]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30
31 /*
32 * Scheduling policies
33 */
34 #define SCHED_NORMAL 0
35 #define SCHED_FIFO 1
36 #define SCHED_RR 2
37 #define SCHED_BATCH 3
38 /* SCHED_ISO: reserved but not implemented yet */
39 #define SCHED_IDLE 5
40
41 #ifdef __KERNEL__
42
43 struct sched_param {
44 int sched_priority;
45 };
46
47 #include <asm/param.h> /* for HZ */
48
49 #include <linux/capability.h>
50 #include <linux/threads.h>
51 #include <linux/kernel.h>
52 #include <linux/types.h>
53 #include <linux/timex.h>
54 #include <linux/jiffies.h>
55 #include <linux/rbtree.h>
56 #include <linux/thread_info.h>
57 #include <linux/cpumask.h>
58 #include <linux/errno.h>
59 #include <linux/nodemask.h>
60 #include <linux/mm_types.h>
61
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/securebits.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/futex.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91
92 #include <asm/processor.h>
93
94 struct exec_domain;
95 struct futex_pi_state;
96 struct bio;
97
98 /*
99 * List of flags we want to share for kernel threads,
100 * if only because they are not used by them anyway.
101 */
102 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103
104 /*
105 * These are the constant used to fake the fixed-point load-average
106 * counting. Some notes:
107 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
108 * a load-average precision of 10 bits integer + 11 bits fractional
109 * - if you want to count load-averages more often, you need more
110 * precision, or rounding will get you. With 2-second counting freq,
111 * the EXP_n values would be 1981, 2034 and 2043 if still using only
112 * 11 bit fractions.
113 */
114 extern unsigned long avenrun[]; /* Load averages */
115
116 #define FSHIFT 11 /* nr of bits of precision */
117 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
118 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
119 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
120 #define EXP_5 2014 /* 1/exp(5sec/5min) */
121 #define EXP_15 2037 /* 1/exp(5sec/15min) */
122
123 #define CALC_LOAD(load,exp,n) \
124 load *= exp; \
125 load += n*(FIXED_1-exp); \
126 load >>= FSHIFT;
127
128 extern unsigned long total_forks;
129 extern int nr_threads;
130 DECLARE_PER_CPU(unsigned long, process_counts);
131 extern int nr_processes(void);
132 extern unsigned long nr_running(void);
133 extern unsigned long nr_uninterruptible(void);
134 extern unsigned long nr_active(void);
135 extern unsigned long nr_iowait(void);
136 extern unsigned long weighted_cpuload(const int cpu);
137
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159
160 /*
161 * Task state bitmask. NOTE! These bits are also
162 * encoded in fs/proc/array.c: get_task_state().
163 *
164 * We have two separate sets of flags: task->state
165 * is about runnability, while task->exit_state are
166 * about the task exiting. Confusing, but this way
167 * modifying one set can't modify the other one by
168 * mistake.
169 */
170 #define TASK_RUNNING 0
171 #define TASK_INTERRUPTIBLE 1
172 #define TASK_UNINTERRUPTIBLE 2
173 #define TASK_STOPPED 4
174 #define TASK_TRACED 8
175 /* in tsk->exit_state */
176 #define EXIT_ZOMBIE 16
177 #define EXIT_DEAD 32
178 /* in tsk->state again */
179 #define TASK_DEAD 64
180
181 #define __set_task_state(tsk, state_value) \
182 do { (tsk)->state = (state_value); } while (0)
183 #define set_task_state(tsk, state_value) \
184 set_mb((tsk)->state, (state_value))
185
186 /*
187 * set_current_state() includes a barrier so that the write of current->state
188 * is correctly serialised wrt the caller's subsequent test of whether to
189 * actually sleep:
190 *
191 * set_current_state(TASK_UNINTERRUPTIBLE);
192 * if (do_i_need_to_sleep())
193 * schedule();
194 *
195 * If the caller does not need such serialisation then use __set_current_state()
196 */
197 #define __set_current_state(state_value) \
198 do { current->state = (state_value); } while (0)
199 #define set_current_state(state_value) \
200 set_mb(current->state, (state_value))
201
202 /* Task command name length */
203 #define TASK_COMM_LEN 16
204
205 #include <linux/spinlock.h>
206
207 /*
208 * This serializes "schedule()" and also protects
209 * the run-queue from deletions/modifications (but
210 * _adding_ to the beginning of the run-queue has
211 * a separate lock).
212 */
213 extern rwlock_t tasklist_lock;
214 extern spinlock_t mmlist_lock;
215
216 struct task_struct;
217
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern void init_idle(struct task_struct *idle, int cpu);
221 extern void init_idle_bootup_task(struct task_struct *idle);
222
223 extern cpumask_t nohz_cpu_mask;
224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225 extern int select_nohz_load_balancer(int cpu);
226 #else
227 static inline int select_nohz_load_balancer(int cpu)
228 {
229 return 0;
230 }
231 #endif
232
233 /*
234 * Only dump TASK_* tasks. (0 for all tasks)
235 */
236 extern void show_state_filter(unsigned long state_filter);
237
238 static inline void show_state(void)
239 {
240 show_state_filter(0);
241 }
242
243 extern void show_regs(struct pt_regs *);
244
245 /*
246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247 * task), SP is the stack pointer of the first frame that should be shown in the back
248 * trace (or NULL if the entire call-chain of the task should be shown).
249 */
250 extern void show_stack(struct task_struct *task, unsigned long *sp);
251
252 void io_schedule(void);
253 long io_schedule_timeout(long timeout);
254
255 extern void cpu_init (void);
256 extern void trap_init(void);
257 extern void account_process_tick(struct task_struct *task, int user);
258 extern void update_process_times(int user);
259 extern void scheduler_tick(void);
260
261 #ifdef CONFIG_DETECT_SOFTLOCKUP
262 extern void softlockup_tick(void);
263 extern void spawn_softlockup_task(void);
264 extern void touch_softlockup_watchdog(void);
265 extern void touch_all_softlockup_watchdogs(void);
266 extern int softlockup_thresh;
267 #else
268 static inline void softlockup_tick(void)
269 {
270 }
271 static inline void spawn_softlockup_task(void)
272 {
273 }
274 static inline void touch_softlockup_watchdog(void)
275 {
276 }
277 static inline void touch_all_softlockup_watchdogs(void)
278 {
279 }
280 #endif
281
282
283 /* Attach to any functions which should be ignored in wchan output. */
284 #define __sched __attribute__((__section__(".sched.text")))
285
286 /* Linker adds these: start and end of __sched functions */
287 extern char __sched_text_start[], __sched_text_end[];
288
289 /* Is this address in the __sched functions? */
290 extern int in_sched_functions(unsigned long addr);
291
292 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
293 extern signed long FASTCALL(schedule_timeout(signed long timeout));
294 extern signed long schedule_timeout_interruptible(signed long timeout);
295 extern signed long schedule_timeout_uninterruptible(signed long timeout);
296 asmlinkage void schedule(void);
297
298 struct nsproxy;
299 struct user_namespace;
300
301 /* Maximum number of active map areas.. This is a random (large) number */
302 #define DEFAULT_MAX_MAP_COUNT 65536
303
304 extern int sysctl_max_map_count;
305
306 #include <linux/aio.h>
307
308 extern unsigned long
309 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
310 unsigned long, unsigned long);
311 extern unsigned long
312 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
313 unsigned long len, unsigned long pgoff,
314 unsigned long flags);
315 extern void arch_unmap_area(struct mm_struct *, unsigned long);
316 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
317
318 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
319 /*
320 * The mm counters are not protected by its page_table_lock,
321 * so must be incremented atomically.
322 */
323 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
324 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
325 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
326 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
327 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
328
329 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
330 /*
331 * The mm counters are protected by its page_table_lock,
332 * so can be incremented directly.
333 */
334 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
335 #define get_mm_counter(mm, member) ((mm)->_##member)
336 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
337 #define inc_mm_counter(mm, member) (mm)->_##member++
338 #define dec_mm_counter(mm, member) (mm)->_##member--
339
340 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
341
342 #define get_mm_rss(mm) \
343 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
344 #define update_hiwater_rss(mm) do { \
345 unsigned long _rss = get_mm_rss(mm); \
346 if ((mm)->hiwater_rss < _rss) \
347 (mm)->hiwater_rss = _rss; \
348 } while (0)
349 #define update_hiwater_vm(mm) do { \
350 if ((mm)->hiwater_vm < (mm)->total_vm) \
351 (mm)->hiwater_vm = (mm)->total_vm; \
352 } while (0)
353
354 extern void set_dumpable(struct mm_struct *mm, int value);
355 extern int get_dumpable(struct mm_struct *mm);
356
357 /* mm flags */
358 /* dumpable bits */
359 #define MMF_DUMPABLE 0 /* core dump is permitted */
360 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
361 #define MMF_DUMPABLE_BITS 2
362
363 /* coredump filter bits */
364 #define MMF_DUMP_ANON_PRIVATE 2
365 #define MMF_DUMP_ANON_SHARED 3
366 #define MMF_DUMP_MAPPED_PRIVATE 4
367 #define MMF_DUMP_MAPPED_SHARED 5
368 #define MMF_DUMP_ELF_HEADERS 6
369 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
370 #define MMF_DUMP_FILTER_BITS 5
371 #define MMF_DUMP_FILTER_MASK \
372 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
373 #define MMF_DUMP_FILTER_DEFAULT \
374 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
375
376 struct sighand_struct {
377 atomic_t count;
378 struct k_sigaction action[_NSIG];
379 spinlock_t siglock;
380 wait_queue_head_t signalfd_wqh;
381 };
382
383 struct pacct_struct {
384 int ac_flag;
385 long ac_exitcode;
386 unsigned long ac_mem;
387 cputime_t ac_utime, ac_stime;
388 unsigned long ac_minflt, ac_majflt;
389 };
390
391 /*
392 * NOTE! "signal_struct" does not have it's own
393 * locking, because a shared signal_struct always
394 * implies a shared sighand_struct, so locking
395 * sighand_struct is always a proper superset of
396 * the locking of signal_struct.
397 */
398 struct signal_struct {
399 atomic_t count;
400 atomic_t live;
401
402 wait_queue_head_t wait_chldexit; /* for wait4() */
403
404 /* current thread group signal load-balancing target: */
405 struct task_struct *curr_target;
406
407 /* shared signal handling: */
408 struct sigpending shared_pending;
409
410 /* thread group exit support */
411 int group_exit_code;
412 /* overloaded:
413 * - notify group_exit_task when ->count is equal to notify_count
414 * - everyone except group_exit_task is stopped during signal delivery
415 * of fatal signals, group_exit_task processes the signal.
416 */
417 struct task_struct *group_exit_task;
418 int notify_count;
419
420 /* thread group stop support, overloads group_exit_code too */
421 int group_stop_count;
422 unsigned int flags; /* see SIGNAL_* flags below */
423
424 /* POSIX.1b Interval Timers */
425 struct list_head posix_timers;
426
427 /* ITIMER_REAL timer for the process */
428 struct hrtimer real_timer;
429 struct task_struct *tsk;
430 ktime_t it_real_incr;
431
432 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
433 cputime_t it_prof_expires, it_virt_expires;
434 cputime_t it_prof_incr, it_virt_incr;
435
436 /* job control IDs */
437
438 /*
439 * pgrp and session fields are deprecated.
440 * use the task_session_Xnr and task_pgrp_Xnr routines below
441 */
442
443 union {
444 pid_t pgrp __deprecated;
445 pid_t __pgrp;
446 };
447
448 struct pid *tty_old_pgrp;
449
450 union {
451 pid_t session __deprecated;
452 pid_t __session;
453 };
454
455 /* boolean value for session group leader */
456 int leader;
457
458 struct tty_struct *tty; /* NULL if no tty */
459
460 /*
461 * Cumulative resource counters for dead threads in the group,
462 * and for reaped dead child processes forked by this group.
463 * Live threads maintain their own counters and add to these
464 * in __exit_signal, except for the group leader.
465 */
466 cputime_t utime, stime, cutime, cstime;
467 cputime_t gtime;
468 cputime_t cgtime;
469 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
470 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
471 unsigned long inblock, oublock, cinblock, coublock;
472
473 /*
474 * Cumulative ns of scheduled CPU time for dead threads in the
475 * group, not including a zombie group leader. (This only differs
476 * from jiffies_to_ns(utime + stime) if sched_clock uses something
477 * other than jiffies.)
478 */
479 unsigned long long sum_sched_runtime;
480
481 /*
482 * We don't bother to synchronize most readers of this at all,
483 * because there is no reader checking a limit that actually needs
484 * to get both rlim_cur and rlim_max atomically, and either one
485 * alone is a single word that can safely be read normally.
486 * getrlimit/setrlimit use task_lock(current->group_leader) to
487 * protect this instead of the siglock, because they really
488 * have no need to disable irqs.
489 */
490 struct rlimit rlim[RLIM_NLIMITS];
491
492 struct list_head cpu_timers[3];
493
494 /* keep the process-shared keyrings here so that they do the right
495 * thing in threads created with CLONE_THREAD */
496 #ifdef CONFIG_KEYS
497 struct key *session_keyring; /* keyring inherited over fork */
498 struct key *process_keyring; /* keyring private to this process */
499 #endif
500 #ifdef CONFIG_BSD_PROCESS_ACCT
501 struct pacct_struct pacct; /* per-process accounting information */
502 #endif
503 #ifdef CONFIG_TASKSTATS
504 struct taskstats *stats;
505 #endif
506 #ifdef CONFIG_AUDIT
507 unsigned audit_tty;
508 struct tty_audit_buf *tty_audit_buf;
509 #endif
510 };
511
512 /* Context switch must be unlocked if interrupts are to be enabled */
513 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
514 # define __ARCH_WANT_UNLOCKED_CTXSW
515 #endif
516
517 /*
518 * Bits in flags field of signal_struct.
519 */
520 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
521 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
522 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
523 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
524
525 /*
526 * Some day this will be a full-fledged user tracking system..
527 */
528 struct user_struct {
529 atomic_t __count; /* reference count */
530 atomic_t processes; /* How many processes does this user have? */
531 atomic_t files; /* How many open files does this user have? */
532 atomic_t sigpending; /* How many pending signals does this user have? */
533 #ifdef CONFIG_INOTIFY_USER
534 atomic_t inotify_watches; /* How many inotify watches does this user have? */
535 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
536 #endif
537 #ifdef CONFIG_POSIX_MQUEUE
538 /* protected by mq_lock */
539 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
540 #endif
541 unsigned long locked_shm; /* How many pages of mlocked shm ? */
542
543 #ifdef CONFIG_KEYS
544 struct key *uid_keyring; /* UID specific keyring */
545 struct key *session_keyring; /* UID's default session keyring */
546 #endif
547
548 /* Hash table maintenance information */
549 struct hlist_node uidhash_node;
550 uid_t uid;
551
552 #ifdef CONFIG_FAIR_USER_SCHED
553 struct task_group *tg;
554 #ifdef CONFIG_SYSFS
555 struct kset kset;
556 struct subsys_attribute user_attr;
557 struct work_struct work;
558 #endif
559 #endif
560 };
561
562 #ifdef CONFIG_FAIR_USER_SCHED
563 extern int uids_kobject_init(void);
564 #else
565 static inline int uids_kobject_init(void) { return 0; }
566 #endif
567
568 extern struct user_struct *find_user(uid_t);
569
570 extern struct user_struct root_user;
571 #define INIT_USER (&root_user)
572
573 struct backing_dev_info;
574 struct reclaim_state;
575
576 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
577 struct sched_info {
578 /* cumulative counters */
579 unsigned long pcount; /* # of times run on this cpu */
580 unsigned long long cpu_time, /* time spent on the cpu */
581 run_delay; /* time spent waiting on a runqueue */
582
583 /* timestamps */
584 unsigned long long last_arrival,/* when we last ran on a cpu */
585 last_queued; /* when we were last queued to run */
586 #ifdef CONFIG_SCHEDSTATS
587 /* BKL stats */
588 unsigned int bkl_count;
589 #endif
590 };
591 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
592
593 #ifdef CONFIG_SCHEDSTATS
594 extern const struct file_operations proc_schedstat_operations;
595 #endif /* CONFIG_SCHEDSTATS */
596
597 #ifdef CONFIG_TASK_DELAY_ACCT
598 struct task_delay_info {
599 spinlock_t lock;
600 unsigned int flags; /* Private per-task flags */
601
602 /* For each stat XXX, add following, aligned appropriately
603 *
604 * struct timespec XXX_start, XXX_end;
605 * u64 XXX_delay;
606 * u32 XXX_count;
607 *
608 * Atomicity of updates to XXX_delay, XXX_count protected by
609 * single lock above (split into XXX_lock if contention is an issue).
610 */
611
612 /*
613 * XXX_count is incremented on every XXX operation, the delay
614 * associated with the operation is added to XXX_delay.
615 * XXX_delay contains the accumulated delay time in nanoseconds.
616 */
617 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
618 u64 blkio_delay; /* wait for sync block io completion */
619 u64 swapin_delay; /* wait for swapin block io completion */
620 u32 blkio_count; /* total count of the number of sync block */
621 /* io operations performed */
622 u32 swapin_count; /* total count of the number of swapin block */
623 /* io operations performed */
624 };
625 #endif /* CONFIG_TASK_DELAY_ACCT */
626
627 static inline int sched_info_on(void)
628 {
629 #ifdef CONFIG_SCHEDSTATS
630 return 1;
631 #elif defined(CONFIG_TASK_DELAY_ACCT)
632 extern int delayacct_on;
633 return delayacct_on;
634 #else
635 return 0;
636 #endif
637 }
638
639 enum cpu_idle_type {
640 CPU_IDLE,
641 CPU_NOT_IDLE,
642 CPU_NEWLY_IDLE,
643 CPU_MAX_IDLE_TYPES
644 };
645
646 /*
647 * sched-domains (multiprocessor balancing) declarations:
648 */
649
650 /*
651 * Increase resolution of nice-level calculations:
652 */
653 #define SCHED_LOAD_SHIFT 10
654 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
655
656 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
657
658 #ifdef CONFIG_SMP
659 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
660 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
661 #define SD_BALANCE_EXEC 4 /* Balance on exec */
662 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
663 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
664 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
665 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
666 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
667 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
668 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
669 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
670
671 #define BALANCE_FOR_MC_POWER \
672 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
673
674 #define BALANCE_FOR_PKG_POWER \
675 ((sched_mc_power_savings || sched_smt_power_savings) ? \
676 SD_POWERSAVINGS_BALANCE : 0)
677
678 #define test_sd_parent(sd, flag) ((sd->parent && \
679 (sd->parent->flags & flag)) ? 1 : 0)
680
681
682 struct sched_group {
683 struct sched_group *next; /* Must be a circular list */
684 cpumask_t cpumask;
685
686 /*
687 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
688 * single CPU. This is read only (except for setup, hotplug CPU).
689 * Note : Never change cpu_power without recompute its reciprocal
690 */
691 unsigned int __cpu_power;
692 /*
693 * reciprocal value of cpu_power to avoid expensive divides
694 * (see include/linux/reciprocal_div.h)
695 */
696 u32 reciprocal_cpu_power;
697 };
698
699 struct sched_domain {
700 /* These fields must be setup */
701 struct sched_domain *parent; /* top domain must be null terminated */
702 struct sched_domain *child; /* bottom domain must be null terminated */
703 struct sched_group *groups; /* the balancing groups of the domain */
704 cpumask_t span; /* span of all CPUs in this domain */
705 unsigned long min_interval; /* Minimum balance interval ms */
706 unsigned long max_interval; /* Maximum balance interval ms */
707 unsigned int busy_factor; /* less balancing by factor if busy */
708 unsigned int imbalance_pct; /* No balance until over watermark */
709 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
710 unsigned int busy_idx;
711 unsigned int idle_idx;
712 unsigned int newidle_idx;
713 unsigned int wake_idx;
714 unsigned int forkexec_idx;
715 int flags; /* See SD_* */
716
717 /* Runtime fields. */
718 unsigned long last_balance; /* init to jiffies. units in jiffies */
719 unsigned int balance_interval; /* initialise to 1. units in ms. */
720 unsigned int nr_balance_failed; /* initialise to 0 */
721
722 #ifdef CONFIG_SCHEDSTATS
723 /* load_balance() stats */
724 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
725 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
726 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
727 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
728 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
729 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
730 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
731 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
732
733 /* Active load balancing */
734 unsigned int alb_count;
735 unsigned int alb_failed;
736 unsigned int alb_pushed;
737
738 /* SD_BALANCE_EXEC stats */
739 unsigned int sbe_count;
740 unsigned int sbe_balanced;
741 unsigned int sbe_pushed;
742
743 /* SD_BALANCE_FORK stats */
744 unsigned int sbf_count;
745 unsigned int sbf_balanced;
746 unsigned int sbf_pushed;
747
748 /* try_to_wake_up() stats */
749 unsigned int ttwu_wake_remote;
750 unsigned int ttwu_move_affine;
751 unsigned int ttwu_move_balance;
752 #endif
753 };
754
755 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
756
757 #endif /* CONFIG_SMP */
758
759 /*
760 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
761 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
762 * task of nice 0 or enough lower priority tasks to bring up the
763 * weighted_cpuload
764 */
765 static inline int above_background_load(void)
766 {
767 unsigned long cpu;
768
769 for_each_online_cpu(cpu) {
770 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
771 return 1;
772 }
773 return 0;
774 }
775
776 struct io_context; /* See blkdev.h */
777 #define NGROUPS_SMALL 32
778 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
779 struct group_info {
780 int ngroups;
781 atomic_t usage;
782 gid_t small_block[NGROUPS_SMALL];
783 int nblocks;
784 gid_t *blocks[0];
785 };
786
787 /*
788 * get_group_info() must be called with the owning task locked (via task_lock())
789 * when task != current. The reason being that the vast majority of callers are
790 * looking at current->group_info, which can not be changed except by the
791 * current task. Changing current->group_info requires the task lock, too.
792 */
793 #define get_group_info(group_info) do { \
794 atomic_inc(&(group_info)->usage); \
795 } while (0)
796
797 #define put_group_info(group_info) do { \
798 if (atomic_dec_and_test(&(group_info)->usage)) \
799 groups_free(group_info); \
800 } while (0)
801
802 extern struct group_info *groups_alloc(int gidsetsize);
803 extern void groups_free(struct group_info *group_info);
804 extern int set_current_groups(struct group_info *group_info);
805 extern int groups_search(struct group_info *group_info, gid_t grp);
806 /* access the groups "array" with this macro */
807 #define GROUP_AT(gi, i) \
808 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
809
810 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
811 extern void prefetch_stack(struct task_struct *t);
812 #else
813 static inline void prefetch_stack(struct task_struct *t) { }
814 #endif
815
816 struct audit_context; /* See audit.c */
817 struct mempolicy;
818 struct pipe_inode_info;
819 struct uts_namespace;
820
821 struct rq;
822 struct sched_domain;
823
824 struct sched_class {
825 const struct sched_class *next;
826
827 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
828 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
829 void (*yield_task) (struct rq *rq);
830
831 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
832
833 struct task_struct * (*pick_next_task) (struct rq *rq);
834 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
835
836 #ifdef CONFIG_SMP
837 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
838 struct rq *busiest, unsigned long max_load_move,
839 struct sched_domain *sd, enum cpu_idle_type idle,
840 int *all_pinned, int *this_best_prio);
841
842 int (*move_one_task) (struct rq *this_rq, int this_cpu,
843 struct rq *busiest, struct sched_domain *sd,
844 enum cpu_idle_type idle);
845 #endif
846
847 void (*set_curr_task) (struct rq *rq);
848 void (*task_tick) (struct rq *rq, struct task_struct *p);
849 void (*task_new) (struct rq *rq, struct task_struct *p);
850 };
851
852 struct load_weight {
853 unsigned long weight, inv_weight;
854 };
855
856 /*
857 * CFS stats for a schedulable entity (task, task-group etc)
858 *
859 * Current field usage histogram:
860 *
861 * 4 se->block_start
862 * 4 se->run_node
863 * 4 se->sleep_start
864 * 6 se->load.weight
865 */
866 struct sched_entity {
867 struct load_weight load; /* for load-balancing */
868 struct rb_node run_node;
869 unsigned int on_rq;
870
871 u64 exec_start;
872 u64 sum_exec_runtime;
873 u64 vruntime;
874 u64 prev_sum_exec_runtime;
875
876 #ifdef CONFIG_SCHEDSTATS
877 u64 wait_start;
878 u64 wait_max;
879
880 u64 sleep_start;
881 u64 sleep_max;
882 s64 sum_sleep_runtime;
883
884 u64 block_start;
885 u64 block_max;
886 u64 exec_max;
887 u64 slice_max;
888
889 u64 nr_migrations;
890 u64 nr_migrations_cold;
891 u64 nr_failed_migrations_affine;
892 u64 nr_failed_migrations_running;
893 u64 nr_failed_migrations_hot;
894 u64 nr_forced_migrations;
895 u64 nr_forced2_migrations;
896
897 u64 nr_wakeups;
898 u64 nr_wakeups_sync;
899 u64 nr_wakeups_migrate;
900 u64 nr_wakeups_local;
901 u64 nr_wakeups_remote;
902 u64 nr_wakeups_affine;
903 u64 nr_wakeups_affine_attempts;
904 u64 nr_wakeups_passive;
905 u64 nr_wakeups_idle;
906 #endif
907
908 #ifdef CONFIG_FAIR_GROUP_SCHED
909 struct sched_entity *parent;
910 /* rq on which this entity is (to be) queued: */
911 struct cfs_rq *cfs_rq;
912 /* rq "owned" by this entity/group: */
913 struct cfs_rq *my_q;
914 #endif
915 };
916
917 struct task_struct {
918 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
919 void *stack;
920 atomic_t usage;
921 unsigned int flags; /* per process flags, defined below */
922 unsigned int ptrace;
923
924 int lock_depth; /* BKL lock depth */
925
926 #ifdef CONFIG_SMP
927 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
928 int oncpu;
929 #endif
930 #endif
931
932 int prio, static_prio, normal_prio;
933 struct list_head run_list;
934 const struct sched_class *sched_class;
935 struct sched_entity se;
936
937 #ifdef CONFIG_PREEMPT_NOTIFIERS
938 /* list of struct preempt_notifier: */
939 struct hlist_head preempt_notifiers;
940 #endif
941
942 unsigned short ioprio;
943 /*
944 * fpu_counter contains the number of consecutive context switches
945 * that the FPU is used. If this is over a threshold, the lazy fpu
946 * saving becomes unlazy to save the trap. This is an unsigned char
947 * so that after 256 times the counter wraps and the behavior turns
948 * lazy again; this to deal with bursty apps that only use FPU for
949 * a short time
950 */
951 unsigned char fpu_counter;
952 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
953 #ifdef CONFIG_BLK_DEV_IO_TRACE
954 unsigned int btrace_seq;
955 #endif
956
957 unsigned int policy;
958 cpumask_t cpus_allowed;
959 unsigned int time_slice;
960
961 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
962 struct sched_info sched_info;
963 #endif
964
965 struct list_head tasks;
966 /*
967 * ptrace_list/ptrace_children forms the list of my children
968 * that were stolen by a ptracer.
969 */
970 struct list_head ptrace_children;
971 struct list_head ptrace_list;
972
973 struct mm_struct *mm, *active_mm;
974
975 /* task state */
976 struct linux_binfmt *binfmt;
977 int exit_state;
978 int exit_code, exit_signal;
979 int pdeath_signal; /* The signal sent when the parent dies */
980 /* ??? */
981 unsigned int personality;
982 unsigned did_exec:1;
983 pid_t pid;
984 pid_t tgid;
985
986 #ifdef CONFIG_CC_STACKPROTECTOR
987 /* Canary value for the -fstack-protector gcc feature */
988 unsigned long stack_canary;
989 #endif
990 /*
991 * pointers to (original) parent process, youngest child, younger sibling,
992 * older sibling, respectively. (p->father can be replaced with
993 * p->parent->pid)
994 */
995 struct task_struct *real_parent; /* real parent process (when being debugged) */
996 struct task_struct *parent; /* parent process */
997 /*
998 * children/sibling forms the list of my children plus the
999 * tasks I'm ptracing.
1000 */
1001 struct list_head children; /* list of my children */
1002 struct list_head sibling; /* linkage in my parent's children list */
1003 struct task_struct *group_leader; /* threadgroup leader */
1004
1005 /* PID/PID hash table linkage. */
1006 struct pid_link pids[PIDTYPE_MAX];
1007 struct list_head thread_group;
1008
1009 struct completion *vfork_done; /* for vfork() */
1010 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1011 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1012
1013 unsigned int rt_priority;
1014 cputime_t utime, stime, utimescaled, stimescaled;
1015 cputime_t gtime;
1016 cputime_t prev_utime, prev_stime;
1017 unsigned long nvcsw, nivcsw; /* context switch counts */
1018 struct timespec start_time; /* monotonic time */
1019 struct timespec real_start_time; /* boot based time */
1020 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1021 unsigned long min_flt, maj_flt;
1022
1023 cputime_t it_prof_expires, it_virt_expires;
1024 unsigned long long it_sched_expires;
1025 struct list_head cpu_timers[3];
1026
1027 /* process credentials */
1028 uid_t uid,euid,suid,fsuid;
1029 gid_t gid,egid,sgid,fsgid;
1030 struct group_info *group_info;
1031 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1032 unsigned keep_capabilities:1;
1033 struct user_struct *user;
1034 #ifdef CONFIG_KEYS
1035 struct key *request_key_auth; /* assumed request_key authority */
1036 struct key *thread_keyring; /* keyring private to this thread */
1037 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1038 #endif
1039 char comm[TASK_COMM_LEN]; /* executable name excluding path
1040 - access with [gs]et_task_comm (which lock
1041 it with task_lock())
1042 - initialized normally by flush_old_exec */
1043 /* file system info */
1044 int link_count, total_link_count;
1045 #ifdef CONFIG_SYSVIPC
1046 /* ipc stuff */
1047 struct sysv_sem sysvsem;
1048 #endif
1049 /* CPU-specific state of this task */
1050 struct thread_struct thread;
1051 /* filesystem information */
1052 struct fs_struct *fs;
1053 /* open file information */
1054 struct files_struct *files;
1055 /* namespaces */
1056 struct nsproxy *nsproxy;
1057 /* signal handlers */
1058 struct signal_struct *signal;
1059 struct sighand_struct *sighand;
1060
1061 sigset_t blocked, real_blocked;
1062 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1063 struct sigpending pending;
1064
1065 unsigned long sas_ss_sp;
1066 size_t sas_ss_size;
1067 int (*notifier)(void *priv);
1068 void *notifier_data;
1069 sigset_t *notifier_mask;
1070 #ifdef CONFIG_SECURITY
1071 void *security;
1072 #endif
1073 struct audit_context *audit_context;
1074 seccomp_t seccomp;
1075
1076 /* Thread group tracking */
1077 u32 parent_exec_id;
1078 u32 self_exec_id;
1079 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1080 spinlock_t alloc_lock;
1081
1082 /* Protection of the PI data structures: */
1083 spinlock_t pi_lock;
1084
1085 #ifdef CONFIG_RT_MUTEXES
1086 /* PI waiters blocked on a rt_mutex held by this task */
1087 struct plist_head pi_waiters;
1088 /* Deadlock detection and priority inheritance handling */
1089 struct rt_mutex_waiter *pi_blocked_on;
1090 #endif
1091
1092 #ifdef CONFIG_DEBUG_MUTEXES
1093 /* mutex deadlock detection */
1094 struct mutex_waiter *blocked_on;
1095 #endif
1096 #ifdef CONFIG_TRACE_IRQFLAGS
1097 unsigned int irq_events;
1098 int hardirqs_enabled;
1099 unsigned long hardirq_enable_ip;
1100 unsigned int hardirq_enable_event;
1101 unsigned long hardirq_disable_ip;
1102 unsigned int hardirq_disable_event;
1103 int softirqs_enabled;
1104 unsigned long softirq_disable_ip;
1105 unsigned int softirq_disable_event;
1106 unsigned long softirq_enable_ip;
1107 unsigned int softirq_enable_event;
1108 int hardirq_context;
1109 int softirq_context;
1110 #endif
1111 #ifdef CONFIG_LOCKDEP
1112 # define MAX_LOCK_DEPTH 30UL
1113 u64 curr_chain_key;
1114 int lockdep_depth;
1115 struct held_lock held_locks[MAX_LOCK_DEPTH];
1116 unsigned int lockdep_recursion;
1117 #endif
1118
1119 /* journalling filesystem info */
1120 void *journal_info;
1121
1122 /* stacked block device info */
1123 struct bio *bio_list, **bio_tail;
1124
1125 /* VM state */
1126 struct reclaim_state *reclaim_state;
1127
1128 struct backing_dev_info *backing_dev_info;
1129
1130 struct io_context *io_context;
1131
1132 unsigned long ptrace_message;
1133 siginfo_t *last_siginfo; /* For ptrace use. */
1134 #ifdef CONFIG_TASK_XACCT
1135 /* i/o counters(bytes read/written, #syscalls */
1136 u64 rchar, wchar, syscr, syscw;
1137 #endif
1138 struct task_io_accounting ioac;
1139 #if defined(CONFIG_TASK_XACCT)
1140 u64 acct_rss_mem1; /* accumulated rss usage */
1141 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1142 cputime_t acct_stimexpd;/* stime since last update */
1143 #endif
1144 #ifdef CONFIG_NUMA
1145 struct mempolicy *mempolicy;
1146 short il_next;
1147 #endif
1148 #ifdef CONFIG_CPUSETS
1149 nodemask_t mems_allowed;
1150 int cpuset_mems_generation;
1151 int cpuset_mem_spread_rotor;
1152 #endif
1153 #ifdef CONFIG_CGROUPS
1154 /* Control Group info protected by css_set_lock */
1155 struct css_set *cgroups;
1156 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1157 struct list_head cg_list;
1158 #endif
1159 #ifdef CONFIG_FUTEX
1160 struct robust_list_head __user *robust_list;
1161 #ifdef CONFIG_COMPAT
1162 struct compat_robust_list_head __user *compat_robust_list;
1163 #endif
1164 struct list_head pi_state_list;
1165 struct futex_pi_state *pi_state_cache;
1166 #endif
1167 atomic_t fs_excl; /* holding fs exclusive resources */
1168 struct rcu_head rcu;
1169
1170 /*
1171 * cache last used pipe for splice
1172 */
1173 struct pipe_inode_info *splice_pipe;
1174 #ifdef CONFIG_TASK_DELAY_ACCT
1175 struct task_delay_info *delays;
1176 #endif
1177 #ifdef CONFIG_FAULT_INJECTION
1178 int make_it_fail;
1179 #endif
1180 struct prop_local_single dirties;
1181 };
1182
1183 /*
1184 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1185 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1186 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1187 * values are inverted: lower p->prio value means higher priority.
1188 *
1189 * The MAX_USER_RT_PRIO value allows the actual maximum
1190 * RT priority to be separate from the value exported to
1191 * user-space. This allows kernel threads to set their
1192 * priority to a value higher than any user task. Note:
1193 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1194 */
1195
1196 #define MAX_USER_RT_PRIO 100
1197 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1198
1199 #define MAX_PRIO (MAX_RT_PRIO + 40)
1200 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1201
1202 static inline int rt_prio(int prio)
1203 {
1204 if (unlikely(prio < MAX_RT_PRIO))
1205 return 1;
1206 return 0;
1207 }
1208
1209 static inline int rt_task(struct task_struct *p)
1210 {
1211 return rt_prio(p->prio);
1212 }
1213
1214 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1215 {
1216 tsk->signal->__session = session;
1217 }
1218
1219 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1220 {
1221 tsk->signal->__pgrp = pgrp;
1222 }
1223
1224 static inline struct pid *task_pid(struct task_struct *task)
1225 {
1226 return task->pids[PIDTYPE_PID].pid;
1227 }
1228
1229 static inline struct pid *task_tgid(struct task_struct *task)
1230 {
1231 return task->group_leader->pids[PIDTYPE_PID].pid;
1232 }
1233
1234 static inline struct pid *task_pgrp(struct task_struct *task)
1235 {
1236 return task->group_leader->pids[PIDTYPE_PGID].pid;
1237 }
1238
1239 static inline struct pid *task_session(struct task_struct *task)
1240 {
1241 return task->group_leader->pids[PIDTYPE_SID].pid;
1242 }
1243
1244 struct pid_namespace;
1245
1246 /*
1247 * the helpers to get the task's different pids as they are seen
1248 * from various namespaces
1249 *
1250 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1251 * task_xid_vnr() : virtual id, i.e. the id seen from the namespace the task
1252 * belongs to. this only makes sence when called in the
1253 * context of the task that belongs to the same namespace;
1254 * task_xid_nr_ns() : id seen from the ns specified;
1255 *
1256 * set_task_vxid() : assigns a virtual id to a task;
1257 *
1258 * see also pid_nr() etc in include/linux/pid.h
1259 */
1260
1261 static inline pid_t task_pid_nr(struct task_struct *tsk)
1262 {
1263 return tsk->pid;
1264 }
1265
1266 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1267
1268 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1269 {
1270 return pid_vnr(task_pid(tsk));
1271 }
1272
1273
1274 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1275 {
1276 return tsk->tgid;
1277 }
1278
1279 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1280
1281 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1282 {
1283 return pid_vnr(task_tgid(tsk));
1284 }
1285
1286
1287 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1288 {
1289 return tsk->signal->__pgrp;
1290 }
1291
1292 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1293
1294 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1295 {
1296 return pid_vnr(task_pgrp(tsk));
1297 }
1298
1299
1300 static inline pid_t task_session_nr(struct task_struct *tsk)
1301 {
1302 return tsk->signal->__session;
1303 }
1304
1305 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1306
1307 static inline pid_t task_session_vnr(struct task_struct *tsk)
1308 {
1309 return pid_vnr(task_session(tsk));
1310 }
1311
1312
1313 /**
1314 * pid_alive - check that a task structure is not stale
1315 * @p: Task structure to be checked.
1316 *
1317 * Test if a process is not yet dead (at most zombie state)
1318 * If pid_alive fails, then pointers within the task structure
1319 * can be stale and must not be dereferenced.
1320 */
1321 static inline int pid_alive(struct task_struct *p)
1322 {
1323 return p->pids[PIDTYPE_PID].pid != NULL;
1324 }
1325
1326 /**
1327 * is_global_init - check if a task structure is init
1328 * @tsk: Task structure to be checked.
1329 *
1330 * Check if a task structure is the first user space task the kernel created.
1331 */
1332 static inline int is_global_init(struct task_struct *tsk)
1333 {
1334 return tsk->pid == 1;
1335 }
1336
1337 /*
1338 * is_container_init:
1339 * check whether in the task is init in its own pid namespace.
1340 */
1341 extern int is_container_init(struct task_struct *tsk);
1342
1343 extern struct pid *cad_pid;
1344
1345 extern void free_task(struct task_struct *tsk);
1346 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1347
1348 extern void __put_task_struct(struct task_struct *t);
1349
1350 static inline void put_task_struct(struct task_struct *t)
1351 {
1352 if (atomic_dec_and_test(&t->usage))
1353 __put_task_struct(t);
1354 }
1355
1356 /*
1357 * Per process flags
1358 */
1359 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1360 /* Not implemented yet, only for 486*/
1361 #define PF_STARTING 0x00000002 /* being created */
1362 #define PF_EXITING 0x00000004 /* getting shut down */
1363 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1364 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1365 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1366 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1367 #define PF_DUMPCORE 0x00000200 /* dumped core */
1368 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1369 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1370 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1371 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1372 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1373 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1374 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1375 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1376 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1377 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1378 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1379 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1380 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1381 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1382 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1383 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1384 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1385 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1386
1387 /*
1388 * Only the _current_ task can read/write to tsk->flags, but other
1389 * tasks can access tsk->flags in readonly mode for example
1390 * with tsk_used_math (like during threaded core dumping).
1391 * There is however an exception to this rule during ptrace
1392 * or during fork: the ptracer task is allowed to write to the
1393 * child->flags of its traced child (same goes for fork, the parent
1394 * can write to the child->flags), because we're guaranteed the
1395 * child is not running and in turn not changing child->flags
1396 * at the same time the parent does it.
1397 */
1398 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1399 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1400 #define clear_used_math() clear_stopped_child_used_math(current)
1401 #define set_used_math() set_stopped_child_used_math(current)
1402 #define conditional_stopped_child_used_math(condition, child) \
1403 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1404 #define conditional_used_math(condition) \
1405 conditional_stopped_child_used_math(condition, current)
1406 #define copy_to_stopped_child_used_math(child) \
1407 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1408 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1409 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1410 #define used_math() tsk_used_math(current)
1411
1412 #ifdef CONFIG_SMP
1413 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1414 #else
1415 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1416 {
1417 if (!cpu_isset(0, new_mask))
1418 return -EINVAL;
1419 return 0;
1420 }
1421 #endif
1422
1423 extern unsigned long long sched_clock(void);
1424
1425 /*
1426 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1427 * clock constructed from sched_clock():
1428 */
1429 extern unsigned long long cpu_clock(int cpu);
1430
1431 extern unsigned long long
1432 task_sched_runtime(struct task_struct *task);
1433
1434 /* sched_exec is called by processes performing an exec */
1435 #ifdef CONFIG_SMP
1436 extern void sched_exec(void);
1437 #else
1438 #define sched_exec() {}
1439 #endif
1440
1441 extern void sched_clock_idle_sleep_event(void);
1442 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1443
1444 #ifdef CONFIG_HOTPLUG_CPU
1445 extern void idle_task_exit(void);
1446 #else
1447 static inline void idle_task_exit(void) {}
1448 #endif
1449
1450 extern void sched_idle_next(void);
1451
1452 #ifdef CONFIG_SCHED_DEBUG
1453 extern unsigned int sysctl_sched_latency;
1454 extern unsigned int sysctl_sched_min_granularity;
1455 extern unsigned int sysctl_sched_wakeup_granularity;
1456 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1457 extern unsigned int sysctl_sched_child_runs_first;
1458 extern unsigned int sysctl_sched_features;
1459 extern unsigned int sysctl_sched_migration_cost;
1460 extern unsigned int sysctl_sched_nr_migrate;
1461
1462 int sched_nr_latency_handler(struct ctl_table *table, int write,
1463 struct file *file, void __user *buffer, size_t *length,
1464 loff_t *ppos);
1465 #endif
1466
1467 extern unsigned int sysctl_sched_compat_yield;
1468
1469 #ifdef CONFIG_RT_MUTEXES
1470 extern int rt_mutex_getprio(struct task_struct *p);
1471 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1472 extern void rt_mutex_adjust_pi(struct task_struct *p);
1473 #else
1474 static inline int rt_mutex_getprio(struct task_struct *p)
1475 {
1476 return p->normal_prio;
1477 }
1478 # define rt_mutex_adjust_pi(p) do { } while (0)
1479 #endif
1480
1481 extern void set_user_nice(struct task_struct *p, long nice);
1482 extern int task_prio(const struct task_struct *p);
1483 extern int task_nice(const struct task_struct *p);
1484 extern int can_nice(const struct task_struct *p, const int nice);
1485 extern int task_curr(const struct task_struct *p);
1486 extern int idle_cpu(int cpu);
1487 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1488 extern struct task_struct *idle_task(int cpu);
1489 extern struct task_struct *curr_task(int cpu);
1490 extern void set_curr_task(int cpu, struct task_struct *p);
1491
1492 void yield(void);
1493
1494 /*
1495 * The default (Linux) execution domain.
1496 */
1497 extern struct exec_domain default_exec_domain;
1498
1499 union thread_union {
1500 struct thread_info thread_info;
1501 unsigned long stack[THREAD_SIZE/sizeof(long)];
1502 };
1503
1504 #ifndef __HAVE_ARCH_KSTACK_END
1505 static inline int kstack_end(void *addr)
1506 {
1507 /* Reliable end of stack detection:
1508 * Some APM bios versions misalign the stack
1509 */
1510 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1511 }
1512 #endif
1513
1514 extern union thread_union init_thread_union;
1515 extern struct task_struct init_task;
1516
1517 extern struct mm_struct init_mm;
1518
1519 extern struct pid_namespace init_pid_ns;
1520
1521 /*
1522 * find a task by one of its numerical ids
1523 *
1524 * find_task_by_pid_type_ns():
1525 * it is the most generic call - it finds a task by all id,
1526 * type and namespace specified
1527 * find_task_by_pid_ns():
1528 * finds a task by its pid in the specified namespace
1529 * find_task_by_vpid():
1530 * finds a task by its virtual pid
1531 * find_task_by_pid():
1532 * finds a task by its global pid
1533 *
1534 * see also find_pid() etc in include/linux/pid.h
1535 */
1536
1537 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1538 struct pid_namespace *ns);
1539
1540 extern struct task_struct *find_task_by_pid(pid_t nr);
1541 extern struct task_struct *find_task_by_vpid(pid_t nr);
1542 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1543 struct pid_namespace *ns);
1544
1545 extern void __set_special_pids(pid_t session, pid_t pgrp);
1546
1547 /* per-UID process charging. */
1548 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1549 static inline struct user_struct *get_uid(struct user_struct *u)
1550 {
1551 atomic_inc(&u->__count);
1552 return u;
1553 }
1554 extern void free_uid(struct user_struct *);
1555 extern void switch_uid(struct user_struct *);
1556 extern void release_uids(struct user_namespace *ns);
1557
1558 #include <asm/current.h>
1559
1560 extern void do_timer(unsigned long ticks);
1561
1562 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1563 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1564 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1565 unsigned long clone_flags));
1566 #ifdef CONFIG_SMP
1567 extern void kick_process(struct task_struct *tsk);
1568 #else
1569 static inline void kick_process(struct task_struct *tsk) { }
1570 #endif
1571 extern void sched_fork(struct task_struct *p, int clone_flags);
1572 extern void sched_dead(struct task_struct *p);
1573
1574 extern int in_group_p(gid_t);
1575 extern int in_egroup_p(gid_t);
1576
1577 extern void proc_caches_init(void);
1578 extern void flush_signals(struct task_struct *);
1579 extern void ignore_signals(struct task_struct *);
1580 extern void flush_signal_handlers(struct task_struct *, int force_default);
1581 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1582
1583 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1584 {
1585 unsigned long flags;
1586 int ret;
1587
1588 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1589 ret = dequeue_signal(tsk, mask, info);
1590 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1591
1592 return ret;
1593 }
1594
1595 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1596 sigset_t *mask);
1597 extern void unblock_all_signals(void);
1598 extern void release_task(struct task_struct * p);
1599 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1600 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1601 extern int force_sigsegv(int, struct task_struct *);
1602 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1603 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1604 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1605 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1606 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1607 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1608 extern int kill_pid(struct pid *pid, int sig, int priv);
1609 extern int kill_proc_info(int, struct siginfo *, pid_t);
1610 extern void do_notify_parent(struct task_struct *, int);
1611 extern void force_sig(int, struct task_struct *);
1612 extern void force_sig_specific(int, struct task_struct *);
1613 extern int send_sig(int, struct task_struct *, int);
1614 extern void zap_other_threads(struct task_struct *p);
1615 extern int kill_proc(pid_t, int, int);
1616 extern struct sigqueue *sigqueue_alloc(void);
1617 extern void sigqueue_free(struct sigqueue *);
1618 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1619 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1620 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1621 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1622
1623 static inline int kill_cad_pid(int sig, int priv)
1624 {
1625 return kill_pid(cad_pid, sig, priv);
1626 }
1627
1628 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1629 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1630 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1631 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1632
1633 static inline int is_si_special(const struct siginfo *info)
1634 {
1635 return info <= SEND_SIG_FORCED;
1636 }
1637
1638 /* True if we are on the alternate signal stack. */
1639
1640 static inline int on_sig_stack(unsigned long sp)
1641 {
1642 return (sp - current->sas_ss_sp < current->sas_ss_size);
1643 }
1644
1645 static inline int sas_ss_flags(unsigned long sp)
1646 {
1647 return (current->sas_ss_size == 0 ? SS_DISABLE
1648 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1649 }
1650
1651 /*
1652 * Routines for handling mm_structs
1653 */
1654 extern struct mm_struct * mm_alloc(void);
1655
1656 /* mmdrop drops the mm and the page tables */
1657 extern void FASTCALL(__mmdrop(struct mm_struct *));
1658 static inline void mmdrop(struct mm_struct * mm)
1659 {
1660 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1661 __mmdrop(mm);
1662 }
1663
1664 /* mmput gets rid of the mappings and all user-space */
1665 extern void mmput(struct mm_struct *);
1666 /* Grab a reference to a task's mm, if it is not already going away */
1667 extern struct mm_struct *get_task_mm(struct task_struct *task);
1668 /* Remove the current tasks stale references to the old mm_struct */
1669 extern void mm_release(struct task_struct *, struct mm_struct *);
1670
1671 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1672 extern void flush_thread(void);
1673 extern void exit_thread(void);
1674
1675 extern void exit_files(struct task_struct *);
1676 extern void __cleanup_signal(struct signal_struct *);
1677 extern void __cleanup_sighand(struct sighand_struct *);
1678 extern void exit_itimers(struct signal_struct *);
1679
1680 extern NORET_TYPE void do_group_exit(int);
1681
1682 extern void daemonize(const char *, ...);
1683 extern int allow_signal(int);
1684 extern int disallow_signal(int);
1685
1686 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1687 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1688 struct task_struct *fork_idle(int);
1689
1690 extern void set_task_comm(struct task_struct *tsk, char *from);
1691 extern void get_task_comm(char *to, struct task_struct *tsk);
1692
1693 #ifdef CONFIG_SMP
1694 extern void wait_task_inactive(struct task_struct * p);
1695 #else
1696 #define wait_task_inactive(p) do { } while (0)
1697 #endif
1698
1699 #define remove_parent(p) list_del_init(&(p)->sibling)
1700 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1701
1702 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1703
1704 #define for_each_process(p) \
1705 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1706
1707 /*
1708 * Careful: do_each_thread/while_each_thread is a double loop so
1709 * 'break' will not work as expected - use goto instead.
1710 */
1711 #define do_each_thread(g, t) \
1712 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1713
1714 #define while_each_thread(g, t) \
1715 while ((t = next_thread(t)) != g)
1716
1717 /* de_thread depends on thread_group_leader not being a pid based check */
1718 #define thread_group_leader(p) (p == p->group_leader)
1719
1720 /* Do to the insanities of de_thread it is possible for a process
1721 * to have the pid of the thread group leader without actually being
1722 * the thread group leader. For iteration through the pids in proc
1723 * all we care about is that we have a task with the appropriate
1724 * pid, we don't actually care if we have the right task.
1725 */
1726 static inline int has_group_leader_pid(struct task_struct *p)
1727 {
1728 return p->pid == p->tgid;
1729 }
1730
1731 static inline
1732 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1733 {
1734 return p1->tgid == p2->tgid;
1735 }
1736
1737 static inline struct task_struct *next_thread(const struct task_struct *p)
1738 {
1739 return list_entry(rcu_dereference(p->thread_group.next),
1740 struct task_struct, thread_group);
1741 }
1742
1743 static inline int thread_group_empty(struct task_struct *p)
1744 {
1745 return list_empty(&p->thread_group);
1746 }
1747
1748 #define delay_group_leader(p) \
1749 (thread_group_leader(p) && !thread_group_empty(p))
1750
1751 /*
1752 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1753 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1754 * pins the final release of task.io_context. Also protects ->cpuset and
1755 * ->cgroup.subsys[].
1756 *
1757 * Nests both inside and outside of read_lock(&tasklist_lock).
1758 * It must not be nested with write_lock_irq(&tasklist_lock),
1759 * neither inside nor outside.
1760 */
1761 static inline void task_lock(struct task_struct *p)
1762 {
1763 spin_lock(&p->alloc_lock);
1764 }
1765
1766 static inline void task_unlock(struct task_struct *p)
1767 {
1768 spin_unlock(&p->alloc_lock);
1769 }
1770
1771 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1772 unsigned long *flags);
1773
1774 static inline void unlock_task_sighand(struct task_struct *tsk,
1775 unsigned long *flags)
1776 {
1777 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1778 }
1779
1780 #ifndef __HAVE_THREAD_FUNCTIONS
1781
1782 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1783 #define task_stack_page(task) ((task)->stack)
1784
1785 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1786 {
1787 *task_thread_info(p) = *task_thread_info(org);
1788 task_thread_info(p)->task = p;
1789 }
1790
1791 static inline unsigned long *end_of_stack(struct task_struct *p)
1792 {
1793 return (unsigned long *)(task_thread_info(p) + 1);
1794 }
1795
1796 #endif
1797
1798 /* set thread flags in other task's structures
1799 * - see asm/thread_info.h for TIF_xxxx flags available
1800 */
1801 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1802 {
1803 set_ti_thread_flag(task_thread_info(tsk), flag);
1804 }
1805
1806 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1807 {
1808 clear_ti_thread_flag(task_thread_info(tsk), flag);
1809 }
1810
1811 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1812 {
1813 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1814 }
1815
1816 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1817 {
1818 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1819 }
1820
1821 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1822 {
1823 return test_ti_thread_flag(task_thread_info(tsk), flag);
1824 }
1825
1826 static inline void set_tsk_need_resched(struct task_struct *tsk)
1827 {
1828 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1829 }
1830
1831 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1832 {
1833 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1834 }
1835
1836 static inline int signal_pending(struct task_struct *p)
1837 {
1838 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1839 }
1840
1841 static inline int need_resched(void)
1842 {
1843 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1844 }
1845
1846 /*
1847 * cond_resched() and cond_resched_lock(): latency reduction via
1848 * explicit rescheduling in places that are safe. The return
1849 * value indicates whether a reschedule was done in fact.
1850 * cond_resched_lock() will drop the spinlock before scheduling,
1851 * cond_resched_softirq() will enable bhs before scheduling.
1852 */
1853 extern int cond_resched(void);
1854 extern int cond_resched_lock(spinlock_t * lock);
1855 extern int cond_resched_softirq(void);
1856
1857 /*
1858 * Does a critical section need to be broken due to another
1859 * task waiting?:
1860 */
1861 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1862 # define need_lockbreak(lock) ((lock)->break_lock)
1863 #else
1864 # define need_lockbreak(lock) 0
1865 #endif
1866
1867 /*
1868 * Does a critical section need to be broken due to another
1869 * task waiting or preemption being signalled:
1870 */
1871 static inline int lock_need_resched(spinlock_t *lock)
1872 {
1873 if (need_lockbreak(lock) || need_resched())
1874 return 1;
1875 return 0;
1876 }
1877
1878 /*
1879 * Reevaluate whether the task has signals pending delivery.
1880 * Wake the task if so.
1881 * This is required every time the blocked sigset_t changes.
1882 * callers must hold sighand->siglock.
1883 */
1884 extern void recalc_sigpending_and_wake(struct task_struct *t);
1885 extern void recalc_sigpending(void);
1886
1887 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1888
1889 /*
1890 * Wrappers for p->thread_info->cpu access. No-op on UP.
1891 */
1892 #ifdef CONFIG_SMP
1893
1894 static inline unsigned int task_cpu(const struct task_struct *p)
1895 {
1896 return task_thread_info(p)->cpu;
1897 }
1898
1899 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1900
1901 #else
1902
1903 static inline unsigned int task_cpu(const struct task_struct *p)
1904 {
1905 return 0;
1906 }
1907
1908 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1909 {
1910 }
1911
1912 #endif /* CONFIG_SMP */
1913
1914 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1915 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1916 #else
1917 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1918 {
1919 mm->mmap_base = TASK_UNMAPPED_BASE;
1920 mm->get_unmapped_area = arch_get_unmapped_area;
1921 mm->unmap_area = arch_unmap_area;
1922 }
1923 #endif
1924
1925 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1926 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1927
1928 extern int sched_mc_power_savings, sched_smt_power_savings;
1929
1930 extern void normalize_rt_tasks(void);
1931
1932 #ifdef CONFIG_FAIR_GROUP_SCHED
1933
1934 extern struct task_group init_task_group;
1935
1936 extern struct task_group *sched_create_group(void);
1937 extern void sched_destroy_group(struct task_group *tg);
1938 extern void sched_move_task(struct task_struct *tsk);
1939 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1940 extern unsigned long sched_group_shares(struct task_group *tg);
1941
1942 #endif
1943
1944 #ifdef CONFIG_TASK_XACCT
1945 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1946 {
1947 tsk->rchar += amt;
1948 }
1949
1950 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1951 {
1952 tsk->wchar += amt;
1953 }
1954
1955 static inline void inc_syscr(struct task_struct *tsk)
1956 {
1957 tsk->syscr++;
1958 }
1959
1960 static inline void inc_syscw(struct task_struct *tsk)
1961 {
1962 tsk->syscw++;
1963 }
1964 #else
1965 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1966 {
1967 }
1968
1969 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1970 {
1971 }
1972
1973 static inline void inc_syscr(struct task_struct *tsk)
1974 {
1975 }
1976
1977 static inline void inc_syscw(struct task_struct *tsk)
1978 {
1979 }
1980 #endif
1981
1982 #ifdef CONFIG_SMP
1983 void migration_init(void);
1984 #else
1985 static inline void migration_init(void)
1986 {
1987 }
1988 #endif
1989
1990 #endif /* __KERNEL__ */
1991
1992 #endif