx;
749 unsigned int newidle_idx;
750 unsigned int wake_idx;
751 unsigned int forkexec_idx;
752 int flags; /* See SD_* */
753
754 /* Runtime fields. */
755 unsigned long last_balance; /* init to jiffies. units in jiffies */
756 unsigned int balance_interval; /* initialise to 1. units in ms. */
757 unsigned int nr_balance_failed; /* initialise to 0 */
758
759 #ifdef CONFIG_SCHEDSTATS
760 /* load_balance() stats */
761 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
762 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
763 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
764 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
765 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
766 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
767 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
768 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
769
770 /* Active load balancing */
771 unsigned int alb_count;
772 unsigned int alb_failed;
773 unsigned int alb_pushed;
774
775 /* SD_BALANCE_EXEC stats */
776 unsigned int sbe_count;
777 unsigned int sbe_balanced;
778 unsigned int sbe_pushed;
779
780 /* SD_BALANCE_FORK stats */
781 unsigned int sbf_count;
782 unsigned int sbf_balanced;
783 unsigned int sbf_pushed;
784
785 /* try_to_wake_up() stats */
786 unsigned int ttwu_wake_remote;
787 unsigned int ttwu_move_affine;
788 unsigned int ttwu_move_balance;
789 #endif
790 };
791
792 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
793 extern int arch_reinit_sched_domains(void);
794
795 #endif /* CONFIG_SMP */
796
797 /*
798 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
799 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
800 * task of nice 0 or enough lower priority tasks to bring up the
801 * weighted_cpuload
802 */
803 static inline int above_background_load(void)
804 {
805 unsigned long cpu;
806
807 for_each_online_cpu(cpu) {
808 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
809 return 1;
810 }
811 return 0;
812 }
813
814 struct io_context; /* See blkdev.h */
815 #define NGROUPS_SMALL 32
816 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
817 struct group_info {
818 int ngroups;
819 atomic_t usage;
820 gid_t small_block[NGROUPS_SMALL];
821 int nblocks;
822 gid_t *blocks[0];
823 };
824
825 /*
826 * get_group_info() must be called with the owning task locked (via task_lock())
827 * when task != current. The reason being that the vast majority of callers are
828 * looking at current->group_info, which can not be changed except by the
829 * current task. Changing current->group_info requires the task lock, too.
830 */
831 #define get_group_info(group_info) do { \
832 atomic_inc(&(group_info)->usage); \
833 } while (0)
834
835 #define put_group_info(group_info) do { \
836 if (atomic_dec_and_test(&(group_info)->usage)) \
837 groups_free(group_info); \
838 } while (0)
839
840 extern struct group_info *groups_alloc(int gidsetsize);
841 extern void groups_free(struct group_info *group_info);
842 extern int set_current_groups(struct group_info *group_info);
843 extern int groups_search(struct group_info *group_info, gid_t grp);
844 /* access the groups "array" with this macro */
845 #define GROUP_AT(gi, i) \
846 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
847
848 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
849 extern void prefetch_stack(struct task_struct *t);
850 #else
851 static inline void prefetch_stack(struct task_struct *t) { }
852 #endif
853
854 struct audit_context; /* See audit.c */
855 struct mempolicy;
856 struct pipe_inode_info;
857 struct uts_namespace;
858
859 struct rq;
860 struct sched_domain;
861
862 struct sched_class {
863 const struct sched_class *next;
864
865 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
866 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
867 void (*yield_task) (struct rq *rq);
868 int (*select_task_rq)(struct task_struct *p, int sync);
869
870 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
871
872 struct task_struct * (*pick_next_task) (struct rq *rq);
873 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
874
875 #ifdef CONFIG_SMP
876 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
877 struct rq *busiest, unsigned long max_load_move,
878 struct sched_domain *sd, enum cpu_idle_type idle,
879 int *all_pinned, int *this_best_prio);
880
881 int (*move_one_task) (struct rq *this_rq, int this_cpu,
882 struct rq *busiest, struct sched_domain *sd,
883 enum cpu_idle_type idle);
884 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
885 void (*post_schedule) (struct rq *this_rq);
886 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
887 #endif
888
889 void (*set_curr_task) (struct rq *rq);
890 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
891 void (*task_new) (struct rq *rq, struct task_struct *p);
892 void (*set_cpus_allowed)(struct task_struct *p,
893 const cpumask_t *newmask);
894
895 void (*join_domain)(struct rq *rq);
896 void (*leave_domain)(struct rq *rq);
897
898 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
899 int running);
900 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
901 int running);
902 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
903 int oldprio, int running);
904
905 #ifdef CONFIG_FAIR_GROUP_SCHED
906 void (*moved_group) (struct task_struct *p);
907 #endif
908 };
909
910 struct load_weight {
911 unsigned long weight, inv_weight;
912 };
913
914 /*
915 * CFS stats for a schedulable entity (task, task-group etc)
916 *
917 * Current field usage histogram:
918 *
919 * 4 se->block_start
920 * 4 se->run_node
921 * 4 se->sleep_start
922 * 6 se->load.weight
923 */
924 struct sched_entity {
925 struct load_weight load; /* for load-balancing */
926 struct rb_node run_node;
927 unsigned int on_rq;
928
929 u64 exec_start;
930 u64 sum_exec_runtime;
931 u64 vruntime;
932 u64 prev_sum_exec_runtime;
933
934 u64 last_wakeup;
935 u64 avg_overlap;
936
937 #ifdef CONFIG_SCHEDSTATS
938 u64 wait_start;
939 u64 wait_max;
940 u64 wait_count;
941 u64 wait_sum;
942
943 u64 sleep_start;
944 u64 sleep_max;
945 s64 sum_sleep_runtime;
946
947 u64 block_start;
948 u64 block_max;
949 u64 exec_max;
950 u64 slice_max;
951
952 u64 nr_migrations;
953 u64 nr_migrations_cold;
954 u64 nr_failed_migrations_affine;
955 u64 nr_failed_migrations_running;
956 u64 nr_failed_migrations_hot;
957 u64 nr_forced_migrations;
958 u64 nr_forced2_migrations;
959
960 u64 nr_wakeups;
961 u64 nr_wakeups_sync;
962 u64 nr_wakeups_migrate;
963 u64 nr_wakeups_local;
964 u64 nr_wakeups_remote;
965 u64 nr_wakeups_affine;
966 u64 nr_wakeups_affine_attempts;
967 u64 nr_wakeups_passive;
968 u64 nr_wakeups_idle;
969 #endif
970
971 #ifdef CONFIG_FAIR_GROUP_SCHED
972 struct sched_entity *parent;
973 /* rq on which this entity is (to be) queued: */
974 struct cfs_rq *cfs_rq;
975 /* rq "owned" by this entity/group: */
976 struct cfs_rq *my_q;
977 #endif
978 };
979
980 struct sched_rt_entity {
981 struct list_head run_list;
982 unsigned int time_slice;
983 unsigned long timeout;
984 int nr_cpus_allowed;
985
986 #ifdef CONFIG_RT_GROUP_SCHED
987 struct sched_rt_entity *parent;
988 /* rq on which this entity is (to be) queued: */
989 struct rt_rq *rt_rq;
990 /* rq "owned" by this entity/group: */
991 struct rt_rq *my_q;
992 #endif
993 };
994
995 struct task_struct {
996 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
997 void *stack;
998 atomic_t usage;
999 unsigned int flags; /* per process flags, defined below */
1000 unsigned int ptrace;
1001
1002 int lock_depth; /* BKL lock depth */
1003
1004 #ifdef CONFIG_SMP
1005 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1006 int oncpu;
1007 #endif
1008 #endif
1009
1010 int prio, static_prio, normal_prio;
1011 const struct sched_class *sched_class;
1012 struct sched_entity se;
1013 struct sched_rt_entity rt;
1014
1015 #ifdef CONFIG_PREEMPT_NOTIFIERS
1016 /* list of struct preempt_notifier: */
1017 struct hlist_head preempt_notifiers;
1018 #endif
1019
1020 /*
1021 * fpu_counter contains the number of consecutive context switches
1022 * that the FPU is used. If this is over a threshold, the lazy fpu
1023 * saving becomes unlazy to save the trap. This is an unsigned char
1024 * so that after 256 times the counter wraps and the behavior turns
1025 * lazy again; this to deal with bursty apps that only use FPU for
1026 * a short time
1027 */
1028 unsigned char fpu_counter;
1029 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1030 #ifdef CONFIG_BLK_DEV_IO_TRACE
1031 unsigned int btrace_seq;
1032 #endif
1033
1034 unsigned int policy;
1035 cpumask_t cpus_allowed;
1036
1037 #ifdef CONFIG_PREEMPT_RCU
1038 int rcu_read_lock_nesting;
1039 int rcu_flipctr_idx;
1040 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1041
1042 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1043 struct sched_info sched_info;
1044 #endif
1045
1046 struct list_head tasks;
1047 /*
1048 * ptrace_list/ptrace_children forms the list of my children
1049 * that were stolen by a ptracer.
1050 */
1051 struct list_head ptrace_children;
1052 struct list_head ptrace_list;
1053
1054 struct mm_struct *mm, *active_mm;
1055
1056 /* task state */
1057 struct linux_binfmt *binfmt;
1058 int exit_state;
1059 int exit_code, exit_signal;
1060 int pdeath_signal; /* The signal sent when the parent dies */
1061 /* ??? */
1062 unsigned int personality;
1063 unsigned did_exec:1;
1064 pid_t pid;
1065 pid_t tgid;
1066
1067 #ifdef CONFIG_CC_STACKPROTECTOR
1068 /* Canary value for the -fstack-protector gcc feature */
1069 unsigned long stack_canary;
1070 #endif
1071 /*
1072 * pointers to (original) parent process, youngest child, younger sibling,
1073 * older sibling, respectively. (p->father can be replaced with
1074 * p->parent->pid)
1075 */
1076 struct task_struct *real_parent; /* real parent process (when being debugged) */
1077 struct task_struct *parent; /* parent process */
1078 /*
1079 * children/sibling forms the list of my children plus the
1080 * tasks I'm ptracing.
1081 */
1082 struct list_head children; /* list of my children */
1083 struct list_head sibling; /* linkage in my parent's children list */
1084 struct task_struct *group_leader; /* threadgroup leader */
1085
1086 /* PID/PID hash table linkage. */
1087 struct pid_link pids[PIDTYPE_MAX];
1088 struct list_head thread_group;
1089
1090 struct completion *vfork_done; /* for vfork() */
1091 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1092 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1093
1094 unsigned int rt_priority;
1095 cputime_t utime, stime, utimescaled, stimescaled;
1096 cputime_t gtime;
1097 cputime_t prev_utime, prev_stime;
1098 unsigned long nvcsw, nivcsw; /* context switch counts */
1099 struct timespec start_time; /* monotonic time */
1100 struct timespec real_start_time; /* boot based time */
1101 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1102 unsigned long min_flt, maj_flt;
1103
1104 cputime_t it_prof_expires, it_virt_expires;
1105 unsigned long long it_sched_expires;
1106 struct list_head cpu_timers[3];
1107
1108 /* process credentials */
1109 uid_t uid,euid,suid,fsuid;
1110 gid_t gid,egid,sgid,fsgid;
1111 struct group_info *group_info;
1112 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1113 unsigned keep_capabilities:1;
1114 struct user_struct *user;
1115 #ifdef CONFIG_KEYS
1116 struct key *request_key_auth; /* assumed request_key authority */
1117 struct key *thread_keyring; /* keyring private to this thread */
1118 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1119 #endif
1120 char comm[TASK_COMM_LEN]; /* executable name excluding path
1121 - access with [gs]et_task_comm (which lock
1122 it with task_lock())
1123 - initialized normally by flush_old_exec */
1124 /* file system info */
1125 int link_count, total_link_count;
1126 #ifdef CONFIG_SYSVIPC
1127 /* ipc stuff */
1128 struct sysv_sem sysvsem;
1129 #endif
1130 #ifdef CONFIG_DETECT_SOFTLOCKUP
1131 /* hung task detection */
1132 unsigned long last_switch_timestamp;
1133 unsigned long last_switch_count;
1134 #endif
1135 /* CPU-specific state of this task */
1136 struct thread_struct thread;
1137 /* filesystem information */
1138 struct fs_struct *fs;
1139 /* open file information */
1140 struct files_struct *files;
1141 /* namespaces */
1142 struct nsproxy *nsproxy;
1143 /* signal handlers */
1144 struct signal_struct *signal;
1145 struct sighand_struct *sighand;
1146
1147 sigset_t blocked, real_blocked;
1148 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1149 struct sigpending pending;
1150
1151 unsigned long sas_ss_sp;
1152 size_t sas_ss_size;
1153 int (*notifier)(void *priv);
1154 void *notifier_data;
1155 sigset_t *notifier_mask;
1156 #ifdef CONFIG_SECURITY
1157 void *security;
1158 #endif
1159 struct audit_context *audit_context;
1160 #ifdef CONFIG_AUDITSYSCALL
1161 uid_t loginuid;
1162 unsigned int sessionid;
1163 #endif
1164 seccomp_t seccomp;
1165
1166 /* Thread group tracking */
1167 u32 parent_exec_id;
1168 u32 self_exec_id;
1169 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1170 spinlock_t alloc_lock;
1171
1172 /* Protection of the PI data structures: */
1173 spinlock_t pi_lock;
1174
1175 #ifdef CONFIG_RT_MUTEXES
1176 /* PI waiters blocked on a rt_mutex held by this task */
1177 struct plist_head pi_waiters;
1178 /* Deadlock detection and priority inheritance handling */
1179 struct rt_mutex_waiter *pi_blocked_on;
1180 #endif
1181
1182 #ifdef CONFIG_DEBUG_MUTEXES
1183 /* mutex deadlock detection */
1184 struct mutex_waiter *blocked_on;
1185 #endif
1186 #ifdef CONFIG_TRACE_IRQFLAGS
1187 unsigned int irq_events;
1188 int hardirqs_enabled;
1189 unsigned long hardirq_enable_ip;
1190 unsigned int hardirq_enable_event;
1191 unsigned long hardirq_disable_ip;
1192 unsigned int hardirq_disable_event;
1193 int softirqs_enabled;
1194 unsigned long softirq_disable_ip;
1195 unsigned int softirq_disable_event;
1196 unsigned long softirq_enable_ip;
1197 unsigned int softirq_enable_event;
1198 int hardirq_context;
1199 int softirq_context;
1200 #endif
1201 #ifdef CONFIG_LOCKDEP
1202 # define MAX_LOCK_DEPTH 48UL
1203 u64 curr_chain_key;
1204 int lockdep_depth;
1205 struct held_lock held_locks[MAX_LOCK_DEPTH];
1206 unsigned int lockdep_recursion;
1207 #endif
1208
1209 /* journalling filesystem info */
1210 void *journal_info;
1211
1212 /* stacked block device info */
1213 struct bio *bio_list, **bio_tail;
1214
1215 /* VM state */
1216 struct reclaim_state *reclaim_state;
1217
1218 struct backing_dev_info *backing_dev_info;
1219
1220 struct io_context *io_context;
1221
1222 unsigned long ptrace_message;
1223 siginfo_t *last_siginfo; /* For ptrace use. */
1224 #ifdef CONFIG_TASK_XACCT
1225 /* i/o counters(bytes read/written, #syscalls */
1226 u64 rchar, wchar, syscr, syscw;
1227 #endif
1228 struct task_io_accounting ioac;
1229 #if defined(CONFIG_TASK_XACCT)
1230 u64 acct_rss_mem1; /* accumulated rss usage */
1231 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1232 cputime_t acct_stimexpd;/* stime since last update */
1233 #endif
1234 #ifdef CONFIG_NUMA
1235 struct mempolicy *mempolicy;
1236 short il_next;
1237 #endif
1238 #ifdef CONFIG_CPUSETS
1239 nodemask_t mems_allowed;
1240 int cpuset_mems_generation;
1241 int cpuset_mem_spread_rotor;
1242 #endif
1243 #ifdef CONFIG_CGROUPS
1244 /* Control Group info protected by css_set_lock */
1245 struct css_set *cgroups;
1246 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1247 struct list_head cg_list;
1248 #endif
1249 #ifdef CONFIG_FUTEX
1250 struct robust_list_head __user *robust_list;
1251 #ifdef CONFIG_COMPAT
1252 struct compat_robust_list_head __user *compat_robust_list;
1253 #endif
1254 struct list_head pi_state_list;
1255 struct futex_pi_state *pi_state_cache;
1256 #endif
1257 atomic_t fs_excl; /* holding fs exclusive resources */
1258 struct rcu_head rcu;
1259
1260 /*
1261 * cache last used pipe for splice
1262 */
1263 struct pipe_inode_info *splice_pipe;
1264 #ifdef CONFIG_TASK_DELAY_ACCT
1265 struct task_delay_info *delays;
1266 #endif
1267 #ifdef CONFIG_FAULT_INJECTION
1268 int make_it_fail;
1269 #endif
1270 struct prop_local_single dirties;
1271 #ifdef CONFIG_LATENCYTOP
1272 int latency_record_count;
1273 struct latency_record latency_record[LT_SAVECOUNT];
1274 #endif
1275 };
1276
1277 /*
1278 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1279 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1280 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1281 * values are inverted: lower p->prio value means higher priority.
1282 *
1283 * The MAX_USER_RT_PRIO value allows the actual maximum
1284 * RT priority to be separate from the value exported to
1285 * user-space. This allows kernel threads to set their
1286 * priority to a value higher than any user task. Note:
1287 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1288 */
1289
1290 #define MAX_USER_RT_PRIO 100
1291 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1292
1293 #define MAX_PRIO (MAX_RT_PRIO + 40)
1294 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1295
1296 static inline int rt_prio(int prio)
1297 {
1298 if (unlikely(prio < MAX_RT_PRIO))
1299 return 1;
1300 return 0;
1301 }
1302
1303 static inline int rt_task(struct task_struct *p)
1304 {
1305 return rt_prio(p->prio);
1306 }
1307
1308 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1309 {
1310 tsk->signal->__session = session;
1311 }
1312
1313 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1314 {
1315 tsk->signal->__pgrp = pgrp;
1316 }
1317
1318 static inline struct pid *task_pid(struct task_struct *task)
1319 {
1320 return task->pids[PIDTYPE_PID].pid;
1321 }
1322
1323 static inline struct pid *task_tgid(struct task_struct *task)
1324 {
1325 return task->group_leader->pids[PIDTYPE_PID].pid;
1326 }
1327
1328 static inline struct pid *task_pgrp(struct task_struct *task)
1329 {
1330 return task->group_leader->pids[PIDTYPE_PGID].pid;
1331 }
1332
1333 static inline struct pid *task_session(struct task_struct *task)
1334 {
1335 return task->group_leader->pids[PIDTYPE_SID].pid;
1336 }
1337
1338 struct pid_namespace;
1339
1340 /*
1341 * the helpers to get the task's different pids as they are seen
1342 * from various namespaces
1343 *
1344 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1345 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1346 * current.
1347 * task_xid_nr_ns() : id seen from the ns specified;
1348 *
1349 * set_task_vxid() : assigns a virtual id to a task;
1350 *
1351 * see also pid_nr() etc in include/linux/pid.h
1352 */
1353
1354 static inline pid_t task_pid_nr(struct task_struct *tsk)
1355 {
1356 return tsk->pid;
1357 }
1358
1359 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1360
1361 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1362 {
1363 return pid_vnr(task_pid(tsk));
1364 }
1365
1366
1367 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1368 {
1369 return tsk->tgid;
1370 }
1371
1372 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1373
1374 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1375 {
1376 return pid_vnr(task_tgid(tsk));
1377 }
1378
1379
1380 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1381 {
1382 return tsk->signal->__pgrp;
1383 }
1384
1385 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1386
1387 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1388 {
1389 return pid_vnr(task_pgrp(tsk));
1390 }
1391
1392
1393 static inline pid_t task_session_nr(struct task_struct *tsk)
1394 {
1395 return tsk->signal->__session;
1396 }
1397
1398 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1399
1400 static inline pid_t task_session_vnr(struct task_struct *tsk)
1401 {
1402 return pid_vnr(task_session(tsk));
1403 }
1404
1405
1406 /**
1407 * pid_alive - check that a task structure is not stale
1408 * @p: Task structure to be checked.
1409 *
1410 * Test if a process is not yet dead (at most zombie state)
1411 * If pid_alive fails, then pointers within the task structure
1412 * can be stale and must not be dereferenced.
1413 */
1414 static inline int pid_alive(struct task_struct *p)
1415 {
1416 return p->pids[PIDTYPE_PID].pid != NULL;
1417 }
1418
1419 /**
1420 * is_global_init - check if a task structure is init
1421 * @tsk: Task structure to be checked.
1422 *
1423 * Check if a task structure is the first user space task the kernel created.
1424 */
1425 static inline int is_global_init(struct task_struct *tsk)
1426 {
1427 return tsk->pid == 1;
1428 }
1429
1430 /*
1431 * is_container_init:
1432 * check whether in the task is init in its own pid namespace.
1433 */
1434 extern int is_container_init(struct task_struct *tsk);
1435
1436 extern struct pid *cad_pid;
1437
1438 extern void free_task(struct task_struct *tsk);
1439 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1440
1441 extern void __put_task_struct(struct task_struct *t);
1442
1443 static inline void put_task_struct(struct task_struct *t)
1444 {
1445 if (atomic_dec_and_test(&t->usage))
1446 __put_task_struct(t);
1447 }
1448
1449 /*
1450 * Per process flags
1451 */
1452 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1453 /* Not implemented yet, only for 486*/
1454 #define PF_STARTING 0x00000002 /* being created */
1455 #define PF_EXITING 0x00000004 /* getting shut down */
1456 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1457 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1458 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1459 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1460 #define PF_DUMPCORE 0x00000200 /* dumped core */
1461 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1462 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1463 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1464 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1465 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1466 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1467 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1468 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1469 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1470 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1471 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1472 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1473 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1474 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1475 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1476 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1477 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1478 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1479
1480 /*
1481 * Only the _current_ task can read/write to tsk->flags, but other
1482 * tasks can access tsk->flags in readonly mode for example
1483 * with tsk_used_math (like during threaded core dumping).
1484 * There is however an exception to this rule during ptrace
1485 * or during fork: the ptracer task is allowed to write to the
1486 * child->flags of its traced child (same goes for fork, the parent
1487 * can write to the child->flags), because we're guaranteed the
1488 * child is not running and in turn not changing child->flags
1489 * at the same time the parent does it.
1490 */
1491 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1492 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1493 #define clear_used_math() clear_stopped_child_used_math(current)
1494 #define set_used_math() set_stopped_child_used_math(current)
1495 #define conditional_stopped_child_used_math(condition, child) \
1496 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1497 #define conditional_used_math(condition) \
1498 conditional_stopped_child_used_math(condition, current)
1499 #define copy_to_stopped_child_used_math(child) \
1500 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1501 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1502 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1503 #define used_math() tsk_used_math(current)
1504
1505 #ifdef CONFIG_SMP
1506 extern int set_cpus_allowed_ptr(struct task_struct *p,
1507 const cpumask_t *new_mask);
1508 #else
1509 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1510 const cpumask_t *new_mask)
1511 {
1512 if (!cpu_isset(0, *new_mask))
1513 return -EINVAL;
1514 return 0;
1515 }
1516 #endif
1517 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1518 {
1519 return set_cpus_allowed_ptr(p, &new_mask);
1520 }
1521
1522 extern unsigned long long sched_clock(void);
1523
1524 /*
1525 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1526 * clock constructed from sched_clock():
1527 */
1528 extern unsigned long long cpu_clock(int cpu);
1529
1530 extern unsigned long long
1531 task_sched_runtime(struct task_struct *task);
1532
1533 /* sched_exec is called by processes performing an exec */
1534 #ifdef CONFIG_SMP
1535 extern void sched_exec(void);
1536 #else
1537 #define sched_exec() {}
1538 #endif
1539
1540 extern void sched_clock_idle_sleep_event(void);
1541 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1542
1543 #ifdef CONFIG_HOTPLUG_CPU
1544 extern void idle_task_exit(void);
1545 #else
1546 static inline void idle_task_exit(void) {}
1547 #endif
1548
1549 extern void sched_idle_next(void);
1550
1551 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1552 extern void wake_up_idle_cpu(int cpu);
1553 #else
1554 static inline void wake_up_idle_cpu(int cpu) { }
1555 #endif
1556
1557 #ifdef CONFIG_SCHED_DEBUG
1558 extern unsigned int sysctl_sched_latency;
1559 extern unsigned int sysctl_sched_min_granularity;
1560 extern unsigned int sysctl_sched_wakeup_granularity;
1561 extern unsigned int sysctl_sched_child_runs_first;
1562 extern unsigned int sysctl_sched_features;
1563 extern unsigned int sysctl_sched_migration_cost;
1564 extern unsigned int sysctl_sched_nr_migrate;
1565
1566 int sched_nr_latency_handler(struct ctl_table *table, int write,
1567 struct file *file, void __user *buffer, size_t *length,
1568 loff_t *ppos);
1569 #endif
1570 extern unsigned int sysctl_sched_rt_period;
1571 extern int sysctl_sched_rt_runtime;
1572
1573 int sched_rt_handler(struct ctl_table *table, int write,
1574 struct file *filp, void __user *buffer, size_t *lenp,
1575 loff_t *ppos);
1576
1577 extern unsigned int sysctl_sched_compat_yield;
1578
1579 #ifdef CONFIG_RT_MUTEXES
1580 extern int rt_mutex_getprio(struct task_struct *p);
1581 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1582 extern void rt_mutex_adjust_pi(struct task_struct *p);
1583 #else
1584 static inline int rt_mutex_getprio(struct task_struct *p)
1585 {
1586 return p->normal_prio;
1587 }
1588 # define rt_mutex_adjust_pi(p) do { } while (0)
1589 #endif
1590
1591 extern void set_user_nice(struct task_struct *p, long nice);
1592 extern int task_prio(const struct task_struct *p);
1593 extern int task_nice(const struct task_struct *p);
1594 extern int can_nice(const struct task_struct *p, const int nice);
1595 extern int task_curr(const struct task_struct *p);
1596 extern int idle_cpu(int cpu);
1597 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1598 extern struct task_struct *idle_task(int cpu);
1599 extern struct task_struct *curr_task(int cpu);
1600 extern void set_curr_task(int cpu, struct task_struct *p);
1601
1602 void yield(void);
1603
1604 /*
1605 * The default (Linux) execution domain.
1606 */
1607 extern struct exec_domain default_exec_domain;
1608
1609 union thread_union {
1610 struct thread_info thread_info;
1611 unsigned long stack[THREAD_SIZE/sizeof(long)];
1612 };
1613
1614 #ifndef __HAVE_ARCH_KSTACK_END
1615 static inline int kstack_end(void *addr)
1616 {
1617 /* Reliable end of stack detection:
1618 * Some APM bios versions misalign the stack
1619 */
1620 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1621 }
1622 #endif
1623
1624 extern union thread_union init_thread_union;
1625 extern struct task_struct init_task;
1626
1627 extern struct mm_struct init_mm;
1628
1629 extern struct pid_namespace init_pid_ns;
1630
1631 /*
1632 * find a task by one of its numerical ids
1633 *
1634 * find_task_by_pid_type_ns():
1635 * it is the most generic call - it finds a task by all id,
1636 * type and namespace specified
1637 * find_task_by_pid_ns():
1638 * finds a task by its pid in the specified namespace
1639 * find_task_by_vpid():
1640 * finds a task by its virtual pid
1641 * find_task_by_pid():
1642 * finds a task by its global pid
1643 *
1644 * see also find_pid() etc in include/linux/pid.h
1645 */
1646
1647 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1648 struct pid_namespace *ns);
1649
1650 extern struct task_struct *find_task_by_pid(pid_t nr);
1651 extern struct task_struct *find_task_by_vpid(pid_t nr);
1652 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1653 struct pid_namespace *ns);
1654
1655 extern void __set_special_pids(struct pid *pid);
1656
1657 /* per-UID process charging. */
1658 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1659 static inline struct user_struct *get_uid(struct user_struct *u)
1660 {
1661 atomic_inc(&u->__count);
1662 return u;
1663 }
1664 extern void free_uid(struct user_struct *);
1665 extern void switch_uid(struct user_struct *);
1666 extern void release_uids(struct user_namespace *ns);
1667
1668 #include <asm/current.h>
1669
1670 extern void do_timer(unsigned long ticks);
1671
1672 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1673 extern int wake_up_process(struct task_struct *tsk);
1674 extern void wake_up_new_task(struct task_struct *tsk,
1675 unsigned long clone_flags);
1676 #ifdef CONFIG_SMP
1677 extern void kick_process(struct task_struct *tsk);
1678 #else
1679 static inline void kick_process(struct task_struct *tsk) { }
1680 #endif
1681 extern void sched_fork(struct task_struct *p, int clone_flags);
1682 extern void sched_dead(struct task_struct *p);
1683
1684 extern int in_group_p(gid_t);
1685 extern int in_egroup_p(gid_t);
1686
1687 extern void proc_caches_init(void);
1688 extern void flush_signals(struct task_struct *);
1689 extern void ignore_signals(struct task_struct *);
1690 extern void flush_signal_handlers(struct task_struct *, int force_default);
1691 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1692
1693 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1694 {
1695 unsigned long flags;
1696 int ret;
1697
1698 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1699 ret = dequeue_signal(tsk, mask, info);
1700 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1701
1702 return ret;
1703 }
1704
1705 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1706 sigset_t *mask);
1707 extern void unblock_all_signals(void);
1708 extern void release_task(struct task_struct * p);
1709 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1710 extern int force_sigsegv(int, struct task_struct *);
1711 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1712 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1713 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1714 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1715 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1716 extern int kill_pid(struct pid *pid, int sig, int priv);
1717 extern int kill_proc_info(int, struct siginfo *, pid_t);
1718 extern void do_notify_parent(struct task_struct *, int);
1719 extern void force_sig(int, struct task_struct *);
1720 extern void force_sig_specific(int, struct task_struct *);
1721 extern int send_sig(int, struct task_struct *, int);
1722 extern void zap_other_threads(struct task_struct *p);
1723 extern int kill_proc(pid_t, int, int);
1724 extern struct sigqueue *sigqueue_alloc(void);
1725 extern void sigqueue_free(struct sigqueue *);
1726 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1727 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1728 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1729 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1730
1731 static inline int kill_cad_pid(int sig, int priv)
1732 {
1733 return kill_pid(cad_pid, sig, priv);
1734 }
1735
1736 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1737 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1738 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1739 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1740
1741 static inline int is_si_special(const struct siginfo *info)
1742 {
1743 return info <= SEND_SIG_FORCED;
1744 }
1745
1746 /* True if we are on the alternate signal stack. */
1747
1748 static inline int on_sig_stack(unsigned long sp)
1749 {
1750 return (sp - current->sas_ss_sp < current->sas_ss_size);
1751 }
1752
1753 static inline int sas_ss_flags(unsigned long sp)
1754 {
1755 return (current->sas_ss_size == 0 ? SS_DISABLE
1756 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1757 }
1758
1759 /*
1760 * Routines for handling mm_structs
1761 */
1762 extern struct mm_struct * mm_alloc(void);
1763
1764 /* mmdrop drops the mm and the page tables */
1765 extern void __mmdrop(struct mm_struct *);
1766 static inline void mmdrop(struct mm_struct * mm)
1767 {
1768 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1769 __mmdrop(mm);
1770 }
1771
1772 /* mmput gets rid of the mappings and all user-space */
1773 extern void mmput(struct mm_struct *);
1774 /* Grab a reference to a task's mm, if it is not already going away */
1775 extern struct mm_struct *get_task_mm(struct task_struct *task);
1776 /* Remove the current tasks stale references to the old mm_struct */
1777 extern void mm_release(struct task_struct *, struct mm_struct *);
1778
1779 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1780 extern void flush_thread(void);
1781 extern void exit_thread(void);
1782
1783 extern void exit_files(struct task_struct *);
1784 extern void __cleanup_signal(struct signal_struct *);
1785 extern void __cleanup_sighand(struct sighand_struct *);
1786 extern void exit_itimers(struct signal_struct *);
1787
1788 extern NORET_TYPE void do_group_exit(int);
1789
1790 extern void daemonize(const char *, ...);
1791 extern int allow_signal(int);
1792 extern int disallow_signal(int);
1793
1794 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1795 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1796 struct task_struct *fork_idle(int);
1797
1798 extern void set_task_comm(struct task_struct *tsk, char *from);
1799 extern char *get_task_comm(char *to, struct task_struct *tsk);
1800
1801 #ifdef CONFIG_SMP
1802 extern void wait_task_inactive(struct task_struct * p);
1803 #else
1804 #define wait_task_inactive(p) do { } while (0)
1805 #endif
1806
1807 #define remove_parent(p) list_del_init(&(p)->sibling)
1808 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1809
1810 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1811
1812 #define for_each_process(p) \
1813 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1814
1815 /*
1816 * Careful: do_each_thread/while_each_thread is a double loop so
1817 * 'break' will not work as expected - use goto instead.
1818 */
1819 #define do_each_thread(g, t) \
1820 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1821
1822 #define while_each_thread(g, t) \
1823 while ((t = next_thread(t)) != g)
1824
1825 /* de_thread depends on thread_group_leader not being a pid based check */
1826 #define thread_group_leader(p) (p == p->group_leader)
1827
1828 /* Do to the insanities of de_thread it is possible for a process
1829 * to have the pid of the thread group leader without actually being
1830 * the thread group leader. For iteration through the pids in proc
1831 * all we care about is that we have a task with the appropriate
1832 * pid, we don't actually care if we have the right task.
1833 */
1834 static inline int has_group_leader_pid(struct task_struct *p)
1835 {
1836 return p->pid == p->tgid;
1837 }
1838
1839 static inline
1840 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1841 {
1842 return p1->tgid == p2->tgid;
1843 }
1844
1845 static inline struct task_struct *next_thread(const struct task_struct *p)
1846 {
1847 return list_entry(rcu_dereference(p->thread_group.next),
1848 struct task_struct, thread_group);
1849 }
1850
1851 static inline int thread_group_empty(struct task_struct *p)
1852 {
1853 return list_empty(&p->thread_group);
1854 }
1855
1856 #define delay_group_leader(p) \
1857 (thread_group_leader(p) && !thread_group_empty(p))
1858
1859 /*
1860 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1861 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1862 * pins the final release of task.io_context. Also protects ->cpuset and
1863 * ->cgroup.subsys[].
1864 *
1865 * Nests both inside and outside of read_lock(&tasklist_lock).
1866 * It must not be nested with write_lock_irq(&tasklist_lock),
1867 * neither inside nor outside.
1868 */
1869 static inline void task_lock(struct task_struct *p)
1870 {
1871 spin_lock(&p->alloc_lock);
1872 }
1873
1874 static inline void task_unlock(struct task_struct *p)
1875 {
1876 spin_unlock(&p->alloc_lock);
1877 }
1878
1879 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1880 unsigned long *flags);
1881
1882 static inline void unlock_task_sighand(struct task_struct *tsk,
1883 unsigned long *flags)
1884 {
1885 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1886 }
1887
1888 #ifndef __HAVE_THREAD_FUNCTIONS
1889
1890 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1891 #define task_stack_page(task) ((task)->stack)
1892
1893 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1894 {
1895 *task_thread_info(p) = *task_thread_info(org);
1896 task_thread_info(p)->task = p;
1897 }
1898
1899 static inline unsigned long *end_of_stack(struct task_struct *p)
1900 {
1901 return (unsigned long *)(task_thread_info(p) + 1);
1902 }
1903
1904 #endif
1905
1906 /* set thread flags in other task's structures
1907 * - see asm/thread_info.h for TIF_xxxx flags available
1908 */
1909 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1910 {
1911 set_ti_thread_flag(task_thread_info(tsk), flag);
1912 }
1913
1914 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1915 {
1916 clear_ti_thread_flag(task_thread_info(tsk), flag);
1917 }
1918
1919 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1920 {
1921 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1922 }
1923
1924 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1925 {
1926 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1927 }
1928
1929 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1930 {
1931 return test_ti_thread_flag(task_thread_info(tsk), flag);
1932 }
1933
1934 static inline void set_tsk_need_resched(struct task_struct *tsk)
1935 {
1936 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1937 }
1938
1939 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1940 {
1941 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1942 }
1943
1944 static inline int signal_pending(struct task_struct *p)
1945 {
1946 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1947 }
1948
1949 extern int __fatal_signal_pending(struct task_struct *p);
1950
1951 static inline int fatal_signal_pending(struct task_struct *p)
1952 {
1953 return signal_pending(p) && __fatal_signal_pending(p);
1954 }
1955
1956 static inline int need_resched(void)
1957 {
1958 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1959 }
1960
1961 /*
1962 * cond_resched() and cond_resched_lock(): latency reduction via
1963 * explicit rescheduling in places that are safe. The return
1964 * value indicates whether a reschedule was done in fact.
1965 * cond_resched_lock() will drop the spinlock before scheduling,
1966 * cond_resched_softirq() will enable bhs before scheduling.
1967 */
1968 #ifdef CONFIG_PREEMPT
1969 static inline int cond_resched(void)
1970 {
1971 return 0;
1972 }
1973 #else
1974 extern int _cond_resched(void);
1975 static inline int cond_resched(void)
1976 {
1977 return _cond_resched();
1978 }
1979 #endif
1980 extern int cond_resched_lock(spinlock_t * lock);
1981 extern int cond_resched_softirq(void);
1982
1983 /*
1984 * Does a critical section need to be broken due to another
1985 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1986 * but a general need for low latency)
1987 */
1988 static inline int spin_needbreak(spinlock_t *lock)
1989 {
1990 #ifdef CONFIG_PREEMPT
1991 return spin_is_contended(lock);
1992 #else
1993 return 0;
1994 #endif
1995 }
1996
1997 /*
1998 * Reevaluate whether the task has signals pending delivery.
1999 * Wake the task if so.
2000 * This is required every time the blocked sigset_t changes.
2001 * callers must hold sighand->siglock.
2002 */
2003 extern void recalc_sigpending_and_wake(struct task_struct *t);
2004 extern void recalc_sigpending(void);
2005
2006 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2007
2008 /*
2009 * Wrappers for p->thread_info->cpu access. No-op on UP.
2010 */
2011 #ifdef CONFIG_SMP
2012
2013 static inline unsigned int task_cpu(const struct task_struct *p)
2014 {
2015 return task_thread_info(p)->cpu;
2016 }
2017
2018 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2019
2020 #else
2021
2022 static inline unsigned int task_cpu(const struct task_struct *p)
2023 {
2024 return 0;
2025 }
2026
2027 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2028 {
2029 }
2030
2031 #endif /* CONFIG_SMP */
2032
2033 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2034 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2035 #else
2036 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2037 {
2038 mm->mmap_base = TASK_UNMAPPED_BASE;
2039 mm->get_unmapped_area = arch_get_unmapped_area;
2040 mm->unmap_area = arch_unmap_area;
2041 }
2042 #endif
2043
2044 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2045 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2046
2047 extern int sched_mc_power_savings, sched_smt_power_savings;
2048
2049 extern void normalize_rt_tasks(void);
2050
2051 #ifdef CONFIG_GROUP_SCHED
2052
2053 extern struct task_group init_task_group;
2054
2055 extern struct task_group *sched_create_group(struct task_group *parent);
2056 extern void sched_destroy_group(struct task_group *tg);
2057 extern void sched_move_task(struct task_struct *tsk);
2058 #ifdef CONFIG_FAIR_GROUP_SCHED
2059 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2060 extern unsigned long sched_group_shares(struct task_group *tg);
2061 #endif
2062 #ifdef CONFIG_RT_GROUP_SCHED
2063 extern int sched_group_set_rt_runtime(struct task_group *tg,
2064 long rt_runtime_us);
2065 extern long sched_group_rt_runtime(struct task_group *tg);
2066 extern int sched_group_set_rt_period(struct task_group *tg,
2067 long rt_period_us);
2068 extern long sched_group_rt_period(struct task_group *tg);
2069 #endif
2070 #endif
2071
2072 #ifdef CONFIG_TASK_XACCT
2073 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2074 {
2075 tsk->rchar += amt;
2076 }
2077
2078 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2079 {
2080 tsk->wchar += amt;
2081 }
2082
2083 static inline void inc_syscr(struct task_struct *tsk)
2084 {
2085 tsk->syscr++;
2086 }
2087
2088 static inline void inc_syscw(struct task_struct *tsk)
2089 {
2090 tsk->syscw++;
2091 }
2092 #else
2093 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2094 {
2095 }
2096
2097 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2098 {
2099 }
2100
2101 static inline void inc_syscr(struct task_struct *tsk)
2102 {
2103 }
2104
2105 static inline void inc_syscw(struct task_struct *tsk)
2106 {
2107 }
2108 #endif
2109
2110 #ifdef CONFIG_SMP
2111 void migration_init(void);
2112 #else
2113 static inline void migration_init(void)
2114 {
2115 }
2116 #endif
2117
2118 #ifndef TASK_SIZE_OF
2119 #define TASK_SIZE_OF(tsk) TASK_SIZE
2120 #endif
2121
2122 #endif /* __KERNEL__ */
2123
2124 #endif