]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/sched.h
sched, cpuset: customize sched domains, core
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/semaphore.h>
65 #include <asm/page.h>
66 #include <asm/ptrace.h>
67 #include <asm/cputime.h>
68
69 #include <linux/smp.h>
70 #include <linux/sem.h>
71 #include <linux/signal.h>
72 #include <linux/securebits.h>
73 #include <linux/fs_struct.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91 #include <linux/latencytop.h>
92
93 #include <asm/processor.h>
94
95 struct mem_cgroup;
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139 extern unsigned long weighted_cpuload(const int cpu);
140
141 struct seq_file;
142 struct cfs_rq;
143 struct task_group;
144 #ifdef CONFIG_SCHED_DEBUG
145 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
146 extern void proc_sched_set_task(struct task_struct *p);
147 extern void
148 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
149 #else
150 static inline void
151 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152 {
153 }
154 static inline void proc_sched_set_task(struct task_struct *p)
155 {
156 }
157 static inline void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159 {
160 }
161 #endif
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern cpumask_t nohz_cpu_mask;
250 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
251 extern int select_nohz_load_balancer(int cpu);
252 #else
253 static inline int select_nohz_load_balancer(int cpu)
254 {
255 return 0;
256 }
257 #endif
258
259 extern unsigned long rt_needs_cpu(int cpu);
260
261 /*
262 * Only dump TASK_* tasks. (0 for all tasks)
263 */
264 extern void show_state_filter(unsigned long state_filter);
265
266 static inline void show_state(void)
267 {
268 show_state_filter(0);
269 }
270
271 extern void show_regs(struct pt_regs *);
272
273 /*
274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
275 * task), SP is the stack pointer of the first frame that should be shown in the back
276 * trace (or NULL if the entire call-chain of the task should be shown).
277 */
278 extern void show_stack(struct task_struct *task, unsigned long *sp);
279
280 void io_schedule(void);
281 long io_schedule_timeout(long timeout);
282
283 extern void cpu_init (void);
284 extern void trap_init(void);
285 extern void account_process_tick(struct task_struct *task, int user);
286 extern void update_process_times(int user);
287 extern void scheduler_tick(void);
288 extern void hrtick_resched(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void spawn_softlockup_task(void);
295 extern void touch_softlockup_watchdog(void);
296 extern void touch_all_softlockup_watchdogs(void);
297 extern unsigned long softlockup_thresh;
298 extern unsigned long sysctl_hung_task_check_count;
299 extern unsigned long sysctl_hung_task_timeout_secs;
300 extern unsigned long sysctl_hung_task_warnings;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT 65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
354 /*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
365 /*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
376
377 #define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383 } while (0)
384 #define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387 } while (0)
388
389 extern void set_dumpable(struct mm_struct *mm, int value);
390 extern int get_dumpable(struct mm_struct *mm);
391
392 /* mm flags */
393 /* dumpable bits */
394 #define MMF_DUMPABLE 0 /* core dump is permitted */
395 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396 #define MMF_DUMPABLE_BITS 2
397
398 /* coredump filter bits */
399 #define MMF_DUMP_ANON_PRIVATE 2
400 #define MMF_DUMP_ANON_SHARED 3
401 #define MMF_DUMP_MAPPED_PRIVATE 4
402 #define MMF_DUMP_MAPPED_SHARED 5
403 #define MMF_DUMP_ELF_HEADERS 6
404 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
405 #define MMF_DUMP_FILTER_BITS 5
406 #define MMF_DUMP_FILTER_MASK \
407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
408 #define MMF_DUMP_FILTER_DEFAULT \
409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
410
411 struct sighand_struct {
412 atomic_t count;
413 struct k_sigaction action[_NSIG];
414 spinlock_t siglock;
415 wait_queue_head_t signalfd_wqh;
416 };
417
418 struct pacct_struct {
419 int ac_flag;
420 long ac_exitcode;
421 unsigned long ac_mem;
422 cputime_t ac_utime, ac_stime;
423 unsigned long ac_minflt, ac_majflt;
424 };
425
426 /*
427 * NOTE! "signal_struct" does not have it's own
428 * locking, because a shared signal_struct always
429 * implies a shared sighand_struct, so locking
430 * sighand_struct is always a proper superset of
431 * the locking of signal_struct.
432 */
433 struct signal_struct {
434 atomic_t count;
435 atomic_t live;
436
437 wait_queue_head_t wait_chldexit; /* for wait4() */
438
439 /* current thread group signal load-balancing target: */
440 struct task_struct *curr_target;
441
442 /* shared signal handling: */
443 struct sigpending shared_pending;
444
445 /* thread group exit support */
446 int group_exit_code;
447 /* overloaded:
448 * - notify group_exit_task when ->count is equal to notify_count
449 * - everyone except group_exit_task is stopped during signal delivery
450 * of fatal signals, group_exit_task processes the signal.
451 */
452 struct task_struct *group_exit_task;
453 int notify_count;
454
455 /* thread group stop support, overloads group_exit_code too */
456 int group_stop_count;
457 unsigned int flags; /* see SIGNAL_* flags below */
458
459 /* POSIX.1b Interval Timers */
460 struct list_head posix_timers;
461
462 /* ITIMER_REAL timer for the process */
463 struct hrtimer real_timer;
464 struct pid *leader_pid;
465 ktime_t it_real_incr;
466
467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
468 cputime_t it_prof_expires, it_virt_expires;
469 cputime_t it_prof_incr, it_virt_incr;
470
471 /* job control IDs */
472
473 /*
474 * pgrp and session fields are deprecated.
475 * use the task_session_Xnr and task_pgrp_Xnr routines below
476 */
477
478 union {
479 pid_t pgrp __deprecated;
480 pid_t __pgrp;
481 };
482
483 struct pid *tty_old_pgrp;
484
485 union {
486 pid_t session __deprecated;
487 pid_t __session;
488 };
489
490 /* boolean value for session group leader */
491 int leader;
492
493 struct tty_struct *tty; /* NULL if no tty */
494
495 /*
496 * Cumulative resource counters for dead threads in the group,
497 * and for reaped dead child processes forked by this group.
498 * Live threads maintain their own counters and add to these
499 * in __exit_signal, except for the group leader.
500 */
501 cputime_t utime, stime, cutime, cstime;
502 cputime_t gtime;
503 cputime_t cgtime;
504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
506 unsigned long inblock, oublock, cinblock, coublock;
507
508 /*
509 * Cumulative ns of scheduled CPU time for dead threads in the
510 * group, not including a zombie group leader. (This only differs
511 * from jiffies_to_ns(utime + stime) if sched_clock uses something
512 * other than jiffies.)
513 */
514 unsigned long long sum_sched_runtime;
515
516 /*
517 * We don't bother to synchronize most readers of this at all,
518 * because there is no reader checking a limit that actually needs
519 * to get both rlim_cur and rlim_max atomically, and either one
520 * alone is a single word that can safely be read normally.
521 * getrlimit/setrlimit use task_lock(current->group_leader) to
522 * protect this instead of the siglock, because they really
523 * have no need to disable irqs.
524 */
525 struct rlimit rlim[RLIM_NLIMITS];
526
527 struct list_head cpu_timers[3];
528
529 /* keep the process-shared keyrings here so that they do the right
530 * thing in threads created with CLONE_THREAD */
531 #ifdef CONFIG_KEYS
532 struct key *session_keyring; /* keyring inherited over fork */
533 struct key *process_keyring; /* keyring private to this process */
534 #endif
535 #ifdef CONFIG_BSD_PROCESS_ACCT
536 struct pacct_struct pacct; /* per-process accounting information */
537 #endif
538 #ifdef CONFIG_TASKSTATS
539 struct taskstats *stats;
540 #endif
541 #ifdef CONFIG_AUDIT
542 unsigned audit_tty;
543 struct tty_audit_buf *tty_audit_buf;
544 #endif
545 };
546
547 /* Context switch must be unlocked if interrupts are to be enabled */
548 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549 # define __ARCH_WANT_UNLOCKED_CTXSW
550 #endif
551
552 /*
553 * Bits in flags field of signal_struct.
554 */
555 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
556 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
557 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
558 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
559
560 /* If true, all threads except ->group_exit_task have pending SIGKILL */
561 static inline int signal_group_exit(const struct signal_struct *sig)
562 {
563 return (sig->flags & SIGNAL_GROUP_EXIT) ||
564 (sig->group_exit_task != NULL);
565 }
566
567 /*
568 * Some day this will be a full-fledged user tracking system..
569 */
570 struct user_struct {
571 atomic_t __count; /* reference count */
572 atomic_t processes; /* How many processes does this user have? */
573 atomic_t files; /* How many open files does this user have? */
574 atomic_t sigpending; /* How many pending signals does this user have? */
575 #ifdef CONFIG_INOTIFY_USER
576 atomic_t inotify_watches; /* How many inotify watches does this user have? */
577 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
578 #endif
579 #ifdef CONFIG_POSIX_MQUEUE
580 /* protected by mq_lock */
581 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
582 #endif
583 unsigned long locked_shm; /* How many pages of mlocked shm ? */
584
585 #ifdef CONFIG_KEYS
586 struct key *uid_keyring; /* UID specific keyring */
587 struct key *session_keyring; /* UID's default session keyring */
588 #endif
589
590 /* Hash table maintenance information */
591 struct hlist_node uidhash_node;
592 uid_t uid;
593
594 #ifdef CONFIG_USER_SCHED
595 struct task_group *tg;
596 #ifdef CONFIG_SYSFS
597 struct kobject kobj;
598 struct work_struct work;
599 #endif
600 #endif
601 };
602
603 extern int uids_sysfs_init(void);
604
605 extern struct user_struct *find_user(uid_t);
606
607 extern struct user_struct root_user;
608 #define INIT_USER (&root_user)
609
610 struct backing_dev_info;
611 struct reclaim_state;
612
613 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
614 struct sched_info {
615 /* cumulative counters */
616 unsigned long pcount; /* # of times run on this cpu */
617 unsigned long long cpu_time, /* time spent on the cpu */
618 run_delay; /* time spent waiting on a runqueue */
619
620 /* timestamps */
621 unsigned long long last_arrival,/* when we last ran on a cpu */
622 last_queued; /* when we were last queued to run */
623 #ifdef CONFIG_SCHEDSTATS
624 /* BKL stats */
625 unsigned int bkl_count;
626 #endif
627 };
628 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
629
630 #ifdef CONFIG_SCHEDSTATS
631 extern const struct file_operations proc_schedstat_operations;
632 #endif /* CONFIG_SCHEDSTATS */
633
634 #ifdef CONFIG_TASK_DELAY_ACCT
635 struct task_delay_info {
636 spinlock_t lock;
637 unsigned int flags; /* Private per-task flags */
638
639 /* For each stat XXX, add following, aligned appropriately
640 *
641 * struct timespec XXX_start, XXX_end;
642 * u64 XXX_delay;
643 * u32 XXX_count;
644 *
645 * Atomicity of updates to XXX_delay, XXX_count protected by
646 * single lock above (split into XXX_lock if contention is an issue).
647 */
648
649 /*
650 * XXX_count is incremented on every XXX operation, the delay
651 * associated with the operation is added to XXX_delay.
652 * XXX_delay contains the accumulated delay time in nanoseconds.
653 */
654 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
655 u64 blkio_delay; /* wait for sync block io completion */
656 u64 swapin_delay; /* wait for swapin block io completion */
657 u32 blkio_count; /* total count of the number of sync block */
658 /* io operations performed */
659 u32 swapin_count; /* total count of the number of swapin block */
660 /* io operations performed */
661 };
662 #endif /* CONFIG_TASK_DELAY_ACCT */
663
664 static inline int sched_info_on(void)
665 {
666 #ifdef CONFIG_SCHEDSTATS
667 return 1;
668 #elif defined(CONFIG_TASK_DELAY_ACCT)
669 extern int delayacct_on;
670 return delayacct_on;
671 #else
672 return 0;
673 #endif
674 }
675
676 enum cpu_idle_type {
677 CPU_IDLE,
678 CPU_NOT_IDLE,
679 CPU_NEWLY_IDLE,
680 CPU_MAX_IDLE_TYPES
681 };
682
683 /*
684 * sched-domains (multiprocessor balancing) declarations:
685 */
686
687 /*
688 * Increase resolution of nice-level calculations:
689 */
690 #define SCHED_LOAD_SHIFT 10
691 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
692
693 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
694
695 #ifdef CONFIG_SMP
696 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
697 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
698 #define SD_BALANCE_EXEC 4 /* Balance on exec */
699 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
700 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
701 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
702 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
703 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
704 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
705 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
706 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
707 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
708
709 #define BALANCE_FOR_MC_POWER \
710 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
711
712 #define BALANCE_FOR_PKG_POWER \
713 ((sched_mc_power_savings || sched_smt_power_savings) ? \
714 SD_POWERSAVINGS_BALANCE : 0)
715
716 #define test_sd_parent(sd, flag) ((sd->parent && \
717 (sd->parent->flags & flag)) ? 1 : 0)
718
719
720 struct sched_group {
721 struct sched_group *next; /* Must be a circular list */
722 cpumask_t cpumask;
723
724 /*
725 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
726 * single CPU. This is read only (except for setup, hotplug CPU).
727 * Note : Never change cpu_power without recompute its reciprocal
728 */
729 unsigned int __cpu_power;
730 /*
731 * reciprocal value of cpu_power to avoid expensive divides
732 * (see include/linux/reciprocal_div.h)
733 */
734 u32 reciprocal_cpu_power;
735 };
736
737 enum sched_domain_level {
738 SD_LV_NONE = 0,
739 SD_LV_SIBLING,
740 SD_LV_MC,
741 SD_LV_CPU,
742 SD_LV_NODE,
743 SD_LV_ALLNODES,
744 SD_LV_MAX
745 };
746
747 struct sched_domain_attr {
748 int relax_domain_level;
749 };
750
751 #define SD_ATTR_INIT (struct sched_domain_attr) { \
752 .relax_domain_level = -1, \
753 }
754
755 struct sched_domain {
756 /* These fields must be setup */
757 struct sched_domain *parent; /* top domain must be null terminated */
758 struct sched_domain *child; /* bottom domain must be null terminated */
759 struct sched_group *groups; /* the balancing groups of the domain */
760 cpumask_t span; /* span of all CPUs in this domain */
761 unsigned long min_interval; /* Minimum balance interval ms */
762 unsigned long max_interval; /* Maximum balance interval ms */
763 unsigned int busy_factor; /* less balancing by factor if busy */
764 unsigned int imbalance_pct; /* No balance until over watermark */
765 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
766 unsigned int busy_idx;
767 unsigned int idle_idx;
768 unsigned int newidle_idx;
769 unsigned int wake_idx;
770 unsigned int forkexec_idx;
771 int flags; /* See SD_* */
772 enum sched_domain_level level;
773
774 /* Runtime fields. */
775 unsigned long last_balance; /* init to jiffies. units in jiffies */
776 unsigned int balance_interval; /* initialise to 1. units in ms. */
777 unsigned int nr_balance_failed; /* initialise to 0 */
778
779 #ifdef CONFIG_SCHEDSTATS
780 /* load_balance() stats */
781 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
782 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
783 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
784 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
785 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
786 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
787 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
788 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
789
790 /* Active load balancing */
791 unsigned int alb_count;
792 unsigned int alb_failed;
793 unsigned int alb_pushed;
794
795 /* SD_BALANCE_EXEC stats */
796 unsigned int sbe_count;
797 unsigned int sbe_balanced;
798 unsigned int sbe_pushed;
799
800 /* SD_BALANCE_FORK stats */
801 unsigned int sbf_count;
802 unsigned int sbf_balanced;
803 unsigned int sbf_pushed;
804
805 /* try_to_wake_up() stats */
806 unsigned int ttwu_wake_remote;
807 unsigned int ttwu_move_affine;
808 unsigned int ttwu_move_balance;
809 #endif
810 };
811
812 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
813 struct sched_domain_attr *dattr_new);
814 extern int arch_reinit_sched_domains(void);
815
816 #endif /* CONFIG_SMP */
817
818 /*
819 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
820 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
821 * task of nice 0 or enough lower priority tasks to bring up the
822 * weighted_cpuload
823 */
824 static inline int above_background_load(void)
825 {
826 unsigned long cpu;
827
828 for_each_online_cpu(cpu) {
829 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
830 return 1;
831 }
832 return 0;
833 }
834
835 struct io_context; /* See blkdev.h */
836 #define NGROUPS_SMALL 32
837 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
838 struct group_info {
839 int ngroups;
840 atomic_t usage;
841 gid_t small_block[NGROUPS_SMALL];
842 int nblocks;
843 gid_t *blocks[0];
844 };
845
846 /*
847 * get_group_info() must be called with the owning task locked (via task_lock())
848 * when task != current. The reason being that the vast majority of callers are
849 * looking at current->group_info, which can not be changed except by the
850 * current task. Changing current->group_info requires the task lock, too.
851 */
852 #define get_group_info(group_info) do { \
853 atomic_inc(&(group_info)->usage); \
854 } while (0)
855
856 #define put_group_info(group_info) do { \
857 if (atomic_dec_and_test(&(group_info)->usage)) \
858 groups_free(group_info); \
859 } while (0)
860
861 extern struct group_info *groups_alloc(int gidsetsize);
862 extern void groups_free(struct group_info *group_info);
863 extern int set_current_groups(struct group_info *group_info);
864 extern int groups_search(struct group_info *group_info, gid_t grp);
865 /* access the groups "array" with this macro */
866 #define GROUP_AT(gi, i) \
867 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
868
869 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
870 extern void prefetch_stack(struct task_struct *t);
871 #else
872 static inline void prefetch_stack(struct task_struct *t) { }
873 #endif
874
875 struct audit_context; /* See audit.c */
876 struct mempolicy;
877 struct pipe_inode_info;
878 struct uts_namespace;
879
880 struct rq;
881 struct sched_domain;
882
883 struct sched_class {
884 const struct sched_class *next;
885
886 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
887 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
888 void (*yield_task) (struct rq *rq);
889 int (*select_task_rq)(struct task_struct *p, int sync);
890
891 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
892
893 struct task_struct * (*pick_next_task) (struct rq *rq);
894 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
895
896 #ifdef CONFIG_SMP
897 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
898 struct rq *busiest, unsigned long max_load_move,
899 struct sched_domain *sd, enum cpu_idle_type idle,
900 int *all_pinned, int *this_best_prio);
901
902 int (*move_one_task) (struct rq *this_rq, int this_cpu,
903 struct rq *busiest, struct sched_domain *sd,
904 enum cpu_idle_type idle);
905 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
906 void (*post_schedule) (struct rq *this_rq);
907 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
908 #endif
909
910 void (*set_curr_task) (struct rq *rq);
911 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
912 void (*task_new) (struct rq *rq, struct task_struct *p);
913 void (*set_cpus_allowed)(struct task_struct *p,
914 const cpumask_t *newmask);
915
916 void (*join_domain)(struct rq *rq);
917 void (*leave_domain)(struct rq *rq);
918
919 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
920 int running);
921 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
922 int running);
923 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
924 int oldprio, int running);
925
926 #ifdef CONFIG_FAIR_GROUP_SCHED
927 void (*moved_group) (struct task_struct *p);
928 #endif
929 };
930
931 struct load_weight {
932 unsigned long weight, inv_weight;
933 };
934
935 /*
936 * CFS stats for a schedulable entity (task, task-group etc)
937 *
938 * Current field usage histogram:
939 *
940 * 4 se->block_start
941 * 4 se->run_node
942 * 4 se->sleep_start
943 * 6 se->load.weight
944 */
945 struct sched_entity {
946 struct load_weight load; /* for load-balancing */
947 struct rb_node run_node;
948 unsigned int on_rq;
949
950 u64 exec_start;
951 u64 sum_exec_runtime;
952 u64 vruntime;
953 u64 prev_sum_exec_runtime;
954
955 u64 last_wakeup;
956 u64 avg_overlap;
957
958 #ifdef CONFIG_SCHEDSTATS
959 u64 wait_start;
960 u64 wait_max;
961 u64 wait_count;
962 u64 wait_sum;
963
964 u64 sleep_start;
965 u64 sleep_max;
966 s64 sum_sleep_runtime;
967
968 u64 block_start;
969 u64 block_max;
970 u64 exec_max;
971 u64 slice_max;
972
973 u64 nr_migrations;
974 u64 nr_migrations_cold;
975 u64 nr_failed_migrations_affine;
976 u64 nr_failed_migrations_running;
977 u64 nr_failed_migrations_hot;
978 u64 nr_forced_migrations;
979 u64 nr_forced2_migrations;
980
981 u64 nr_wakeups;
982 u64 nr_wakeups_sync;
983 u64 nr_wakeups_migrate;
984 u64 nr_wakeups_local;
985 u64 nr_wakeups_remote;
986 u64 nr_wakeups_affine;
987 u64 nr_wakeups_affine_attempts;
988 u64 nr_wakeups_passive;
989 u64 nr_wakeups_idle;
990 #endif
991
992 #ifdef CONFIG_FAIR_GROUP_SCHED
993 struct sched_entity *parent;
994 /* rq on which this entity is (to be) queued: */
995 struct cfs_rq *cfs_rq;
996 /* rq "owned" by this entity/group: */
997 struct cfs_rq *my_q;
998 #endif
999 };
1000
1001 struct sched_rt_entity {
1002 struct list_head run_list;
1003 unsigned int time_slice;
1004 unsigned long timeout;
1005 int nr_cpus_allowed;
1006
1007 #ifdef CONFIG_RT_GROUP_SCHED
1008 struct sched_rt_entity *parent;
1009 /* rq on which this entity is (to be) queued: */
1010 struct rt_rq *rt_rq;
1011 /* rq "owned" by this entity/group: */
1012 struct rt_rq *my_q;
1013 #endif
1014 };
1015
1016 struct task_struct {
1017 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1018 void *stack;
1019 atomic_t usage;
1020 unsigned int flags; /* per process flags, defined below */
1021 unsigned int ptrace;
1022
1023 int lock_depth; /* BKL lock depth */
1024
1025 #ifdef CONFIG_SMP
1026 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1027 int oncpu;
1028 #endif
1029 #endif
1030
1031 int prio, static_prio, normal_prio;
1032 const struct sched_class *sched_class;
1033 struct sched_entity se;
1034 struct sched_rt_entity rt;
1035
1036 #ifdef CONFIG_PREEMPT_NOTIFIERS
1037 /* list of struct preempt_notifier: */
1038 struct hlist_head preempt_notifiers;
1039 #endif
1040
1041 /*
1042 * fpu_counter contains the number of consecutive context switches
1043 * that the FPU is used. If this is over a threshold, the lazy fpu
1044 * saving becomes unlazy to save the trap. This is an unsigned char
1045 * so that after 256 times the counter wraps and the behavior turns
1046 * lazy again; this to deal with bursty apps that only use FPU for
1047 * a short time
1048 */
1049 unsigned char fpu_counter;
1050 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1051 #ifdef CONFIG_BLK_DEV_IO_TRACE
1052 unsigned int btrace_seq;
1053 #endif
1054
1055 unsigned int policy;
1056 cpumask_t cpus_allowed;
1057
1058 #ifdef CONFIG_PREEMPT_RCU
1059 int rcu_read_lock_nesting;
1060 int rcu_flipctr_idx;
1061 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1062
1063 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1064 struct sched_info sched_info;
1065 #endif
1066
1067 struct list_head tasks;
1068 /*
1069 * ptrace_list/ptrace_children forms the list of my children
1070 * that were stolen by a ptracer.
1071 */
1072 struct list_head ptrace_children;
1073 struct list_head ptrace_list;
1074
1075 struct mm_struct *mm, *active_mm;
1076
1077 /* task state */
1078 struct linux_binfmt *binfmt;
1079 int exit_state;
1080 int exit_code, exit_signal;
1081 int pdeath_signal; /* The signal sent when the parent dies */
1082 /* ??? */
1083 unsigned int personality;
1084 unsigned did_exec:1;
1085 pid_t pid;
1086 pid_t tgid;
1087
1088 #ifdef CONFIG_CC_STACKPROTECTOR
1089 /* Canary value for the -fstack-protector gcc feature */
1090 unsigned long stack_canary;
1091 #endif
1092 /*
1093 * pointers to (original) parent process, youngest child, younger sibling,
1094 * older sibling, respectively. (p->father can be replaced with
1095 * p->parent->pid)
1096 */
1097 struct task_struct *real_parent; /* real parent process (when being debugged) */
1098 struct task_struct *parent; /* parent process */
1099 /*
1100 * children/sibling forms the list of my children plus the
1101 * tasks I'm ptracing.
1102 */
1103 struct list_head children; /* list of my children */
1104 struct list_head sibling; /* linkage in my parent's children list */
1105 struct task_struct *group_leader; /* threadgroup leader */
1106
1107 /* PID/PID hash table linkage. */
1108 struct pid_link pids[PIDTYPE_MAX];
1109 struct list_head thread_group;
1110
1111 struct completion *vfork_done; /* for vfork() */
1112 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1113 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1114
1115 unsigned int rt_priority;
1116 cputime_t utime, stime, utimescaled, stimescaled;
1117 cputime_t gtime;
1118 cputime_t prev_utime, prev_stime;
1119 unsigned long nvcsw, nivcsw; /* context switch counts */
1120 struct timespec start_time; /* monotonic time */
1121 struct timespec real_start_time; /* boot based time */
1122 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1123 unsigned long min_flt, maj_flt;
1124
1125 cputime_t it_prof_expires, it_virt_expires;
1126 unsigned long long it_sched_expires;
1127 struct list_head cpu_timers[3];
1128
1129 /* process credentials */
1130 uid_t uid,euid,suid,fsuid;
1131 gid_t gid,egid,sgid,fsgid;
1132 struct group_info *group_info;
1133 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1134 unsigned keep_capabilities:1;
1135 struct user_struct *user;
1136 #ifdef CONFIG_KEYS
1137 struct key *request_key_auth; /* assumed request_key authority */
1138 struct key *thread_keyring; /* keyring private to this thread */
1139 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1140 #endif
1141 char comm[TASK_COMM_LEN]; /* executable name excluding path
1142 - access with [gs]et_task_comm (which lock
1143 it with task_lock())
1144 - initialized normally by flush_old_exec */
1145 /* file system info */
1146 int link_count, total_link_count;
1147 #ifdef CONFIG_SYSVIPC
1148 /* ipc stuff */
1149 struct sysv_sem sysvsem;
1150 #endif
1151 #ifdef CONFIG_DETECT_SOFTLOCKUP
1152 /* hung task detection */
1153 unsigned long last_switch_timestamp;
1154 unsigned long last_switch_count;
1155 #endif
1156 /* CPU-specific state of this task */
1157 struct thread_struct thread;
1158 /* filesystem information */
1159 struct fs_struct *fs;
1160 /* open file information */
1161 struct files_struct *files;
1162 /* namespaces */
1163 struct nsproxy *nsproxy;
1164 /* signal handlers */
1165 struct signal_struct *signal;
1166 struct sighand_struct *sighand;
1167
1168 sigset_t blocked, real_blocked;
1169 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1170 struct sigpending pending;
1171
1172 unsigned long sas_ss_sp;
1173 size_t sas_ss_size;
1174 int (*notifier)(void *priv);
1175 void *notifier_data;
1176 sigset_t *notifier_mask;
1177 #ifdef CONFIG_SECURITY
1178 void *security;
1179 #endif
1180 struct audit_context *audit_context;
1181 #ifdef CONFIG_AUDITSYSCALL
1182 uid_t loginuid;
1183 unsigned int sessionid;
1184 #endif
1185 seccomp_t seccomp;
1186
1187 /* Thread group tracking */
1188 u32 parent_exec_id;
1189 u32 self_exec_id;
1190 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1191 spinlock_t alloc_lock;
1192
1193 /* Protection of the PI data structures: */
1194 spinlock_t pi_lock;
1195
1196 #ifdef CONFIG_RT_MUTEXES
1197 /* PI waiters blocked on a rt_mutex held by this task */
1198 struct plist_head pi_waiters;
1199 /* Deadlock detection and priority inheritance handling */
1200 struct rt_mutex_waiter *pi_blocked_on;
1201 #endif
1202
1203 #ifdef CONFIG_DEBUG_MUTEXES
1204 /* mutex deadlock detection */
1205 struct mutex_waiter *blocked_on;
1206 #endif
1207 #ifdef CONFIG_TRACE_IRQFLAGS
1208 unsigned int irq_events;
1209 int hardirqs_enabled;
1210 unsigned long hardirq_enable_ip;
1211 unsigned int hardirq_enable_event;
1212 unsigned long hardirq_disable_ip;
1213 unsigned int hardirq_disable_event;
1214 int softirqs_enabled;
1215 unsigned long softirq_disable_ip;
1216 unsigned int softirq_disable_event;
1217 unsigned long softirq_enable_ip;
1218 unsigned int softirq_enable_event;
1219 int hardirq_context;
1220 int softirq_context;
1221 #endif
1222 #ifdef CONFIG_LOCKDEP
1223 # define MAX_LOCK_DEPTH 48UL
1224 u64 curr_chain_key;
1225 int lockdep_depth;
1226 struct held_lock held_locks[MAX_LOCK_DEPTH];
1227 unsigned int lockdep_recursion;
1228 #endif
1229
1230 /* journalling filesystem info */
1231 void *journal_info;
1232
1233 /* stacked block device info */
1234 struct bio *bio_list, **bio_tail;
1235
1236 /* VM state */
1237 struct reclaim_state *reclaim_state;
1238
1239 struct backing_dev_info *backing_dev_info;
1240
1241 struct io_context *io_context;
1242
1243 unsigned long ptrace_message;
1244 siginfo_t *last_siginfo; /* For ptrace use. */
1245 #ifdef CONFIG_TASK_XACCT
1246 /* i/o counters(bytes read/written, #syscalls */
1247 u64 rchar, wchar, syscr, syscw;
1248 #endif
1249 struct task_io_accounting ioac;
1250 #if defined(CONFIG_TASK_XACCT)
1251 u64 acct_rss_mem1; /* accumulated rss usage */
1252 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1253 cputime_t acct_stimexpd;/* stime since last update */
1254 #endif
1255 #ifdef CONFIG_NUMA
1256 struct mempolicy *mempolicy;
1257 short il_next;
1258 #endif
1259 #ifdef CONFIG_CPUSETS
1260 nodemask_t mems_allowed;
1261 int cpuset_mems_generation;
1262 int cpuset_mem_spread_rotor;
1263 #endif
1264 #ifdef CONFIG_CGROUPS
1265 /* Control Group info protected by css_set_lock */
1266 struct css_set *cgroups;
1267 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1268 struct list_head cg_list;
1269 #endif
1270 #ifdef CONFIG_FUTEX
1271 struct robust_list_head __user *robust_list;
1272 #ifdef CONFIG_COMPAT
1273 struct compat_robust_list_head __user *compat_robust_list;
1274 #endif
1275 struct list_head pi_state_list;
1276 struct futex_pi_state *pi_state_cache;
1277 #endif
1278 atomic_t fs_excl; /* holding fs exclusive resources */
1279 struct rcu_head rcu;
1280
1281 /*
1282 * cache last used pipe for splice
1283 */
1284 struct pipe_inode_info *splice_pipe;
1285 #ifdef CONFIG_TASK_DELAY_ACCT
1286 struct task_delay_info *delays;
1287 #endif
1288 #ifdef CONFIG_FAULT_INJECTION
1289 int make_it_fail;
1290 #endif
1291 struct prop_local_single dirties;
1292 #ifdef CONFIG_LATENCYTOP
1293 int latency_record_count;
1294 struct latency_record latency_record[LT_SAVECOUNT];
1295 #endif
1296 };
1297
1298 /*
1299 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1300 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1301 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1302 * values are inverted: lower p->prio value means higher priority.
1303 *
1304 * The MAX_USER_RT_PRIO value allows the actual maximum
1305 * RT priority to be separate from the value exported to
1306 * user-space. This allows kernel threads to set their
1307 * priority to a value higher than any user task. Note:
1308 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1309 */
1310
1311 #define MAX_USER_RT_PRIO 100
1312 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1313
1314 #define MAX_PRIO (MAX_RT_PRIO + 40)
1315 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1316
1317 static inline int rt_prio(int prio)
1318 {
1319 if (unlikely(prio < MAX_RT_PRIO))
1320 return 1;
1321 return 0;
1322 }
1323
1324 static inline int rt_task(struct task_struct *p)
1325 {
1326 return rt_prio(p->prio);
1327 }
1328
1329 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1330 {
1331 tsk->signal->__session = session;
1332 }
1333
1334 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1335 {
1336 tsk->signal->__pgrp = pgrp;
1337 }
1338
1339 static inline struct pid *task_pid(struct task_struct *task)
1340 {
1341 return task->pids[PIDTYPE_PID].pid;
1342 }
1343
1344 static inline struct pid *task_tgid(struct task_struct *task)
1345 {
1346 return task->group_leader->pids[PIDTYPE_PID].pid;
1347 }
1348
1349 static inline struct pid *task_pgrp(struct task_struct *task)
1350 {
1351 return task->group_leader->pids[PIDTYPE_PGID].pid;
1352 }
1353
1354 static inline struct pid *task_session(struct task_struct *task)
1355 {
1356 return task->group_leader->pids[PIDTYPE_SID].pid;
1357 }
1358
1359 struct pid_namespace;
1360
1361 /*
1362 * the helpers to get the task's different pids as they are seen
1363 * from various namespaces
1364 *
1365 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1366 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1367 * current.
1368 * task_xid_nr_ns() : id seen from the ns specified;
1369 *
1370 * set_task_vxid() : assigns a virtual id to a task;
1371 *
1372 * see also pid_nr() etc in include/linux/pid.h
1373 */
1374
1375 static inline pid_t task_pid_nr(struct task_struct *tsk)
1376 {
1377 return tsk->pid;
1378 }
1379
1380 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1381
1382 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1383 {
1384 return pid_vnr(task_pid(tsk));
1385 }
1386
1387
1388 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1389 {
1390 return tsk->tgid;
1391 }
1392
1393 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1394
1395 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1396 {
1397 return pid_vnr(task_tgid(tsk));
1398 }
1399
1400
1401 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1402 {
1403 return tsk->signal->__pgrp;
1404 }
1405
1406 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1407
1408 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1409 {
1410 return pid_vnr(task_pgrp(tsk));
1411 }
1412
1413
1414 static inline pid_t task_session_nr(struct task_struct *tsk)
1415 {
1416 return tsk->signal->__session;
1417 }
1418
1419 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1420
1421 static inline pid_t task_session_vnr(struct task_struct *tsk)
1422 {
1423 return pid_vnr(task_session(tsk));
1424 }
1425
1426
1427 /**
1428 * pid_alive - check that a task structure is not stale
1429 * @p: Task structure to be checked.
1430 *
1431 * Test if a process is not yet dead (at most zombie state)
1432 * If pid_alive fails, then pointers within the task structure
1433 * can be stale and must not be dereferenced.
1434 */
1435 static inline int pid_alive(struct task_struct *p)
1436 {
1437 return p->pids[PIDTYPE_PID].pid != NULL;
1438 }
1439
1440 /**
1441 * is_global_init - check if a task structure is init
1442 * @tsk: Task structure to be checked.
1443 *
1444 * Check if a task structure is the first user space task the kernel created.
1445 */
1446 static inline int is_global_init(struct task_struct *tsk)
1447 {
1448 return tsk->pid == 1;
1449 }
1450
1451 /*
1452 * is_container_init:
1453 * check whether in the task is init in its own pid namespace.
1454 */
1455 extern int is_container_init(struct task_struct *tsk);
1456
1457 extern struct pid *cad_pid;
1458
1459 extern void free_task(struct task_struct *tsk);
1460 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1461
1462 extern void __put_task_struct(struct task_struct *t);
1463
1464 static inline void put_task_struct(struct task_struct *t)
1465 {
1466 if (atomic_dec_and_test(&t->usage))
1467 __put_task_struct(t);
1468 }
1469
1470 /*
1471 * Per process flags
1472 */
1473 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1474 /* Not implemented yet, only for 486*/
1475 #define PF_STARTING 0x00000002 /* being created */
1476 #define PF_EXITING 0x00000004 /* getting shut down */
1477 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1478 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1479 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1480 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1481 #define PF_DUMPCORE 0x00000200 /* dumped core */
1482 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1483 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1484 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1485 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1486 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1487 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1488 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1489 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1490 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1491 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1492 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1493 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1494 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1495 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1496 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1497 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1498 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1499 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1500
1501 /*
1502 * Only the _current_ task can read/write to tsk->flags, but other
1503 * tasks can access tsk->flags in readonly mode for example
1504 * with tsk_used_math (like during threaded core dumping).
1505 * There is however an exception to this rule during ptrace
1506 * or during fork: the ptracer task is allowed to write to the
1507 * child->flags of its traced child (same goes for fork, the parent
1508 * can write to the child->flags), because we're guaranteed the
1509 * child is not running and in turn not changing child->flags
1510 * at the same time the parent does it.
1511 */
1512 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1513 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1514 #define clear_used_math() clear_stopped_child_used_math(current)
1515 #define set_used_math() set_stopped_child_used_math(current)
1516 #define conditional_stopped_child_used_math(condition, child) \
1517 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1518 #define conditional_used_math(condition) \
1519 conditional_stopped_child_used_math(condition, current)
1520 #define copy_to_stopped_child_used_math(child) \
1521 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1522 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1523 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1524 #define used_math() tsk_used_math(current)
1525
1526 #ifdef CONFIG_SMP
1527 extern int set_cpus_allowed_ptr(struct task_struct *p,
1528 const cpumask_t *new_mask);
1529 #else
1530 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1531 const cpumask_t *new_mask)
1532 {
1533 if (!cpu_isset(0, *new_mask))
1534 return -EINVAL;
1535 return 0;
1536 }
1537 #endif
1538 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1539 {
1540 return set_cpus_allowed_ptr(p, &new_mask);
1541 }
1542
1543 extern unsigned long long sched_clock(void);
1544
1545 /*
1546 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1547 * clock constructed from sched_clock():
1548 */
1549 extern unsigned long long cpu_clock(int cpu);
1550
1551 extern unsigned long long
1552 task_sched_runtime(struct task_struct *task);
1553
1554 /* sched_exec is called by processes performing an exec */
1555 #ifdef CONFIG_SMP
1556 extern void sched_exec(void);
1557 #else
1558 #define sched_exec() {}
1559 #endif
1560
1561 extern void sched_clock_idle_sleep_event(void);
1562 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1563
1564 #ifdef CONFIG_HOTPLUG_CPU
1565 extern void idle_task_exit(void);
1566 #else
1567 static inline void idle_task_exit(void) {}
1568 #endif
1569
1570 extern void sched_idle_next(void);
1571
1572 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1573 extern void wake_up_idle_cpu(int cpu);
1574 #else
1575 static inline void wake_up_idle_cpu(int cpu) { }
1576 #endif
1577
1578 #ifdef CONFIG_SCHED_DEBUG
1579 extern unsigned int sysctl_sched_latency;
1580 extern unsigned int sysctl_sched_min_granularity;
1581 extern unsigned int sysctl_sched_wakeup_granularity;
1582 extern unsigned int sysctl_sched_child_runs_first;
1583 extern unsigned int sysctl_sched_features;
1584 extern unsigned int sysctl_sched_migration_cost;
1585 extern unsigned int sysctl_sched_nr_migrate;
1586
1587 int sched_nr_latency_handler(struct ctl_table *table, int write,
1588 struct file *file, void __user *buffer, size_t *length,
1589 loff_t *ppos);
1590 #endif
1591 extern unsigned int sysctl_sched_rt_period;
1592 extern int sysctl_sched_rt_runtime;
1593
1594 int sched_rt_handler(struct ctl_table *table, int write,
1595 struct file *filp, void __user *buffer, size_t *lenp,
1596 loff_t *ppos);
1597
1598 extern unsigned int sysctl_sched_compat_yield;
1599
1600 #ifdef CONFIG_RT_MUTEXES
1601 extern int rt_mutex_getprio(struct task_struct *p);
1602 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1603 extern void rt_mutex_adjust_pi(struct task_struct *p);
1604 #else
1605 static inline int rt_mutex_getprio(struct task_struct *p)
1606 {
1607 return p->normal_prio;
1608 }
1609 # define rt_mutex_adjust_pi(p) do { } while (0)
1610 #endif
1611
1612 extern void set_user_nice(struct task_struct *p, long nice);
1613 extern int task_prio(const struct task_struct *p);
1614 extern int task_nice(const struct task_struct *p);
1615 extern int can_nice(const struct task_struct *p, const int nice);
1616 extern int task_curr(const struct task_struct *p);
1617 extern int idle_cpu(int cpu);
1618 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1619 extern struct task_struct *idle_task(int cpu);
1620 extern struct task_struct *curr_task(int cpu);
1621 extern void set_curr_task(int cpu, struct task_struct *p);
1622
1623 void yield(void);
1624
1625 /*
1626 * The default (Linux) execution domain.
1627 */
1628 extern struct exec_domain default_exec_domain;
1629
1630 union thread_union {
1631 struct thread_info thread_info;
1632 unsigned long stack[THREAD_SIZE/sizeof(long)];
1633 };
1634
1635 #ifndef __HAVE_ARCH_KSTACK_END
1636 static inline int kstack_end(void *addr)
1637 {
1638 /* Reliable end of stack detection:
1639 * Some APM bios versions misalign the stack
1640 */
1641 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1642 }
1643 #endif
1644
1645 extern union thread_union init_thread_union;
1646 extern struct task_struct init_task;
1647
1648 extern struct mm_struct init_mm;
1649
1650 extern struct pid_namespace init_pid_ns;
1651
1652 /*
1653 * find a task by one of its numerical ids
1654 *
1655 * find_task_by_pid_type_ns():
1656 * it is the most generic call - it finds a task by all id,
1657 * type and namespace specified
1658 * find_task_by_pid_ns():
1659 * finds a task by its pid in the specified namespace
1660 * find_task_by_vpid():
1661 * finds a task by its virtual pid
1662 * find_task_by_pid():
1663 * finds a task by its global pid
1664 *
1665 * see also find_pid() etc in include/linux/pid.h
1666 */
1667
1668 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1669 struct pid_namespace *ns);
1670
1671 extern struct task_struct *find_task_by_pid(pid_t nr);
1672 extern struct task_struct *find_task_by_vpid(pid_t nr);
1673 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1674 struct pid_namespace *ns);
1675
1676 extern void __set_special_pids(struct pid *pid);
1677
1678 /* per-UID process charging. */
1679 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1680 static inline struct user_struct *get_uid(struct user_struct *u)
1681 {
1682 atomic_inc(&u->__count);
1683 return u;
1684 }
1685 extern void free_uid(struct user_struct *);
1686 extern void switch_uid(struct user_struct *);
1687 extern void release_uids(struct user_namespace *ns);
1688
1689 #include <asm/current.h>
1690
1691 extern void do_timer(unsigned long ticks);
1692
1693 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1694 extern int wake_up_process(struct task_struct *tsk);
1695 extern void wake_up_new_task(struct task_struct *tsk,
1696 unsigned long clone_flags);
1697 #ifdef CONFIG_SMP
1698 extern void kick_process(struct task_struct *tsk);
1699 #else
1700 static inline void kick_process(struct task_struct *tsk) { }
1701 #endif
1702 extern void sched_fork(struct task_struct *p, int clone_flags);
1703 extern void sched_dead(struct task_struct *p);
1704
1705 extern int in_group_p(gid_t);
1706 extern int in_egroup_p(gid_t);
1707
1708 extern void proc_caches_init(void);
1709 extern void flush_signals(struct task_struct *);
1710 extern void ignore_signals(struct task_struct *);
1711 extern void flush_signal_handlers(struct task_struct *, int force_default);
1712 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1713
1714 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1715 {
1716 unsigned long flags;
1717 int ret;
1718
1719 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1720 ret = dequeue_signal(tsk, mask, info);
1721 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1722
1723 return ret;
1724 }
1725
1726 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1727 sigset_t *mask);
1728 extern void unblock_all_signals(void);
1729 extern void release_task(struct task_struct * p);
1730 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1731 extern int force_sigsegv(int, struct task_struct *);
1732 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1733 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1734 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1735 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1736 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1737 extern int kill_pid(struct pid *pid, int sig, int priv);
1738 extern int kill_proc_info(int, struct siginfo *, pid_t);
1739 extern void do_notify_parent(struct task_struct *, int);
1740 extern void force_sig(int, struct task_struct *);
1741 extern void force_sig_specific(int, struct task_struct *);
1742 extern int send_sig(int, struct task_struct *, int);
1743 extern void zap_other_threads(struct task_struct *p);
1744 extern int kill_proc(pid_t, int, int);
1745 extern struct sigqueue *sigqueue_alloc(void);
1746 extern void sigqueue_free(struct sigqueue *);
1747 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1748 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1749 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1750 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1751
1752 static inline int kill_cad_pid(int sig, int priv)
1753 {
1754 return kill_pid(cad_pid, sig, priv);
1755 }
1756
1757 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1758 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1759 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1760 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1761
1762 static inline int is_si_special(const struct siginfo *info)
1763 {
1764 return info <= SEND_SIG_FORCED;
1765 }
1766
1767 /* True if we are on the alternate signal stack. */
1768
1769 static inline int on_sig_stack(unsigned long sp)
1770 {
1771 return (sp - current->sas_ss_sp < current->sas_ss_size);
1772 }
1773
1774 static inline int sas_ss_flags(unsigned long sp)
1775 {
1776 return (current->sas_ss_size == 0 ? SS_DISABLE
1777 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1778 }
1779
1780 /*
1781 * Routines for handling mm_structs
1782 */
1783 extern struct mm_struct * mm_alloc(void);
1784
1785 /* mmdrop drops the mm and the page tables */
1786 extern void __mmdrop(struct mm_struct *);
1787 static inline void mmdrop(struct mm_struct * mm)
1788 {
1789 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1790 __mmdrop(mm);
1791 }
1792
1793 /* mmput gets rid of the mappings and all user-space */
1794 extern void mmput(struct mm_struct *);
1795 /* Grab a reference to a task's mm, if it is not already going away */
1796 extern struct mm_struct *get_task_mm(struct task_struct *task);
1797 /* Remove the current tasks stale references to the old mm_struct */
1798 extern void mm_release(struct task_struct *, struct mm_struct *);
1799
1800 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1801 extern void flush_thread(void);
1802 extern void exit_thread(void);
1803
1804 extern void exit_files(struct task_struct *);
1805 extern void __cleanup_signal(struct signal_struct *);
1806 extern void __cleanup_sighand(struct sighand_struct *);
1807 extern void exit_itimers(struct signal_struct *);
1808
1809 extern NORET_TYPE void do_group_exit(int);
1810
1811 extern void daemonize(const char *, ...);
1812 extern int allow_signal(int);
1813 extern int disallow_signal(int);
1814
1815 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1816 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1817 struct task_struct *fork_idle(int);
1818
1819 extern void set_task_comm(struct task_struct *tsk, char *from);
1820 extern char *get_task_comm(char *to, struct task_struct *tsk);
1821
1822 #ifdef CONFIG_SMP
1823 extern void wait_task_inactive(struct task_struct * p);
1824 #else
1825 #define wait_task_inactive(p) do { } while (0)
1826 #endif
1827
1828 #define remove_parent(p) list_del_init(&(p)->sibling)
1829 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1830
1831 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1832
1833 #define for_each_process(p) \
1834 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1835
1836 /*
1837 * Careful: do_each_thread/while_each_thread is a double loop so
1838 * 'break' will not work as expected - use goto instead.
1839 */
1840 #define do_each_thread(g, t) \
1841 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1842
1843 #define while_each_thread(g, t) \
1844 while ((t = next_thread(t)) != g)
1845
1846 /* de_thread depends on thread_group_leader not being a pid based check */
1847 #define thread_group_leader(p) (p == p->group_leader)
1848
1849 /* Do to the insanities of de_thread it is possible for a process
1850 * to have the pid of the thread group leader without actually being
1851 * the thread group leader. For iteration through the pids in proc
1852 * all we care about is that we have a task with the appropriate
1853 * pid, we don't actually care if we have the right task.
1854 */
1855 static inline int has_group_leader_pid(struct task_struct *p)
1856 {
1857 return p->pid == p->tgid;
1858 }
1859
1860 static inline
1861 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1862 {
1863 return p1->tgid == p2->tgid;
1864 }
1865
1866 static inline struct task_struct *next_thread(const struct task_struct *p)
1867 {
1868 return list_entry(rcu_dereference(p->thread_group.next),
1869 struct task_struct, thread_group);
1870 }
1871
1872 static inline int thread_group_empty(struct task_struct *p)
1873 {
1874 return list_empty(&p->thread_group);
1875 }
1876
1877 #define delay_group_leader(p) \
1878 (thread_group_leader(p) && !thread_group_empty(p))
1879
1880 /*
1881 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1882 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1883 * pins the final release of task.io_context. Also protects ->cpuset and
1884 * ->cgroup.subsys[].
1885 *
1886 * Nests both inside and outside of read_lock(&tasklist_lock).
1887 * It must not be nested with write_lock_irq(&tasklist_lock),
1888 * neither inside nor outside.
1889 */
1890 static inline void task_lock(struct task_struct *p)
1891 {
1892 spin_lock(&p->alloc_lock);
1893 }
1894
1895 static inline void task_unlock(struct task_struct *p)
1896 {
1897 spin_unlock(&p->alloc_lock);
1898 }
1899
1900 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1901 unsigned long *flags);
1902
1903 static inline void unlock_task_sighand(struct task_struct *tsk,
1904 unsigned long *flags)
1905 {
1906 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1907 }
1908
1909 #ifndef __HAVE_THREAD_FUNCTIONS
1910
1911 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1912 #define task_stack_page(task) ((task)->stack)
1913
1914 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1915 {
1916 *task_thread_info(p) = *task_thread_info(org);
1917 task_thread_info(p)->task = p;
1918 }
1919
1920 static inline unsigned long *end_of_stack(struct task_struct *p)
1921 {
1922 return (unsigned long *)(task_thread_info(p) + 1);
1923 }
1924
1925 #endif
1926
1927 /* set thread flags in other task's structures
1928 * - see asm/thread_info.h for TIF_xxxx flags available
1929 */
1930 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1931 {
1932 set_ti_thread_flag(task_thread_info(tsk), flag);
1933 }
1934
1935 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1936 {
1937 clear_ti_thread_flag(task_thread_info(tsk), flag);
1938 }
1939
1940 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1941 {
1942 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1943 }
1944
1945 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1946 {
1947 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1948 }
1949
1950 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1951 {
1952 return test_ti_thread_flag(task_thread_info(tsk), flag);
1953 }
1954
1955 static inline void set_tsk_need_resched(struct task_struct *tsk)
1956 {
1957 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1958 }
1959
1960 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1961 {
1962 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1963 }
1964
1965 static inline int signal_pending(struct task_struct *p)
1966 {
1967 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1968 }
1969
1970 extern int __fatal_signal_pending(struct task_struct *p);
1971
1972 static inline int fatal_signal_pending(struct task_struct *p)
1973 {
1974 return signal_pending(p) && __fatal_signal_pending(p);
1975 }
1976
1977 static inline int need_resched(void)
1978 {
1979 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1980 }
1981
1982 /*
1983 * cond_resched() and cond_resched_lock(): latency reduction via
1984 * explicit rescheduling in places that are safe. The return
1985 * value indicates whether a reschedule was done in fact.
1986 * cond_resched_lock() will drop the spinlock before scheduling,
1987 * cond_resched_softirq() will enable bhs before scheduling.
1988 */
1989 #ifdef CONFIG_PREEMPT
1990 static inline int cond_resched(void)
1991 {
1992 return 0;
1993 }
1994 #else
1995 extern int _cond_resched(void);
1996 static inline int cond_resched(void)
1997 {
1998 return _cond_resched();
1999 }
2000 #endif
2001 extern int cond_resched_lock(spinlock_t * lock);
2002 extern int cond_resched_softirq(void);
2003
2004 /*
2005 * Does a critical section need to be broken due to another
2006 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2007 * but a general need for low latency)
2008 */
2009 static inline int spin_needbreak(spinlock_t *lock)
2010 {
2011 #ifdef CONFIG_PREEMPT
2012 return spin_is_contended(lock);
2013 #else
2014 return 0;
2015 #endif
2016 }
2017
2018 /*
2019 * Reevaluate whether the task has signals pending delivery.
2020 * Wake the task if so.
2021 * This is required every time the blocked sigset_t changes.
2022 * callers must hold sighand->siglock.
2023 */
2024 extern void recalc_sigpending_and_wake(struct task_struct *t);
2025 extern void recalc_sigpending(void);
2026
2027 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2028
2029 /*
2030 * Wrappers for p->thread_info->cpu access. No-op on UP.
2031 */
2032 #ifdef CONFIG_SMP
2033
2034 static inline unsigned int task_cpu(const struct task_struct *p)
2035 {
2036 return task_thread_info(p)->cpu;
2037 }
2038
2039 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2040
2041 #else
2042
2043 static inline unsigned int task_cpu(const struct task_struct *p)
2044 {
2045 return 0;
2046 }
2047
2048 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2049 {
2050 }
2051
2052 #endif /* CONFIG_SMP */
2053
2054 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2055 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2056 #else
2057 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2058 {
2059 mm->mmap_base = TASK_UNMAPPED_BASE;
2060 mm->get_unmapped_area = arch_get_unmapped_area;
2061 mm->unmap_area = arch_unmap_area;
2062 }
2063 #endif
2064
2065 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2066 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2067
2068 extern int sched_mc_power_savings, sched_smt_power_savings;
2069
2070 extern void normalize_rt_tasks(void);
2071
2072 #ifdef CONFIG_GROUP_SCHED
2073
2074 extern struct task_group init_task_group;
2075 #ifdef CONFIG_USER_SCHED
2076 extern struct task_group root_task_group;
2077 #endif
2078
2079 extern struct task_group *sched_create_group(struct task_group *parent);
2080 extern void sched_destroy_group(struct task_group *tg);
2081 extern void sched_move_task(struct task_struct *tsk);
2082 #ifdef CONFIG_FAIR_GROUP_SCHED
2083 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2084 extern unsigned long sched_group_shares(struct task_group *tg);
2085 #endif
2086 #ifdef CONFIG_RT_GROUP_SCHED
2087 extern int sched_group_set_rt_runtime(struct task_group *tg,
2088 long rt_runtime_us);
2089 extern long sched_group_rt_runtime(struct task_group *tg);
2090 extern int sched_group_set_rt_period(struct task_group *tg,
2091 long rt_period_us);
2092 extern long sched_group_rt_period(struct task_group *tg);
2093 #endif
2094 #endif
2095
2096 #ifdef CONFIG_TASK_XACCT
2097 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2098 {
2099 tsk->rchar += amt;
2100 }
2101
2102 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2103 {
2104 tsk->wchar += amt;
2105 }
2106
2107 static inline void inc_syscr(struct task_struct *tsk)
2108 {
2109 tsk->syscr++;
2110 }
2111
2112 static inline void inc_syscw(struct task_struct *tsk)
2113 {
2114 tsk->syscw++;
2115 }
2116 #else
2117 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2118 {
2119 }
2120
2121 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2122 {
2123 }
2124
2125 static inline void inc_syscr(struct task_struct *tsk)
2126 {
2127 }
2128
2129 static inline void inc_syscw(struct task_struct *tsk)
2130 {
2131 }
2132 #endif
2133
2134 #ifdef CONFIG_SMP
2135 void migration_init(void);
2136 #else
2137 static inline void migration_init(void)
2138 {
2139 }
2140 #endif
2141
2142 #ifndef TASK_SIZE_OF
2143 #define TASK_SIZE_OF(tsk) TASK_SIZE
2144 #endif
2145
2146 #endif /* __KERNEL__ */
2147
2148 #endif