]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/sched.h
sched: remove batch_task()
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37 /* SCHED_ISO: reserved but not implemented yet */
38 #define SCHED_IDLE 5
39
40 #ifdef __KERNEL__
41
42 struct sched_param {
43 int sched_priority;
44 };
45
46 #include <asm/param.h> /* for HZ */
47
48 #include <linux/capability.h>
49 #include <linux/threads.h>
50 #include <linux/kernel.h>
51 #include <linux/types.h>
52 #include <linux/timex.h>
53 #include <linux/jiffies.h>
54 #include <linux/rbtree.h>
55 #include <linux/thread_info.h>
56 #include <linux/cpumask.h>
57 #include <linux/errno.h>
58 #include <linux/nodemask.h>
59
60 #include <asm/system.h>
61 #include <asm/semaphore.h>
62 #include <asm/page.h>
63 #include <asm/ptrace.h>
64 #include <asm/mmu.h>
65 #include <asm/cputime.h>
66
67 #include <linux/smp.h>
68 #include <linux/sem.h>
69 #include <linux/signal.h>
70 #include <linux/securebits.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/seccomp.h>
78 #include <linux/rcupdate.h>
79 #include <linux/futex.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88
89 #include <asm/processor.h>
90
91 struct exec_domain;
92 struct futex_pi_state;
93 struct bio;
94
95 /*
96 * List of flags we want to share for kernel threads,
97 * if only because they are not used by them anyway.
98 */
99 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
100
101 /*
102 * These are the constant used to fake the fixed-point load-average
103 * counting. Some notes:
104 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
105 * a load-average precision of 10 bits integer + 11 bits fractional
106 * - if you want to count load-averages more often, you need more
107 * precision, or rounding will get you. With 2-second counting freq,
108 * the EXP_n values would be 1981, 2034 and 2043 if still using only
109 * 11 bit fractions.
110 */
111 extern unsigned long avenrun[]; /* Load averages */
112
113 #define FSHIFT 11 /* nr of bits of precision */
114 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
115 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
116 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
117 #define EXP_5 2014 /* 1/exp(5sec/5min) */
118 #define EXP_15 2037 /* 1/exp(5sec/15min) */
119
120 #define CALC_LOAD(load,exp,n) \
121 load *= exp; \
122 load += n*(FIXED_1-exp); \
123 load >>= FSHIFT;
124
125 extern unsigned long total_forks;
126 extern int nr_threads;
127 DECLARE_PER_CPU(unsigned long, process_counts);
128 extern int nr_processes(void);
129 extern unsigned long nr_running(void);
130 extern unsigned long nr_uninterruptible(void);
131 extern unsigned long nr_active(void);
132 extern unsigned long nr_iowait(void);
133 extern unsigned long weighted_cpuload(const int cpu);
134
135
136 /*
137 * Task state bitmask. NOTE! These bits are also
138 * encoded in fs/proc/array.c: get_task_state().
139 *
140 * We have two separate sets of flags: task->state
141 * is about runnability, while task->exit_state are
142 * about the task exiting. Confusing, but this way
143 * modifying one set can't modify the other one by
144 * mistake.
145 */
146 #define TASK_RUNNING 0
147 #define TASK_INTERRUPTIBLE 1
148 #define TASK_UNINTERRUPTIBLE 2
149 #define TASK_STOPPED 4
150 #define TASK_TRACED 8
151 /* in tsk->exit_state */
152 #define EXIT_ZOMBIE 16
153 #define EXIT_DEAD 32
154 /* in tsk->state again */
155 #define TASK_NONINTERACTIVE 64
156 #define TASK_DEAD 128
157
158 #define __set_task_state(tsk, state_value) \
159 do { (tsk)->state = (state_value); } while (0)
160 #define set_task_state(tsk, state_value) \
161 set_mb((tsk)->state, (state_value))
162
163 /*
164 * set_current_state() includes a barrier so that the write of current->state
165 * is correctly serialised wrt the caller's subsequent test of whether to
166 * actually sleep:
167 *
168 * set_current_state(TASK_UNINTERRUPTIBLE);
169 * if (do_i_need_to_sleep())
170 * schedule();
171 *
172 * If the caller does not need such serialisation then use __set_current_state()
173 */
174 #define __set_current_state(state_value) \
175 do { current->state = (state_value); } while (0)
176 #define set_current_state(state_value) \
177 set_mb(current->state, (state_value))
178
179 /* Task command name length */
180 #define TASK_COMM_LEN 16
181
182 #include <linux/spinlock.h>
183
184 /*
185 * This serializes "schedule()" and also protects
186 * the run-queue from deletions/modifications (but
187 * _adding_ to the beginning of the run-queue has
188 * a separate lock).
189 */
190 extern rwlock_t tasklist_lock;
191 extern spinlock_t mmlist_lock;
192
193 struct task_struct;
194
195 extern void sched_init(void);
196 extern void sched_init_smp(void);
197 extern void init_idle(struct task_struct *idle, int cpu);
198 extern void init_idle_bootup_task(struct task_struct *idle);
199
200 extern cpumask_t nohz_cpu_mask;
201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
202 extern int select_nohz_load_balancer(int cpu);
203 #else
204 static inline int select_nohz_load_balancer(int cpu)
205 {
206 return 0;
207 }
208 #endif
209
210 /*
211 * Only dump TASK_* tasks. (0 for all tasks)
212 */
213 extern void show_state_filter(unsigned long state_filter);
214
215 static inline void show_state(void)
216 {
217 show_state_filter(0);
218 }
219
220 extern void show_regs(struct pt_regs *);
221
222 /*
223 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
224 * task), SP is the stack pointer of the first frame that should be shown in the back
225 * trace (or NULL if the entire call-chain of the task should be shown).
226 */
227 extern void show_stack(struct task_struct *task, unsigned long *sp);
228
229 void io_schedule(void);
230 long io_schedule_timeout(long timeout);
231
232 extern void cpu_init (void);
233 extern void trap_init(void);
234 extern void update_process_times(int user);
235 extern void scheduler_tick(void);
236
237 #ifdef CONFIG_DETECT_SOFTLOCKUP
238 extern void softlockup_tick(void);
239 extern void spawn_softlockup_task(void);
240 extern void touch_softlockup_watchdog(void);
241 extern void touch_all_softlockup_watchdogs(void);
242 #else
243 static inline void softlockup_tick(void)
244 {
245 }
246 static inline void spawn_softlockup_task(void)
247 {
248 }
249 static inline void touch_softlockup_watchdog(void)
250 {
251 }
252 static inline void touch_all_softlockup_watchdogs(void)
253 {
254 }
255 #endif
256
257
258 /* Attach to any functions which should be ignored in wchan output. */
259 #define __sched __attribute__((__section__(".sched.text")))
260 /* Is this address in the __sched functions? */
261 extern int in_sched_functions(unsigned long addr);
262
263 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
264 extern signed long FASTCALL(schedule_timeout(signed long timeout));
265 extern signed long schedule_timeout_interruptible(signed long timeout);
266 extern signed long schedule_timeout_uninterruptible(signed long timeout);
267 asmlinkage void schedule(void);
268
269 struct nsproxy;
270
271 /* Maximum number of active map areas.. This is a random (large) number */
272 #define DEFAULT_MAX_MAP_COUNT 65536
273
274 extern int sysctl_max_map_count;
275
276 #include <linux/aio.h>
277
278 extern unsigned long
279 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
280 unsigned long, unsigned long);
281 extern unsigned long
282 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
283 unsigned long len, unsigned long pgoff,
284 unsigned long flags);
285 extern void arch_unmap_area(struct mm_struct *, unsigned long);
286 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
287
288 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
289 /*
290 * The mm counters are not protected by its page_table_lock,
291 * so must be incremented atomically.
292 */
293 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
294 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
295 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
296 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
297 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
298 typedef atomic_long_t mm_counter_t;
299
300 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
301 /*
302 * The mm counters are protected by its page_table_lock,
303 * so can be incremented directly.
304 */
305 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
306 #define get_mm_counter(mm, member) ((mm)->_##member)
307 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
308 #define inc_mm_counter(mm, member) (mm)->_##member++
309 #define dec_mm_counter(mm, member) (mm)->_##member--
310 typedef unsigned long mm_counter_t;
311
312 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
313
314 #define get_mm_rss(mm) \
315 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
316 #define update_hiwater_rss(mm) do { \
317 unsigned long _rss = get_mm_rss(mm); \
318 if ((mm)->hiwater_rss < _rss) \
319 (mm)->hiwater_rss = _rss; \
320 } while (0)
321 #define update_hiwater_vm(mm) do { \
322 if ((mm)->hiwater_vm < (mm)->total_vm) \
323 (mm)->hiwater_vm = (mm)->total_vm; \
324 } while (0)
325
326 struct mm_struct {
327 struct vm_area_struct * mmap; /* list of VMAs */
328 struct rb_root mm_rb;
329 struct vm_area_struct * mmap_cache; /* last find_vma result */
330 unsigned long (*get_unmapped_area) (struct file *filp,
331 unsigned long addr, unsigned long len,
332 unsigned long pgoff, unsigned long flags);
333 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
334 unsigned long mmap_base; /* base of mmap area */
335 unsigned long task_size; /* size of task vm space */
336 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
337 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
338 pgd_t * pgd;
339 atomic_t mm_users; /* How many users with user space? */
340 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
341 int map_count; /* number of VMAs */
342 struct rw_semaphore mmap_sem;
343 spinlock_t page_table_lock; /* Protects page tables and some counters */
344
345 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
346 * together off init_mm.mmlist, and are protected
347 * by mmlist_lock
348 */
349
350 /* Special counters, in some configurations protected by the
351 * page_table_lock, in other configurations by being atomic.
352 */
353 mm_counter_t _file_rss;
354 mm_counter_t _anon_rss;
355
356 unsigned long hiwater_rss; /* High-watermark of RSS usage */
357 unsigned long hiwater_vm; /* High-water virtual memory usage */
358
359 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
360 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
361 unsigned long start_code, end_code, start_data, end_data;
362 unsigned long start_brk, brk, start_stack;
363 unsigned long arg_start, arg_end, env_start, env_end;
364
365 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
366
367 cpumask_t cpu_vm_mask;
368
369 /* Architecture-specific MM context */
370 mm_context_t context;
371
372 /* Swap token stuff */
373 /*
374 * Last value of global fault stamp as seen by this process.
375 * In other words, this value gives an indication of how long
376 * it has been since this task got the token.
377 * Look at mm/thrash.c
378 */
379 unsigned int faultstamp;
380 unsigned int token_priority;
381 unsigned int last_interval;
382
383 unsigned char dumpable:2;
384
385 /* coredumping support */
386 int core_waiters;
387 struct completion *core_startup_done, core_done;
388
389 /* aio bits */
390 rwlock_t ioctx_list_lock;
391 struct kioctx *ioctx_list;
392 };
393
394 struct sighand_struct {
395 atomic_t count;
396 struct k_sigaction action[_NSIG];
397 spinlock_t siglock;
398 struct list_head signalfd_list;
399 };
400
401 struct pacct_struct {
402 int ac_flag;
403 long ac_exitcode;
404 unsigned long ac_mem;
405 cputime_t ac_utime, ac_stime;
406 unsigned long ac_minflt, ac_majflt;
407 };
408
409 /*
410 * NOTE! "signal_struct" does not have it's own
411 * locking, because a shared signal_struct always
412 * implies a shared sighand_struct, so locking
413 * sighand_struct is always a proper superset of
414 * the locking of signal_struct.
415 */
416 struct signal_struct {
417 atomic_t count;
418 atomic_t live;
419
420 wait_queue_head_t wait_chldexit; /* for wait4() */
421
422 /* current thread group signal load-balancing target: */
423 struct task_struct *curr_target;
424
425 /* shared signal handling: */
426 struct sigpending shared_pending;
427
428 /* thread group exit support */
429 int group_exit_code;
430 /* overloaded:
431 * - notify group_exit_task when ->count is equal to notify_count
432 * - everyone except group_exit_task is stopped during signal delivery
433 * of fatal signals, group_exit_task processes the signal.
434 */
435 struct task_struct *group_exit_task;
436 int notify_count;
437
438 /* thread group stop support, overloads group_exit_code too */
439 int group_stop_count;
440 unsigned int flags; /* see SIGNAL_* flags below */
441
442 /* POSIX.1b Interval Timers */
443 struct list_head posix_timers;
444
445 /* ITIMER_REAL timer for the process */
446 struct hrtimer real_timer;
447 struct task_struct *tsk;
448 ktime_t it_real_incr;
449
450 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
451 cputime_t it_prof_expires, it_virt_expires;
452 cputime_t it_prof_incr, it_virt_incr;
453
454 /* job control IDs */
455 pid_t pgrp;
456 struct pid *tty_old_pgrp;
457
458 union {
459 pid_t session __deprecated;
460 pid_t __session;
461 };
462
463 /* boolean value for session group leader */
464 int leader;
465
466 struct tty_struct *tty; /* NULL if no tty */
467
468 /*
469 * Cumulative resource counters for dead threads in the group,
470 * and for reaped dead child processes forked by this group.
471 * Live threads maintain their own counters and add to these
472 * in __exit_signal, except for the group leader.
473 */
474 cputime_t utime, stime, cutime, cstime;
475 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
476 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
477 unsigned long inblock, oublock, cinblock, coublock;
478
479 /*
480 * Cumulative ns of scheduled CPU time for dead threads in the
481 * group, not including a zombie group leader. (This only differs
482 * from jiffies_to_ns(utime + stime) if sched_clock uses something
483 * other than jiffies.)
484 */
485 unsigned long sched_time;
486 unsigned long long sum_sched_runtime;
487
488 /*
489 * We don't bother to synchronize most readers of this at all,
490 * because there is no reader checking a limit that actually needs
491 * to get both rlim_cur and rlim_max atomically, and either one
492 * alone is a single word that can safely be read normally.
493 * getrlimit/setrlimit use task_lock(current->group_leader) to
494 * protect this instead of the siglock, because they really
495 * have no need to disable irqs.
496 */
497 struct rlimit rlim[RLIM_NLIMITS];
498
499 struct list_head cpu_timers[3];
500
501 /* keep the process-shared keyrings here so that they do the right
502 * thing in threads created with CLONE_THREAD */
503 #ifdef CONFIG_KEYS
504 struct key *session_keyring; /* keyring inherited over fork */
505 struct key *process_keyring; /* keyring private to this process */
506 #endif
507 #ifdef CONFIG_BSD_PROCESS_ACCT
508 struct pacct_struct pacct; /* per-process accounting information */
509 #endif
510 #ifdef CONFIG_TASKSTATS
511 struct taskstats *stats;
512 #endif
513 };
514
515 /* Context switch must be unlocked if interrupts are to be enabled */
516 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
517 # define __ARCH_WANT_UNLOCKED_CTXSW
518 #endif
519
520 /*
521 * Bits in flags field of signal_struct.
522 */
523 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
524 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
525 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
526 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
527
528 /*
529 * Some day this will be a full-fledged user tracking system..
530 */
531 struct user_struct {
532 atomic_t __count; /* reference count */
533 atomic_t processes; /* How many processes does this user have? */
534 atomic_t files; /* How many open files does this user have? */
535 atomic_t sigpending; /* How many pending signals does this user have? */
536 #ifdef CONFIG_INOTIFY_USER
537 atomic_t inotify_watches; /* How many inotify watches does this user have? */
538 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
539 #endif
540 /* protected by mq_lock */
541 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
542 unsigned long locked_shm; /* How many pages of mlocked shm ? */
543
544 #ifdef CONFIG_KEYS
545 struct key *uid_keyring; /* UID specific keyring */
546 struct key *session_keyring; /* UID's default session keyring */
547 #endif
548
549 /* Hash table maintenance information */
550 struct list_head uidhash_list;
551 uid_t uid;
552 };
553
554 extern struct user_struct *find_user(uid_t);
555
556 extern struct user_struct root_user;
557 #define INIT_USER (&root_user)
558
559 struct backing_dev_info;
560 struct reclaim_state;
561
562 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
563 struct sched_info {
564 /* cumulative counters */
565 unsigned long pcnt; /* # of times run on this cpu */
566 unsigned long long cpu_time, /* time spent on the cpu */
567 run_delay; /* time spent waiting on a runqueue */
568
569 /* timestamps */
570 unsigned long long last_arrival,/* when we last ran on a cpu */
571 last_queued; /* when we were last queued to run */
572 };
573 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
574
575 #ifdef CONFIG_SCHEDSTATS
576 extern const struct file_operations proc_schedstat_operations;
577 #endif /* CONFIG_SCHEDSTATS */
578
579 #ifdef CONFIG_TASK_DELAY_ACCT
580 struct task_delay_info {
581 spinlock_t lock;
582 unsigned int flags; /* Private per-task flags */
583
584 /* For each stat XXX, add following, aligned appropriately
585 *
586 * struct timespec XXX_start, XXX_end;
587 * u64 XXX_delay;
588 * u32 XXX_count;
589 *
590 * Atomicity of updates to XXX_delay, XXX_count protected by
591 * single lock above (split into XXX_lock if contention is an issue).
592 */
593
594 /*
595 * XXX_count is incremented on every XXX operation, the delay
596 * associated with the operation is added to XXX_delay.
597 * XXX_delay contains the accumulated delay time in nanoseconds.
598 */
599 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
600 u64 blkio_delay; /* wait for sync block io completion */
601 u64 swapin_delay; /* wait for swapin block io completion */
602 u32 blkio_count; /* total count of the number of sync block */
603 /* io operations performed */
604 u32 swapin_count; /* total count of the number of swapin block */
605 /* io operations performed */
606 };
607 #endif /* CONFIG_TASK_DELAY_ACCT */
608
609 static inline int sched_info_on(void)
610 {
611 #ifdef CONFIG_SCHEDSTATS
612 return 1;
613 #elif defined(CONFIG_TASK_DELAY_ACCT)
614 extern int delayacct_on;
615 return delayacct_on;
616 #else
617 return 0;
618 #endif
619 }
620
621 enum cpu_idle_type {
622 CPU_IDLE,
623 CPU_NOT_IDLE,
624 CPU_NEWLY_IDLE,
625 CPU_MAX_IDLE_TYPES
626 };
627
628 /*
629 * sched-domains (multiprocessor balancing) declarations:
630 */
631
632 /*
633 * Increase resolution of nice-level calculations:
634 */
635 #define SCHED_LOAD_SHIFT 10
636 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
637
638 #define SCHED_LOAD_SCALE_FUZZ (SCHED_LOAD_SCALE >> 5)
639
640 #ifdef CONFIG_SMP
641 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
642 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
643 #define SD_BALANCE_EXEC 4 /* Balance on exec */
644 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
645 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
646 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
647 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
648 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
649 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
650 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
651 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
652
653 #define BALANCE_FOR_MC_POWER \
654 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
655
656 #define BALANCE_FOR_PKG_POWER \
657 ((sched_mc_power_savings || sched_smt_power_savings) ? \
658 SD_POWERSAVINGS_BALANCE : 0)
659
660 #define test_sd_parent(sd, flag) ((sd->parent && \
661 (sd->parent->flags & flag)) ? 1 : 0)
662
663
664 struct sched_group {
665 struct sched_group *next; /* Must be a circular list */
666 cpumask_t cpumask;
667
668 /*
669 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
670 * single CPU. This is read only (except for setup, hotplug CPU).
671 * Note : Never change cpu_power without recompute its reciprocal
672 */
673 unsigned int __cpu_power;
674 /*
675 * reciprocal value of cpu_power to avoid expensive divides
676 * (see include/linux/reciprocal_div.h)
677 */
678 u32 reciprocal_cpu_power;
679 };
680
681 struct sched_domain {
682 /* These fields must be setup */
683 struct sched_domain *parent; /* top domain must be null terminated */
684 struct sched_domain *child; /* bottom domain must be null terminated */
685 struct sched_group *groups; /* the balancing groups of the domain */
686 cpumask_t span; /* span of all CPUs in this domain */
687 unsigned long min_interval; /* Minimum balance interval ms */
688 unsigned long max_interval; /* Maximum balance interval ms */
689 unsigned int busy_factor; /* less balancing by factor if busy */
690 unsigned int imbalance_pct; /* No balance until over watermark */
691 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
692 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
693 unsigned int busy_idx;
694 unsigned int idle_idx;
695 unsigned int newidle_idx;
696 unsigned int wake_idx;
697 unsigned int forkexec_idx;
698 int flags; /* See SD_* */
699
700 /* Runtime fields. */
701 unsigned long last_balance; /* init to jiffies. units in jiffies */
702 unsigned int balance_interval; /* initialise to 1. units in ms. */
703 unsigned int nr_balance_failed; /* initialise to 0 */
704
705 #ifdef CONFIG_SCHEDSTATS
706 /* load_balance() stats */
707 unsigned long lb_cnt[CPU_MAX_IDLE_TYPES];
708 unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
709 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
710 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
711 unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
712 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
713 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
714 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
715
716 /* Active load balancing */
717 unsigned long alb_cnt;
718 unsigned long alb_failed;
719 unsigned long alb_pushed;
720
721 /* SD_BALANCE_EXEC stats */
722 unsigned long sbe_cnt;
723 unsigned long sbe_balanced;
724 unsigned long sbe_pushed;
725
726 /* SD_BALANCE_FORK stats */
727 unsigned long sbf_cnt;
728 unsigned long sbf_balanced;
729 unsigned long sbf_pushed;
730
731 /* try_to_wake_up() stats */
732 unsigned long ttwu_wake_remote;
733 unsigned long ttwu_move_affine;
734 unsigned long ttwu_move_balance;
735 #endif
736 };
737
738 extern int partition_sched_domains(cpumask_t *partition1,
739 cpumask_t *partition2);
740
741 #endif /* CONFIG_SMP */
742
743
744 struct io_context; /* See blkdev.h */
745 struct cpuset;
746
747 #define NGROUPS_SMALL 32
748 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
749 struct group_info {
750 int ngroups;
751 atomic_t usage;
752 gid_t small_block[NGROUPS_SMALL];
753 int nblocks;
754 gid_t *blocks[0];
755 };
756
757 /*
758 * get_group_info() must be called with the owning task locked (via task_lock())
759 * when task != current. The reason being that the vast majority of callers are
760 * looking at current->group_info, which can not be changed except by the
761 * current task. Changing current->group_info requires the task lock, too.
762 */
763 #define get_group_info(group_info) do { \
764 atomic_inc(&(group_info)->usage); \
765 } while (0)
766
767 #define put_group_info(group_info) do { \
768 if (atomic_dec_and_test(&(group_info)->usage)) \
769 groups_free(group_info); \
770 } while (0)
771
772 extern struct group_info *groups_alloc(int gidsetsize);
773 extern void groups_free(struct group_info *group_info);
774 extern int set_current_groups(struct group_info *group_info);
775 extern int groups_search(struct group_info *group_info, gid_t grp);
776 /* access the groups "array" with this macro */
777 #define GROUP_AT(gi, i) \
778 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
779
780 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
781 extern void prefetch_stack(struct task_struct *t);
782 #else
783 static inline void prefetch_stack(struct task_struct *t) { }
784 #endif
785
786 struct audit_context; /* See audit.c */
787 struct mempolicy;
788 struct pipe_inode_info;
789 struct uts_namespace;
790
791 struct rq;
792 struct sched_domain;
793
794 struct sched_class {
795 struct sched_class *next;
796
797 void (*enqueue_task) (struct rq *rq, struct task_struct *p,
798 int wakeup, u64 now);
799 void (*dequeue_task) (struct rq *rq, struct task_struct *p,
800 int sleep, u64 now);
801 void (*yield_task) (struct rq *rq, struct task_struct *p);
802
803 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
804
805 struct task_struct * (*pick_next_task) (struct rq *rq, u64 now);
806 void (*put_prev_task) (struct rq *rq, struct task_struct *p, u64 now);
807
808 int (*load_balance) (struct rq *this_rq, int this_cpu,
809 struct rq *busiest,
810 unsigned long max_nr_move, unsigned long max_load_move,
811 struct sched_domain *sd, enum cpu_idle_type idle,
812 int *all_pinned, unsigned long *total_load_moved);
813
814 void (*set_curr_task) (struct rq *rq);
815 void (*task_tick) (struct rq *rq, struct task_struct *p);
816 void (*task_new) (struct rq *rq, struct task_struct *p);
817 };
818
819 struct load_weight {
820 unsigned long weight, inv_weight;
821 };
822
823 /*
824 * CFS stats for a schedulable entity (task, task-group etc)
825 *
826 * Current field usage histogram:
827 *
828 * 4 se->block_start
829 * 4 se->run_node
830 * 4 se->sleep_start
831 * 4 se->sleep_start_fair
832 * 6 se->load.weight
833 * 7 se->delta_fair
834 * 15 se->wait_runtime
835 */
836 struct sched_entity {
837 long wait_runtime;
838 unsigned long delta_fair_run;
839 unsigned long delta_fair_sleep;
840 unsigned long delta_exec;
841 s64 fair_key;
842 struct load_weight load; /* for load-balancing */
843 struct rb_node run_node;
844 unsigned int on_rq;
845
846 u64 wait_start_fair;
847 u64 wait_start;
848 u64 exec_start;
849 u64 sleep_start;
850 u64 sleep_start_fair;
851 u64 block_start;
852 u64 sleep_max;
853 u64 block_max;
854 u64 exec_max;
855 u64 wait_max;
856 u64 last_ran;
857
858 u64 sum_exec_runtime;
859 s64 sum_wait_runtime;
860 s64 sum_sleep_runtime;
861 unsigned long wait_runtime_overruns;
862 unsigned long wait_runtime_underruns;
863 #ifdef CONFIG_FAIR_GROUP_SCHED
864 struct sched_entity *parent;
865 /* rq on which this entity is (to be) queued: */
866 struct cfs_rq *cfs_rq;
867 /* rq "owned" by this entity/group: */
868 struct cfs_rq *my_q;
869 #endif
870 };
871
872 struct task_struct {
873 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
874 void *stack;
875 atomic_t usage;
876 unsigned int flags; /* per process flags, defined below */
877 unsigned int ptrace;
878
879 int lock_depth; /* BKL lock depth */
880
881 #ifdef CONFIG_SMP
882 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
883 int oncpu;
884 #endif
885 #endif
886
887 int prio, static_prio, normal_prio;
888 struct list_head run_list;
889 struct sched_class *sched_class;
890 struct sched_entity se;
891
892 unsigned short ioprio;
893 #ifdef CONFIG_BLK_DEV_IO_TRACE
894 unsigned int btrace_seq;
895 #endif
896
897 unsigned int policy;
898 cpumask_t cpus_allowed;
899 unsigned int time_slice;
900
901 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
902 struct sched_info sched_info;
903 #endif
904
905 struct list_head tasks;
906 /*
907 * ptrace_list/ptrace_children forms the list of my children
908 * that were stolen by a ptracer.
909 */
910 struct list_head ptrace_children;
911 struct list_head ptrace_list;
912
913 struct mm_struct *mm, *active_mm;
914
915 /* task state */
916 struct linux_binfmt *binfmt;
917 int exit_state;
918 int exit_code, exit_signal;
919 int pdeath_signal; /* The signal sent when the parent dies */
920 /* ??? */
921 unsigned int personality;
922 unsigned did_exec:1;
923 pid_t pid;
924 pid_t tgid;
925
926 #ifdef CONFIG_CC_STACKPROTECTOR
927 /* Canary value for the -fstack-protector gcc feature */
928 unsigned long stack_canary;
929 #endif
930 /*
931 * pointers to (original) parent process, youngest child, younger sibling,
932 * older sibling, respectively. (p->father can be replaced with
933 * p->parent->pid)
934 */
935 struct task_struct *real_parent; /* real parent process (when being debugged) */
936 struct task_struct *parent; /* parent process */
937 /*
938 * children/sibling forms the list of my children plus the
939 * tasks I'm ptracing.
940 */
941 struct list_head children; /* list of my children */
942 struct list_head sibling; /* linkage in my parent's children list */
943 struct task_struct *group_leader; /* threadgroup leader */
944
945 /* PID/PID hash table linkage. */
946 struct pid_link pids[PIDTYPE_MAX];
947 struct list_head thread_group;
948
949 struct completion *vfork_done; /* for vfork() */
950 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
951 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
952
953 unsigned int rt_priority;
954 cputime_t utime, stime;
955 unsigned long nvcsw, nivcsw; /* context switch counts */
956 struct timespec start_time;
957 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
958 unsigned long min_flt, maj_flt;
959
960 cputime_t it_prof_expires, it_virt_expires;
961 unsigned long long it_sched_expires;
962 struct list_head cpu_timers[3];
963
964 /* process credentials */
965 uid_t uid,euid,suid,fsuid;
966 gid_t gid,egid,sgid,fsgid;
967 struct group_info *group_info;
968 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
969 unsigned keep_capabilities:1;
970 struct user_struct *user;
971 #ifdef CONFIG_KEYS
972 struct key *request_key_auth; /* assumed request_key authority */
973 struct key *thread_keyring; /* keyring private to this thread */
974 unsigned char jit_keyring; /* default keyring to attach requested keys to */
975 #endif
976 /*
977 * fpu_counter contains the number of consecutive context switches
978 * that the FPU is used. If this is over a threshold, the lazy fpu
979 * saving becomes unlazy to save the trap. This is an unsigned char
980 * so that after 256 times the counter wraps and the behavior turns
981 * lazy again; this to deal with bursty apps that only use FPU for
982 * a short time
983 */
984 unsigned char fpu_counter;
985 int oomkilladj; /* OOM kill score adjustment (bit shift). */
986 char comm[TASK_COMM_LEN]; /* executable name excluding path
987 - access with [gs]et_task_comm (which lock
988 it with task_lock())
989 - initialized normally by flush_old_exec */
990 /* file system info */
991 int link_count, total_link_count;
992 #ifdef CONFIG_SYSVIPC
993 /* ipc stuff */
994 struct sysv_sem sysvsem;
995 #endif
996 /* CPU-specific state of this task */
997 struct thread_struct thread;
998 /* filesystem information */
999 struct fs_struct *fs;
1000 /* open file information */
1001 struct files_struct *files;
1002 /* namespaces */
1003 struct nsproxy *nsproxy;
1004 /* signal handlers */
1005 struct signal_struct *signal;
1006 struct sighand_struct *sighand;
1007
1008 sigset_t blocked, real_blocked;
1009 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1010 struct sigpending pending;
1011
1012 unsigned long sas_ss_sp;
1013 size_t sas_ss_size;
1014 int (*notifier)(void *priv);
1015 void *notifier_data;
1016 sigset_t *notifier_mask;
1017
1018 void *security;
1019 struct audit_context *audit_context;
1020 seccomp_t seccomp;
1021
1022 /* Thread group tracking */
1023 u32 parent_exec_id;
1024 u32 self_exec_id;
1025 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1026 spinlock_t alloc_lock;
1027
1028 /* Protection of the PI data structures: */
1029 spinlock_t pi_lock;
1030
1031 #ifdef CONFIG_RT_MUTEXES
1032 /* PI waiters blocked on a rt_mutex held by this task */
1033 struct plist_head pi_waiters;
1034 /* Deadlock detection and priority inheritance handling */
1035 struct rt_mutex_waiter *pi_blocked_on;
1036 #endif
1037
1038 #ifdef CONFIG_DEBUG_MUTEXES
1039 /* mutex deadlock detection */
1040 struct mutex_waiter *blocked_on;
1041 #endif
1042 #ifdef CONFIG_TRACE_IRQFLAGS
1043 unsigned int irq_events;
1044 int hardirqs_enabled;
1045 unsigned long hardirq_enable_ip;
1046 unsigned int hardirq_enable_event;
1047 unsigned long hardirq_disable_ip;
1048 unsigned int hardirq_disable_event;
1049 int softirqs_enabled;
1050 unsigned long softirq_disable_ip;
1051 unsigned int softirq_disable_event;
1052 unsigned long softirq_enable_ip;
1053 unsigned int softirq_enable_event;
1054 int hardirq_context;
1055 int softirq_context;
1056 #endif
1057 #ifdef CONFIG_LOCKDEP
1058 # define MAX_LOCK_DEPTH 30UL
1059 u64 curr_chain_key;
1060 int lockdep_depth;
1061 struct held_lock held_locks[MAX_LOCK_DEPTH];
1062 unsigned int lockdep_recursion;
1063 #endif
1064
1065 /* journalling filesystem info */
1066 void *journal_info;
1067
1068 /* stacked block device info */
1069 struct bio *bio_list, **bio_tail;
1070
1071 /* VM state */
1072 struct reclaim_state *reclaim_state;
1073
1074 struct backing_dev_info *backing_dev_info;
1075
1076 struct io_context *io_context;
1077
1078 unsigned long ptrace_message;
1079 siginfo_t *last_siginfo; /* For ptrace use. */
1080 /*
1081 * current io wait handle: wait queue entry to use for io waits
1082 * If this thread is processing aio, this points at the waitqueue
1083 * inside the currently handled kiocb. It may be NULL (i.e. default
1084 * to a stack based synchronous wait) if its doing sync IO.
1085 */
1086 wait_queue_t *io_wait;
1087 #ifdef CONFIG_TASK_XACCT
1088 /* i/o counters(bytes read/written, #syscalls */
1089 u64 rchar, wchar, syscr, syscw;
1090 #endif
1091 struct task_io_accounting ioac;
1092 #if defined(CONFIG_TASK_XACCT)
1093 u64 acct_rss_mem1; /* accumulated rss usage */
1094 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1095 cputime_t acct_stimexpd;/* stime since last update */
1096 #endif
1097 #ifdef CONFIG_NUMA
1098 struct mempolicy *mempolicy;
1099 short il_next;
1100 #endif
1101 #ifdef CONFIG_CPUSETS
1102 struct cpuset *cpuset;
1103 nodemask_t mems_allowed;
1104 int cpuset_mems_generation;
1105 int cpuset_mem_spread_rotor;
1106 #endif
1107 struct robust_list_head __user *robust_list;
1108 #ifdef CONFIG_COMPAT
1109 struct compat_robust_list_head __user *compat_robust_list;
1110 #endif
1111 struct list_head pi_state_list;
1112 struct futex_pi_state *pi_state_cache;
1113
1114 atomic_t fs_excl; /* holding fs exclusive resources */
1115 struct rcu_head rcu;
1116
1117 /*
1118 * cache last used pipe for splice
1119 */
1120 struct pipe_inode_info *splice_pipe;
1121 #ifdef CONFIG_TASK_DELAY_ACCT
1122 struct task_delay_info *delays;
1123 #endif
1124 #ifdef CONFIG_FAULT_INJECTION
1125 int make_it_fail;
1126 #endif
1127 };
1128
1129 /*
1130 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1131 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1132 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1133 * values are inverted: lower p->prio value means higher priority.
1134 *
1135 * The MAX_USER_RT_PRIO value allows the actual maximum
1136 * RT priority to be separate from the value exported to
1137 * user-space. This allows kernel threads to set their
1138 * priority to a value higher than any user task. Note:
1139 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1140 */
1141
1142 #define MAX_USER_RT_PRIO 100
1143 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1144
1145 #define MAX_PRIO (MAX_RT_PRIO + 40)
1146 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1147
1148 static inline int rt_prio(int prio)
1149 {
1150 if (unlikely(prio < MAX_RT_PRIO))
1151 return 1;
1152 return 0;
1153 }
1154
1155 static inline int rt_task(struct task_struct *p)
1156 {
1157 return rt_prio(p->prio);
1158 }
1159
1160 static inline pid_t process_group(struct task_struct *tsk)
1161 {
1162 return tsk->signal->pgrp;
1163 }
1164
1165 static inline pid_t signal_session(struct signal_struct *sig)
1166 {
1167 return sig->__session;
1168 }
1169
1170 static inline pid_t process_session(struct task_struct *tsk)
1171 {
1172 return signal_session(tsk->signal);
1173 }
1174
1175 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1176 {
1177 sig->__session = session;
1178 }
1179
1180 static inline struct pid *task_pid(struct task_struct *task)
1181 {
1182 return task->pids[PIDTYPE_PID].pid;
1183 }
1184
1185 static inline struct pid *task_tgid(struct task_struct *task)
1186 {
1187 return task->group_leader->pids[PIDTYPE_PID].pid;
1188 }
1189
1190 static inline struct pid *task_pgrp(struct task_struct *task)
1191 {
1192 return task->group_leader->pids[PIDTYPE_PGID].pid;
1193 }
1194
1195 static inline struct pid *task_session(struct task_struct *task)
1196 {
1197 return task->group_leader->pids[PIDTYPE_SID].pid;
1198 }
1199
1200 /**
1201 * pid_alive - check that a task structure is not stale
1202 * @p: Task structure to be checked.
1203 *
1204 * Test if a process is not yet dead (at most zombie state)
1205 * If pid_alive fails, then pointers within the task structure
1206 * can be stale and must not be dereferenced.
1207 */
1208 static inline int pid_alive(struct task_struct *p)
1209 {
1210 return p->pids[PIDTYPE_PID].pid != NULL;
1211 }
1212
1213 /**
1214 * is_init - check if a task structure is init
1215 * @tsk: Task structure to be checked.
1216 *
1217 * Check if a task structure is the first user space task the kernel created.
1218 */
1219 static inline int is_init(struct task_struct *tsk)
1220 {
1221 return tsk->pid == 1;
1222 }
1223
1224 extern struct pid *cad_pid;
1225
1226 extern void free_task(struct task_struct *tsk);
1227 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1228
1229 extern void __put_task_struct(struct task_struct *t);
1230
1231 static inline void put_task_struct(struct task_struct *t)
1232 {
1233 if (atomic_dec_and_test(&t->usage))
1234 __put_task_struct(t);
1235 }
1236
1237 /*
1238 * Per process flags
1239 */
1240 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1241 /* Not implemented yet, only for 486*/
1242 #define PF_STARTING 0x00000002 /* being created */
1243 #define PF_EXITING 0x00000004 /* getting shut down */
1244 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1245 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1246 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1247 #define PF_DUMPCORE 0x00000200 /* dumped core */
1248 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1249 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1250 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1251 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1252 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1253 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1254 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1255 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1256 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1257 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1258 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1259 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1260 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1261 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1262 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1263 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1264 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1265 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1266
1267 /*
1268 * Only the _current_ task can read/write to tsk->flags, but other
1269 * tasks can access tsk->flags in readonly mode for example
1270 * with tsk_used_math (like during threaded core dumping).
1271 * There is however an exception to this rule during ptrace
1272 * or during fork: the ptracer task is allowed to write to the
1273 * child->flags of its traced child (same goes for fork, the parent
1274 * can write to the child->flags), because we're guaranteed the
1275 * child is not running and in turn not changing child->flags
1276 * at the same time the parent does it.
1277 */
1278 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1279 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1280 #define clear_used_math() clear_stopped_child_used_math(current)
1281 #define set_used_math() set_stopped_child_used_math(current)
1282 #define conditional_stopped_child_used_math(condition, child) \
1283 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1284 #define conditional_used_math(condition) \
1285 conditional_stopped_child_used_math(condition, current)
1286 #define copy_to_stopped_child_used_math(child) \
1287 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1288 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1289 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1290 #define used_math() tsk_used_math(current)
1291
1292 #ifdef CONFIG_SMP
1293 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1294 #else
1295 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1296 {
1297 if (!cpu_isset(0, new_mask))
1298 return -EINVAL;
1299 return 0;
1300 }
1301 #endif
1302
1303 extern unsigned long long sched_clock(void);
1304 extern unsigned long long
1305 task_sched_runtime(struct task_struct *task);
1306
1307 /* sched_exec is called by processes performing an exec */
1308 #ifdef CONFIG_SMP
1309 extern void sched_exec(void);
1310 #else
1311 #define sched_exec() {}
1312 #endif
1313
1314 extern void sched_clock_unstable_event(void);
1315
1316 #ifdef CONFIG_HOTPLUG_CPU
1317 extern void idle_task_exit(void);
1318 #else
1319 static inline void idle_task_exit(void) {}
1320 #endif
1321
1322 extern void sched_idle_next(void);
1323
1324 extern unsigned int sysctl_sched_granularity;
1325 extern unsigned int sysctl_sched_wakeup_granularity;
1326 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1327 extern unsigned int sysctl_sched_stat_granularity;
1328 extern unsigned int sysctl_sched_runtime_limit;
1329 extern unsigned int sysctl_sched_child_runs_first;
1330 extern unsigned int sysctl_sched_features;
1331
1332 #ifdef CONFIG_RT_MUTEXES
1333 extern int rt_mutex_getprio(struct task_struct *p);
1334 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1335 extern void rt_mutex_adjust_pi(struct task_struct *p);
1336 #else
1337 static inline int rt_mutex_getprio(struct task_struct *p)
1338 {
1339 return p->normal_prio;
1340 }
1341 # define rt_mutex_adjust_pi(p) do { } while (0)
1342 #endif
1343
1344 extern void set_user_nice(struct task_struct *p, long nice);
1345 extern int task_prio(const struct task_struct *p);
1346 extern int task_nice(const struct task_struct *p);
1347 extern int can_nice(const struct task_struct *p, const int nice);
1348 extern int task_curr(const struct task_struct *p);
1349 extern int idle_cpu(int cpu);
1350 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1351 extern struct task_struct *idle_task(int cpu);
1352 extern struct task_struct *curr_task(int cpu);
1353 extern void set_curr_task(int cpu, struct task_struct *p);
1354
1355 void yield(void);
1356
1357 /*
1358 * The default (Linux) execution domain.
1359 */
1360 extern struct exec_domain default_exec_domain;
1361
1362 union thread_union {
1363 struct thread_info thread_info;
1364 unsigned long stack[THREAD_SIZE/sizeof(long)];
1365 };
1366
1367 #ifndef __HAVE_ARCH_KSTACK_END
1368 static inline int kstack_end(void *addr)
1369 {
1370 /* Reliable end of stack detection:
1371 * Some APM bios versions misalign the stack
1372 */
1373 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1374 }
1375 #endif
1376
1377 extern union thread_union init_thread_union;
1378 extern struct task_struct init_task;
1379
1380 extern struct mm_struct init_mm;
1381
1382 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1383 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1384 extern void __set_special_pids(pid_t session, pid_t pgrp);
1385
1386 /* per-UID process charging. */
1387 extern struct user_struct * alloc_uid(uid_t);
1388 static inline struct user_struct *get_uid(struct user_struct *u)
1389 {
1390 atomic_inc(&u->__count);
1391 return u;
1392 }
1393 extern void free_uid(struct user_struct *);
1394 extern void switch_uid(struct user_struct *);
1395
1396 #include <asm/current.h>
1397
1398 extern void do_timer(unsigned long ticks);
1399
1400 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1401 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1402 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1403 unsigned long clone_flags));
1404 #ifdef CONFIG_SMP
1405 extern void kick_process(struct task_struct *tsk);
1406 #else
1407 static inline void kick_process(struct task_struct *tsk) { }
1408 #endif
1409 extern void sched_fork(struct task_struct *p, int clone_flags);
1410 extern void sched_dead(struct task_struct *p);
1411
1412 extern int in_group_p(gid_t);
1413 extern int in_egroup_p(gid_t);
1414
1415 extern void proc_caches_init(void);
1416 extern void flush_signals(struct task_struct *);
1417 extern void ignore_signals(struct task_struct *);
1418 extern void flush_signal_handlers(struct task_struct *, int force_default);
1419 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1420
1421 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1422 {
1423 unsigned long flags;
1424 int ret;
1425
1426 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1427 ret = dequeue_signal(tsk, mask, info);
1428 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1429
1430 return ret;
1431 }
1432
1433 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1434 sigset_t *mask);
1435 extern void unblock_all_signals(void);
1436 extern void release_task(struct task_struct * p);
1437 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1438 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1439 extern int force_sigsegv(int, struct task_struct *);
1440 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1441 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1442 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1443 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1444 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1445 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1446 extern int kill_pid(struct pid *pid, int sig, int priv);
1447 extern int kill_proc_info(int, struct siginfo *, pid_t);
1448 extern void do_notify_parent(struct task_struct *, int);
1449 extern void force_sig(int, struct task_struct *);
1450 extern void force_sig_specific(int, struct task_struct *);
1451 extern int send_sig(int, struct task_struct *, int);
1452 extern void zap_other_threads(struct task_struct *p);
1453 extern int kill_proc(pid_t, int, int);
1454 extern struct sigqueue *sigqueue_alloc(void);
1455 extern void sigqueue_free(struct sigqueue *);
1456 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1457 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1458 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1459 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1460
1461 static inline int kill_cad_pid(int sig, int priv)
1462 {
1463 return kill_pid(cad_pid, sig, priv);
1464 }
1465
1466 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1467 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1468 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1469 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1470
1471 static inline int is_si_special(const struct siginfo *info)
1472 {
1473 return info <= SEND_SIG_FORCED;
1474 }
1475
1476 /* True if we are on the alternate signal stack. */
1477
1478 static inline int on_sig_stack(unsigned long sp)
1479 {
1480 return (sp - current->sas_ss_sp < current->sas_ss_size);
1481 }
1482
1483 static inline int sas_ss_flags(unsigned long sp)
1484 {
1485 return (current->sas_ss_size == 0 ? SS_DISABLE
1486 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1487 }
1488
1489 /*
1490 * Routines for handling mm_structs
1491 */
1492 extern struct mm_struct * mm_alloc(void);
1493
1494 /* mmdrop drops the mm and the page tables */
1495 extern void FASTCALL(__mmdrop(struct mm_struct *));
1496 static inline void mmdrop(struct mm_struct * mm)
1497 {
1498 if (atomic_dec_and_test(&mm->mm_count))
1499 __mmdrop(mm);
1500 }
1501
1502 /* mmput gets rid of the mappings and all user-space */
1503 extern void mmput(struct mm_struct *);
1504 /* Grab a reference to a task's mm, if it is not already going away */
1505 extern struct mm_struct *get_task_mm(struct task_struct *task);
1506 /* Remove the current tasks stale references to the old mm_struct */
1507 extern void mm_release(struct task_struct *, struct mm_struct *);
1508
1509 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1510 extern void flush_thread(void);
1511 extern void exit_thread(void);
1512
1513 extern void exit_files(struct task_struct *);
1514 extern void __cleanup_signal(struct signal_struct *);
1515 extern void __cleanup_sighand(struct sighand_struct *);
1516 extern void exit_itimers(struct signal_struct *);
1517
1518 extern NORET_TYPE void do_group_exit(int);
1519
1520 extern void daemonize(const char *, ...);
1521 extern int allow_signal(int);
1522 extern int disallow_signal(int);
1523
1524 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1525 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1526 struct task_struct *fork_idle(int);
1527
1528 extern void set_task_comm(struct task_struct *tsk, char *from);
1529 extern void get_task_comm(char *to, struct task_struct *tsk);
1530
1531 #ifdef CONFIG_SMP
1532 extern void wait_task_inactive(struct task_struct * p);
1533 #else
1534 #define wait_task_inactive(p) do { } while (0)
1535 #endif
1536
1537 #define remove_parent(p) list_del_init(&(p)->sibling)
1538 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1539
1540 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1541
1542 #define for_each_process(p) \
1543 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1544
1545 /*
1546 * Careful: do_each_thread/while_each_thread is a double loop so
1547 * 'break' will not work as expected - use goto instead.
1548 */
1549 #define do_each_thread(g, t) \
1550 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1551
1552 #define while_each_thread(g, t) \
1553 while ((t = next_thread(t)) != g)
1554
1555 /* de_thread depends on thread_group_leader not being a pid based check */
1556 #define thread_group_leader(p) (p == p->group_leader)
1557
1558 /* Do to the insanities of de_thread it is possible for a process
1559 * to have the pid of the thread group leader without actually being
1560 * the thread group leader. For iteration through the pids in proc
1561 * all we care about is that we have a task with the appropriate
1562 * pid, we don't actually care if we have the right task.
1563 */
1564 static inline int has_group_leader_pid(struct task_struct *p)
1565 {
1566 return p->pid == p->tgid;
1567 }
1568
1569 static inline struct task_struct *next_thread(const struct task_struct *p)
1570 {
1571 return list_entry(rcu_dereference(p->thread_group.next),
1572 struct task_struct, thread_group);
1573 }
1574
1575 static inline int thread_group_empty(struct task_struct *p)
1576 {
1577 return list_empty(&p->thread_group);
1578 }
1579
1580 #define delay_group_leader(p) \
1581 (thread_group_leader(p) && !thread_group_empty(p))
1582
1583 /*
1584 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1585 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1586 * pins the final release of task.io_context. Also protects ->cpuset.
1587 *
1588 * Nests both inside and outside of read_lock(&tasklist_lock).
1589 * It must not be nested with write_lock_irq(&tasklist_lock),
1590 * neither inside nor outside.
1591 */
1592 static inline void task_lock(struct task_struct *p)
1593 {
1594 spin_lock(&p->alloc_lock);
1595 }
1596
1597 static inline void task_unlock(struct task_struct *p)
1598 {
1599 spin_unlock(&p->alloc_lock);
1600 }
1601
1602 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1603 unsigned long *flags);
1604
1605 static inline void unlock_task_sighand(struct task_struct *tsk,
1606 unsigned long *flags)
1607 {
1608 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1609 }
1610
1611 #ifndef __HAVE_THREAD_FUNCTIONS
1612
1613 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1614 #define task_stack_page(task) ((task)->stack)
1615
1616 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1617 {
1618 *task_thread_info(p) = *task_thread_info(org);
1619 task_thread_info(p)->task = p;
1620 }
1621
1622 static inline unsigned long *end_of_stack(struct task_struct *p)
1623 {
1624 return (unsigned long *)(task_thread_info(p) + 1);
1625 }
1626
1627 #endif
1628
1629 /* set thread flags in other task's structures
1630 * - see asm/thread_info.h for TIF_xxxx flags available
1631 */
1632 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1633 {
1634 set_ti_thread_flag(task_thread_info(tsk), flag);
1635 }
1636
1637 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1638 {
1639 clear_ti_thread_flag(task_thread_info(tsk), flag);
1640 }
1641
1642 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1643 {
1644 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1645 }
1646
1647 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1648 {
1649 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1650 }
1651
1652 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1653 {
1654 return test_ti_thread_flag(task_thread_info(tsk), flag);
1655 }
1656
1657 static inline void set_tsk_need_resched(struct task_struct *tsk)
1658 {
1659 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1660 }
1661
1662 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1663 {
1664 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1665 }
1666
1667 static inline int signal_pending(struct task_struct *p)
1668 {
1669 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1670 }
1671
1672 static inline int need_resched(void)
1673 {
1674 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1675 }
1676
1677 /*
1678 * cond_resched() and cond_resched_lock(): latency reduction via
1679 * explicit rescheduling in places that are safe. The return
1680 * value indicates whether a reschedule was done in fact.
1681 * cond_resched_lock() will drop the spinlock before scheduling,
1682 * cond_resched_softirq() will enable bhs before scheduling.
1683 */
1684 extern int cond_resched(void);
1685 extern int cond_resched_lock(spinlock_t * lock);
1686 extern int cond_resched_softirq(void);
1687
1688 /*
1689 * Does a critical section need to be broken due to another
1690 * task waiting?:
1691 */
1692 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1693 # define need_lockbreak(lock) ((lock)->break_lock)
1694 #else
1695 # define need_lockbreak(lock) 0
1696 #endif
1697
1698 /*
1699 * Does a critical section need to be broken due to another
1700 * task waiting or preemption being signalled:
1701 */
1702 static inline int lock_need_resched(spinlock_t *lock)
1703 {
1704 if (need_lockbreak(lock) || need_resched())
1705 return 1;
1706 return 0;
1707 }
1708
1709 /*
1710 * Reevaluate whether the task has signals pending delivery.
1711 * Wake the task if so.
1712 * This is required every time the blocked sigset_t changes.
1713 * callers must hold sighand->siglock.
1714 */
1715 extern void recalc_sigpending_and_wake(struct task_struct *t);
1716 extern void recalc_sigpending(void);
1717
1718 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1719
1720 /*
1721 * Wrappers for p->thread_info->cpu access. No-op on UP.
1722 */
1723 #ifdef CONFIG_SMP
1724
1725 static inline unsigned int task_cpu(const struct task_struct *p)
1726 {
1727 return task_thread_info(p)->cpu;
1728 }
1729
1730 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1731
1732 #else
1733
1734 static inline unsigned int task_cpu(const struct task_struct *p)
1735 {
1736 return 0;
1737 }
1738
1739 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1740 {
1741 }
1742
1743 #endif /* CONFIG_SMP */
1744
1745 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1746 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1747 #else
1748 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1749 {
1750 mm->mmap_base = TASK_UNMAPPED_BASE;
1751 mm->get_unmapped_area = arch_get_unmapped_area;
1752 mm->unmap_area = arch_unmap_area;
1753 }
1754 #endif
1755
1756 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1757 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1758
1759 extern int sched_mc_power_savings, sched_smt_power_savings;
1760
1761 extern void normalize_rt_tasks(void);
1762
1763 #ifdef CONFIG_TASK_XACCT
1764 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1765 {
1766 tsk->rchar += amt;
1767 }
1768
1769 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1770 {
1771 tsk->wchar += amt;
1772 }
1773
1774 static inline void inc_syscr(struct task_struct *tsk)
1775 {
1776 tsk->syscr++;
1777 }
1778
1779 static inline void inc_syscw(struct task_struct *tsk)
1780 {
1781 tsk->syscw++;
1782 }
1783 #else
1784 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1785 {
1786 }
1787
1788 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1789 {
1790 }
1791
1792 static inline void inc_syscr(struct task_struct *tsk)
1793 {
1794 }
1795
1796 static inline void inc_syscw(struct task_struct *tsk)
1797 {
1798 }
1799 #endif
1800
1801 #endif /* __KERNEL__ */
1802
1803 #endif